 2da8ca822d
			
		
	
	
	2da8ca822d
	
	
	
		
			
			In preparation of conversion to kernfs, cgroup file handling is updated so that it can be easily mapped to kernfs. This patch replaces cftype->read_seq_string() with cftype->seq_show() which is not limited to single_open() operation and will map directcly to kernfs seq_file interface. The conversions are mechanical. As ->seq_show() doesn't have @css and @cft, the functions which make use of them are converted to use seq_css() and seq_cft() respectively. In several occassions, e.f. if it has seq_string in its name, the function name is updated to fit the new method better. This patch does not introduce any behavior changes. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Aristeu Rozanski <arozansk@redhat.com> Acked-by: Vivek Goyal <vgoyal@redhat.com> Acked-by: Michal Hocko <mhocko@suse.cz> Acked-by: Daniel Wagner <daniel.wagner@bmw-carit.de> Acked-by: Li Zefan <lizefan@huawei.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Balbir Singh <bsingharora@gmail.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Neil Horman <nhorman@tuxdriver.com>
		
			
				
	
	
		
			2727 lines
		
	
	
	
		
			77 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2727 lines
		
	
	
	
		
			77 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *  kernel/cpuset.c
 | |
|  *
 | |
|  *  Processor and Memory placement constraints for sets of tasks.
 | |
|  *
 | |
|  *  Copyright (C) 2003 BULL SA.
 | |
|  *  Copyright (C) 2004-2007 Silicon Graphics, Inc.
 | |
|  *  Copyright (C) 2006 Google, Inc
 | |
|  *
 | |
|  *  Portions derived from Patrick Mochel's sysfs code.
 | |
|  *  sysfs is Copyright (c) 2001-3 Patrick Mochel
 | |
|  *
 | |
|  *  2003-10-10 Written by Simon Derr.
 | |
|  *  2003-10-22 Updates by Stephen Hemminger.
 | |
|  *  2004 May-July Rework by Paul Jackson.
 | |
|  *  2006 Rework by Paul Menage to use generic cgroups
 | |
|  *  2008 Rework of the scheduler domains and CPU hotplug handling
 | |
|  *       by Max Krasnyansky
 | |
|  *
 | |
|  *  This file is subject to the terms and conditions of the GNU General Public
 | |
|  *  License.  See the file COPYING in the main directory of the Linux
 | |
|  *  distribution for more details.
 | |
|  */
 | |
| 
 | |
| #include <linux/cpu.h>
 | |
| #include <linux/cpumask.h>
 | |
| #include <linux/cpuset.h>
 | |
| #include <linux/err.h>
 | |
| #include <linux/errno.h>
 | |
| #include <linux/file.h>
 | |
| #include <linux/fs.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/kmod.h>
 | |
| #include <linux/list.h>
 | |
| #include <linux/mempolicy.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/memory.h>
 | |
| #include <linux/export.h>
 | |
| #include <linux/mount.h>
 | |
| #include <linux/namei.h>
 | |
| #include <linux/pagemap.h>
 | |
| #include <linux/proc_fs.h>
 | |
| #include <linux/rcupdate.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/seq_file.h>
 | |
| #include <linux/security.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/spinlock.h>
 | |
| #include <linux/stat.h>
 | |
| #include <linux/string.h>
 | |
| #include <linux/time.h>
 | |
| #include <linux/backing-dev.h>
 | |
| #include <linux/sort.h>
 | |
| 
 | |
| #include <asm/uaccess.h>
 | |
| #include <linux/atomic.h>
 | |
| #include <linux/mutex.h>
 | |
| #include <linux/workqueue.h>
 | |
| #include <linux/cgroup.h>
 | |
| #include <linux/wait.h>
 | |
| 
 | |
| /*
 | |
|  * Tracks how many cpusets are currently defined in system.
 | |
|  * When there is only one cpuset (the root cpuset) we can
 | |
|  * short circuit some hooks.
 | |
|  */
 | |
| int number_of_cpusets __read_mostly;
 | |
| 
 | |
| /* See "Frequency meter" comments, below. */
 | |
| 
 | |
| struct fmeter {
 | |
| 	int cnt;		/* unprocessed events count */
 | |
| 	int val;		/* most recent output value */
 | |
| 	time_t time;		/* clock (secs) when val computed */
 | |
| 	spinlock_t lock;	/* guards read or write of above */
 | |
| };
 | |
| 
 | |
| struct cpuset {
 | |
| 	struct cgroup_subsys_state css;
 | |
| 
 | |
| 	unsigned long flags;		/* "unsigned long" so bitops work */
 | |
| 	cpumask_var_t cpus_allowed;	/* CPUs allowed to tasks in cpuset */
 | |
| 	nodemask_t mems_allowed;	/* Memory Nodes allowed to tasks */
 | |
| 
 | |
| 	/*
 | |
| 	 * This is old Memory Nodes tasks took on.
 | |
| 	 *
 | |
| 	 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
 | |
| 	 * - A new cpuset's old_mems_allowed is initialized when some
 | |
| 	 *   task is moved into it.
 | |
| 	 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
 | |
| 	 *   cpuset.mems_allowed and have tasks' nodemask updated, and
 | |
| 	 *   then old_mems_allowed is updated to mems_allowed.
 | |
| 	 */
 | |
| 	nodemask_t old_mems_allowed;
 | |
| 
 | |
| 	struct fmeter fmeter;		/* memory_pressure filter */
 | |
| 
 | |
| 	/*
 | |
| 	 * Tasks are being attached to this cpuset.  Used to prevent
 | |
| 	 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
 | |
| 	 */
 | |
| 	int attach_in_progress;
 | |
| 
 | |
| 	/* partition number for rebuild_sched_domains() */
 | |
| 	int pn;
 | |
| 
 | |
| 	/* for custom sched domain */
 | |
| 	int relax_domain_level;
 | |
| };
 | |
| 
 | |
| static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
 | |
| {
 | |
| 	return css ? container_of(css, struct cpuset, css) : NULL;
 | |
| }
 | |
| 
 | |
| /* Retrieve the cpuset for a task */
 | |
| static inline struct cpuset *task_cs(struct task_struct *task)
 | |
| {
 | |
| 	return css_cs(task_css(task, cpuset_subsys_id));
 | |
| }
 | |
| 
 | |
| static inline struct cpuset *parent_cs(struct cpuset *cs)
 | |
| {
 | |
| 	return css_cs(css_parent(&cs->css));
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_NUMA
 | |
| static inline bool task_has_mempolicy(struct task_struct *task)
 | |
| {
 | |
| 	return task->mempolicy;
 | |
| }
 | |
| #else
 | |
| static inline bool task_has_mempolicy(struct task_struct *task)
 | |
| {
 | |
| 	return false;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| 
 | |
| /* bits in struct cpuset flags field */
 | |
| typedef enum {
 | |
| 	CS_ONLINE,
 | |
| 	CS_CPU_EXCLUSIVE,
 | |
| 	CS_MEM_EXCLUSIVE,
 | |
| 	CS_MEM_HARDWALL,
 | |
| 	CS_MEMORY_MIGRATE,
 | |
| 	CS_SCHED_LOAD_BALANCE,
 | |
| 	CS_SPREAD_PAGE,
 | |
| 	CS_SPREAD_SLAB,
 | |
| } cpuset_flagbits_t;
 | |
| 
 | |
| /* convenient tests for these bits */
 | |
| static inline bool is_cpuset_online(const struct cpuset *cs)
 | |
| {
 | |
| 	return test_bit(CS_ONLINE, &cs->flags);
 | |
| }
 | |
| 
 | |
| static inline int is_cpu_exclusive(const struct cpuset *cs)
 | |
| {
 | |
| 	return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
 | |
| }
 | |
| 
 | |
| static inline int is_mem_exclusive(const struct cpuset *cs)
 | |
| {
 | |
| 	return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
 | |
| }
 | |
| 
 | |
| static inline int is_mem_hardwall(const struct cpuset *cs)
 | |
| {
 | |
| 	return test_bit(CS_MEM_HARDWALL, &cs->flags);
 | |
| }
 | |
| 
 | |
| static inline int is_sched_load_balance(const struct cpuset *cs)
 | |
| {
 | |
| 	return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
 | |
| }
 | |
| 
 | |
| static inline int is_memory_migrate(const struct cpuset *cs)
 | |
| {
 | |
| 	return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
 | |
| }
 | |
| 
 | |
| static inline int is_spread_page(const struct cpuset *cs)
 | |
| {
 | |
| 	return test_bit(CS_SPREAD_PAGE, &cs->flags);
 | |
| }
 | |
| 
 | |
| static inline int is_spread_slab(const struct cpuset *cs)
 | |
| {
 | |
| 	return test_bit(CS_SPREAD_SLAB, &cs->flags);
 | |
| }
 | |
| 
 | |
| static struct cpuset top_cpuset = {
 | |
| 	.flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
 | |
| 		  (1 << CS_MEM_EXCLUSIVE)),
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * cpuset_for_each_child - traverse online children of a cpuset
 | |
|  * @child_cs: loop cursor pointing to the current child
 | |
|  * @pos_css: used for iteration
 | |
|  * @parent_cs: target cpuset to walk children of
 | |
|  *
 | |
|  * Walk @child_cs through the online children of @parent_cs.  Must be used
 | |
|  * with RCU read locked.
 | |
|  */
 | |
| #define cpuset_for_each_child(child_cs, pos_css, parent_cs)		\
 | |
| 	css_for_each_child((pos_css), &(parent_cs)->css)		\
 | |
| 		if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
 | |
| 
 | |
| /**
 | |
|  * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
 | |
|  * @des_cs: loop cursor pointing to the current descendant
 | |
|  * @pos_css: used for iteration
 | |
|  * @root_cs: target cpuset to walk ancestor of
 | |
|  *
 | |
|  * Walk @des_cs through the online descendants of @root_cs.  Must be used
 | |
|  * with RCU read locked.  The caller may modify @pos_css by calling
 | |
|  * css_rightmost_descendant() to skip subtree.  @root_cs is included in the
 | |
|  * iteration and the first node to be visited.
 | |
|  */
 | |
| #define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs)	\
 | |
| 	css_for_each_descendant_pre((pos_css), &(root_cs)->css)		\
 | |
| 		if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
 | |
| 
 | |
| /*
 | |
|  * There are two global mutexes guarding cpuset structures - cpuset_mutex
 | |
|  * and callback_mutex.  The latter may nest inside the former.  We also
 | |
|  * require taking task_lock() when dereferencing a task's cpuset pointer.
 | |
|  * See "The task_lock() exception", at the end of this comment.
 | |
|  *
 | |
|  * A task must hold both mutexes to modify cpusets.  If a task holds
 | |
|  * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
 | |
|  * is the only task able to also acquire callback_mutex and be able to
 | |
|  * modify cpusets.  It can perform various checks on the cpuset structure
 | |
|  * first, knowing nothing will change.  It can also allocate memory while
 | |
|  * just holding cpuset_mutex.  While it is performing these checks, various
 | |
|  * callback routines can briefly acquire callback_mutex to query cpusets.
 | |
|  * Once it is ready to make the changes, it takes callback_mutex, blocking
 | |
|  * everyone else.
 | |
|  *
 | |
|  * Calls to the kernel memory allocator can not be made while holding
 | |
|  * callback_mutex, as that would risk double tripping on callback_mutex
 | |
|  * from one of the callbacks into the cpuset code from within
 | |
|  * __alloc_pages().
 | |
|  *
 | |
|  * If a task is only holding callback_mutex, then it has read-only
 | |
|  * access to cpusets.
 | |
|  *
 | |
|  * Now, the task_struct fields mems_allowed and mempolicy may be changed
 | |
|  * by other task, we use alloc_lock in the task_struct fields to protect
 | |
|  * them.
 | |
|  *
 | |
|  * The cpuset_common_file_read() handlers only hold callback_mutex across
 | |
|  * small pieces of code, such as when reading out possibly multi-word
 | |
|  * cpumasks and nodemasks.
 | |
|  *
 | |
|  * Accessing a task's cpuset should be done in accordance with the
 | |
|  * guidelines for accessing subsystem state in kernel/cgroup.c
 | |
|  */
 | |
| 
 | |
| static DEFINE_MUTEX(cpuset_mutex);
 | |
| static DEFINE_MUTEX(callback_mutex);
 | |
| 
 | |
| /*
 | |
|  * CPU / memory hotplug is handled asynchronously.
 | |
|  */
 | |
| static void cpuset_hotplug_workfn(struct work_struct *work);
 | |
| static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
 | |
| 
 | |
| static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
 | |
| 
 | |
| /*
 | |
|  * This is ugly, but preserves the userspace API for existing cpuset
 | |
|  * users. If someone tries to mount the "cpuset" filesystem, we
 | |
|  * silently switch it to mount "cgroup" instead
 | |
|  */
 | |
| static struct dentry *cpuset_mount(struct file_system_type *fs_type,
 | |
| 			 int flags, const char *unused_dev_name, void *data)
 | |
| {
 | |
| 	struct file_system_type *cgroup_fs = get_fs_type("cgroup");
 | |
| 	struct dentry *ret = ERR_PTR(-ENODEV);
 | |
| 	if (cgroup_fs) {
 | |
| 		char mountopts[] =
 | |
| 			"cpuset,noprefix,"
 | |
| 			"release_agent=/sbin/cpuset_release_agent";
 | |
| 		ret = cgroup_fs->mount(cgroup_fs, flags,
 | |
| 					   unused_dev_name, mountopts);
 | |
| 		put_filesystem(cgroup_fs);
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static struct file_system_type cpuset_fs_type = {
 | |
| 	.name = "cpuset",
 | |
| 	.mount = cpuset_mount,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Return in pmask the portion of a cpusets's cpus_allowed that
 | |
|  * are online.  If none are online, walk up the cpuset hierarchy
 | |
|  * until we find one that does have some online cpus.  The top
 | |
|  * cpuset always has some cpus online.
 | |
|  *
 | |
|  * One way or another, we guarantee to return some non-empty subset
 | |
|  * of cpu_online_mask.
 | |
|  *
 | |
|  * Call with callback_mutex held.
