 b4145872f7
			
		
	
	
	b4145872f7
	
	
	
		
			
			For some reason only the wait part of the wait api lives in kernel/sched/wait.c and the wake part still lives in kernel/sched/core.c; ammend this. Signed-off-by: Peter Zijlstra <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Andrew Morton <akpm@linux-foundation.org> Link: http://lkml.kernel.org/n/tip-ftycee88naznulqk7ei5mbci@git.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
		
			
				
	
	
		
			504 lines
		
	
	
	
		
			14 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			504 lines
		
	
	
	
		
			14 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Generic waiting primitives.
 | |
|  *
 | |
|  * (C) 2004 Nadia Yvette Chambers, Oracle
 | |
|  */
 | |
| #include <linux/init.h>
 | |
| #include <linux/export.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/wait.h>
 | |
| #include <linux/hash.h>
 | |
| 
 | |
| void __init_waitqueue_head(wait_queue_head_t *q, const char *name, struct lock_class_key *key)
 | |
| {
 | |
| 	spin_lock_init(&q->lock);
 | |
| 	lockdep_set_class_and_name(&q->lock, key, name);
 | |
| 	INIT_LIST_HEAD(&q->task_list);
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL(__init_waitqueue_head);
 | |
| 
 | |
| void add_wait_queue(wait_queue_head_t *q, wait_queue_t *wait)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
 | |
| 	spin_lock_irqsave(&q->lock, flags);
 | |
| 	__add_wait_queue(q, wait);
 | |
| 	spin_unlock_irqrestore(&q->lock, flags);
 | |
| }
 | |
| EXPORT_SYMBOL(add_wait_queue);
 | |
| 
 | |
| void add_wait_queue_exclusive(wait_queue_head_t *q, wait_queue_t *wait)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	wait->flags |= WQ_FLAG_EXCLUSIVE;
 | |
| 	spin_lock_irqsave(&q->lock, flags);
 | |
| 	__add_wait_queue_tail(q, wait);
 | |
| 	spin_unlock_irqrestore(&q->lock, flags);
 | |
| }
 | |
| EXPORT_SYMBOL(add_wait_queue_exclusive);
 | |
| 
 | |
| void remove_wait_queue(wait_queue_head_t *q, wait_queue_t *wait)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(&q->lock, flags);
 | |
| 	__remove_wait_queue(q, wait);
 | |
| 	spin_unlock_irqrestore(&q->lock, flags);
 | |
| }
 | |
| EXPORT_SYMBOL(remove_wait_queue);
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 | |
|  * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
 | |
|  * number) then we wake all the non-exclusive tasks and one exclusive task.
 | |
|  *
 | |
|  * There are circumstances in which we can try to wake a task which has already
 | |
|  * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
 | |
|  * zero in this (rare) case, and we handle it by continuing to scan the queue.
 | |
|  */
 | |
| static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
 | |
| 			int nr_exclusive, int wake_flags, void *key)
 | |
| {
 | |
| 	wait_queue_t *curr, *next;
 | |
| 
 | |
| 	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
 | |
| 		unsigned flags = curr->flags;
 | |
| 
 | |
| 		if (curr->func(curr, mode, wake_flags, key) &&
 | |
| 				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
 | |
| 			break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * __wake_up - wake up threads blocked on a waitqueue.
 | |
|  * @q: the waitqueue
 | |
|  * @mode: which threads
 | |
|  * @nr_exclusive: how many wake-one or wake-many threads to wake up
 | |
|  * @key: is directly passed to the wakeup function
 | |
|  *
 | |
|  * It may be assumed that this function implies a write memory barrier before
 | |
|  * changing the task state if and only if any tasks are woken up.
 | |
|  */
 | |
| void __wake_up(wait_queue_head_t *q, unsigned int mode,
 | |
| 			int nr_exclusive, void *key)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(&q->lock, flags);
 | |
| 	__wake_up_common(q, mode, nr_exclusive, 0, key);
