Fix the collision of rtc function name. Signed-off-by: Yoichi Yuasa <yoichi_yuasa@tripeaks.co.jp> Cc: Alessandro Zummo <a.zummo@towertech.it> Cc: Ralf Baechle <ralf@linux-mips.org> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
		
			
				
	
	
		
			781 lines
		
	
	
	
		
			19 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			781 lines
		
	
	
	
		
			19 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * Copyright 2001 MontaVista Software Inc.
 | 
						|
 * Author: Jun Sun, jsun@mvista.com or jsun@junsun.net
 | 
						|
 * Copyright (c) 2003, 2004  Maciej W. Rozycki
 | 
						|
 *
 | 
						|
 * Common time service routines for MIPS machines. See
 | 
						|
 * Documentation/mips/time.README.
 | 
						|
 *
 | 
						|
 * This program is free software; you can redistribute  it and/or modify it
 | 
						|
 * under  the terms of  the GNU General  Public License as published by the
 | 
						|
 * Free Software Foundation;  either version 2 of the  License, or (at your
 | 
						|
 * option) any later version.
 | 
						|
 */
 | 
						|
#include <linux/config.h>
 | 
						|
#include <linux/types.h>
 | 
						|
#include <linux/kernel.h>
 | 
						|
#include <linux/init.h>
 | 
						|
#include <linux/sched.h>
 | 
						|
#include <linux/param.h>
 | 
						|
#include <linux/time.h>
 | 
						|
#include <linux/timex.h>
 | 
						|
#include <linux/smp.h>
 | 
						|
#include <linux/kernel_stat.h>
 | 
						|
#include <linux/spinlock.h>
 | 
						|
#include <linux/interrupt.h>
 | 
						|
#include <linux/module.h>
 | 
						|
 | 
						|
#include <asm/bootinfo.h>
 | 
						|
#include <asm/cache.h>
 | 
						|
#include <asm/compiler.h>
 | 
						|
#include <asm/cpu.h>
 | 
						|
#include <asm/cpu-features.h>
 | 
						|
#include <asm/div64.h>
 | 
						|
#include <asm/sections.h>
 | 
						|
#include <asm/time.h>
 | 
						|
 | 
						|
/*
 | 
						|
 * The integer part of the number of usecs per jiffy is taken from tick,
 | 
						|
 * but the fractional part is not recorded, so we calculate it using the
 | 
						|
 * initial value of HZ.  This aids systems where tick isn't really an
 | 
						|
 * integer (e.g. for HZ = 128).
 | 
						|
 */
 | 
						|
#define USECS_PER_JIFFY		TICK_SIZE
 | 
						|
#define USECS_PER_JIFFY_FRAC	((unsigned long)(u32)((1000000ULL << 32) / HZ))
 | 
						|
 | 
						|
#define TICK_SIZE	(tick_nsec / 1000)
 | 
						|
 | 
						|
/*
 | 
						|
 * forward reference
 | 
						|
 */
 | 
						|
extern volatile unsigned long wall_jiffies;
 | 
						|
 | 
						|
DEFINE_SPINLOCK(rtc_lock);
 | 
						|
 | 
						|
/*
 | 
						|
 * By default we provide the null RTC ops
 | 
						|
 */
 | 
						|
static unsigned long null_rtc_get_time(void)
 | 
						|
{
 | 
						|
	return mktime(2000, 1, 1, 0, 0, 0);
 | 
						|
}
 | 
						|
 | 
						|
static int null_rtc_set_time(unsigned long sec)
 | 
						|
{
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
unsigned long (*rtc_mips_get_time)(void) = null_rtc_get_time;
 | 
						|
int (*rtc_mips_set_time)(unsigned long) = null_rtc_set_time;
 | 
						|
int (*rtc_mips_set_mmss)(unsigned long);
 | 
						|
 | 
						|
 | 
						|
/* usecs per counter cycle, shifted to left by 32 bits */
 | 
						|
static unsigned int sll32_usecs_per_cycle;
 | 
						|
 | 
						|
/* how many counter cycles in a jiffy */
 | 
						|
static unsigned long cycles_per_jiffy __read_mostly;
 | 
						|
 | 
						|
/* Cycle counter value at the previous timer interrupt.. */
 | 
						|
static unsigned int timerhi, timerlo;
 | 
						|
 | 
						|
/* expirelo is the count value for next CPU timer interrupt */
 | 
						|
static unsigned int expirelo;
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
 * Null timer ack for systems not needing one (e.g. i8254).