 | |
|  */
 | |
| static void guarantee_online_cpus(struct cpuset *cs, struct cpumask *pmask)
 | |
| {
 | |
| 	while (!cpumask_intersects(cs->cpus_allowed, cpu_online_mask))
 | |
| 		cs = parent_cs(cs);
 | |
| 	cpumask_and(pmask, cs->cpus_allowed, cpu_online_mask);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return in *pmask the portion of a cpusets's mems_allowed that
 | |
|  * are online, with memory.  If none are online with memory, walk
 | |
|  * up the cpuset hierarchy until we find one that does have some
 | |
|  * online mems.  The top cpuset always has some mems online.
 | |
|  *
 | |
|  * One way or another, we guarantee to return some non-empty subset
 | |
|  * of node_states[N_MEMORY].
 | |
|  *
 | |
|  * Call with callback_mutex held.
 | |
|  */
 | |
| static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
 | |
| {
 | |
| 	while (!nodes_intersects(cs->mems_allowed, node_states[N_MEMORY]))
 | |
| 		cs = parent_cs(cs);
 | |
| 	nodes_and(*pmask, cs->mems_allowed, node_states[N_MEMORY]);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * update task's spread flag if cpuset's page/slab spread flag is set
 | |
|  *
 | |
|  * Called with callback_mutex/cpuset_mutex held
 | |
|  */
 | |
| static void cpuset_update_task_spread_flag(struct cpuset *cs,
 | |
| 					struct task_struct *tsk)
 | |
| {
 | |
| 	if (is_spread_page(cs))
 | |
| 		tsk->flags |= PF_SPREAD_PAGE;
 | |
| 	else
 | |
| 		tsk->flags &= ~PF_SPREAD_PAGE;
 | |
| 	if (is_spread_slab(cs))
 | |
| 		tsk->flags |= PF_SPREAD_SLAB;
 | |
| 	else
 | |
| 		tsk->flags &= ~PF_SPREAD_SLAB;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
 | |
|  *
 | |
|  * One cpuset is a subset of another if all its allowed CPUs and
 | |
|  * Memory Nodes are a subset of the other, and its exclusive flags
 | |
|  * are only set if the other's are set.  Call holding cpuset_mutex.
 | |
|  */
 | |
| 
 | |
| static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
 | |
| {
 | |
| 	return	cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
 | |
| 		nodes_subset(p->mems_allowed, q->mems_allowed) &&
 | |
| 		is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
 | |
| 		is_mem_exclusive(p) <= is_mem_exclusive(q);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * alloc_trial_cpuset - allocate a trial cpuset
 | |
|  * @cs: the cpuset that the trial cpuset duplicates
 | |
|  */
 | |
| static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
 | |
| {
 | |
| 	struct cpuset *trial;
 | |
| 
 | |
| 	trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
 | |
| 	if (!trial)
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL)) {
 | |
| 		kfree(trial);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
 | |
| 
 | |
| 	return trial;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * free_trial_cpuset - free the trial cpuset
 | |
|  * @trial: the trial cpuset to be freed
 | |
|  */
 | |
| static void free_trial_cpuset(struct cpuset *trial)
 | |
| {
 | |
| 	free_cpumask_var(trial->cpus_allowed);
 | |
| 	kfree(trial);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * validate_change() - Used to validate that any proposed cpuset change
 | |
|  *		       follows the structural rules for cpusets.
 | |
|  *
 | |
|  * If we replaced the flag and mask values of the current cpuset
 | |
|  * (cur) with those values in the trial cpuset (trial), would
 | |
|  * our various subset and exclusive rules still be valid?  Presumes
 | |
|  * cpuset_mutex held.
 | |
|  *
 | |
|  * 'cur' is the address of an actual, in-use cpuset.  Operations
 | |
|  * such as list traversal that depend on the actual address of the
 | |
|  * cpuset in the list must use cur below, not trial.
 | |
|  *
 | |
|  * 'trial' is the address of bulk structure copy of cur, with
 | |
|  * perhaps one or more of the fields cpus_allowed, mems_allowed,
 | |
|  * or flags changed to new, trial values.
 | |
|  *
 | |
|  * Return 0 if valid, -errno if not.
 | |
|  */
 | |
| 
 | |
| static int validate_change(struct cpuset *cur, struct cpuset *trial)
 | |
| {
 | |
| 	struct cgroup_subsys_state *css;
 | |
| 	struct cpuset *c, *par;
 | |
| 	int ret;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 
 | |
| 	/* Each of our child cpusets must be a subset of us */
 | |
| 	ret = -EBUSY;
 | |
| 	cpuset_for_each_child(c, css, cur)
 | |
| 		if (!is_cpuset_subset(c, trial))
 | |
| 			goto out;
 | |
| 
 | |
| 	/* Remaining checks don't apply to root cpuset */
 | |
| 	ret = 0;
 | |
| 	if (cur == &top_cpuset)
 | |
| 		goto out;
 | |
| 
 | |
| 	par = parent_cs(cur);
 | |
| 
 | |
| 	/* We must be a subset of our parent cpuset */
 | |
| 	ret = -EACCES;
 | |
| 	if (!is_cpuset_subset(trial, par))
 | |
| 		goto out;
 | |
| 
 | |
| 	/*
 | |
| 	 * If either I or some sibling (!= me) is exclusive, we can't
 | |
| 	 * overlap
 | |
| 	 */
 | |
| 	ret = -EINVAL;
 | |
| 	cpuset_for_each_child(c, css, par) {
 | |
| 		if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
 | |
| 		    c != cur &&
 | |
| 		    cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
 | |
| 			goto out;
 | |
| 		if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
 | |
| 		    c != cur &&
 | |
| 		    nodes_intersects(trial->mems_allowed, c->mems_allowed))
 | |
| 			goto out;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Cpusets with tasks - existing or newly being attached - can't
 | |
| 	 * be changed to have empty cpus_allowed or mems_allowed.
 | |
| 	 */
 | |
| 	ret = -ENOSPC;
 | |
| 	if ((cgroup_task_count(cur->css.cgroup) || cur->attach_in_progress)) {
 | |
| 		if (!cpumask_empty(cur->cpus_allowed) &&
 | |
| 		    cpumask_empty(trial->cpus_allowed))
 | |
| 			goto out;
 | |
| 		if (!nodes_empty(cur->mems_allowed) &&
 | |
| 		    nodes_empty(trial->mems_allowed))
 | |
| 			goto out;
 | |
| 	}
 | |
| 
 | |
| 	ret = 0;
 | |
| out:
 | |
| 	rcu_read_unlock();
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| /*
 | |
|  * Helper routine for generate_sched_domains().
 | |
|  * Do cpusets a, b have overlapping cpus_allowed masks?
 | |
|  */
 | |
| static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
 | |
| {
 | |
| 	return cpumask_intersects(a->cpus_allowed, b->cpus_allowed);
 | |
| }
 | |
| 
 | |
| static void
 | |
| update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
 | |
| {
 | |
| 	if (dattr->relax_domain_level < c->relax_domain_level)
 | |
| 		dattr->relax_domain_level = c->relax_domain_level;
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| static void update_domain_attr_tree(struct sched_domain_attr *dattr,
 | |
| 				    struct cpuset *root_cs)
 | |
| {
 | |
| 	struct cpuset *cp;
 | |
| 	struct cgroup_subsys_state *pos_css;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
 | |
| 		if (cp == root_cs)
 | |
| 			continue;
 | |
| 
 | |
| 		/* skip the whole subtree if @cp doesn't have any CPU */
 | |
| 		if (cpumask_empty(cp->cpus_allowed)) {
 | |
| 			pos_css = css_rightmost_descendant(pos_css);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (is_sched_load_balance(cp))
 | |
| 			update_domain_attr(dattr, cp);
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * generate_sched_domains()
 | |
|  *
 | |
|  * This function builds a partial partition of the systems CPUs
 | |
|  * A 'partial partition' is a set of non-overlapping subsets whose
 | |
|  * union is a subset of that set.
 | |
|  * The output of this function needs to be passed to kernel/sched/core.c
 | |
|  * partition_sched_domains() routine, which will rebuild the scheduler's
 | |
|  * load balancing domains (sched domains) as specified by that partial
 | |
|  * partition.
 | |
|  *
 | |
|  * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
 | |
|  * for a background explanation of this.
 | |
|  *
 | |
|  * Does not return errors, on the theory that the callers of this
 | |
|  * routine would rather not worry about failures to rebuild sched
 | |
|  * domains when operating in the severe memory shortage situations
 | |
|  * that could cause allocation failures below.
 | |
|  *
 | |
|  * Must be called with cpuset_mutex held.
 | |
|  *
 | |
|  * The three key local variables below are:
 | |
|  *    q  - a linked-list queue of cpuset pointers, used to implement a
 | |
|  *	   top-down scan of all cpusets.  This scan loads a pointer
 | |
|  *	   to each cpuset marked is_sched_load_balance into the
 | |
|  *	   array 'csa'.  For our purposes, rebuilding the schedulers
 | |
|  *	   sched domains, we can ignore !is_sched_load_balance cpusets.
 | |
|  *  csa  - (for CpuSet Array) Array of pointers to all the cpusets
 | |
|  *	   that need to be load balanced, for convenient iterative
 | |
|  *	   access by the subsequent code that finds the best partition,
 | |
|  *	   i.e the set of domains (subsets) of CPUs such that the
 | |
|  *	   cpus_allowed of every cpuset marked is_sched_load_balance
 | |
|  *	   is a subset of one of these domains, while there are as
 | |
|  *	   many such domains as possible, each as small as possible.
 | |
|  * doms  - Conversion of 'csa' to an array of cpumasks, for passing to
 | |
|  *	   the kernel/sched/core.c routine partition_sched_domains() in a
 | |
|  *	   convenient format, that can be easily compared to the prior
 | |
|  *	   value to determine what partition elements (sched domains)
 | |
|  *	   were changed (added or removed.)
 | |
|  *
 | |
|  * Finding the best partition (set of domains):
 | |
|  *	The triple nested loops below over i, j, k scan over the
 | |
|  *	load balanced cpusets (using the array of cpuset pointers in
 | |
|  *	csa[]) looking for pairs of cpusets that have overlapping
 | |
|  *	cpus_allowed, but which don't have the same 'pn' partition
 | |
|  *	number and gives them in the same partition number.  It keeps
 | |
|  *	looping on the 'restart' label until it can no longer find
 | |
|  *	any such pairs.
 | |
|  *
 | |
|  *	The union of the cpus_allowed masks from the set of
 | |
|  *	all cpusets having the same 'pn' value then form the one
 | |
|  *	element of the partition (one sched domain) to be passed to
 | |
|  *	partition_sched_domains().
 | |
|  */
 | |
| static int generate_sched_domains(cpumask_var_t **domains,
 | |
| 			struct sched_domain_attr **attributes)
 | |
| {
 | |
| 	struct cpuset *cp;	/* scans q */
 | |
| 	struct cpuset **csa;	/* array of all cpuset ptrs */
 | |
| 	int csn;		/* how many cpuset ptrs in csa so far */
 | |
| 	int i, j, k;		/* indices for partition finding loops */
 | |
| 	cpumask_var_t *doms;	/* resulting partition; i.e. sched domains */
 | |
| 	struct sched_domain_attr *dattr;  /* attributes for custom domains */
 | |
| 	int ndoms = 0;		/* number of sched domains in result */
 | |
| 	int nslot;		/* next empty doms[] struct cpumask slot */
 | |
| 	struct cgroup_subsys_state *pos_css;
 | |
| 
 | |
| 	doms = NULL;
 | |
| 	dattr = NULL;
 | |
| 	csa = NULL;
 | |
| 
 | |
| 	/* Special case for the 99% of systems with one, full, sched domain */
 | |
| 	if (is_sched_load_balance(&top_cpuset)) {
 | |
| 		ndoms = 1;
 | |
| 		doms = alloc_sched_domains(ndoms);
 | |
| 		if (!doms)
 | |
| 			goto done;
 | |
| 
 | |
| 		dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
 | |
| 		if (dattr) {
 | |
| 			*dattr = SD_ATTR_INIT;
 | |
| 			update_domain_attr_tree(dattr, &top_cpuset);
 | |
| 		}
 | |
| 		cpumask_copy(doms[0], top_cpuset.cpus_allowed);
 | |
| 
 | |
| 		goto done;
 | |
| 	}
 | |
| 
 | |
| 	csa = kmalloc(number_of_cpusets * sizeof(cp), GFP_KERNEL);
 | |
| 	if (!csa)
 | |
| 		goto done;
 | |
| 	csn = 0;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
 | |
| 		if (cp == &top_cpuset)
 | |
| 			continue;
 | |
| 		/*
 | |
| 		 * Continue traversing beyond @cp iff @cp has some CPUs and
 | |
| 		 * isn't load balancing.  The former is obvious.  The
 | |
| 		 * latter: All child cpusets contain a subset of the
 | |
| 		 * parent's cpus, so just skip them, and then we call
 | |
| 		 * update_domain_attr_tree() to calc relax_domain_level of
 | |
| 		 * the corresponding sched domain.
 | |
| 		 */
 | |
| 		if (!cpumask_empty(cp->cpus_allowed) &&
 | |
| 		    !is_sched_load_balance(cp))
 | |
| 			continue;
 | |
| 
 | |
| 		if (is_sched_load_balance(cp))
 | |
| 			csa[csn++] = cp;
 | |
| 
 | |
| 		/* skip @cp's subtree */
 | |
| 		pos_css = css_rightmost_descendant(pos_css);
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	for (i = 0; i < csn; i++)
 | |
| 		csa[i]->pn = i;
 | |
| 	ndoms = csn;
 | |
| 
 | |
| restart:
 | |
| 	/* Find the best partition (set of sched domains) */
 | |
| 	for (i = 0; i < csn; i++) {
 | |
| 		struct cpuset *a = csa[i];
 | |
| 		int apn = a->pn;
 | |
| 
 | |
| 		for (j = 0; j < csn; j++) {
 | |
| 			struct cpuset *b = csa[j];
 | |
| 			int bpn = b->pn;
 | |
| 
 | |
| 			if (apn != bpn && cpusets_overlap(a, b)) {
 | |
| 				for (k = 0; k < csn; k++) {
 | |
| 					struct cpuset *c = csa[k];
 | |
| 
 | |
| 					if (c->pn == bpn)
 | |
| 						c->pn = apn;
 | |
| 				}
 | |
| 				ndoms--;	/* one less element */
 | |
| 				goto restart;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Now we know how many domains to create.