 | |
| 	spin_unlock_irqrestore(&q->lock, flags);
 | |
| }
 | |
| EXPORT_SYMBOL(__wake_up);
 | |
| 
 | |
| /*
 | |
|  * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 | |
|  */
 | |
| void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
 | |
| {
 | |
| 	__wake_up_common(q, mode, nr, 0, NULL);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(__wake_up_locked);
 | |
| 
 | |
| void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
 | |
| {
 | |
| 	__wake_up_common(q, mode, 1, 0, key);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(__wake_up_locked_key);
 | |
| 
 | |
| /**
 | |
|  * __wake_up_sync_key - wake up threads blocked on a waitqueue.
 | |
|  * @q: the waitqueue
 | |
|  * @mode: which threads
 | |
|  * @nr_exclusive: how many wake-one or wake-many threads to wake up
 | |
|  * @key: opaque value to be passed to wakeup targets
 | |
|  *
 | |
|  * The sync wakeup differs that the waker knows that it will schedule
 | |
|  * away soon, so while the target thread will be woken up, it will not
 | |
|  * be migrated to another CPU - ie. the two threads are 'synchronized'
 | |
|  * with each other. This can prevent needless bouncing between CPUs.
 | |
|  *
 | |
|  * On UP it can prevent extra preemption.
 | |
|  *
 | |
|  * It may be assumed that this function implies a write memory barrier before
 | |
|  * changing the task state if and only if any tasks are woken up.
 | |
|  */
 | |
| void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
 | |
| 			int nr_exclusive, void *key)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	int wake_flags = 1; /* XXX WF_SYNC */
 | |
| 
 | |
| 	if (unlikely(!q))
 | |
| 		return;
 | |
| 
 | |
| 	if (unlikely(nr_exclusive != 1))
 | |
| 		wake_flags = 0;
 | |
| 
 | |
| 	spin_lock_irqsave(&q->lock, flags);
 | |
| 	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
 | |
| 	spin_unlock_irqrestore(&q->lock, flags);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(__wake_up_sync_key);
 | |
| 
 | |
| /*
 | |
|  * __wake_up_sync - see __wake_up_sync_key()
 | |
|  */
 | |
| void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
 | |
| {
 | |
| 	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */
 | |
| 
 | |
| /*
 | |
|  * Note: we use "set_current_state()" _after_ the wait-queue add,
 | |
|  * because we need a memory barrier there on SMP, so that any
 | |
|  * wake-function that tests for the wait-queue being active
 | |
|  * will be guaranteed to see waitqueue addition _or_ subsequent
 | |
|  * tests in this thread will see the wakeup having taken place.
 | |
|  *
 | |
|  * The spin_unlock() itself is semi-permeable and only protects
 | |
|  * one way (it only protects stuff inside the critical region and
 | |
|  * stops them from bleeding out - it would still allow subsequent
 | |
|  * loads to move into the critical region).
 | |
|  */
 | |
| void
 | |
| prepare_to_wait(wait_queue_head_t *q, wait_queue_t *wait, int state)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
 | |
| 	spin_lock_irqsave(&q->lock, flags);
 | |
| 	if (list_empty(&wait->task_list))
 | |
| 		__add_wait_queue(q, wait);
 | |
| 	set_current_state(state);
 | |
| 	spin_unlock_irqrestore(&q->lock, flags);
 | |
| }
 | |
| EXPORT_SYMBOL(prepare_to_wait);
 | |
| 
 | |
| void
 | |
| prepare_to_wait_exclusive(wait_queue_head_t *q, wait_queue_t *wait, int state)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	wait->flags |= WQ_FLAG_EXCLUSIVE;
 | |
| 	spin_lock_irqsave(&q->lock, flags);
 | |
| 	if (list_empty(&wait->task_list))
 | |
| 		__add_wait_queue_tail(q, wait);
 | |
| 	set_current_state(state);
 | |
| 	spin_unlock_irqrestore(&q->lock, flags);
 | |
| }
 | |
| EXPORT_SYMBOL(prepare_to_wait_exclusive);