 | 
						|
 */
 | 
						|
static void null_timer_ack(void) { /* nothing */ }
 | 
						|
 | 
						|
/*
 | 
						|
 * Null high precision timer functions for systems lacking one.
 | 
						|
 */
 | 
						|
static unsigned int null_hpt_read(void)
 | 
						|
{
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static void null_hpt_init(unsigned int count)
 | 
						|
{
 | 
						|
	/* nothing */
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
 * Timer ack for an R4k-compatible timer of a known frequency.
 | 
						|
 */
 | 
						|
static void c0_timer_ack(void)
 | 
						|
{
 | 
						|
	unsigned int count;
 | 
						|
 | 
						|
#ifndef CONFIG_SOC_PNX8550	/* pnx8550 resets to zero */
 | 
						|
	/* Ack this timer interrupt and set the next one.  */
 | 
						|
	expirelo += cycles_per_jiffy;
 | 
						|
#endif
 | 
						|
	write_c0_compare(expirelo);
 | 
						|
 | 
						|
	/* Check to see if we have missed any timer interrupts.  */
 | 
						|
	count = read_c0_count();
 | 
						|
	if ((count - expirelo) < 0x7fffffff) {
 | 
						|
		/* missed_timer_count++; */
 | 
						|
		expirelo = count + cycles_per_jiffy;
 | 
						|
		write_c0_compare(expirelo);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * High precision timer functions for a R4k-compatible timer.
 | 
						|
 */
 | 
						|
static unsigned int c0_hpt_read(void)
 | 
						|
{
 | 
						|
	return read_c0_count();
 | 
						|
}
 | 
						|
 | 
						|
/* For use solely as a high precision timer.  */
 | 
						|
static void c0_hpt_init(unsigned int count)
 | 
						|
{
 | 
						|
	write_c0_count(read_c0_count() - count);
 | 
						|
}
 | 
						|
 | 
						|
/* For use both as a high precision timer and an interrupt source.  */
 | 
						|
static void c0_hpt_timer_init(unsigned int count)
 | 
						|
{
 | 
						|
	count = read_c0_count() - count;
 | 
						|
	expirelo = (count / cycles_per_jiffy + 1) * cycles_per_jiffy;
 | 
						|
	write_c0_count(expirelo - cycles_per_jiffy);
 | 
						|
	write_c0_compare(expirelo);
 | 
						|
	write_c0_count(count);
 | 
						|
}
 | 
						|
 | 
						|
int (*mips_timer_state)(void);
 | 
						|
void (*mips_timer_ack)(void);
 | 
						|
unsigned int (*mips_hpt_read)(void);
 | 
						|
void (*mips_hpt_init)(unsigned int);
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
 * This version of gettimeofday has microsecond resolution and better than
 | 
						|
 * microsecond precision on fast machines with cycle counter.
 | 
						|
 */
 | 
						|
void do_gettimeofday(struct timeval *tv)
 | 
						|
{
 | 
						|
	unsigned long seq;
 | 
						|
	unsigned long lost;
 | 
						|
	unsigned long usec, sec;
 | 
						|
	unsigned long max_ntp_tick;
 | 
						|
 | 
						|
	do {
 | 
						|
		seq = read_seqbegin(&xtime_lock);
 | 
						|
 | 
						|
		usec = do_gettimeoffset();
 | 
						|
 | 
						|
		lost = jiffies - wall_jiffies;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * If time_adjust is negative then NTP is slowing the clock
 | 
						|
		 * so make sure not to go into next possible interval.
 | 
						|
		 * Better to lose some accuracy than have time go backwards..