 | |
| 	 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
 | |
| 	 */
 | |
| 	doms = alloc_sched_domains(ndoms);
 | |
| 	if (!doms)
 | |
| 		goto done;
 | |
| 
 | |
| 	/*
 | |
| 	 * The rest of the code, including the scheduler, can deal with
 | |
| 	 * dattr==NULL case. No need to abort if alloc fails.
 | |
| 	 */
 | |
| 	dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
 | |
| 
 | |
| 	for (nslot = 0, i = 0; i < csn; i++) {
 | |
| 		struct cpuset *a = csa[i];
 | |
| 		struct cpumask *dp;
 | |
| 		int apn = a->pn;
 | |
| 
 | |
| 		if (apn < 0) {
 | |
| 			/* Skip completed partitions */
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		dp = doms[nslot];
 | |
| 
 | |
| 		if (nslot == ndoms) {
 | |
| 			static int warnings = 10;
 | |
| 			if (warnings) {
 | |
| 				printk(KERN_WARNING
 | |
| 				 "rebuild_sched_domains confused:"
 | |
| 				  " nslot %d, ndoms %d, csn %d, i %d,"
 | |
| 				  " apn %d\n",
 | |
| 				  nslot, ndoms, csn, i, apn);
 | |
| 				warnings--;
 | |
| 			}
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		cpumask_clear(dp);
 | |
| 		if (dattr)
 | |
| 			*(dattr + nslot) = SD_ATTR_INIT;
 | |
| 		for (j = i; j < csn; j++) {
 | |
| 			struct cpuset *b = csa[j];
 | |
| 
 | |
| 			if (apn == b->pn) {
 | |
| 				cpumask_or(dp, dp, b->cpus_allowed);
 | |
| 				if (dattr)
 | |
| 					update_domain_attr_tree(dattr + nslot, b);
 | |
| 
 | |
| 				/* Done with this partition */
 | |
| 				b->pn = -1;
 | |
| 			}
 | |
| 		}
 | |
| 		nslot++;
 | |
| 	}
 | |
| 	BUG_ON(nslot != ndoms);
 | |
| 
 | |
| done:
 | |
| 	kfree(csa);
 | |
| 
 | |
| 	/*
 | |
| 	 * Fallback to the default domain if kmalloc() failed.
 | |
| 	 * See comments in partition_sched_domains().
 | |
| 	 */
 | |
| 	if (doms == NULL)
 | |
| 		ndoms = 1;
 | |
| 
 | |
| 	*domains    = doms;
 | |
| 	*attributes = dattr;
 | |
| 	return ndoms;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Rebuild scheduler domains.
 | |
|  *
 | |
|  * If the flag 'sched_load_balance' of any cpuset with non-empty
 | |
|  * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
 | |
|  * which has that flag enabled, or if any cpuset with a non-empty
 | |
|  * 'cpus' is removed, then call this routine to rebuild the
 | |
|  * scheduler's dynamic sched domains.
 | |
|  *
 | |
|  * Call with cpuset_mutex held.  Takes get_online_cpus().
 | |
|  */
 | |
| static void rebuild_sched_domains_locked(void)
 | |
| {
 | |
| 	struct sched_domain_attr *attr;
 | |
| 	cpumask_var_t *doms;
 | |
| 	int ndoms;
 | |
| 
 | |
| 	lockdep_assert_held(&cpuset_mutex);
 | |
| 	get_online_cpus();
 | |
| 
 | |
| 	/*
 | |
| 	 * We have raced with CPU hotplug. Don't do anything to avoid
 | |
| 	 * passing doms with offlined cpu to partition_sched_domains().
 | |
| 	 * Anyways, hotplug work item will rebuild sched domains.
 | |
| 	 */
 | |
| 	if (!cpumask_equal(top_cpuset.cpus_allowed, cpu_active_mask))
 | |
| 		goto out;
 | |
| 
 | |
| 	/* Generate domain masks and attrs */
 | |
| 	ndoms = generate_sched_domains(&doms, &attr);
 | |
| 
 | |
| 	/* Have scheduler rebuild the domains */
 | |
| 	partition_sched_domains(ndoms, doms, attr);
 | |
| out:
 | |
| 	put_online_cpus();
 | |
| }
 | |
| #else /* !CONFIG_SMP */
 | |
| static void rebuild_sched_domains_locked(void)
 | |
| {
 | |
| }
 | |
| #endif /* CONFIG_SMP */
 | |
| 
 | |
| void rebuild_sched_domains(void)
 | |
| {
 | |
| 	mutex_lock(&cpuset_mutex);
 | |
| 	rebuild_sched_domains_locked();
 | |
| 	mutex_unlock(&cpuset_mutex);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * effective_cpumask_cpuset - return nearest ancestor with non-empty cpus
 | |
|  * @cs: the cpuset in interest
 | |
|  *
 | |
|  * A cpuset's effective cpumask is the cpumask of the nearest ancestor
 | |
|  * with non-empty cpus. We use effective cpumask whenever:
 | |
|  * - we update tasks' cpus_allowed. (they take on the ancestor's cpumask
 | |
|  *   if the cpuset they reside in has no cpus)
 | |
|  * - we want to retrieve task_cs(tsk)'s cpus_allowed.
 | |
|  *
 | |
|  * Called with cpuset_mutex held. cpuset_cpus_allowed_fallback() is an
 | |
|  * exception. See comments there.
 | |
|  */
 | |
| static struct cpuset *effective_cpumask_cpuset(struct cpuset *cs)
 | |
| {
 | |
| 	while (cpumask_empty(cs->cpus_allowed))
 | |
| 		cs = parent_cs(cs);
 | |
| 	return cs;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * effective_nodemask_cpuset - return nearest ancestor with non-empty mems
 | |
|  * @cs: the cpuset in interest
 | |
|  *
 | |
|  * A cpuset's effective nodemask is the nodemask of the nearest ancestor
 | |
|  * with non-empty memss. We use effective nodemask whenever:
 | |
|  * - we update tasks' mems_allowed. (they take on the ancestor's nodemask
 | |
|  *   if the cpuset they reside in has no mems)
 | |
|  * - we want to retrieve task_cs(tsk)'s mems_allowed.
 | |
|  *
 | |
|  * Called with cpuset_mutex held.
 | |
|  */
 | |
| static struct cpuset *effective_nodemask_cpuset(struct cpuset *cs)
 | |
| {
 | |
| 	while (nodes_empty(cs->mems_allowed))
 | |
| 		cs = parent_cs(cs);
 | |
| 	return cs;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cpuset_change_cpumask - make a task's cpus_allowed the same as its cpuset's
 | |
|  * @tsk: task to test
 | |
|  * @data: cpuset to @tsk belongs to
 | |
|  *
 | |
|  * Called by css_scan_tasks() for each task in a cgroup whose cpus_allowed
 | |
|  * mask needs to be changed.
 | |
|  *
 | |
|  * We don't need to re-check for the cgroup/cpuset membership, since we're
 | |
|  * holding cpuset_mutex at this point.
 | |
|  */
 | |
| static void cpuset_change_cpumask(struct task_struct *tsk, void *data)
 | |
| {
 | |
| 	struct cpuset *cs = data;
 | |
| 	struct cpuset *cpus_cs = effective_cpumask_cpuset(cs);
 | |
| 
 | |
| 	set_cpus_allowed_ptr(tsk, cpus_cs->cpus_allowed);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
 | |
|  * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
 | |
|  * @heap: if NULL, defer allocating heap memory to css_scan_tasks()
 | |
|  *
 | |
|  * Called with cpuset_mutex held
 | |
|  *
 | |
|  * The css_scan_tasks() function will scan all the tasks in a cgroup,
 | |
|  * calling callback functions for each.
 | |
|  *
 | |
|  * No return value. It's guaranteed that css_scan_tasks() always returns 0
 | |
|  * if @heap != NULL.
 | |
|  */
 | |
| static void update_tasks_cpumask(struct cpuset *cs, struct ptr_heap *heap)
 | |
| {
 | |
| 	css_scan_tasks(&cs->css, NULL, cpuset_change_cpumask, cs, heap);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * update_tasks_cpumask_hier - Update the cpumasks of tasks in the hierarchy.
 | |
|  * @root_cs: the root cpuset of the hierarchy
 | |
|  * @update_root: update root cpuset or not?
 | |
|  * @heap: the heap used by css_scan_tasks()
 | |
|  *
 | |
|  * This will update cpumasks of tasks in @root_cs and all other empty cpusets
 | |
|  * which take on cpumask of @root_cs.
 | |
|  *
 | |
|  * Called with cpuset_mutex held
 | |
|  */
 | |
| static void update_tasks_cpumask_hier(struct cpuset *root_cs,
 | |
| 				      bool update_root, struct ptr_heap *heap)
 | |
| {
 | |
| 	struct cpuset *cp;
 | |
| 	struct cgroup_subsys_state *pos_css;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
 | |
| 		if (cp == root_cs) {
 | |
| 			if (!update_root)
 | |
| 				continue;
 | |
| 		} else {
 | |
| 			/* skip the whole subtree if @cp have some CPU */
 | |
| 			if (!cpumask_empty(cp->cpus_allowed)) {
 | |
| 				pos_css = css_rightmost_descendant(pos_css);
 | |
| 				continue;
 | |
| 			}
 | |
| 		}
 | |
| 		if (!css_tryget(&cp->css))
 | |
| 			continue;
 | |
| 		rcu_read_unlock();
 | |
| 
 | |
| 		update_tasks_cpumask(cp, heap);
 | |
| 
 | |
| 		rcu_read_lock();
 | |
| 		css_put(&cp->css);
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
 | |
|  * @cs: the cpuset to consider
 | |
|  * @buf: buffer of cpu numbers written to this cpuset
 | |
|  */
 | |
| static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
 | |
| 			  const char *buf)
 | |
| {
 | |
| 	struct ptr_heap heap;
 | |
| 	int retval;
 | |
| 	int is_load_balanced;
 | |
| 
 | |
| 	/* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
 | |
| 	if (cs == &top_cpuset)
 | |
| 		return -EACCES;
 | |
| 
 | |
| 	/*
 | |
| 	 * An empty cpus_allowed is ok only if the cpuset has no tasks.
 | |
| 	 * Since cpulist_parse() fails on an empty mask, we special case
 | |
| 	 * that parsing.  The validate_change() call ensures that cpusets
 | |
| 	 * with tasks have cpus.
 | |
| 	 */
 | |
| 	if (!*buf) {
 | |
| 		cpumask_clear(trialcs->cpus_allowed);
 | |
| 	} else {
 | |
| 		retval = cpulist_parse(buf, trialcs->cpus_allowed);
 | |
| 		if (retval < 0)
 | |
| 			return retval;
 | |
| 
 | |
| 		if (!cpumask_subset(trialcs->cpus_allowed, cpu_active_mask))
 | |
| 			return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/* Nothing to do if the cpus didn't change */
 | |
| 	if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
 | |
| 		return 0;
 | |
| 
 | |
| 	retval = validate_change(cs, trialcs);
 | |
| 	if (retval < 0)
 | |
| 		return retval;
 | |
| 
 | |
| 	retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
 | |
| 	if (retval)
 | |
| 		return retval;
 | |
| 
 | |
| 	is_load_balanced = is_sched_load_balance(trialcs);
 | |
| 
 | |
| 	mutex_lock(&callback_mutex);
 | |
| 	cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
 | |
| 	mutex_unlock(&callback_mutex);
 | |
| 
 | |
| 	update_tasks_cpumask_hier(cs, true, &heap);
 | |
| 
 | |
| 	heap_free(&heap);
 | |
| 
 | |
| 	if (is_load_balanced)
 | |
| 		rebuild_sched_domains_locked();
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * cpuset_migrate_mm
 | |
|  *
 | |
|  *    Migrate memory region from one set of nodes to another.
 | |
|  *
 | |
|  *    Temporarilly set tasks mems_allowed to target nodes of migration,
 | |
|  *    so that the migration code can allocate pages on these nodes.
 | |
|  *
 | |
|  *    Call holding cpuset_mutex, so current's cpuset won't change
 | |
|  *    during this call, as manage_mutex holds off any cpuset_attach()
 | |
|  *    calls.  Therefore we don't need to take task_lock around the
 | |
|  *    call to guarantee_online_mems(), as we know no one is changing
 | |
|  *    our task's cpuset.
 | |
|  *
 | |
|  *    While the mm_struct we are migrating is typically from some
 | |
|  *    other task, the task_struct mems_allowed that we are hacking
 | |
|  *    is for our current task, which must allocate new pages for that
 | |
|  *    migrating memory region.
 | |
|  */
 | |
| 
 | |
| static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
 | |
| 							const nodemask_t *to)
 | |
| {
 | |
| 	struct task_struct *tsk = current;
 | |
| 	struct cpuset *mems_cs;
 | |
| 
 | |
| 	tsk->mems_allowed = *to;
 | |
| 
 | |
| 	do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);
 | |
| 
 | |
| 	mems_cs = effective_nodemask_cpuset(task_cs(tsk));
 | |
| 	guarantee_online_mems(mems_cs, &tsk->mems_allowed);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
 | |
|  * @tsk: the task to change
 | |
|  * @newmems: new nodes that the task will be set
 | |
|  *
 | |
|  * In order to avoid seeing no nodes if the old and new nodes are disjoint,
 | |
|  * we structure updates as setting all new allowed nodes, then clearing newly
 | |
|  * disallowed ones.
 | |
|  */
 | |
| static void cpuset_change_task_nodemask(struct task_struct *tsk,
 | |
| 					nodemask_t *newmems)
 | |
| {
 | |
| 	bool need_loop;
 | |
| 
 | |
| 	/*
 | |
| 	 * Allow tasks that have access to memory reserves because they have
 | |
| 	 * been OOM killed to get memory anywhere.
 | |
| 	 */
 | |
| 	if (unlikely(test_thread_flag(TIF_MEMDIE)))
 | |
| 		return;
 | |
| 	if (current->flags & PF_EXITING) /* Let dying task have memory */
 | |
| 		return;
 | |
| 
 | |
| 	task_lock(tsk);
 | |
| 	/*
 | |
| 	 * Determine if a loop is necessary if another thread is doing
 | |
| 	 * get_mems_allowed().  If at least one node remains unchanged and
 | |
| 	 * tsk does not have a mempolicy, then an empty nodemask will not be
 | |
| 	 * possible when mems_allowed is larger than a word.
