Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com> Cc: Ralf Baechle <ralf@linux-mips.org> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
		
			
				
	
	
		
			1096 lines
		
	
	
	
		
			24 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1096 lines
		
	
	
	
		
			24 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 *  arch/mips/kernel/gdb-stub.c
 | 
						|
 *
 | 
						|
 *  Originally written by Glenn Engel, Lake Stevens Instrument Division
 | 
						|
 *
 | 
						|
 *  Contributed by HP Systems
 | 
						|
 *
 | 
						|
 *  Modified for SPARC by Stu Grossman, Cygnus Support.
 | 
						|
 *
 | 
						|
 *  Modified for Linux/MIPS (and MIPS in general) by Andreas Busse
 | 
						|
 *  Send complaints, suggestions etc. to <andy@waldorf-gmbh.de>
 | 
						|
 *
 | 
						|
 *  Copyright (C) 1995 Andreas Busse
 | 
						|
 *
 | 
						|
 *  Copyright (C) 2003 MontaVista Software Inc.
 | 
						|
 *  Author: Jun Sun, jsun@mvista.com or jsun@junsun.net
 | 
						|
 */
 | 
						|
 | 
						|
/*
 | 
						|
 *  To enable debugger support, two things need to happen.  One, a
 | 
						|
 *  call to set_debug_traps() is necessary in order to allow any breakpoints
 | 
						|
 *  or error conditions to be properly intercepted and reported to gdb.
 | 
						|
 *  Two, a breakpoint needs to be generated to begin communication.  This
 | 
						|
 *  is most easily accomplished by a call to breakpoint().  Breakpoint()
 | 
						|
 *  simulates a breakpoint by executing a BREAK instruction.
 | 
						|
 *
 | 
						|
 *
 | 
						|
 *    The following gdb commands are supported:
 | 
						|
 *
 | 
						|
 * command          function                               Return value
 | 
						|
 *
 | 
						|
 *    g             return the value of the CPU registers  hex data or ENN
 | 
						|
 *    G             set the value of the CPU registers     OK or ENN
 | 
						|
 *
 | 
						|
 *    mAA..AA,LLLL  Read LLLL bytes at address AA..AA      hex data or ENN
 | 
						|
 *    MAA..AA,LLLL: Write LLLL bytes at address AA.AA      OK or ENN
 | 
						|
 *
 | 
						|
 *    c             Resume at current address              SNN   ( signal NN)
 | 
						|
 *    cAA..AA       Continue at address AA..AA             SNN
 | 
						|
 *
 | 
						|
 *    s             Step one instruction                   SNN
 | 
						|
 *    sAA..AA       Step one instruction from AA..AA       SNN
 | 
						|
 *
 | 
						|
 *    k             kill
 | 
						|
 *
 | 
						|
 *    ?             What was the last sigval ?             SNN   (signal NN)
 | 
						|
 *
 | 
						|
 *    bBB..BB	    Set baud rate to BB..BB		   OK or BNN, then sets
 | 
						|
 *							   baud rate
 | 
						|
 *
 | 
						|
 * All commands and responses are sent with a packet which includes a
 | 
						|
 * checksum.  A packet consists of
 | 
						|
 *
 | 
						|
 * $<packet info>#<checksum>.
 | 
						|
 *
 | 
						|
 * where
 | 
						|
 * <packet info> :: <characters representing the command or response>
 | 
						|
 * <checksum>    :: < two hex digits computed as modulo 256 sum of <packetinfo>>
 | 
						|
 *
 | 
						|
 * When a packet is received, it is first acknowledged with either '+' or '-'.
 | 
						|
 * '+' indicates a successful transfer.  '-' indicates a failed transfer.
 | 
						|
 *
 | 