 | 
						|
		 */
 | 
						|
		if (unlikely(time_adjust < 0)) {
 | 
						|
			max_ntp_tick = (USEC_PER_SEC / HZ) - tickadj;
 | 
						|
			usec = min(usec, max_ntp_tick);
 | 
						|
 | 
						|
			if (lost)
 | 
						|
				usec += lost * max_ntp_tick;
 | 
						|
		} else if (unlikely(lost))
 | 
						|
			usec += lost * (USEC_PER_SEC / HZ);
 | 
						|
 | 
						|
		sec = xtime.tv_sec;
 | 
						|
		usec += (xtime.tv_nsec / 1000);
 | 
						|
 | 
						|
	} while (read_seqretry(&xtime_lock, seq));
 | 
						|
 | 
						|
	while (usec >= 1000000) {
 | 
						|
		usec -= 1000000;
 | 
						|
		sec++;
 | 
						|
	}
 | 
						|
 | 
						|
	tv->tv_sec = sec;
 | 
						|
	tv->tv_usec = usec;
 | 
						|
}
 | 
						|
 | 
						|
EXPORT_SYMBOL(do_gettimeofday);
 | 
						|
 | 
						|
int do_settimeofday(struct timespec *tv)
 | 
						|
{
 | 
						|
	time_t wtm_sec, sec = tv->tv_sec;
 | 
						|
	long wtm_nsec, nsec = tv->tv_nsec;
 | 
						|
 | 
						|
	if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	write_seqlock_irq(&xtime_lock);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * This is revolting.  We need to set "xtime" correctly.  However,
 | 
						|
	 * the value in this location is the value at the most recent update
 | 
						|
	 * of wall time.  Discover what correction gettimeofday() would have
 | 
						|
	 * made, and then undo it!
 | 
						|
	 */
 | 
						|
	nsec -= do_gettimeoffset() * NSEC_PER_USEC;
 | 
						|
	nsec -= (jiffies - wall_jiffies) * tick_nsec;
 | 
						|
 | 
						|
	wtm_sec  = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec);
 | 
						|
	wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec);
 | 
						|
 | 
						|
	set_normalized_timespec(&xtime, sec, nsec);
 | 
						|
	set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
 | 
						|
 | 
						|
	ntp_clear();
 | 
						|
	write_sequnlock_irq(&xtime_lock);
 | 
						|
	clock_was_set();
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
EXPORT_SYMBOL(do_settimeofday);
 | 
						|
 | 
						|
/*
 | 
						|
 * Gettimeoffset routines.  These routines returns the time duration
 | 
						|
 * since last timer interrupt in usecs.
 | 
						|
 *
 | 
						|
 * If the exact CPU counter frequency is known, use fixed_rate_gettimeoffset.
 | 
						|
 * Otherwise use calibrate_gettimeoffset()
 | 
						|
 *
 | 
						|
 * If the CPU does not have the counter register, you can either supply
 | 
						|
 * your own gettimeoffset() routine, or use null_gettimeoffset(), which
 | 
						|
 * gives the same resolution as HZ.
 | 
						|
 */
 | 
						|
 | 
						|
static unsigned long null_gettimeoffset(void)
 | 
						|
{
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* The function pointer to one of the gettimeoffset funcs.  */
 | 
						|
unsigned long (*do_gettimeoffset)(void) = null_gettimeoffset;
 | 
						|
 | 
						|
 | 
						|
static unsigned long fixed_rate_gettimeoffset(void)
 | 
						|
{
 | 
						|
	u32 count;
 | 
						|
	unsigned long res;
 | 
						|
 | 
						|
	/* Get last timer tick in absolute kernel time */
 | 
						|
	count = mips_hpt_read();
 | 
						|
 | 
						|
	/* .. relative to previous jiffy (32 bits is enough) */
 | 
						|
	count -= timerlo;
 | 
						|
 | 
						|
	__asm__("multu	%1,%2"
 | 
						|
		: "=h" (res)
 | 
						|
		: "r" (count), "r" (sll32_usecs_per_cycle)
 | 
						|
		: "lo", GCC_REG_ACCUM);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Due to possible jiffies inconsistencies, we need to check
 | 
						|
	 * the result so that we'll get a timer that is monotonic.
 | 
						|
	 */
 | 
						|
	if (res >= USECS_PER_JIFFY)
 | 
						|
		res = USECS_PER_JIFFY - 1;
 | 
						|
 | 
						|
	return res;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
 * Cached "1/(clocks per usec) * 2^32" value.
 | 
						|
 * It has to be recalculated once each jiffy.
 | 
						|
 */
 | 
						|
static unsigned long cached_quotient;
 | 
						|
 | 
						|
/* Last jiffy when calibrate_divXX_gettimeoffset() was called. */
 | 
						|
static unsigned long last_jiffies;
 | 
						|
 | 
						|
/*
 | 
						|
 * This is moved from dec/time.c:do_ioasic_gettimeoffset() by Maciej.