 | |
| 	 */
 | |
| 	need_loop = task_has_mempolicy(tsk) ||
 | |
| 			!nodes_intersects(*newmems, tsk->mems_allowed);
 | |
| 
 | |
| 	if (need_loop) {
 | |
| 		local_irq_disable();
 | |
| 		write_seqcount_begin(&tsk->mems_allowed_seq);
 | |
| 	}
 | |
| 
 | |
| 	nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
 | |
| 	mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP1);
 | |
| 
 | |
| 	mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP2);
 | |
| 	tsk->mems_allowed = *newmems;
 | |
| 
 | |
| 	if (need_loop) {
 | |
| 		write_seqcount_end(&tsk->mems_allowed_seq);
 | |
| 		local_irq_enable();
 | |
| 	}
 | |
| 
 | |
| 	task_unlock(tsk);
 | |
| }
 | |
| 
 | |
| struct cpuset_change_nodemask_arg {
 | |
| 	struct cpuset		*cs;
 | |
| 	nodemask_t		*newmems;
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Update task's mems_allowed and rebind its mempolicy and vmas' mempolicy
 | |
|  * of it to cpuset's new mems_allowed, and migrate pages to new nodes if
 | |
|  * memory_migrate flag is set. Called with cpuset_mutex held.
 | |
|  */
 | |
| static void cpuset_change_nodemask(struct task_struct *p, void *data)
 | |
| {
 | |
| 	struct cpuset_change_nodemask_arg *arg = data;
 | |
| 	struct cpuset *cs = arg->cs;
 | |
| 	struct mm_struct *mm;
 | |
| 	int migrate;
 | |
| 
 | |
| 	cpuset_change_task_nodemask(p, arg->newmems);
 | |
| 
 | |
| 	mm = get_task_mm(p);
 | |
| 	if (!mm)
 | |
| 		return;
 | |
| 
 | |
| 	migrate = is_memory_migrate(cs);
 | |
| 
 | |
| 	mpol_rebind_mm(mm, &cs->mems_allowed);
 | |
| 	if (migrate)
 | |
| 		cpuset_migrate_mm(mm, &cs->old_mems_allowed, arg->newmems);
 | |
| 	mmput(mm);
 | |
| }
 | |
| 
 | |
| static void *cpuset_being_rebound;
 | |
| 
 | |
| /**
 | |
|  * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
 | |
|  * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
 | |
|  * @heap: if NULL, defer allocating heap memory to css_scan_tasks()
 | |
|  *
 | |
|  * Called with cpuset_mutex held.  No return value. It's guaranteed that
 | |
|  * css_scan_tasks() always returns 0 if @heap != NULL.
 | |
|  */
 | |
| static void update_tasks_nodemask(struct cpuset *cs, struct ptr_heap *heap)
 | |
| {
 | |
| 	static nodemask_t newmems;	/* protected by cpuset_mutex */
 | |
| 	struct cpuset *mems_cs = effective_nodemask_cpuset(cs);
 | |
| 	struct cpuset_change_nodemask_arg arg = { .cs = cs,
 | |
| 						  .newmems = &newmems };
 | |
| 
 | |
| 	cpuset_being_rebound = cs;		/* causes mpol_dup() rebind */
 | |
| 
 | |
| 	guarantee_online_mems(mems_cs, &newmems);
 | |
| 
 | |
| 	/*
 | |
| 	 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
 | |
| 	 * take while holding tasklist_lock.  Forks can happen - the
 | |
| 	 * mpol_dup() cpuset_being_rebound check will catch such forks,
 | |
| 	 * and rebind their vma mempolicies too.  Because we still hold
 | |
| 	 * the global cpuset_mutex, we know that no other rebind effort
 | |
| 	 * will be contending for the global variable cpuset_being_rebound.
 | |
| 	 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
 | |
| 	 * is idempotent.  Also migrate pages in each mm to new nodes.
 | |
| 	 */
 | |
| 	css_scan_tasks(&cs->css, NULL, cpuset_change_nodemask, &arg, heap);
 | |
| 
 | |
| 	/*
 | |
| 	 * All the tasks' nodemasks have been updated, update
 | |
| 	 * cs->old_mems_allowed.
 | |
| 	 */
 | |
| 	cs->old_mems_allowed = newmems;
 | |
| 
 | |
| 	/* We're done rebinding vmas to this cpuset's new mems_allowed. */
 | |
| 	cpuset_being_rebound = NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * update_tasks_nodemask_hier - Update the nodemasks of tasks in the hierarchy.
 | |
|  * @cs: the root cpuset of the hierarchy
 | |
|  * @update_root: update the root cpuset or not?
 | |
|  * @heap: the heap used by css_scan_tasks()
 | |
|  *
 | |
|  * This will update nodemasks of tasks in @root_cs and all other empty cpusets
 | |
|  * which take on nodemask of @root_cs.
 | |
|  *
 | |
|  * Called with cpuset_mutex held
 | |
|  */
 | |
| static void update_tasks_nodemask_hier(struct cpuset *root_cs,
 | |
| 				       bool update_root, struct ptr_heap *heap)
 | |
| {
 | |
| 	struct cpuset *cp;
 | |
| 	struct cgroup_subsys_state *pos_css;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
 | |
| 		if (cp == root_cs) {
 | |
| 			if (!update_root)
 | |
| 				continue;
 | |
| 		} else {
 | |
| 			/* skip the whole subtree if @cp have some CPU */
 | |
| 			if (!nodes_empty(cp->mems_allowed)) {
 | |
| 				pos_css = css_rightmost_descendant(pos_css);
 | |
| 				continue;
 | |
| 			}
 | |
| 		}
 | |
| 		if (!css_tryget(&cp->css))
 | |
| 			continue;
 | |
| 		rcu_read_unlock();
 | |
| 
 | |
| 		update_tasks_nodemask(cp, heap);
 | |
| 
 | |
| 		rcu_read_lock();
 | |
| 		css_put(&cp->css);
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Handle user request to change the 'mems' memory placement
 | |
|  * of a cpuset.  Needs to validate the request, update the
 | |
|  * cpusets mems_allowed, and for each task in the cpuset,
 | |
|  * update mems_allowed and rebind task's mempolicy and any vma
 | |
|  * mempolicies and if the cpuset is marked 'memory_migrate',
 | |
|  * migrate the tasks pages to the new memory.
 | |
|  *
 | |
|  * Call with cpuset_mutex held.  May take callback_mutex during call.
 | |
|  * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
 | |
|  * lock each such tasks mm->mmap_sem, scan its vma's and rebind
 | |
|  * their mempolicies to the cpusets new mems_allowed.
 | |
|  */
 | |
| static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
 | |
| 			   const char *buf)
 | |
| {
 | |
| 	int retval;
 | |
| 	struct ptr_heap heap;
 | |
| 
 | |
| 	/*
 | |
| 	 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
 | |
| 	 * it's read-only
 | |
| 	 */
 | |
| 	if (cs == &top_cpuset) {
 | |
| 		retval = -EACCES;
 | |
| 		goto done;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
 | |
| 	 * Since nodelist_parse() fails on an empty mask, we special case
 | |
| 	 * that parsing.  The validate_change() call ensures that cpusets
 | |
| 	 * with tasks have memory.
 | |
| 	 */
 | |
| 	if (!*buf) {
 | |
| 		nodes_clear(trialcs->mems_allowed);
 | |
| 	} else {
 | |
| 		retval = nodelist_parse(buf, trialcs->mems_allowed);
 | |
| 		if (retval < 0)
 | |
| 			goto done;
 | |
| 
 | |
| 		if (!nodes_subset(trialcs->mems_allowed,
 | |
| 				node_states[N_MEMORY])) {
 | |
| 			retval =  -EINVAL;
 | |
| 			goto done;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
 | |
| 		retval = 0;		/* Too easy - nothing to do */
 | |
| 		goto done;
 | |
| 	}
 | |
| 	retval = validate_change(cs, trialcs);
 | |
| 	if (retval < 0)
 | |
| 		goto done;
 | |
| 
 | |
| 	retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
 | |
| 	if (retval < 0)
 | |
| 		goto done;
 | |
| 
 | |
| 	mutex_lock(&callback_mutex);
 | |
| 	cs->mems_allowed = trialcs->mems_allowed;
 | |
| 	mutex_unlock(&callback_mutex);
 | |
| 
 | |
| 	update_tasks_nodemask_hier(cs, true, &heap);
 | |
| 
 | |
| 	heap_free(&heap);
 | |
| done:
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| int current_cpuset_is_being_rebound(void)
 | |
| {
 | |
| 	return task_cs(current) == cpuset_being_rebound;
 | |
| }
 | |
| 
 | |
| static int update_relax_domain_level(struct cpuset *cs, s64 val)
 | |
| {
 | |
| #ifdef CONFIG_SMP
 | |
| 	if (val < -1 || val >= sched_domain_level_max)
 | |
| 		return -EINVAL;
 | |
| #endif
 | |
| 
 | |
| 	if (val != cs->relax_domain_level) {
 | |
| 		cs->relax_domain_level = val;
 | |
| 		if (!cpumask_empty(cs->cpus_allowed) &&
 | |
| 		    is_sched_load_balance(cs))
 | |
| 			rebuild_sched_domains_locked();
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cpuset_change_flag - make a task's spread flags the same as its cpuset's
 | |
|  * @tsk: task to be updated
 | |
|  * @data: cpuset to @tsk belongs to
 | |
|  *
 | |
|  * Called by css_scan_tasks() for each task in a cgroup.
 | |
|  *
 | |
|  * We don't need to re-check for the cgroup/cpuset membership, since we're
 | |
|  * holding cpuset_mutex at this point.
 | |
|  */
 | |
| static void cpuset_change_flag(struct task_struct *tsk, void *data)
 | |
| {
 | |
| 	struct cpuset *cs = data;
 | |
| 
 | |
| 	cpuset_update_task_spread_flag(cs, tsk);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * update_tasks_flags - update the spread flags of tasks in the cpuset.
 | |
|  * @cs: the cpuset in which each task's spread flags needs to be changed
 | |
|  * @heap: if NULL, defer allocating heap memory to css_scan_tasks()
 | |
|  *
 | |
|  * Called with cpuset_mutex held
 | |
|  *
 | |
|  * The css_scan_tasks() function will scan all the tasks in a cgroup,
 | |
|  * calling callback functions for each.
 | |
|  *
 | |
|  * No return value. It's guaranteed that css_scan_tasks() always returns 0
 | |
|  * if @heap != NULL.
 | |
|  */
 | |
| static void update_tasks_flags(struct cpuset *cs, struct ptr_heap *heap)
 | |
| {
 | |
| 	css_scan_tasks(&cs->css, NULL, cpuset_change_flag, cs, heap);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * update_flag - read a 0 or a 1 in a file and update associated flag
 | |
|  * bit:		the bit to update (see cpuset_flagbits_t)
 | |
|  * cs:		the cpuset to update
 | |
|  * turning_on: 	whether the flag is being set or cleared
 | |
|  *
 | |
|  * Call with cpuset_mutex held.
 | |
|  */
 | |
| 
 | |
| static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
 | |
| 		       int turning_on)
 | |
| {
 | |
| 	struct cpuset *trialcs;
 | |
| 	int balance_flag_changed;
 | |
| 	int spread_flag_changed;
 | |
| 	struct ptr_heap heap;
 | |
| 	int err;
 | |
| 
 | |
| 	trialcs = alloc_trial_cpuset(cs);
 | |
| 	if (!trialcs)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	if (turning_on)
 | |
| 		set_bit(bit, &trialcs->flags);
 | |
| 	else
 | |
| 		clear_bit(bit, &trialcs->flags);
 | |
| 
 | |
| 	err = validate_change(cs, trialcs);
 | |
| 	if (err < 0)
 | |
| 		goto out;
 | |
| 
 | |
| 	err = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
 | |
| 	if (err < 0)
 | |
| 		goto out;
 | |
| 
 | |
| 	balance_flag_changed = (is_sched_load_balance(cs) !=
 | |
| 				is_sched_load_balance(trialcs));
 | |
| 
 | |
| 	spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
 | |
| 			|| (is_spread_page(cs) != is_spread_page(trialcs)));
 | |
| 
 | |
| 	mutex_lock(&callback_mutex);
 | |
| 	cs->flags = trialcs->flags;
 | |
| 	mutex_unlock(&callback_mutex);
 | |
| 
 | |
| 	if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
 | |
| 		rebuild_sched_domains_locked();
 | |
| 
 | |
| 	if (spread_flag_changed)
 | |
| 		update_tasks_flags(cs, &heap);
 | |
| 	heap_free(&heap);
 | |
| out:
 | |
| 	free_trial_cpuset(trialcs);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Frequency meter - How fast is some event occurring?
 | |
|  *
 | |
|  * These routines manage a digitally filtered, constant time based,
 | |
|  * event frequency meter.  There are four routines:
 | |
|  *   fmeter_init() - initialize a frequency meter.
 | |
|  *   fmeter_markevent() - called each time the event happens.
 | |
|  *   fmeter_getrate() - returns the recent rate of such events.
 | |
|  *   fmeter_update() - internal routine used to update fmeter.
 | |
|  *
 | |
|  * A common data structure is passed to each of these routines,
 | |
|  * which is used to keep track of the state required to manage the
 | |
|  * frequency meter and its digital filter.
 | |
|  *
 | |
|  * The filter works on the number of events marked per unit time.
 | |
|  * The filter is single-pole low-pass recursive (IIR).  The time unit
 | |
|  * is 1 second.  Arithmetic is done using 32-bit integers scaled to
 | |
|  * simulate 3 decimal digits of precision (multiplied by 1000).
 | |
|  *
 | |
|  * With an FM_COEF of 933, and a time base of 1 second, the filter
 | |
|  * has a half-life of 10 seconds, meaning that if the events quit
 | |
|  * happening, then the rate returned from the fmeter_getrate()
 | |
|  * will be cut in half each 10 seconds, until it converges to zero.
 | |
|  *
 | |
|  * It is not worth doing a real infinitely recursive filter.  If more
 | |
|  * than FM_MAXTICKS ticks have elapsed since the last filter event,
 | |
|  * just compute FM_MAXTICKS ticks worth, by which point the level
 | |
|  * will be stable.
 | |
|  *
 | |
|  * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
 | |
|  * arithmetic overflow in the fmeter_update() routine.