 | |
| 
 | |
| long prepare_to_wait_event(wait_queue_head_t *q, wait_queue_t *wait, int state)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	if (signal_pending_state(state, current))
 | |
| 		return -ERESTARTSYS;
 | |
| 
 | |
| 	wait->private = current;
 | |
| 	wait->func = autoremove_wake_function;
 | |
| 
 | |
| 	spin_lock_irqsave(&q->lock, flags);
 | |
| 	if (list_empty(&wait->task_list)) {
 | |
| 		if (wait->flags & WQ_FLAG_EXCLUSIVE)
 | |
| 			__add_wait_queue_tail(q, wait);
 | |
| 		else
 | |
| 			__add_wait_queue(q, wait);
 | |
| 	}
 | |
| 	set_current_state(state);
 | |
| 	spin_unlock_irqrestore(&q->lock, flags);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL(prepare_to_wait_event);
 | |
| 
 | |
| /**
 | |
|  * finish_wait - clean up after waiting in a queue
 | |
|  * @q: waitqueue waited on
 | |
|  * @wait: wait descriptor
 | |
|  *
 | |
|  * Sets current thread back to running state and removes
 | |
|  * the wait descriptor from the given waitqueue if still
 | |
|  * queued.
 | |
|  */
 | |
| void finish_wait(wait_queue_head_t *q, wait_queue_t *wait)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	__set_current_state(TASK_RUNNING);
 | |
| 	/*
 | |
| 	 * We can check for list emptiness outside the lock
 | |
| 	 * IFF:
 | |
| 	 *  - we use the "careful" check that verifies both
 | |
| 	 *    the next and prev pointers, so that there cannot
 | |
| 	 *    be any half-pending updates in progress on other
 | |
| 	 *    CPU's that we haven't seen yet (and that might
 | |
| 	 *    still change the stack area.
 | |
| 	 * and
 | |
| 	 *  - all other users take the lock (ie we can only
 | |
| 	 *    have _one_ other CPU that looks at or modifies
 | |
| 	 *    the list).
 | |
| 	 */
 | |
| 	if (!list_empty_careful(&wait->task_list)) {
 | |
| 		spin_lock_irqsave(&q->lock, flags);
 | |
| 		list_del_init(&wait->task_list);
 | |
| 		spin_unlock_irqrestore(&q->lock, flags);
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL(finish_wait);
 | |
| 
 | |
| /**
 | |
|  * abort_exclusive_wait - abort exclusive waiting in a queue
 | |
|  * @q: waitqueue waited on
 | |
|  * @wait: wait descriptor
 | |
|  * @mode: runstate of the waiter to be woken
 | |
|  * @key: key to identify a wait bit queue or %NULL
 | |
|  *
 | |
|  * Sets current thread back to running state and removes
 | |
|  * the wait descriptor from the given waitqueue if still
 | |
|  * queued.
 | |
|  *
 | |
|  * Wakes up the next waiter if the caller is concurrently
 | |
|  * woken up through the queue.
 | |
|  *
 | |
|  * This prevents waiter starvation where an exclusive waiter
 | |
|  * aborts and is woken up concurrently and no one wakes up
 | |
|  * the next waiter.
 | |
|  */
 | |
| void abort_exclusive_wait(wait_queue_head_t *q, wait_queue_t *wait,
 | |
| 			unsigned int mode, void *key)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	__set_current_state(TASK_RUNNING);
 | |
| 	spin_lock_irqsave(&q->lock, flags);
 | |
| 	if (!list_empty(&wait->task_list))
 | |
| 		list_del_init(&wait->task_list);
 | |
| 	else if (waitqueue_active(q))
 | |
| 		__wake_up_locked_key(q, mode, key);
 | |
| 	spin_unlock_irqrestore(&q->lock, flags);
 | |
| }
 | |
| EXPORT_SYMBOL(abort_exclusive_wait);
 | |
| 
 | |
| int autoremove_wake_function(wait_queue_t *wait, unsigned mode, int sync, void *key)
 | |
| {
 | |
| 	int ret = default_wake_function(wait, mode, sync, key);
 | |
| 
 | |
| 	if (ret)
 | |
| 		list_del_init(&wait->task_list);
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL(autoremove_wake_function);
 | |
| 
 | |
| int wake_bit_function(wait_queue_t *wait, unsigned mode, int sync, void *arg)
 | |
| {
 | |
| 	struct wait_bit_key *key = arg;
 | |
| 	struct wait_bit_queue *wait_bit