 | 
						|
 */
 | 
						|
static unsigned long calibrate_div32_gettimeoffset(void)
 | 
						|
{
 | 
						|
	u32 count;
 | 
						|
	unsigned long res, tmp;
 | 
						|
	unsigned long quotient;
 | 
						|
 | 
						|
	tmp = jiffies;
 | 
						|
 | 
						|
	quotient = cached_quotient;
 | 
						|
 | 
						|
	if (last_jiffies != tmp) {
 | 
						|
		last_jiffies = tmp;
 | 
						|
		if (last_jiffies != 0) {
 | 
						|
			unsigned long r0;
 | 
						|
			do_div64_32(r0, timerhi, timerlo, tmp);
 | 
						|
			do_div64_32(quotient, USECS_PER_JIFFY,
 | 
						|
				    USECS_PER_JIFFY_FRAC, r0);
 | 
						|
			cached_quotient = quotient;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/* Get last timer tick in absolute kernel time */
 | 
						|
	count = mips_hpt_read();
 | 
						|
 | 
						|
	/* .. relative to previous jiffy (32 bits is enough) */
 | 
						|
	count -= timerlo;
 | 
						|
 | 
						|
	__asm__("multu  %1,%2"
 | 
						|
		: "=h" (res)
 | 
						|
		: "r" (count), "r" (quotient)
 | 
						|
		: "lo", GCC_REG_ACCUM);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Due to possible jiffies inconsistencies, we need to check
 | 
						|
	 * the result so that we'll get a timer that is monotonic.
 | 
						|
	 */
 | 
						|
	if (res >= USECS_PER_JIFFY)
 | 
						|
		res = USECS_PER_JIFFY - 1;
 | 
						|
 | 
						|
	return res;
 | 
						|
}
 | 
						|
 | 
						|
static unsigned long calibrate_div64_gettimeoffset(void)
 | 
						|
{
 | 
						|
	u32 count;
 | 
						|
	unsigned long res, tmp;
 | 
						|
	unsigned long quotient;
 | 
						|
 | 
						|
	tmp = jiffies;
 | 
						|
 | 
						|
	quotient = cached_quotient;
 | 
						|
 | 
						|
	if (last_jiffies != tmp) {
 | 
						|
		last_jiffies = tmp;
 | 
						|
		if (last_jiffies) {
 | 
						|
			unsigned long r0;
 | 
						|
			__asm__(".set	push\n\t"
 | 
						|
				".set	mips3\n\t"
 | 
						|
				"lwu	%0,%3\n\t"
 | 
						|
				"dsll32	%1,%2,0\n\t"
 | 
						|
				"or	%1,%1,%0\n\t"
 | 
						|
				"ddivu	$0,%1,%4\n\t"
 | 
						|
				"mflo	%1\n\t"
 | 
						|
				"dsll32	%0,%5,0\n\t"
 | 
						|
				"or	%0,%0,%6\n\t"
 | 
						|
				"ddivu	$0,%0,%1\n\t"
 | 
						|
				"mflo	%0\n\t"
 | 
						|
				".set	pop"
 | 
						|
				: "=&r" (quotient), "=&r" (r0)
 | 
						|
				: "r" (timerhi), "m" (timerlo),
 | 
						|
				  "r" (tmp), "r" (USECS_PER_JIFFY),
 | 
						|
				  "r" (USECS_PER_JIFFY_FRAC)
 | 
						|
				: "hi", "lo", GCC_REG_ACCUM);
 | 
						|
			cached_quotient = quotient;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/* Get last timer tick in absolute kernel time */
 | 
						|
	count = mips_hpt_read();
 | 
						|
 | 
						|
	/* .. relative to previous jiffy (32 bits is enough) */
 | 
						|
	count -= timerlo;
 | 
						|
 | 
						|
	__asm__("multu	%1,%2"
 | 
						|
		: "=h" (res)
 | 
						|
		: "r" (count), "r" (quotient)
 | 
						|
		: "lo", GCC_REG_ACCUM);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Due to possible jiffies inconsistencies, we need to check
 | 
						|
	 * the result so that we'll get a timer that is monotonic.
 | 
						|
	 */
 | 
						|
	if (res >= USECS_PER_JIFFY)
 | 
						|
		res = USECS_PER_JIFFY - 1;
 | 
						|
 | 
						|
	return res;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* last time when xtime and rtc are sync'ed up */
 | 
						|
static long last_rtc_update;
 | 
						|
 | 
						|
/*
 | 
						|
 * local_timer_interrupt() does profiling and process accounting
 | 
						|
 * on a per-CPU basis.