 | |
|  *
 | |
|  * Given the simple 32 bit integer arithmetic used, this meter works
 | |
|  * best for reporting rates between one per millisecond (msec) and
 | |
|  * one per 32 (approx) seconds.  At constant rates faster than one
 | |
|  * per msec it maxes out at values just under 1,000,000.  At constant
 | |
|  * rates between one per msec, and one per second it will stabilize
 | |
|  * to a value N*1000, where N is the rate of events per second.
 | |
|  * At constant rates between one per second and one per 32 seconds,
 | |
|  * it will be choppy, moving up on the seconds that have an event,
 | |
|  * and then decaying until the next event.  At rates slower than
 | |
|  * about one in 32 seconds, it decays all the way back to zero between
 | |
|  * each event.
 | |
|  */
 | |
| 
 | |
| #define FM_COEF 933		/* coefficient for half-life of 10 secs */
 | |
| #define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
 | |
| #define FM_MAXCNT 1000000	/* limit cnt to avoid overflow */
 | |
| #define FM_SCALE 1000		/* faux fixed point scale */
 | |
| 
 | |
| /* Initialize a frequency meter */
 | |
| static void fmeter_init(struct fmeter *fmp)
 | |
| {
 | |
| 	fmp->cnt = 0;
 | |
| 	fmp->val = 0;
 | |
| 	fmp->time = 0;
 | |
| 	spin_lock_init(&fmp->lock);
 | |
| }
 | |
| 
 | |
| /* Internal meter update - process cnt events and update value */
 | |
| static void fmeter_update(struct fmeter *fmp)
 | |
| {
 | |
| 	time_t now = get_seconds();
 | |
| 	time_t ticks = now - fmp->time;
 | |
| 
 | |
| 	if (ticks == 0)
 | |
| 		return;
 | |
| 
 | |
| 	ticks = min(FM_MAXTICKS, ticks);
 | |
| 	while (ticks-- > 0)
 | |
| 		fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
 | |
| 	fmp->time = now;
 | |
| 
 | |
| 	fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
 | |
| 	fmp->cnt = 0;
 | |
| }
 | |
| 
 | |
| /* Process any previous ticks, then bump cnt by one (times scale). */
 | |
| static void fmeter_markevent(struct fmeter *fmp)
 | |
| {
 | |
| 	spin_lock(&fmp->lock);
 | |
| 	fmeter_update(fmp);
 | |
| 	fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
 | |
| 	spin_unlock(&fmp->lock);
 | |
| }
 | |
| 
 | |
| /* Process any previous ticks, then return current value. */
 | |
| static int fmeter_getrate(struct fmeter *fmp)
 | |
| {
 | |
| 	int val;
 | |
| 
 | |
| 	spin_lock(&fmp->lock);
 | |
| 	fmeter_update(fmp);
 | |
| 	val = fmp->val;
 | |
| 	spin_unlock(&fmp->lock);
 | |
| 	return val;
 | |
| }
 | |
| 
 | |
| /* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
 | |
| static int cpuset_can_attach(struct cgroup_subsys_state *css,
 | |
| 			     struct cgroup_taskset *tset)
 | |
| {
 | |
| 	struct cpuset *cs = css_cs(css);
 | |
| 	struct task_struct *task;
 | |
| 	int ret;
 | |
| 
 | |
| 	mutex_lock(&cpuset_mutex);
 | |
| 
 | |
| 	/*
 | |
| 	 * We allow to move tasks into an empty cpuset if sane_behavior
 | |
| 	 * flag is set.
 | |
| 	 */
 | |
| 	ret = -ENOSPC;
 | |
| 	if (!cgroup_sane_behavior(css->cgroup) &&
 | |
| 	    (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)))
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	cgroup_taskset_for_each(task, css, tset) {
 | |
| 		/*
 | |
| 		 * Kthreads which disallow setaffinity shouldn't be moved
 | |
| 		 * to a new cpuset; we don't want to change their cpu
 | |
| 		 * affinity and isolating such threads by their set of
 | |
| 		 * allowed nodes is unnecessary.  Thus, cpusets are not
 | |
| 		 * applicable for such threads.  This prevents checking for
 | |
| 		 * success of set_cpus_allowed_ptr() on all attached tasks
 | |
| 		 * before cpus_allowed may be changed.
 | |
| 		 */
 | |
| 		ret = -EINVAL;
 | |
| 		if (task->flags & PF_NO_SETAFFINITY)
 | |
| 			goto out_unlock;
 | |
| 		ret = security_task_setscheduler(task);
 | |
| 		if (ret)
 | |
| 			goto out_unlock;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Mark attach is in progress.  This makes validate_change() fail
 | |
| 	 * changes which zero cpus/mems_allowed.
 | |
| 	 */
 | |
| 	cs->attach_in_progress++;
 | |
| 	ret = 0;
 | |
| out_unlock:
 | |
| 	mutex_unlock(&cpuset_mutex);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void cpuset_cancel_attach(struct cgroup_subsys_state *css,
 | |
| 				 struct cgroup_taskset *tset)
 | |
| {
 | |
| 	mutex_lock(&cpuset_mutex);
 | |
| 	css_cs(css)->attach_in_progress--;
 | |
| 	mutex_unlock(&cpuset_mutex);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Protected by cpuset_mutex.  cpus_attach is used only by cpuset_attach()
 | |
|  * but we can't allocate it dynamically there.  Define it global and
 | |
|  * allocate from cpuset_init().
 | |
|  */
 | |
| static cpumask_var_t cpus_attach;
 | |
| 
 | |
| static void cpuset_attach(struct cgroup_subsys_state *css,
 | |
| 			  struct cgroup_taskset *tset)
 | |
| {
 | |
| 	/* static buf protected by cpuset_mutex */
 | |
| 	static nodemask_t cpuset_attach_nodemask_to;
 | |
| 	struct mm_struct *mm;
 | |
| 	struct task_struct *task;
 | |
| 	struct task_struct *leader = cgroup_taskset_first(tset);
 | |
| 	struct cgroup_subsys_state *oldcss = cgroup_taskset_cur_css(tset,
 | |
| 							cpuset_subsys_id);
 | |
| 	struct cpuset *cs = css_cs(css);
 | |
| 	struct cpuset *oldcs = css_cs(oldcss);
 | |
| 	struct cpuset *cpus_cs = effective_cpumask_cpuset(cs);
 | |
| 	struct cpuset *mems_cs = effective_nodemask_cpuset(cs);
 | |
| 
 | |
| 	mutex_lock(&cpuset_mutex);
 | |
| 
 | |
| 	/* prepare for attach */
 | |
| 	if (cs == &top_cpuset)
 | |
| 		cpumask_copy(cpus_attach, cpu_possible_mask);
 | |
| 	else
 | |
| 		guarantee_online_cpus(cpus_cs, cpus_attach);
 | |
| 
 | |
| 	guarantee_online_mems(mems_cs, &cpuset_attach_nodemask_to);
 | |
| 
 | |
| 	cgroup_taskset_for_each(task, css, tset) {
 | |
| 		/*
 | |
| 		 * can_attach beforehand should guarantee that this doesn't
 | |
| 		 * fail.  TODO: have a better way to handle failure here
 | |
| 		 */
 | |
| 		WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
 | |
| 
 | |
| 		cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
 | |
| 		cpuset_update_task_spread_flag(cs, task);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Change mm, possibly for multiple threads in a threadgroup. This is
 | |
| 	 * expensive and may sleep.
 | |
| 	 */
 | |
| 	cpuset_attach_nodemask_to = cs->mems_allowed;
 | |
| 	mm = get_task_mm(leader);
 | |
| 	if (mm) {
 | |
| 		struct cpuset *mems_oldcs = effective_nodemask_cpuset(oldcs);
 | |
| 
 | |
| 		mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
 | |
| 
 | |
| 		/*
 | |
| 		 * old_mems_allowed is the same with mems_allowed here, except
 | |
| 		 * if this task is being moved automatically due to hotplug.
 | |
| 		 * In that case @mems_allowed has been updated and is empty,
 | |
| 		 * so @old_mems_allowed is the right nodesets that we migrate
 | |
| 		 * mm from.
 | |
| 		 */
 | |
| 		if (is_memory_migrate(cs)) {
 | |
| 			cpuset_migrate_mm(mm, &mems_oldcs->old_mems_allowed,
 | |
| 					  &cpuset_attach_nodemask_to);
 | |
| 		}
 | |
| 		mmput(mm);
 | |
| 	}
 | |
| 
 | |
| 	cs->old_mems_allowed = cpuset_attach_nodemask_to;
 | |
| 
 | |
| 	cs->attach_in_progress--;
 | |
| 	if (!cs->attach_in_progress)
 | |
| 		wake_up(&cpuset_attach_wq);
 | |
| 
 | |
| 	mutex_unlock(&cpuset_mutex);
 | |
| }
 | |
| 
 | |
| /* The various types of files and directories in a cpuset file system */
 | |
| 
 | |
| typedef enum {
 | |
| 	FILE_MEMORY_MIGRATE,
 | |
| 	FILE_CPULIST,
 | |
| 	FILE_MEMLIST,
 | |
| 	FILE_CPU_EXCLUSIVE,
 | |
| 	FILE_MEM_EXCLUSIVE,
 | |
| 	FILE_MEM_HARDWALL,
 | |
| 	FILE_SCHED_LOAD_BALANCE,
 | |
| 	FILE_SCHED_RELAX_DOMAIN_LEVEL,
 | |
| 	FILE_MEMORY_PRESSURE_ENABLED,
 | |
| 	FILE_MEMORY_PRESSURE,
 | |
| 	FILE_SPREAD_PAGE,
 | |
| 	FILE_SPREAD_SLAB,
 | |
| } cpuset_filetype_t;
 | |
| 
 | |
| static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
 | |
| 			    u64 val)
 | |
| {
 | |
| 	struct cpuset *cs = css_cs(css);
 | |
| 	cpuset_filetype_t type = cft->private;
 | |
| 	int retval = 0;
 | |
| 
 | |
| 	mutex_lock(&cpuset_mutex);
 | |
| 	if (!is_cpuset_online(cs)) {
 | |
| 		retval = -ENODEV;
 | |
| 		goto out_unlock;
 | |
| 	}
 | |
| 
 | |
| 	switch (type) {
 | |
| 	case FILE_CPU_EXCLUSIVE:
 | |
| 		retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
 | |
| 		break;
 | |
| 	case FILE_MEM_EXCLUSIVE:
 | |
| 		retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
 | |
| 		break;
 | |
| 	case FILE_MEM_HARDWALL:
 | |
| 		retval = update_flag(CS_MEM_HARDWALL, cs, val);
 | |
| 		break;
 | |
| 	case FILE_SCHED_LOAD_BALANCE:
 | |
| 		retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
 | |
| 		break;
 | |
| 	case FILE_MEMORY_MIGRATE:
 | |
| 		retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
 | |
| 		break;
 | |
| 	case FILE_MEMORY_PRESSURE_ENABLED:
 | |
| 		cpuset_memory_pressure_enabled = !!val;
 | |
| 		break;
 | |
| 	case FILE_MEMORY_PRESSURE:
 | |
| 		retval = -EACCES;
 | |
| 		break;
 | |
| 	case FILE_SPREAD_PAGE:
 | |
| 		retval = update_flag(CS_SPREAD_PAGE, cs, val);
 | |
| 		break;
 | |
| 	case FILE_SPREAD_SLAB:
 | |
| 		retval = update_flag(CS_SPREAD_SLAB, cs, val);
 | |
| 		break;
 | |
| 	default:
 | |
| 		retval = -EINVAL;
 | |
| 		break;
 | |
| 	}
 | |
| out_unlock:
 | |
| 	mutex_unlock(&cpuset_mutex);
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
 | |
| 			    s64 val)
 | |
| {
 | |
| 	struct cpuset *cs = css_cs(css);
 | |
| 	cpuset_filetype_t type = cft->private;
 | |
| 	int retval = -ENODEV;
 | |
| 
 | |
| 	mutex_lock(&cpuset_mutex);
 | |
| 	if (!is_cpuset_online(cs))
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	switch (type) {
 | |
| 	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
 | |
| 		retval = update_relax_domain_level(cs, val);
 | |
| 		break;
 | |
| 	default:
 | |
| 		retval = -EINVAL;
 | |
| 		break;
 | |
| 	}
 | |
| out_unlock:
 | |
| 	mutex_unlock(&cpuset_mutex);
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Common handling for a write to a "cpus" or "mems" file.
 | |
|  */
 | |
| static int cpuset_write_resmask(struct cgroup_subsys_state *css,
 | |
| 				struct cftype *cft, const char *buf)
 | |
| {
 | |
| 	struct cpuset *cs = css_cs(css);
 | |
| 	struct cpuset *trialcs;
 | |
| 	int retval = -ENODEV;
 | |
| 
 | |
| 	/*
 | |
| 	 * CPU or memory hotunplug may leave @cs w/o any execution
 | |
| 	 * resources, in which case the hotplug code asynchronously updates
 | |
| 	 * configuration and transfers all tasks to the nearest ancestor
 | |
| 	 * which can execute.
 | |
| 	 *
 | |
| 	 * As writes to "cpus" or "mems" may restore @cs's execution
 | |
| 	 * resources, wait for the previously scheduled operations before
 | |
| 	 * proceeding, so that we don't end up keep removing tasks added
 | |
| 	 * after execution capability is restored.
 | |
| 	 */
 | |
| 	flush_work(&cpuset_hotplug_work);
 | |
| 
 | |
| 	mutex_lock(&cpuset_mutex);
 | |
| 	if (!is_cpuset_online(cs))
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	trialcs = alloc_trial_cpuset(cs);
 | |
| 	if (!trialcs) {
 | |
| 		retval = -ENOMEM;
 | |
| 		goto out_unlock;
 | |
| 	}
 | |
| 
 | |
| 	switch (cft->private) {
 | |
| 	case FILE_CPULIST:
 | |
| 		retval = update_cpumask(cs, trialcs, buf);
 | |
| 		break;
 | |
| 	case FILE_MEMLIST:
 | |
| 		retval = update_nodemask(cs, trialcs, buf);
 | |
| 		break;
 | |
| 	default:
 | |
| 		retval = -EINVAL;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	free_trial_cpuset(trialcs);
 | |
| out_unlock:
 | |
| 	mutex_unlock(&cpuset_mutex);
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * These ascii lists should be read in a single call, by using a user
 | |
|  * buffer large enough to hold the entire map.  If read in smaller
 | |
|  * chunks, there is no guarantee of atomicity.  Since the display format
 | |
|  * used, list of ranges of sequential numbers, is variable length,
 | |
|  * and since these maps can change value dynamically, one could read
 | |
|  * gibberish by doing partial reads while a list was changing.