						|
 * Example:
 | 
						|
 *
 | 
						|
 * Host:                  Reply:
 | 
						|
 * $m0,10#2a               +$00010203040506070809101112131415#42
 | 
						|
 *
 | 
						|
 *
 | 
						|
 *  ==============
 | 
						|
 *  MORE EXAMPLES:
 | 
						|
 *  ==============
 | 
						|
 *
 | 
						|
 *  For reference -- the following are the steps that one
 | 
						|
 *  company took (RidgeRun Inc) to get remote gdb debugging
 | 
						|
 *  going. In this scenario the host machine was a PC and the
 | 
						|
 *  target platform was a Galileo EVB64120A MIPS evaluation
 | 
						|
 *  board.
 | 
						|
 *
 | 
						|
 *  Step 1:
 | 
						|
 *  First download gdb-5.0.tar.gz from the internet.
 | 
						|
 *  and then build/install the package.
 | 
						|
 *
 | 
						|
 *  Example:
 | 
						|
 *    $ tar zxf gdb-5.0.tar.gz
 | 
						|
 *    $ cd gdb-5.0
 | 
						|
 *    $ ./configure --target=mips-linux-elf
 | 
						|
 *    $ make
 | 
						|
 *    $ install
 | 
						|
 *    $ which mips-linux-elf-gdb
 | 
						|
 *    /usr/local/bin/mips-linux-elf-gdb
 | 
						|
 *
 | 
						|
 *  Step 2:
 | 
						|
 *  Configure linux for remote debugging and build it.
 | 
						|
 *
 | 
						|
 *  Example:
 | 
						|
 *    $ cd ~/linux
 | 
						|
 *    $ make menuconfig <go to "Kernel Hacking" and turn on remote debugging>
 | 
						|
 *    $ make
 | 
						|
 *
 | 
						|
 *  Step 3:
 | 
						|
 *  Download the kernel to the remote target and start
 | 
						|
 *  the kernel running. It will promptly halt and wait
 | 
						|
 *  for the host gdb session to connect. It does this
 | 
						|
 *  since the "Kernel Hacking" option has defined
 | 
						|
 *  CONFIG_KGDB which in turn enables your calls
 | 
						|
 *  to:
 | 
						|
 *     set_debug_traps();
 | 
						|
 *     breakpoint();
 | 
						|
 *
 | 
						|
 *  Step 4:
 | 
						|
 *  Start the gdb session on the host.
 | 
						|
 *
 | 
						|
 *  Example:
 | 
						|
 *    $ mips-linux-elf-gdb vmlinux
 | 
						|
 *    (gdb) set remotebaud 115200
 | 
						|
 *    (gdb) target remote /dev/ttyS1
 | 
						|
 *    ...at this point you are connected to
 | 
						|
 *       the remote target and can use gdb
 | 
						|
 *       in the normal fasion. Setting
 | 
						|
 *       breakpoints, single stepping,
 | 
						|
 *       printing variables, etc.
 | 
						|
 */
 | 
						|
#include <linux/config.h>
 | 
						|
#include <linux/string.h>
 | 
						|
#include <linux/kernel.h>
 | 
						|
#include <linux/signal.h>
 | 
						|
#include <linux/sched.h>
 | 
						|
#include <linux/mm.h>
 | 
						|
#include <linux/console.h>
 | 
						|
#include <linux/init.h>
 | 
						|
#include <linux/smp.h>
 | 
						|
#include <linux/spinlock.h>
 | 
						|
#include <linux/slab.h>
 | 
						|
#include <linux/reboot.h>
 | 
						|
 | 
						|
#include <asm/asm.h>
 | 
						|
#include <asm/cacheflush.h>
 | 
						|
#include <asm/mipsregs.h>
 | 
						|
#include <asm/pgtable.h>
 | 
						|
#include <asm/system.h>
 | 
						|
#include <asm/gdb-stub.h>
 | 
						|
#include <asm/inst.h>
 | 
						|
 | 
						|
/*
 | 
						|
 * external low-level support routines
 | 
						|
 */
 | 
						|
 | 
						|
extern int putDebugChar(char c);    /* write a single character      */
 | 
						|
extern char getDebugChar(void);     /* read and return a single char */