 | 
						|
 *
 | 
						|
 * In UP mode, it is invoked from the (global) timer_interrupt.
 | 
						|
 *
 | 
						|
 * In SMP mode, it might invoked by per-CPU timer interrupt, or
 | 
						|
 * a broadcasted inter-processor interrupt which itself is triggered
 | 
						|
 * by the global timer interrupt.
 | 
						|
 */
 | 
						|
void local_timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
 | 
						|
{
 | 
						|
	if (current->pid)
 | 
						|
		profile_tick(CPU_PROFILING, regs);
 | 
						|
	update_process_times(user_mode(regs));
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * High-level timer interrupt service routines.  This function
 | 
						|
 * is set as irqaction->handler and is invoked through do_IRQ.
 | 
						|
 */
 | 
						|
irqreturn_t timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
 | 
						|
{
 | 
						|
	unsigned long j;
 | 
						|
	unsigned int count;
 | 
						|
 | 
						|
	write_seqlock(&xtime_lock);
 | 
						|
 | 
						|
	count = mips_hpt_read();
 | 
						|
	mips_timer_ack();
 | 
						|
 | 
						|
	/* Update timerhi/timerlo for intra-jiffy calibration. */
 | 
						|
	timerhi += count < timerlo;			/* Wrap around */
 | 
						|
	timerlo = count;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * call the generic timer interrupt handling
 | 
						|
	 */
 | 
						|
	do_timer(regs);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If we have an externally synchronized Linux clock, then update
 | 
						|
	 * CMOS clock accordingly every ~11 minutes. rtc_mips_set_time() has to be
 | 
						|
	 * called as close as possible to 500 ms before the new second starts.
 | 
						|
	 */
 | 
						|
	if (ntp_synced() &&
 | 
						|
	    xtime.tv_sec > last_rtc_update + 660 &&
 | 
						|
	    (xtime.tv_nsec / 1000) >= 500000 - ((unsigned) TICK_SIZE) / 2 &&
 | 
						|
	    (xtime.tv_nsec / 1000) <= 500000 + ((unsigned) TICK_SIZE) / 2) {
 | 
						|
		if (rtc_mips_set_mmss(xtime.tv_sec) == 0) {
 | 
						|
			last_rtc_update = xtime.tv_sec;
 | 
						|
		} else {
 | 
						|
			/* do it again in 60 s */
 | 
						|
			last_rtc_update = xtime.tv_sec - 600;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If jiffies has overflown in this timer_interrupt, we must
 | 
						|
	 * update the timer[hi]/[lo] to make fast gettimeoffset funcs
 | 
						|
	 * quotient calc still valid. -arca
 | 
						|
	 *
 | 
						|
	 * The first timer interrupt comes late as interrupts are
 | 
						|
	 * enabled long after timers are initialized.  Therefore the
 | 
						|
	 * high precision timer is fast, leading to wrong gettimeoffset()
 | 
						|
	 * calculations.  We deal with it by setting it based on the
 | 
						|
	 * number of its ticks between the second and the third interrupt.
 | 
						|
	 * That is still somewhat imprecise, but it's a good estimate.
 | 
						|
	 * --macro
 | 
						|
	 */
 | 
						|
	j = jiffies;
 | 
						|
	if (j < 4) {
 | 
						|
		static unsigned int prev_count;
 | 
						|
		static int hpt_initialized;
 | 
						|
 | 
						|
		switch (j) {
 | 
						|
		case 0:
 | 
						|
			timerhi = timerlo = 0;
 | 
						|
			mips_hpt_init(count);
 | 
						|
			break;
 | 
						|
		case 2:
 | 
						|
			prev_count = count;
 | 
						|
			break;
 | 
						|
		case 3:
 | 
						|
			if (!hpt_initialized) {
 | 
						|
				unsigned int c3 = 3 * (count - prev_count);
 | 
						|
 | 
						|
				timerhi = 0;
 | 
						|
				timerlo = c3;
 | 
						|
				mips_hpt_init(count - c3);
 | 
						|
				hpt_initialized = 1;
 | 
						|
			}
 | 
						|
			break;
 | 
						|
		default:
 | 
						|
			break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	write_sequnlock(&xtime_lock);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * In UP mode, we call local_timer_interrupt() to do profiling
 | 
						|
	 * and process accouting.
 | 
						|
	 *
 | 
						|
	 * In SMP mode, local_timer_interrupt() is invoked by appropriate
 | 
						|
	 * low-level local timer interrupt handler.