 | |
|  */
 | |
| static int cpuset_common_seq_show(struct seq_file *sf, void *v)
 | |
| {
 | |
| 	struct cpuset *cs = css_cs(seq_css(sf));
 | |
| 	cpuset_filetype_t type = seq_cft(sf)->private;
 | |
| 	ssize_t count;
 | |
| 	char *buf, *s;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	count = seq_get_buf(sf, &buf);
 | |
| 	s = buf;
 | |
| 
 | |
| 	mutex_lock(&callback_mutex);
 | |
| 
 | |
| 	switch (type) {
 | |
| 	case FILE_CPULIST:
 | |
| 		s += cpulist_scnprintf(s, count, cs->cpus_allowed);
 | |
| 		break;
 | |
| 	case FILE_MEMLIST:
 | |
| 		s += nodelist_scnprintf(s, count, cs->mems_allowed);
 | |
| 		break;
 | |
| 	default:
 | |
| 		ret = -EINVAL;
 | |
| 		goto out_unlock;
 | |
| 	}
 | |
| 
 | |
| 	if (s < buf + count - 1) {
 | |
| 		*s++ = '\n';
 | |
| 		seq_commit(sf, s - buf);
 | |
| 	} else {
 | |
| 		seq_commit(sf, -1);
 | |
| 	}
 | |
| out_unlock:
 | |
| 	mutex_unlock(&callback_mutex);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
 | |
| {
 | |
| 	struct cpuset *cs = css_cs(css);
 | |
| 	cpuset_filetype_t type = cft->private;
 | |
| 	switch (type) {
 | |
| 	case FILE_CPU_EXCLUSIVE:
 | |
| 		return is_cpu_exclusive(cs);
 | |
| 	case FILE_MEM_EXCLUSIVE:
 | |
| 		return is_mem_exclusive(cs);
 | |
| 	case FILE_MEM_HARDWALL:
 | |
| 		return is_mem_hardwall(cs);
 | |
| 	case FILE_SCHED_LOAD_BALANCE:
 | |
| 		return is_sched_load_balance(cs);
 | |
| 	case FILE_MEMORY_MIGRATE:
 | |
| 		return is_memory_migrate(cs);
 | |
| 	case FILE_MEMORY_PRESSURE_ENABLED:
 | |
| 		return cpuset_memory_pressure_enabled;
 | |
| 	case FILE_MEMORY_PRESSURE:
 | |
| 		return fmeter_getrate(&cs->fmeter);
 | |
| 	case FILE_SPREAD_PAGE:
 | |
| 		return is_spread_page(cs);
 | |
| 	case FILE_SPREAD_SLAB:
 | |
| 		return is_spread_slab(cs);
 | |
| 	default:
 | |
| 		BUG();
 | |
| 	}
 | |
| 
 | |
| 	/* Unreachable but makes gcc happy */
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
 | |
| {
 | |
| 	struct cpuset *cs = css_cs(css);
 | |
| 	cpuset_filetype_t type = cft->private;
 | |
| 	switch (type) {
 | |
| 	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
 | |
| 		return cs->relax_domain_level;
 | |
| 	default:
 | |
| 		BUG();
 | |
| 	}
 | |
| 
 | |
| 	/* Unrechable but makes gcc happy */
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * for the common functions, 'private' gives the type of file
 | |
|  */
 | |
| 
 | |
| static struct cftype files[] = {
 | |
| 	{
 | |
| 		.name = "cpus",
 | |
| 		.seq_show = cpuset_common_seq_show,
 | |
| 		.write_string = cpuset_write_resmask,
 | |
| 		.max_write_len = (100U + 6 * NR_CPUS),
 | |
| 		.private = FILE_CPULIST,
 | |
| 	},
 | |
| 
 | |
| 	{
 | |
| 		.name = "mems",
 | |
| 		.seq_show = cpuset_common_seq_show,
 | |
| 		.write_string = cpuset_write_resmask,
 | |
| 		.max_write_len = (100U + 6 * MAX_NUMNODES),
 | |
| 		.private = FILE_MEMLIST,
 | |
| 	},
 | |
| 
 | |
| 	{
 | |
| 		.name = "cpu_exclusive",
 | |
| 		.read_u64 = cpuset_read_u64,
 | |
| 		.write_u64 = cpuset_write_u64,
 | |
| 		.private = FILE_CPU_EXCLUSIVE,
 | |
| 	},
 | |
| 
 | |
| 	{
 | |
| 		.name = "mem_exclusive",
 | |
| 		.read_u64 = cpuset_read_u64,
 | |
| 		.write_u64 = cpuset_write_u64,
 | |
| 		.private = FILE_MEM_EXCLUSIVE,
 | |
| 	},
 | |
| 
 | |
| 	{
 | |
| 		.name = "mem_hardwall",
 | |
| 		.read_u64 = cpuset_read_u64,
 | |
| 		.write_u64 = cpuset_write_u64,
 | |
| 		.private = FILE_MEM_HARDWALL,
 | |
| 	},
 | |
| 
 | |
| 	{
 | |
| 		.name = "sched_load_balance",
 | |
| 		.read_u64 = cpuset_read_u64,
 | |
| 		.write_u64 = cpuset_write_u64,
 | |
| 		.private = FILE_SCHED_LOAD_BALANCE,
 | |
| 	},
 | |
| 
 | |
| 	{
 | |
| 		.name = "sched_relax_domain_level",
 | |
| 		.read_s64 = cpuset_read_s64,
 | |
| 		.write_s64 = cpuset_write_s64,
 | |
| 		.private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
 | |
| 	},
 | |
| 
 | |
| 	{
 | |
| 		.name = "memory_migrate",
 | |
| 		.read_u64 = cpuset_read_u64,
 | |
| 		.write_u64 = cpuset_write_u64,
 | |
| 		.private = FILE_MEMORY_MIGRATE,
 | |
| 	},
 | |
| 
 | |
| 	{
 | |
| 		.name = "memory_pressure",
 | |
| 		.read_u64 = cpuset_read_u64,
 | |
| 		.write_u64 = cpuset_write_u64,
 | |
| 		.private = FILE_MEMORY_PRESSURE,
 | |
| 		.mode = S_IRUGO,
 | |
| 	},
 | |
| 
 | |
| 	{
 | |
| 		.name = "memory_spread_page",
 | |
| 		.read_u64 = cpuset_read_u64,
 | |
| 		.write_u64 = cpuset_write_u64,
 | |
| 		.private = FILE_SPREAD_PAGE,
 | |
| 	},
 | |
| 
 | |
| 	{
 | |
| 		.name = "memory_spread_slab",
 | |
| 		.read_u64 = cpuset_read_u64,
 | |
| 		.write_u64 = cpuset_write_u64,
 | |
| 		.private = FILE_SPREAD_SLAB,
 | |
| 	},
 | |
| 
 | |
| 	{
 | |
| 		.name = "memory_pressure_enabled",
 | |
| 		.flags = CFTYPE_ONLY_ON_ROOT,
 | |
| 		.read_u64 = cpuset_read_u64,
 | |
| 		.write_u64 = cpuset_write_u64,
 | |
| 		.private = FILE_MEMORY_PRESSURE_ENABLED,
 | |
| 	},
 | |
| 
 | |
| 	{ }	/* terminate */
 | |
| };
 | |
| 
 | |
| /*
 | |
|  *	cpuset_css_alloc - allocate a cpuset css
 | |
|  *	cgrp:	control group that the new cpuset will be part of
 | |
|  */
 | |
| 
 | |
| static struct cgroup_subsys_state *
 | |
| cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
 | |
| {
 | |
| 	struct cpuset *cs;
 | |
| 
 | |
| 	if (!parent_css)
 | |
| 		return &top_cpuset.css;
 | |
| 
 | |
| 	cs = kzalloc(sizeof(*cs), GFP_KERNEL);
 | |
| 	if (!cs)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 	if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL)) {
 | |
| 		kfree(cs);
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 	}
 | |
| 
 | |
| 	set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
 | |
| 	cpumask_clear(cs->cpus_allowed);
 | |
| 	nodes_clear(cs->mems_allowed);
 | |
| 	fmeter_init(&cs->fmeter);
 | |
| 	cs->relax_domain_level = -1;
 | |
| 
 | |
| 	return &cs->css;
 | |
| }
 | |
| 
 | |
| static int cpuset_css_online(struct cgroup_subsys_state *css)
 | |
| {
 | |
| 	struct cpuset *cs = css_cs(css);
 | |
| 	struct cpuset *parent = parent_cs(cs);
 | |
| 	struct cpuset *tmp_cs;
 | |
| 	struct cgroup_subsys_state *pos_css;
 | |
| 
 | |
| 	if (!parent)
 | |
| 		return 0;
 | |
| 
 | |
| 	mutex_lock(&cpuset_mutex);
 | |
| 
 | |
| 	set_bit(CS_ONLINE, &cs->flags);
 | |
| 	if (is_spread_page(parent))
 | |
| 		set_bit(CS_SPREAD_PAGE, &cs->flags);
 | |
| 	if (is_spread_slab(parent))
 | |
| 		set_bit(CS_SPREAD_SLAB, &cs->flags);
 | |
| 
 | |
| 	number_of_cpusets++;
 | |
| 
 | |
| 	if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	/*
 | |
| 	 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
 | |
| 	 * set.  This flag handling is implemented in cgroup core for
 | |
| 	 * histrical reasons - the flag may be specified during mount.
 | |
| 	 *
 | |
| 	 * Currently, if any sibling cpusets have exclusive cpus or mem, we
 | |
| 	 * refuse to clone the configuration - thereby refusing the task to
 | |
| 	 * be entered, and as a result refusing the sys_unshare() or
 | |
| 	 * clone() which initiated it.  If this becomes a problem for some
 | |
| 	 * users who wish to allow that scenario, then this could be
 | |
| 	 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
 | |
| 	 * (and likewise for mems) to the new cgroup.
 | |
| 	 */
 | |
| 	rcu_read_lock();
 | |
| 	cpuset_for_each_child(tmp_cs, pos_css, parent) {
 | |
| 		if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
 | |
| 			rcu_read_unlock();
 | |
| 			goto out_unlock;
 | |
| 		}
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	mutex_lock(&callback_mutex);
 | |
| 	cs->mems_allowed = parent->mems_allowed;
 | |
| 	cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
 | |
| 	mutex_unlock(&callback_mutex);
 | |
| out_unlock:
 | |
| 	mutex_unlock(&cpuset_mutex);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * If the cpuset being removed has its flag 'sched_load_balance'
 | |
|  * enabled, then simulate turning sched_load_balance off, which
 | |
|  * will call rebuild_sched_domains_locked().
 | |
|  */
 | |
| 
 | |
| static void cpuset_css_offline(struct cgroup_subsys_state *css)
 | |
| {
 | |
| 	struct cpuset *cs = css_cs(css);
 | |
| 
 | |
| 	mutex_lock(&cpuset_mutex);
 | |
| 
 | |
| 	if (is_sched_load_balance(cs))
 | |
| 		update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
 | |
| 
 | |
| 	number_of_cpusets--;
 | |
| 	clear_bit(CS_ONLINE, &cs->flags);
 | |
| 
 | |
| 	mutex_unlock(&cpuset_mutex);
 | |
| }
 | |
| 
 | |
| static void cpuset_css_free(struct cgroup_subsys_state *css)
 | |
| {
 | |
| 	struct cpuset *cs = css_cs(css);
 | |
| 
 | |
| 	free_cpumask_var(cs->cpus_allowed);
 | |
| 	kfree(cs);
 | |
| }
 | |
| 
 | |
| struct cgroup_subsys cpuset_subsys = {
 | |
| 	.name = "cpuset",
 | |
| 	.css_alloc = cpuset_css_alloc,
 | |
| 	.css_online = cpuset_css_online,
 | |
| 	.css_offline = cpuset_css_offline,
 | |
| 	.css_free = cpuset_css_free,
 | |
| 	.can_attach = cpuset_can_attach,
 | |
| 	.cancel_attach = cpuset_cancel_attach,
 | |
| 	.attach = cpuset_attach,
 | |
| 	.subsys_id = cpuset_subsys_id,
 | |
| 	.base_cftypes = files,
 | |
| 	.early_init = 1,
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * cpuset_init - initialize cpusets at system boot
 | |
|  *
 | |
|  * Description: Initialize top_cpuset and the cpuset internal file system,
 | |
|  **/
 | |
| 
 | |
| int __init cpuset_init(void)
 | |
| {
 | |
| 	int err = 0;
 | |
| 
 | |
| 	if (!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL))
 | |
| 		BUG();
 | |
| 
 | |
| 	cpumask_setall(top_cpuset.cpus_allowed);
 | |
| 	nodes_setall(top_cpuset.mems_allowed);
 | |
| 
 | |
| 	fmeter_init(&top_cpuset.fmeter);
 | |
| 	set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
 | |
| 	top_cpuset.relax_domain_level = -1;
 | |
| 
 | |
| 	err = register_filesystem(&cpuset_fs_type);
 | |
| 	if (err < 0)
 | |
| 		return err;
 | |
| 
 | |
| 	if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL))
 | |
| 		BUG();
 | |
| 
 | |
| 	number_of_cpusets = 1;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * If CPU and/or memory hotplug handlers, below, unplug any CPUs
 | |
|  * or memory nodes, we need to walk over the cpuset hierarchy,
 | |
|  * removing that CPU or node from all cpusets.  If this removes the
 | |
|  * last CPU or node from a cpuset, then move the tasks in the empty
 | |
|  * cpuset to its next-highest non-empty parent.
 | |
|  */
 | |
| static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
 | |
| {
 | |
| 	struct cpuset *parent;
 | |
| 
 | |
| 	/*
 | |
| 	 * Find its next-highest non-empty parent, (top cpuset
 | |
| 	 * has online cpus, so can't be empty).