 | |
| 		= container_of(wait, struct wait_bit_queue, wait);
 | |
| 
 | |
| 	if (wait_bit->key.flags != key->flags ||
 | |
| 			wait_bit->key.bit_nr != key->bit_nr ||
 | |
| 			test_bit(key->bit_nr, key->flags))
 | |
| 		return 0;
 | |
| 	else
 | |
| 		return autoremove_wake_function(wait, mode, sync, key);
 | |
| }
 | |
| EXPORT_SYMBOL(wake_bit_function);
 | |
| 
 | |
| /*
 | |
|  * To allow interruptible waiting and asynchronous (i.e. nonblocking)
 | |
|  * waiting, the actions of __wait_on_bit() and __wait_on_bit_lock() are
 | |
|  * permitted return codes. Nonzero return codes halt waiting and return.
 | |
|  */
 | |
| int __sched
 | |
| __wait_on_bit(wait_queue_head_t *wq, struct wait_bit_queue *q,
 | |
| 			int (*action)(void *), unsigned mode)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	do {
 | |
| 		prepare_to_wait(wq, &q->wait, mode);
 | |
| 		if (test_bit(q->key.bit_nr, q->key.flags))
 | |
| 			ret = (*action)(q->key.flags);
 | |
| 	} while (test_bit(q->key.bit_nr, q->key.flags) && !ret);
 | |
| 	finish_wait(wq, &q->wait);
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL(__wait_on_bit);
 | |
| 
 | |
| int __sched out_of_line_wait_on_bit(void *word, int bit,
 | |
| 					int (*action)(void *), unsigned mode)
 | |
| {
 | |
| 	wait_queue_head_t *wq = bit_waitqueue(word, bit);
 | |
| 	DEFINE_WAIT_BIT(wait, word, bit);
 | |
| 
 | |
| 	return __wait_on_bit(wq, &wait, action, mode);
 | |
| }
 | |
| EXPORT_SYMBOL(out_of_line_wait_on_bit);
 | |
| 
 | |
| int __sched
 | |
| __wait_on_bit_lock(wait_queue_head_t *wq, struct wait_bit_queue *q,
 | |
| 			int (*action)(void *), unsigned mode)
 | |
| {
 | |
| 	do {
 | |
| 		int ret;
 | |
| 
 | |
| 		prepare_to_wait_exclusive(wq, &q->wait, mode);
 | |
| 		if (!test_bit(q->key.bit_nr, q->key.flags))
 | |
| 			continue;
 | |
| 		ret = action(q->key.flags);
 | |
| 		if (!ret)
 | |
| 			continue;
 | |
| 		abort_exclusive_wait(wq, &q->wait, mode, &q->key);
 | |
| 		return ret;
 | |
| 	} while (test_and_set_bit(q->key.bit_nr, q->key.flags));
 | |
| 	finish_wait(wq, &q->wait);
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL(__wait_on_bit_lock);
 | |
| 
 | |
| int __sched out_of_line_wait_on_bit_lock(void *word, int bit,
 | |
| 					int (*action)(void *), unsigned mode)
 | |
| {
 | |
| 	wait_queue_head_t *wq = bit_waitqueue(word, bit);
 | |
| 	DEFINE_WAIT_BIT(wait, word, bit);
 | |
| 
 | |
| 	return __wait_on_bit_lock(wq, &wait, action, mode);
 | |
| }
 | |
| EXPORT_SYMBOL(out_of_line_wait_on_bit_lock);
 | |
| 
 | |
| void __wake_up_bit(wait_queue_head_t *wq, void *word, int bit)
 | |
| {
 | |
| 	struct wait_bit_key key = __WAIT_BIT_KEY_INITIALIZER(word, bit);
 | |
| 	if (waitqueue_active(wq))
 | |
| 		__wake_up(wq, TASK_NORMAL, 1, &key);
 | |
| }
 | |
| EXPORT_SYMBOL(__wake_up_bit);
 | |
| 
 | |
| /**
 | |
|  * wake_up_bit - wake up a waiter on a bit
 | |
|  * @word: the word being waited on, a kernel virtual address
 | |
|  * @bit: the bit of the word being waited on
 | |
|  *
 | |
|  * There is a standard hashed waitqueue table for generic use. This
 | |
|  * is the part of the hashtable's accessor API that wakes up waiters
 | |
|  * on a bit. For instance, if one were to have waiters on a bitflag,
 | |
|  * one would call wake_up_bit() after clearing the bit.
 | |
|  *
 | |
|  * In order for this to function properly, as it uses waitqueue_active()
 | |
|  * internally, some kind of memory barrier must be done prior to calling
 | |
|  * this. Typically, this will be smp_mb__after_clear_bit(), but in some
 | |
|  * cases where bitflags are manipulated non-atomically under a lock, one
 | |
|  * may need to use a less regular barrier, such fs/inode.c's smp_mb(),
 | |
|  * because spin_unlock() does not guarantee a memory barrier.