 | 
						|
	 */
 | 
						|
	local_timer_interrupt(irq, dev_id, regs);
 | 
						|
 | 
						|
	return IRQ_HANDLED;
 | 
						|
}
 | 
						|
 | 
						|
int null_perf_irq(struct pt_regs *regs)
 | 
						|
{
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
int (*perf_irq)(struct pt_regs *regs) = null_perf_irq;
 | 
						|
 | 
						|
EXPORT_SYMBOL(null_perf_irq);
 | 
						|
EXPORT_SYMBOL(perf_irq);
 | 
						|
 | 
						|
asmlinkage void ll_timer_interrupt(int irq, struct pt_regs *regs)
 | 
						|
{
 | 
						|
	int r2 = cpu_has_mips_r2;
 | 
						|
 | 
						|
	irq_enter();
 | 
						|
	kstat_this_cpu.irqs[irq]++;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Suckage alert:
 | 
						|
	 * Before R2 of the architecture there was no way to see if a
 | 
						|
	 * performance counter interrupt was pending, so we have to run the
 | 
						|
	 * performance counter interrupt handler anyway.
 | 
						|
	 */
 | 
						|
	if (!r2 || (read_c0_cause() & (1 << 26)))
 | 
						|
		if (perf_irq(regs))
 | 
						|
			goto out;
 | 
						|
 | 
						|
	/* we keep interrupt disabled all the time */
 | 
						|
	if (!r2 || (read_c0_cause() & (1 << 30)))
 | 
						|
		timer_interrupt(irq, NULL, regs);
 | 
						|
 | 
						|
out:
 | 
						|
	irq_exit();
 | 
						|
}
 | 
						|
 | 
						|
asmlinkage void ll_local_timer_interrupt(int irq, struct pt_regs *regs)
 | 
						|
{
 | 
						|
	irq_enter();
 | 
						|
	if (smp_processor_id() != 0)
 | 
						|
		kstat_this_cpu.irqs[irq]++;
 | 
						|
 | 
						|
	/* we keep interrupt disabled all the time */
 | 
						|
	local_timer_interrupt(irq, NULL, regs);
 | 
						|
 | 
						|
	irq_exit();
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * time_init() - it does the following things.
 | 
						|
 *
 | 
						|
 * 1) board_time_init() -
 | 
						|
 * 	a) (optional) set up RTC routines,
 | 
						|
 *      b) (optional) calibrate and set the mips_hpt_frequency
 | 
						|
 *	    (only needed if you intended to use fixed_rate_gettimeoffset
 | 
						|
 *	     or use cpu counter as timer interrupt source)
 | 
						|
 * 2) setup xtime based on rtc_mips_get_time().
 | 
						|
 * 3) choose a appropriate gettimeoffset routine.
 | 
						|
 * 4) calculate a couple of cached variables for later usage
 | 
						|
 * 5) board_timer_setup() -
 | 
						|
 *	a) (optional) over-write any choices made above by time_init().
 | 
						|
 *	b) machine specific code should setup the timer irqaction.
 | 
						|
 *	c) enable the timer interrupt
 | 
						|
 */
 | 
						|
 | 
						|
void (*board_time_init)(void);
 | 
						|
void (*board_timer_setup)(struct irqaction *irq);
 | 
						|
 | 
						|
unsigned int mips_hpt_frequency;
 | 
						|
 | 
						|
static struct irqaction timer_irqaction = {
 | 
						|
	.handler = timer_interrupt,
 | 
						|
	.flags = SA_INTERRUPT,
 | 
						|
	.name = "timer",
 | 
						|
};
 | 
						|
 | 
						|
static unsigned int __init calibrate_hpt(void)
 | 
						|
{
 | 
						|
	u64 frequency;
 | 
						|
	u32 hpt_start, hpt_end, hpt_count, hz;
 | 
						|
 | 
						|
	const int loops = HZ / 10;
 | 
						|
	int log_2_loops = 0;
 | 
						|
	int i;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We want to calibrate for 0.1s, but to avoid a 64-bit
 | 
						|
	 * division we round the number of loops up to the nearest
 | 
						|
	 * power of 2.
 | 
						|
	 */
 | 
						|
	while (loops > 1 << log_2_loops)
 | 
						|
		log_2_loops++;
 | 
						|
	i = 1 << log_2_loops;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Wait for a rising edge of the timer interrupt.