 | 
						|
extern void trap_low(void);
 | 
						|
 | 
						|
/*
 | 
						|
 * breakpoint and test functions
 | 
						|
 */
 | 
						|
extern void breakpoint(void);
 | 
						|
extern void breakinst(void);
 | 
						|
extern void async_breakpoint(void);
 | 
						|
extern void async_breakinst(void);
 | 
						|
extern void adel(void);
 | 
						|
 | 
						|
/*
 | 
						|
 * local prototypes
 | 
						|
 */
 | 
						|
 | 
						|
static void getpacket(char *buffer);
 | 
						|
static void putpacket(char *buffer);
 | 
						|
static int computeSignal(int tt);
 | 
						|
static int hex(unsigned char ch);
 | 
						|
static int hexToInt(char **ptr, int *intValue);
 | 
						|
static int hexToLong(char **ptr, long *longValue);
 | 
						|
static unsigned char *mem2hex(char *mem, char *buf, int count, int may_fault);
 | 
						|
void handle_exception(struct gdb_regs *regs);
 | 
						|
 | 
						|
int kgdb_enabled;
 | 
						|
 | 
						|
/*
 | 
						|
 * spin locks for smp case
 | 
						|
 */
 | 
						|
static DEFINE_SPINLOCK(kgdb_lock);
 | 
						|
static raw_spinlock_t kgdb_cpulock[NR_CPUS] = {
 | 
						|
	[0 ... NR_CPUS-1] = __RAW_SPIN_LOCK_UNLOCKED,
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
 * BUFMAX defines the maximum number of characters in inbound/outbound buffers
 | 
						|
 * at least NUMREGBYTES*2 are needed for register packets
 | 
						|
 */
 | 
						|
#define BUFMAX 2048
 | 
						|
 | 
						|
static char input_buffer[BUFMAX];
 | 
						|
static char output_buffer[BUFMAX];
 | 
						|
static int initialized;	/* !0 means we've been initialized */
 | 
						|
static int kgdb_started;
 | 
						|
static const char hexchars[]="0123456789abcdef";
 | 
						|
 | 
						|
/* Used to prevent crashes in memory access.  Note that they'll crash anyway if
 | 
						|
   we haven't set up fault handlers yet... */
 | 
						|
int kgdb_read_byte(unsigned char *address, unsigned char *dest);
 | 
						|
int kgdb_write_byte(unsigned char val, unsigned char *dest);
 | 
						|
 | 
						|
/*
 | 
						|
 * Convert ch from a hex digit to an int
 | 
						|
 */
 | 
						|
static int hex(unsigned char ch)
 | 
						|
{
 | 
						|
	if (ch >= 'a' && ch <= 'f')
 | 
						|
		return ch-'a'+10;
 | 
						|
	if (ch >= '0' && ch <= '9')
 | 
						|
		return ch-'0';
 | 
						|
	if (ch >= 'A' && ch <= 'F')
 | 
						|
		return ch-'A'+10;
 | 
						|
	return -1;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * scan for the sequence $<data>#<checksum>
 | 
						|
 */
 | 
						|
static void getpacket(char *buffer)
 | 
						|
{
 | 
						|
	unsigned char checksum;
 | 
						|
	unsigned char xmitcsum;
 | 
						|
	int i;
 | 
						|
	int count;
 | 
						|
	unsigned char ch;
 | 
						|
 | 
						|
	do {
 | 
						|
		/*
 | 
						|
		 * wait around for the start character,
 | 
						|
		 * ignore all other characters
 | 
						|
		 */
 | 
						|
		while ((ch = (getDebugChar() & 0x7f)) != '$') ;
 | 
						|
 | 
						|
		checksum = 0;
 | 
						|
		xmitcsum = -1;
 | 
						|
		count = 0;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * now, read until a # or end of buffer is found
 | 
						|
		 */
 | 
						|
		while (count < BUFMAX) {
 | 
						|
			ch = getDebugChar();
 | 
						|
			if (ch == '#')
 | 
						|