 | |
|  */
 | |
| void wake_up_bit(void *word, int bit)
 | |
| {
 | |
| 	__wake_up_bit(bit_waitqueue(word, bit), word, bit);
 | |
| }
 | |
| EXPORT_SYMBOL(wake_up_bit);
 | |
| 
 | |
| wait_queue_head_t *bit_waitqueue(void *word, int bit)
 | |
| {
 | |
| 	const int shift = BITS_PER_LONG == 32 ? 5 : 6;
 | |
| 	const struct zone *zone = page_zone(virt_to_page(word));
 | |
| 	unsigned long val = (unsigned long)word << shift | bit;
 | |
| 
 | |
| 	return &zone->wait_table[hash_long(val, zone->wait_table_bits)];
 | |
| }
 | |
| EXPORT_SYMBOL(bit_waitqueue);
 | |
| 
 | |
| /*
 | |
|  * Manipulate the atomic_t address to produce a better bit waitqueue table hash
 | |
|  * index (we're keying off bit -1, but that would produce a horrible hash
 | |
|  * value).
 | |
|  */
 | |
| static inline wait_queue_head_t *atomic_t_waitqueue(atomic_t *p)
 | |
| {
 | |
| 	if (BITS_PER_LONG == 64) {
 | |
| 		unsigned long q = (unsigned long)p;
 | |
| 		return bit_waitqueue((void *)(q & ~1), q & 1);
 | |
| 	}
 | |
| 	return bit_waitqueue(p, 0);
 | |
| }
 | |
| 
 | |
| static int wake_atomic_t_function(wait_queue_t *wait, unsigned mode, int sync,
 | |
| 				  void *arg)
 | |
| {
 | |
| 	struct wait_bit_key *key = arg;
 | |
| 	struct wait_bit_queue *wait_bit
 | |
| 		= container_of(wait, struct wait_bit_queue, wait);
 | |
| 	atomic_t *val = key->flags;
 | |
| 
 | |
| 	if (wait_bit->key.flags != key->flags ||
 | |
| 	    wait_bit->key.bit_nr != key->bit_nr ||
 | |
| 	    atomic_read(val) != 0)
 | |
| 		return 0;
 | |
| 	return autoremove_wake_function(wait, mode, sync, key);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * To allow interruptible waiting and asynchronous (i.e. nonblocking) waiting,
 | |
|  * the actions of __wait_on_atomic_t() are permitted return codes.  Nonzero
 | |
|  * return codes halt waiting and return.
 | |
|  */
 | |
| static __sched
 | |
| int __wait_on_atomic_t(wait_queue_head_t *wq, struct wait_bit_queue *q,
 | |
| 		       int (*action)(atomic_t *), unsigned mode)
 | |
| {
 | |
| 	atomic_t *val;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	do {
 | |
| 		prepare_to_wait(wq, &q->wait, mode);
 | |
| 		val = q->key.flags;
 | |
| 		if (atomic_read(val) == 0)
 | |
| 			break;
 | |
| 		ret = (*action)(val);
 | |
| 	} while (!ret && atomic_read(val) != 0);
 | |
| 	finish_wait(wq, &q->wait);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| #define DEFINE_WAIT_ATOMIC_T(name, p)					\
 | |
| 	struct wait_bit_queue name = {					\
 | |
| 		.key = __WAIT_ATOMIC_T_KEY_INITIALIZER(p),		\
 | |
| 		.wait	= {						\
 | |
| 			.private	= current,			\
 | |
| 			.func		= wake_atomic_t_function,	\
 | |
| 			.task_list	=				\
 | |
| 				LIST_HEAD_INIT((name).wait.task_list),	\
 | |
| 		},							\
 | |
| 	}
 | |
| 
 | |
| __sched int out_of_line_wait_on_atomic_t(atomic_t *p, int (*action)(atomic_t *),
 | |
| 					 unsigned mode)
 | |
| {
 | |
| 	wait_queue_head_t *wq = atomic_t_waitqueue(p);
 | |
| 	DEFINE_WAIT_ATOMIC_T(wait, p);
 | |
| 
 | |
| 	return __wait_on_atomic_t(wq, &wait, action, mode);
 | |
| }
 | |
| EXPORT_SYMBOL(out_of_line_wait_on_atomic_t);
 | |
| 
 | |
| /**
 | |
|  * wake_up_atomic_t - Wake up a waiter on a atomic_t
 | |
|  * @p: The atomic_t being waited on, a kernel virtual address
 | |
|  *
 | |
|  * Wake up anyone waiting for the atomic_t to go to zero.
 | |
|  *
 | |
|  * Abuse the bit-waker function and its waitqueue hash table set (the atomic_t
 | |
|  * check is done by the waiter's wake function, not the by the waker itself).
 | |
|  */
 | |
| void wake_up_atomic_t(atomic_t *p)
 | |
| {
 | |
| 	__wake_up_bit(atomic_t_waitqueue(p), p, WAIT_ATOMIC_T_BIT_NR);
 | |
| }
 | |
| EXPORT_SYMBOL(wake_up_atomic_t);
 |