 | |
| 	 */
 | |
| 	parent = parent_cs(cs);
 | |
| 	while (cpumask_empty(parent->cpus_allowed) ||
 | |
| 			nodes_empty(parent->mems_allowed))
 | |
| 		parent = parent_cs(parent);
 | |
| 
 | |
| 	if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
 | |
| 		rcu_read_lock();
 | |
| 		printk(KERN_ERR "cpuset: failed to transfer tasks out of empty cpuset %s\n",
 | |
| 		       cgroup_name(cs->css.cgroup));
 | |
| 		rcu_read_unlock();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
 | |
|  * @cs: cpuset in interest
 | |
|  *
 | |
|  * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
 | |
|  * offline, update @cs accordingly.  If @cs ends up with no CPU or memory,
 | |
|  * all its tasks are moved to the nearest ancestor with both resources.
 | |
|  */
 | |
| static void cpuset_hotplug_update_tasks(struct cpuset *cs)
 | |
| {
 | |
| 	static cpumask_t off_cpus;
 | |
| 	static nodemask_t off_mems;
 | |
| 	bool is_empty;
 | |
| 	bool sane = cgroup_sane_behavior(cs->css.cgroup);
 | |
| 
 | |
| retry:
 | |
| 	wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
 | |
| 
 | |
| 	mutex_lock(&cpuset_mutex);
 | |
| 
 | |
| 	/*
 | |
| 	 * We have raced with task attaching. We wait until attaching
 | |
| 	 * is finished, so we won't attach a task to an empty cpuset.
 | |
| 	 */
 | |
| 	if (cs->attach_in_progress) {
 | |
| 		mutex_unlock(&cpuset_mutex);
 | |
| 		goto retry;
 | |
| 	}
 | |
| 
 | |
| 	cpumask_andnot(&off_cpus, cs->cpus_allowed, top_cpuset.cpus_allowed);
 | |
| 	nodes_andnot(off_mems, cs->mems_allowed, top_cpuset.mems_allowed);
 | |
| 
 | |
| 	mutex_lock(&callback_mutex);
 | |
| 	cpumask_andnot(cs->cpus_allowed, cs->cpus_allowed, &off_cpus);
 | |
| 	mutex_unlock(&callback_mutex);
 | |
| 
 | |
| 	/*
 | |
| 	 * If sane_behavior flag is set, we need to update tasks' cpumask
 | |
| 	 * for empty cpuset to take on ancestor's cpumask. Otherwise, don't
 | |
| 	 * call update_tasks_cpumask() if the cpuset becomes empty, as
 | |
| 	 * the tasks in it will be migrated to an ancestor.
 | |
| 	 */
 | |
| 	if ((sane && cpumask_empty(cs->cpus_allowed)) ||
 | |
| 	    (!cpumask_empty(&off_cpus) && !cpumask_empty(cs->cpus_allowed)))
 | |
| 		update_tasks_cpumask(cs, NULL);
 | |
| 
 | |
| 	mutex_lock(&callback_mutex);
 | |
| 	nodes_andnot(cs->mems_allowed, cs->mems_allowed, off_mems);
 | |
| 	mutex_unlock(&callback_mutex);
 | |
| 
 | |
| 	/*
 | |
| 	 * If sane_behavior flag is set, we need to update tasks' nodemask
 | |
| 	 * for empty cpuset to take on ancestor's nodemask. Otherwise, don't
 | |
| 	 * call update_tasks_nodemask() if the cpuset becomes empty, as
 | |
| 	 * the tasks in it will be migratd to an ancestor.
 | |
| 	 */
 | |
| 	if ((sane && nodes_empty(cs->mems_allowed)) ||
 | |
| 	    (!nodes_empty(off_mems) && !nodes_empty(cs->mems_allowed)))
 | |
| 		update_tasks_nodemask(cs, NULL);
 | |
| 
 | |
| 	is_empty = cpumask_empty(cs->cpus_allowed) ||
 | |
| 		nodes_empty(cs->mems_allowed);
 | |
| 
 | |
| 	mutex_unlock(&cpuset_mutex);
 | |
| 
 | |
| 	/*
 | |
| 	 * If sane_behavior flag is set, we'll keep tasks in empty cpusets.
 | |
| 	 *
 | |
| 	 * Otherwise move tasks to the nearest ancestor with execution
 | |
| 	 * resources.  This is full cgroup operation which will
 | |
| 	 * also call back into cpuset.  Should be done outside any lock.
 | |
| 	 */
 | |
| 	if (!sane && is_empty)
 | |
| 		remove_tasks_in_empty_cpuset(cs);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
 | |
|  *
 | |
|  * This function is called after either CPU or memory configuration has
 | |
|  * changed and updates cpuset accordingly.  The top_cpuset is always
 | |
|  * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
 | |
|  * order to make cpusets transparent (of no affect) on systems that are
 | |
|  * actively using CPU hotplug but making no active use of cpusets.
 | |
|  *
 | |
|  * Non-root cpusets are only affected by offlining.  If any CPUs or memory
 | |
|  * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
 | |
|  * all descendants.
 | |
|  *
 | |
|  * Note that CPU offlining during suspend is ignored.  We don't modify
 | |
|  * cpusets across suspend/resume cycles at all.
 | |
|  */
 | |
| static void cpuset_hotplug_workfn(struct work_struct *work)
 | |
| {
 | |
| 	static cpumask_t new_cpus;
 | |
| 	static nodemask_t new_mems;
 | |
| 	bool cpus_updated, mems_updated;
 | |
| 
 | |
| 	mutex_lock(&cpuset_mutex);
 | |
| 
 | |
| 	/* fetch the available cpus/mems and find out which changed how */
 | |
| 	cpumask_copy(&new_cpus, cpu_active_mask);
 | |
| 	new_mems = node_states[N_MEMORY];
 | |
| 
 | |
| 	cpus_updated = !cpumask_equal(top_cpuset.cpus_allowed, &new_cpus);
 | |
| 	mems_updated = !nodes_equal(top_cpuset.mems_allowed, new_mems);
 | |
| 
 | |
| 	/* synchronize cpus_allowed to cpu_active_mask */
 | |
| 	if (cpus_updated) {
 | |
| 		mutex_lock(&callback_mutex);
 | |
| 		cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
 | |
| 		mutex_unlock(&callback_mutex);
 | |
| 		/* we don't mess with cpumasks of tasks in top_cpuset */
 | |
| 	}
 | |
| 
 | |
| 	/* synchronize mems_allowed to N_MEMORY */
 | |
| 	if (mems_updated) {
 | |
| 		mutex_lock(&callback_mutex);
 | |
| 		top_cpuset.mems_allowed = new_mems;
 | |
| 		mutex_unlock(&callback_mutex);
 | |
| 		update_tasks_nodemask(&top_cpuset, NULL);
 | |
| 	}
 | |
| 
 | |
| 	mutex_unlock(&cpuset_mutex);
 | |
| 
 | |
| 	/* if cpus or mems changed, we need to propagate to descendants */
 | |
| 	if (cpus_updated || mems_updated) {
 | |
| 		struct cpuset *cs;
 | |
| 		struct cgroup_subsys_state *pos_css;
 | |
| 
 | |
| 		rcu_read_lock();
 | |
| 		cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
 | |
| 			if (cs == &top_cpuset || !css_tryget(&cs->css))
 | |
| 				continue;
 | |
| 			rcu_read_unlock();
 | |
| 
 | |
| 			cpuset_hotplug_update_tasks(cs);
 | |
| 
 | |
| 			rcu_read_lock();
 | |
| 			css_put(&cs->css);
 | |
| 		}
 | |
| 		rcu_read_unlock();
 | |
| 	}
 | |
| 
 | |
| 	/* rebuild sched domains if cpus_allowed has changed */
 | |
| 	if (cpus_updated)
 | |
| 		rebuild_sched_domains();
 | |
| }
 | |
| 
 | |
| void cpuset_update_active_cpus(bool cpu_online)
 | |
| {
 | |
| 	/*
 | |
| 	 * We're inside cpu hotplug critical region which usually nests
 | |
| 	 * inside cgroup synchronization.  Bounce actual hotplug processing
 | |
| 	 * to a work item to avoid reverse locking order.
 | |
| 	 *
 | |
| 	 * We still need to do partition_sched_domains() synchronously;
 | |
| 	 * otherwise, the scheduler will get confused and put tasks to the
 | |
| 	 * dead CPU.  Fall back to the default single domain.
 | |
| 	 * cpuset_hotplug_workfn() will rebuild it as necessary.
 | |
| 	 */
 | |
| 	partition_sched_domains(1, NULL, NULL);
 | |
| 	schedule_work(&cpuset_hotplug_work);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
 | |
|  * Call this routine anytime after node_states[N_MEMORY] changes.
 | |
|  * See cpuset_update_active_cpus() for CPU hotplug handling.
 | |
|  */
 | |
| static int cpuset_track_online_nodes(struct notifier_block *self,
 | |
| 				unsigned long action, void *arg)
 | |
| {
 | |
| 	schedule_work(&cpuset_hotplug_work);
 | |
| 	return NOTIFY_OK;
 | |
| }
 | |
| 
 | |
| static struct notifier_block cpuset_track_online_nodes_nb = {
 | |
| 	.notifier_call = cpuset_track_online_nodes,
 | |
| 	.priority = 10,		/* ??! */
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * cpuset_init_smp - initialize cpus_allowed
 | |
|  *
 | |
|  * Description: Finish top cpuset after cpu, node maps are initialized
 | |
|  */
 | |
| void __init cpuset_init_smp(void)
 | |
| {
 | |
| 	cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
 | |
| 	top_cpuset.mems_allowed = node_states[N_MEMORY];
 | |
| 	top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
 | |
| 
 | |
| 	register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
 | |
|  * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
 | |
|  * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
 | |
|  *
 | |
|  * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
 | |
|  * attached to the specified @tsk.  Guaranteed to return some non-empty
 | |
|  * subset of cpu_online_mask, even if this means going outside the
 | |
|  * tasks cpuset.
 | |
|  **/
 | |
| 
 | |
| void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
 | |
| {
 | |
| 	struct cpuset *cpus_cs;
 | |
| 
 | |
| 	mutex_lock(&callback_mutex);
 | |
| 	task_lock(tsk);
 | |
| 	cpus_cs = effective_cpumask_cpuset(task_cs(tsk));
 | |
| 	guarantee_online_cpus(cpus_cs, pmask);
 | |
| 	task_unlock(tsk);
 | |
| 	mutex_unlock(&callback_mutex);
 | |
| }
 | |
| 
 | |
| void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
 | |
| {
 | |
| 	struct cpuset *cpus_cs;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	cpus_cs = effective_cpumask_cpuset(task_cs(tsk));
 | |
| 	do_set_cpus_allowed(tsk, cpus_cs->cpus_allowed);
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	/*
 | |
| 	 * We own tsk->cpus_allowed, nobody can change it under us.
 | |
| 	 *
 | |
| 	 * But we used cs && cs->cpus_allowed lockless and thus can
 | |
| 	 * race with cgroup_attach_task() or update_cpumask() and get
 | |
| 	 * the wrong tsk->cpus_allowed. However, both cases imply the
 | |
| 	 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
 | |
| 	 * which takes task_rq_lock().
 | |
| 	 *
 | |
| 	 * If we are called after it dropped the lock we must see all
 | |
| 	 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
 | |
| 	 * set any mask even if it is not right from task_cs() pov,
 | |
| 	 * the pending set_cpus_allowed_ptr() will fix things.
 | |
| 	 *
 | |
| 	 * select_fallback_rq() will fix things ups and set cpu_possible_mask
 | |
| 	 * if required.
 | |
| 	 */
 | |
| }
 | |
| 
 | |
| void cpuset_init_current_mems_allowed(void)
 | |
| {
 | |
| 	nodes_setall(current->mems_allowed);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
 | |
|  * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
 | |
|  *
 | |
|  * Description: Returns the nodemask_t mems_allowed of the cpuset
 | |
|  * attached to the specified @tsk.  Guaranteed to return some non-empty
 | |
|  * subset of node_states[N_MEMORY], even if this means going outside the
 | |
|  * tasks cpuset.
 | |
|  **/
 | |
| 
 | |
| nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
 | |
| {
 | |
| 	struct cpuset *mems_cs;
 | |
| 	nodemask_t mask;
 | |
| 
 | |
| 	mutex_lock(&callback_mutex);
 | |
| 	task_lock(tsk);
 | |
| 	mems_cs = effective_nodemask_cpuset(task_cs(tsk));
 | |
| 	guarantee_online_mems(mems_cs, &mask);
 | |
| 	task_unlock(tsk);
 | |
| 	mutex_unlock(&callback_mutex);
 | |
| 
 | |
| 	return mask;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
 | |
|  * @nodemask: the nodemask to be checked
 | |
|  *
 | |
|  * Are any of the nodes in the nodemask allowed in current->mems_allowed?
 | |
|  */
 | |
| int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
 | |
| {
 | |
| 	return nodes_intersects(*nodemask, current->mems_allowed);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
 | |
|  * mem_hardwall ancestor to the specified cpuset.  Call holding
 | |
|  * callback_mutex.  If no ancestor is mem_exclusive or mem_hardwall
 | |
|  * (an unusual configuration), then returns the root cpuset.
 | |
|  */
 | |
| static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
 | |
| {
 | |
| 	while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
 | |
| 		cs = parent_cs(cs);
 | |
| 	return cs;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cpuset_node_allowed_softwall - Can we allocate on a memory node?
 | |
|  * @node: is this an allowed node?
 | |
|  * @gfp_mask: memory allocation flags
 | |
|  *
 | |
|  * If we're in interrupt, yes, we can always allocate.  If __GFP_THISNODE is
 | |
|  * set, yes, we can always allocate.  If node is in our task's mems_allowed,
 | |
|  * yes.  If it's not a __GFP_HARDWALL request and this node is in the nearest
 | |
|  * hardwalled cpuset ancestor to this task's cpuset, yes.  If the task has been
 | |
|  * OOM killed and has access to memory reserves as specified by the TIF_MEMDIE
 | |
|  * flag, yes.
 | |
|  * Otherwise, no.
 | |
|  *
 | |
|  * If __GFP_HARDWALL is set, cpuset_node_allowed_softwall() reduces to
 | |
|  * cpuset_node_allowed_hardwall().  Otherwise, cpuset_node_allowed_softwall()
 | |
|  * might sleep, and might allow a node from an enclosing cpuset.