				break;
 | 
						|
			checksum = checksum + ch;
 | 
						|
			buffer[count] = ch;
 | 
						|
			count = count + 1;
 | 
						|
		}
 | 
						|
 | 
						|
		if (count >= BUFMAX)
 | 
						|
			continue;
 | 
						|
 | 
						|
		buffer[count] = 0;
 | 
						|
 | 
						|
		if (ch == '#') {
 | 
						|
			xmitcsum = hex(getDebugChar() & 0x7f) << 4;
 | 
						|
			xmitcsum |= hex(getDebugChar() & 0x7f);
 | 
						|
 | 
						|
			if (checksum != xmitcsum)
 | 
						|
				putDebugChar('-');	/* failed checksum */
 | 
						|
			else {
 | 
						|
				putDebugChar('+'); /* successful transfer */
 | 
						|
 | 
						|
				/*
 | 
						|
				 * if a sequence char is present,
 | 
						|
				 * reply the sequence ID
 | 
						|
				 */
 | 
						|
				if (buffer[2] == ':') {
 | 
						|
					putDebugChar(buffer[0]);
 | 
						|
					putDebugChar(buffer[1]);
 | 
						|
 | 
						|
					/*
 | 
						|
					 * remove sequence chars from buffer
 | 
						|
					 */
 | 
						|
					count = strlen(buffer);
 | 
						|
					for (i=3; i <= count; i++)
 | 
						|
						buffer[i-3] = buffer[i];
 | 
						|
				}
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
	while (checksum != xmitcsum);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * send the packet in buffer.
 | 
						|
 */
 | 
						|
static void putpacket(char *buffer)
 | 
						|
{
 | 
						|
	unsigned char checksum;
 | 
						|
	int count;
 | 
						|
	unsigned char ch;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * $<packet info>#<checksum>.
 | 
						|
	 */
 | 
						|
 | 
						|
	do {
 | 
						|
		putDebugChar('$');
 | 
						|
		checksum = 0;
 | 
						|
		count = 0;
 | 
						|
 | 
						|
		while ((ch = buffer[count]) != 0) {
 | 
						|
			if (!(putDebugChar(ch)))
 | 
						|
				return;
 | 
						|
			checksum += ch;
 | 
						|
			count += 1;
 | 
						|
		}
 | 
						|
 | 
						|
		putDebugChar('#');
 | 
						|
		putDebugChar(hexchars[checksum >> 4]);
 | 
						|
		putDebugChar(hexchars[checksum & 0xf]);
 | 
						|
 | 
						|
	}
 | 
						|
	while ((getDebugChar() & 0x7f) != '+');
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
 * Convert the memory pointed to by mem into hex, placing result in buf.
 | 
						|
 * Return a pointer to the last char put in buf (null), in case of mem fault,
 | 
						|
 * return 0.
 | 
						|
 * may_fault is non-zero if we are reading from arbitrary memory, but is currently
 | 
						|
 * not used.
 | 
						|
 */
 | 
						|
static unsigned char *mem2hex(char *mem, char *buf, int count, int may_fault)
 | 
						|
{
 | 
						|
	unsigned char ch;
 | 
						|
 | 
						|
	while (count-- > 0) {
 | 
						|
		if (kgdb_read_byte(mem++, &ch) != 0)
 | 
						|
			return 0;
 | 
						|
		*buf++ = hexchars[ch >> 4];
 | 
						|
		*buf++ = hexchars[ch & 0xf];
 | 
						|
	}
 | 
						|
 | 
						|
	*buf = 0;
 | 
						|
 | 
						|
	return buf;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * convert the hex array pointed to by buf into binary to be placed in mem
 | 
						|
 * return a pointer to the character AFTER the last byte written
 | 
						|
 * may_fault is non-zero if we are reading from arbitrary memory, but is currently
 | 
						|
 * not used.
 | 
						|
 */
 | 
						|
static char *hex2mem(char *buf, char *mem, int count, int binary, int may_fault)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