 | 
						|
	 */
 | 
						|
	while (mips_timer_state());
 | 
						|
	while (!mips_timer_state());
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Now see how many high precision timer ticks happen
 | 
						|
	 * during the calculated number of periods between timer
 | 
						|
	 * interrupts.
 | 
						|
	 */
 | 
						|
	hpt_start = mips_hpt_read();
 | 
						|
	do {
 | 
						|
		while (mips_timer_state());
 | 
						|
		while (!mips_timer_state());
 | 
						|
	} while (--i);
 | 
						|
	hpt_end = mips_hpt_read();
 | 
						|
 | 
						|
	hpt_count = hpt_end - hpt_start;
 | 
						|
	hz = HZ;
 | 
						|
	frequency = (u64)hpt_count * (u64)hz;
 | 
						|
 | 
						|
	return frequency >> log_2_loops;
 | 
						|
}
 | 
						|
 | 
						|
void __init time_init(void)
 | 
						|
{
 | 
						|
	if (board_time_init)
 | 
						|
		board_time_init();
 | 
						|
 | 
						|
	if (!rtc_mips_set_mmss)
 | 
						|
		rtc_mips_set_mmss = rtc_mips_set_time;
 | 
						|
 | 
						|
	xtime.tv_sec = rtc_mips_get_time();
 | 
						|
	xtime.tv_nsec = 0;
 | 
						|
 | 
						|
	set_normalized_timespec(&wall_to_monotonic,
 | 
						|
	                        -xtime.tv_sec, -xtime.tv_nsec);
 | 
						|
 | 
						|
	/* Choose appropriate high precision timer routines.  */
 | 
						|
	if (!cpu_has_counter && !mips_hpt_read) {
 | 
						|
		/* No high precision timer -- sorry.  */
 | 
						|
		mips_hpt_read = null_hpt_read;
 | 
						|
		mips_hpt_init = null_hpt_init;
 | 
						|
	} else if (!mips_hpt_frequency && !mips_timer_state) {
 | 
						|
		/* A high precision timer of unknown frequency.  */
 | 
						|
		if (!mips_hpt_read) {
 | 
						|
			/* No external high precision timer -- use R4k.  */
 | 
						|
			mips_hpt_read = c0_hpt_read;
 | 
						|
			mips_hpt_init = c0_hpt_init;
 | 
						|
		}
 | 
						|
 | 
						|
		if (cpu_has_mips32r1 || cpu_has_mips32r2 ||
 | 
						|
		    (current_cpu_data.isa_level == MIPS_CPU_ISA_I) ||
 | 
						|
		    (current_cpu_data.isa_level == MIPS_CPU_ISA_II))
 | 
						|
			/*
 | 
						|
			 * We need to calibrate the counter but we don't have
 | 
						|
			 * 64-bit division.
 | 
						|
			 */
 | 
						|
			do_gettimeoffset = calibrate_div32_gettimeoffset;
 | 
						|
		else
 | 
						|
			/*
 | 
						|
			 * We need to calibrate the counter but we *do* have
 | 
						|
			 * 64-bit division.
 | 
						|
			 */
 | 
						|
			do_gettimeoffset = calibrate_div64_gettimeoffset;
 | 
						|
	} else {
 | 
						|
		/* We know counter frequency.  Or we can get it.  */
 | 
						|
		if (!mips_hpt_read) {
 | 
						|
			/* No external high precision timer -- use R4k.  */
 | 
						|
			mips_hpt_read = c0_hpt_read;
 | 
						|
 | 
						|
			if (mips_timer_state)
 | 
						|
				mips_hpt_init = c0_hpt_init;
 | 
						|
			else {
 | 
						|
				/* No external timer interrupt -- use R4k.  */
 | 
						|
				mips_hpt_init = c0_hpt_timer_init;
 | 
						|
				mips_timer_ack = c0_timer_ack;
 | 
						|
			}
 | 
						|
		}
 | 
						|
		if (!mips_hpt_frequency)
 | 
						|
			mips_hpt_frequency = calibrate_hpt();
 | 
						|
 | 
						|
		do_gettimeoffset = fixed_rate_gettimeoffset;
 | 
						|
 | 
						|
		/* Calculate cache parameters.  */
 | 
						|
		cycles_per_jiffy = (mips_hpt_frequency + HZ / 2) / HZ;
 | 
						|
 | 
						|
		/* sll32_usecs_per_cycle = 10^6 * 2^32 / mips_counter_freq  */
 | 
						|
		do_div64_32(sll32_usecs_per_cycle,
 | 
						|
			    1000000, mips_hpt_frequency / 2,
 | 
						|
			    mips_hpt_frequency);
 | 
						|
 | 
						|
		/* Report the high precision timer rate for a reference.  */
 | 
						|
		printk("Using %u.%03u MHz high precision timer.\n",
 | 
						|
		       ((mips_hpt_frequency + 500) / 1000) / 1000,
 | 
						|
		       ((mips_hpt_frequency + 500) / 1000) % 1000);
 | 
						|
	}
 | 
						|
 | 
						|
	if (!mips_timer_ack)
 | 
						|
		/* No timer interrupt ack (e.g. i8254).  */
 | 
						|
		mips_timer_ack = null_timer_ack;
 | 
						|
 | 
						|
	/* This sets up the high precision timer for the first interrupt.  */
 | 
						|
	mips_hpt_init(mips_hpt_read());
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Call board specific timer interrupt setup.