 | |
|  *
 | |
|  * cpuset_node_allowed_hardwall() only handles the simpler case of hardwall
 | |
|  * cpusets, and never sleeps.
 | |
|  *
 | |
|  * The __GFP_THISNODE placement logic is really handled elsewhere,
 | |
|  * by forcibly using a zonelist starting at a specified node, and by
 | |
|  * (in get_page_from_freelist()) refusing to consider the zones for
 | |
|  * any node on the zonelist except the first.  By the time any such
 | |
|  * calls get to this routine, we should just shut up and say 'yes'.
 | |
|  *
 | |
|  * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
 | |
|  * and do not allow allocations outside the current tasks cpuset
 | |
|  * unless the task has been OOM killed as is marked TIF_MEMDIE.
 | |
|  * GFP_KERNEL allocations are not so marked, so can escape to the
 | |
|  * nearest enclosing hardwalled ancestor cpuset.
 | |
|  *
 | |
|  * Scanning up parent cpusets requires callback_mutex.  The
 | |
|  * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
 | |
|  * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
 | |
|  * current tasks mems_allowed came up empty on the first pass over
 | |
|  * the zonelist.  So only GFP_KERNEL allocations, if all nodes in the
 | |
|  * cpuset are short of memory, might require taking the callback_mutex
 | |
|  * mutex.
 | |
|  *
 | |
|  * The first call here from mm/page_alloc:get_page_from_freelist()
 | |
|  * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
 | |
|  * so no allocation on a node outside the cpuset is allowed (unless
 | |
|  * in interrupt, of course).
 | |
|  *
 | |
|  * The second pass through get_page_from_freelist() doesn't even call
 | |
|  * here for GFP_ATOMIC calls.  For those calls, the __alloc_pages()
 | |
|  * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
 | |
|  * in alloc_flags.  That logic and the checks below have the combined
 | |
|  * affect that:
 | |
|  *	in_interrupt - any node ok (current task context irrelevant)
 | |
|  *	GFP_ATOMIC   - any node ok
 | |
|  *	TIF_MEMDIE   - any node ok
 | |
|  *	GFP_KERNEL   - any node in enclosing hardwalled cpuset ok
 | |
|  *	GFP_USER     - only nodes in current tasks mems allowed ok.
 | |
|  *
 | |
|  * Rule:
 | |
|  *    Don't call cpuset_node_allowed_softwall if you can't sleep, unless you
 | |
|  *    pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
 | |
|  *    the code that might scan up ancestor cpusets and sleep.
 | |
|  */
 | |
| int __cpuset_node_allowed_softwall(int node, gfp_t gfp_mask)
 | |
| {
 | |
| 	struct cpuset *cs;		/* current cpuset ancestors */
 | |
| 	int allowed;			/* is allocation in zone z allowed? */
 | |
| 
 | |
| 	if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
 | |
| 		return 1;
 | |
| 	might_sleep_if(!(gfp_mask & __GFP_HARDWALL));
 | |
| 	if (node_isset(node, current->mems_allowed))
 | |
| 		return 1;
 | |
| 	/*
 | |
| 	 * Allow tasks that have access to memory reserves because they have
 | |
| 	 * been OOM killed to get memory anywhere.
 | |
| 	 */
 | |
| 	if (unlikely(test_thread_flag(TIF_MEMDIE)))
 | |
| 		return 1;
 | |
| 	if (gfp_mask & __GFP_HARDWALL)	/* If hardwall request, stop here */
 | |
| 		return 0;
 | |
| 
 | |
| 	if (current->flags & PF_EXITING) /* Let dying task have memory */
 | |
| 		return 1;
 | |
| 
 | |
| 	/* Not hardwall and node outside mems_allowed: scan up cpusets */
 | |
| 	mutex_lock(&callback_mutex);
 | |
| 
 | |
| 	task_lock(current);
 | |
| 	cs = nearest_hardwall_ancestor(task_cs(current));
 | |
| 	task_unlock(current);
 | |
| 
 | |
| 	allowed = node_isset(node, cs->mems_allowed);
 | |
| 	mutex_unlock(&callback_mutex);
 | |
| 	return allowed;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * cpuset_node_allowed_hardwall - Can we allocate on a memory node?
 | |
|  * @node: is this an allowed node?
 | |
|  * @gfp_mask: memory allocation flags
 | |
|  *
 | |
|  * If we're in interrupt, yes, we can always allocate.  If __GFP_THISNODE is
 | |
|  * set, yes, we can always allocate.  If node is in our task's mems_allowed,
 | |
|  * yes.  If the task has been OOM killed and has access to memory reserves as
 | |
|  * specified by the TIF_MEMDIE flag, yes.
 | |
|  * Otherwise, no.
 | |
|  *
 | |
|  * The __GFP_THISNODE placement logic is really handled elsewhere,
 | |
|  * by forcibly using a zonelist starting at a specified node, and by
 | |
|  * (in get_page_from_freelist()) refusing to consider the zones for
 | |
|  * any node on the zonelist except the first.  By the time any such
 | |
|  * calls get to this routine, we should just shut up and say 'yes'.
 | |
|  *
 | |
|  * Unlike the cpuset_node_allowed_softwall() variant, above,
 | |
|  * this variant requires that the node be in the current task's
 | |
|  * mems_allowed or that we're in interrupt.  It does not scan up the
 | |
|  * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
 | |
|  * It never sleeps.
 | |
|  */
 | |
| int __cpuset_node_allowed_hardwall(int node, gfp_t gfp_mask)
 | |
| {
 | |
| 	if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
 | |
| 		return 1;
 | |
| 	if (node_isset(node, current->mems_allowed))
 | |
| 		return 1;
 | |
| 	/*
 | |
| 	 * Allow tasks that have access to memory reserves because they have
 | |
| 	 * been OOM killed to get memory anywhere.
 | |
| 	 */
 | |
| 	if (unlikely(test_thread_flag(TIF_MEMDIE)))
 | |
| 		return 1;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cpuset_mem_spread_node() - On which node to begin search for a file page
 | |
|  * cpuset_slab_spread_node() - On which node to begin search for a slab page
 | |
|  *
 | |
|  * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
 | |
|  * tasks in a cpuset with is_spread_page or is_spread_slab set),
 | |
|  * and if the memory allocation used cpuset_mem_spread_node()
 | |
|  * to determine on which node to start looking, as it will for
 | |
|  * certain page cache or slab cache pages such as used for file
 | |
|  * system buffers and inode caches, then instead of starting on the
 | |
|  * local node to look for a free page, rather spread the starting
 | |
|  * node around the tasks mems_allowed nodes.
 | |
|  *
 | |
|  * We don't have to worry about the returned node being offline
 | |
|  * because "it can't happen", and even if it did, it would be ok.
 | |
|  *
 | |
|  * The routines calling guarantee_online_mems() are careful to
 | |
|  * only set nodes in task->mems_allowed that are online.  So it
 | |
|  * should not be possible for the following code to return an
 | |
|  * offline node.  But if it did, that would be ok, as this routine
 | |
|  * is not returning the node where the allocation must be, only
 | |
|  * the node where the search should start.  The zonelist passed to
 | |
|  * __alloc_pages() will include all nodes.  If the slab allocator
 | |
|  * is passed an offline node, it will fall back to the local node.
 | |
|  * See kmem_cache_alloc_node().
 | |
|  */
 | |
| 
 | |
| static int cpuset_spread_node(int *rotor)
 | |
| {
 | |
| 	int node;
 | |
| 
 | |
| 	node = next_node(*rotor, current->mems_allowed);
 | |
| 	if (node == MAX_NUMNODES)
 | |
| 		node = first_node(current->mems_allowed);
 | |
| 	*rotor = node;
 | |
| 	return node;
 | |
| }
 | |
| 
 | |
| int cpuset_mem_spread_node(void)
 | |
| {
 | |
| 	if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
 | |
| 		current->cpuset_mem_spread_rotor =
 | |
| 			node_random(¤t->mems_allowed);
 | |
| 
 | |
| 	return cpuset_spread_node(¤t->cpuset_mem_spread_rotor);
 | |
| }
 | |
| 
 | |
| int cpuset_slab_spread_node(void)
 | |
| {
 | |
| 	if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
 | |
| 		current->cpuset_slab_spread_rotor =
 | |
| 			node_random(¤t->mems_allowed);
 | |
| 
 | |
| 	return cpuset_spread_node(¤t->cpuset_slab_spread_rotor);
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
 | |
| 
 | |
| /**
 | |
|  * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
 | |
|  * @tsk1: pointer to task_struct of some task.
 | |
|  * @tsk2: pointer to task_struct of some other task.
 | |
|  *
 | |
|  * Description: Return true if @tsk1's mems_allowed intersects the
 | |
|  * mems_allowed of @tsk2.  Used by the OOM killer to determine if
 | |
|  * one of the task's memory usage might impact the memory available
 | |
|  * to the other.
 | |
|  **/
 | |
| 
 | |
| int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
 | |
| 				   const struct task_struct *tsk2)
 | |
| {
 | |
| 	return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
 | |
| }
 | |
| 
 | |
| #define CPUSET_NODELIST_LEN	(256)
 | |
| 
 | |
| /**
 | |
|  * cpuset_print_task_mems_allowed - prints task's cpuset and mems_allowed
 | |
|  * @task: pointer to task_struct of some task.
 | |
|  *
 | |
|  * Description: Prints @task's name, cpuset name, and cached copy of its
 | |
|  * mems_allowed to the kernel log.  Must hold task_lock(task) to allow
 | |
|  * dereferencing task_cs(task).
 | |
|  */
 | |
| void cpuset_print_task_mems_allowed(struct task_struct *tsk)
 | |
| {
 | |
| 	 /* Statically allocated to prevent using excess stack. */
 | |
| 	static char cpuset_nodelist[CPUSET_NODELIST_LEN];
 | |
| 	static DEFINE_SPINLOCK(cpuset_buffer_lock);
 | |
| 
 | |
| 	struct cgroup *cgrp = task_cs(tsk)->css.cgroup;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	spin_lock(&cpuset_buffer_lock);
 | |
| 
 | |
| 	nodelist_scnprintf(cpuset_nodelist, CPUSET_NODELIST_LEN,
 | |
| 			   tsk->mems_allowed);
 | |
| 	printk(KERN_INFO "%s cpuset=%s mems_allowed=%s\n",
 | |
| 	       tsk->comm, cgroup_name(cgrp), cpuset_nodelist);
 | |
| 
 | |
| 	spin_unlock(&cpuset_buffer_lock);
 | |
| 	rcu_read_unlock();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Collection of memory_pressure is suppressed unless
 | |
|  * this flag is enabled by writing "1" to the special
 | |
|  * cpuset file 'memory_pressure_enabled' in the root cpuset.
 | |
|  */
 | |
| 
 | |
| int cpuset_memory_pressure_enabled __read_mostly;
 | |
| 
 | |
| /**
 | |
|  * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
 | |
|  *
 | |
|  * Keep a running average of the rate of synchronous (direct)
 | |
|  * page reclaim efforts initiated by tasks in each cpuset.
 | |
|  *
 | |
|  * This represents the rate at which some task in the cpuset
 | |
|  * ran low on memory on all nodes it was allowed to use, and
 | |
|  * had to enter the kernels page reclaim code in an effort to
 | |
|  * create more free memory by tossing clean pages or swapping
 | |
|  * or writing dirty pages.
 | |
|  *
 | |
|  * Display to user space in the per-cpuset read-only file
 | |
|  * "memory_pressure".  Value displayed is an integer
 | |
|  * representing the recent rate of entry into the synchronous
 | |
|  * (direct) page reclaim by any task attached to the cpuset.
 | |
|  **/
 | |
| 
 | |
| void __cpuset_memory_pressure_bump(void)
 | |
| {
 | |
| 	task_lock(current);
 | |
| 	fmeter_markevent(&task_cs(current)->fmeter);
 | |
| 	task_unlock(current);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_PROC_PID_CPUSET
 | |
| /*
 | |
|  * proc_cpuset_show()
 | |
|  *  - Print tasks cpuset path into seq_file.
 | |
|  *  - Used for /proc/<pid>/cpuset.
 | |
|  *  - No need to task_lock(tsk) on this tsk->cpuset reference, as it
 | |
|  *    doesn't really matter if tsk->cpuset changes after we read it,
 | |
|  *    and we take cpuset_mutex, keeping cpuset_attach() from changing it
 | |
|  *    anyway.
 | |
|  */
 | |
| int proc_cpuset_show(struct seq_file *m, void *unused_v)
 | |
| {
 | |
| 	struct pid *pid;
 | |
| 	struct task_struct *tsk;
 | |
| 	char *buf;
 | |
| 	struct cgroup_subsys_state *css;
 | |
| 	int retval;
 | |
| 
 | |
| 	retval = -ENOMEM;
 | |
| 	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
 | |
| 	if (!buf)
 | |
| 		goto out;
 | |
| 
 | |
| 	retval = -ESRCH;
 | |
| 	pid = m->private;
 | |
| 	tsk = get_pid_task(pid, PIDTYPE_PID);
 | |
| 	if (!tsk)
 | |
| 		goto out_free;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	css = task_css(tsk, cpuset_subsys_id);
 | |
| 	retval = cgroup_path(css->cgroup, buf, PAGE_SIZE);
 | |
| 	rcu_read_unlock();
 | |
| 	if (retval < 0)
 | |
| 		goto out_put_task;
 | |
| 	seq_puts(m, buf);
 | |
| 	seq_putc(m, '\n');
 | |
| out_put_task:
 | |
| 	put_task_struct(tsk);
 | |
| out_free:
 | |
| 	kfree(buf);
 | |
| out:
 | |
| 	return retval;
 | |
| }
 | |
| #endif /* CONFIG_PROC_PID_CPUSET */
 | |
| 
 | |
| /* Display task mems_allowed in /proc/<pid>/status file. */
 | |
| void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
 | |
| {
 | |
| 	seq_printf(m, "Mems_allowed:\t");
 | |
| 	seq_nodemask(m, &task->mems_allowed);
 | |
| 	seq_printf(m, "\n");
 | |
| 	seq_printf(m, "Mems_allowed_list:\t");
 | |
| 	seq_nodemask_list(m, &task->mems_allowed);
 | |
| 	seq_printf(m, "\n");
 | |
| }
 |