 | 
						|
	 *
 | 
						|
	 * this pointer must be setup in machine setup routine.
 | 
						|
	 *
 | 
						|
	 * Even if a machine chooses to use a low-level timer interrupt,
 | 
						|
	 * it still needs to setup the timer_irqaction.
 | 
						|
	 * In that case, it might be better to set timer_irqaction.handler
 | 
						|
	 * to be NULL function so that we are sure the high-level code
 | 
						|
	 * is not invoked accidentally.
 | 
						|
	 */
 | 
						|
	board_timer_setup(&timer_irqaction);
 | 
						|
}
 | 
						|
 | 
						|
#define FEBRUARY		2
 | 
						|
#define STARTOFTIME		1970
 | 
						|
#define SECDAY			86400L
 | 
						|
#define SECYR			(SECDAY * 365)
 | 
						|
#define leapyear(y)		((!((y) % 4) && ((y) % 100)) || !((y) % 400))
 | 
						|
#define days_in_year(y)		(leapyear(y) ? 366 : 365)
 | 
						|
#define days_in_month(m)	(month_days[(m) - 1])
 | 
						|
 | 
						|
static int month_days[12] = {
 | 
						|
	31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
 | 
						|
};
 | 
						|
 | 
						|
void to_tm(unsigned long tim, struct rtc_time *tm)
 | 
						|
{
 | 
						|
	long hms, day, gday;
 | 
						|
	int i;
 | 
						|
 | 
						|
	gday = day = tim / SECDAY;
 | 
						|
	hms = tim % SECDAY;
 | 
						|
 | 
						|
	/* Hours, minutes, seconds are easy */
 | 
						|
	tm->tm_hour = hms / 3600;
 | 
						|
	tm->tm_min = (hms % 3600) / 60;
 | 
						|
	tm->tm_sec = (hms % 3600) % 60;
 | 
						|
 | 
						|
	/* Number of years in days */
 | 
						|
	for (i = STARTOFTIME; day >= days_in_year(i); i++)
 | 
						|
		day -= days_in_year(i);
 | 
						|
	tm->tm_year = i;
 | 
						|
 | 
						|
	/* Number of months in days left */
 | 
						|
	if (leapyear(tm->tm_year))
 | 
						|
		days_in_month(FEBRUARY) = 29;
 | 
						|
	for (i = 1; day >= days_in_month(i); i++)
 | 
						|
		day -= days_in_month(i);
 | 
						|
	days_in_month(FEBRUARY) = 28;
 | 
						|
	tm->tm_mon = i - 1;		/* tm_mon starts from 0 to 11 */
 | 
						|
 | 
						|
	/* Days are what is left over (+1) from all that. */
 | 
						|
	tm->tm_mday = day + 1;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Determine the day of week
 | 
						|
	 */
 | 
						|
	tm->tm_wday = (gday + 4) % 7;	/* 1970/1/1 was Thursday */
 | 
						|
}
 | 
						|
 | 
						|
EXPORT_SYMBOL(rtc_lock);
 | 
						|
EXPORT_SYMBOL(to_tm);
 | 
						|
EXPORT_SYMBOL(rtc_mips_set_time);
 | 
						|
EXPORT_SYMBOL(rtc_mips_get_time);
 | 
						|
 | 
						|
unsigned long long sched_clock(void)
 | 
						|
{
 | 
						|
	return (unsigned long long)jiffies*(1000000000/HZ);
 | 
						|
}
 |