	unsigned char ch;
 | 
						|
 | 
						|
	for (i=0; i<count; i++)
 | 
						|
	{
 | 
						|
		if (binary) {
 | 
						|
			ch = *buf++;
 | 
						|
			if (ch == 0x7d)
 | 
						|
				ch = 0x20 ^ *buf++;
 | 
						|
		}
 | 
						|
		else {
 | 
						|
			ch = hex(*buf++) << 4;
 | 
						|
			ch |= hex(*buf++);
 | 
						|
		}
 | 
						|
		if (kgdb_write_byte(ch, mem++) != 0)
 | 
						|
			return 0;
 | 
						|
	}
 | 
						|
 | 
						|
	return mem;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * This table contains the mapping between SPARC hardware trap types, and
 | 
						|
 * signals, which are primarily what GDB understands.  It also indicates
 | 
						|
 * which hardware traps we need to commandeer when initializing the stub.
 | 
						|
 */
 | 
						|
static struct hard_trap_info {
 | 
						|
	unsigned char tt;		/* Trap type code for MIPS R3xxx and R4xxx */
 | 
						|
	unsigned char signo;		/* Signal that we map this trap into */
 | 
						|
} hard_trap_info[] = {
 | 
						|
	{ 6, SIGBUS },			/* instruction bus error */
 | 
						|
	{ 7, SIGBUS },			/* data bus error */
 | 
						|
	{ 9, SIGTRAP },			/* break */
 | 
						|
	{ 10, SIGILL },			/* reserved instruction */
 | 
						|
/*	{ 11, SIGILL },		*/	/* CPU unusable */
 | 
						|
	{ 12, SIGFPE },			/* overflow */
 | 
						|
	{ 13, SIGTRAP },		/* trap */
 | 
						|
	{ 14, SIGSEGV },		/* virtual instruction cache coherency */
 | 
						|
	{ 15, SIGFPE },			/* floating point exception */
 | 
						|
	{ 23, SIGSEGV },		/* watch */
 | 
						|
	{ 31, SIGSEGV },		/* virtual data cache coherency */
 | 
						|
	{ 0, 0}				/* Must be last */
 | 
						|
};
 | 
						|
 | 
						|
/* Save the normal trap handlers for user-mode traps. */
 | 
						|
void *saved_vectors[32];
 | 
						|
 | 
						|
/*
 | 
						|
 * Set up exception handlers for tracing and breakpoints
 | 
						|
 */
 | 
						|
void set_debug_traps(void)
 | 
						|
{
 | 
						|
	struct hard_trap_info *ht;
 | 
						|
	unsigned long flags;
 | 
						|
	unsigned char c;
 | 
						|
 | 
						|
	local_irq_save(flags);
 | 
						|
	for (ht = hard_trap_info; ht->tt && ht->signo; ht++)
 | 
						|
		saved_vectors[ht->tt] = set_except_vector(ht->tt, trap_low);
 | 
						|
 | 
						|
	putDebugChar('+'); /* 'hello world' */
 | 
						|
	/*
 | 
						|
	 * In case GDB is started before us, ack any packets
 | 
						|
	 * (presumably "$?#xx") sitting there.
 | 
						|
	 */
 | 
						|
	while((c = getDebugChar()) != '$');
 | 
						|
	while((c = getDebugChar()) != '#');
 | 
						|
	c = getDebugChar(); /* eat first csum byte */
 | 
						|
	c = getDebugChar(); /* eat second csum byte */
 | 
						|
	putDebugChar('+'); /* ack it */
 | 
						|
 | 
						|
	initialized = 1;
 | 
						|
	local_irq_restore(flags);
 | 
						|
}
 | 
						|
 | 
						|
void restore_debug_traps(void)
 | 
						|
{
 | 
						|
	struct hard_trap_info *ht;
 | 
						|
	unsigned long flags;
 | 
						|
 | 
						|
	local_irq_save(flags);
 | 
						|
	for (ht = hard_trap_info; ht->tt && ht->signo; ht++)
 | 
						|
		set_except_vector(ht->tt, saved_vectors[ht->tt]);
 | 
						|
	local_irq_restore(flags);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Convert the MIPS hardware trap type code to a Unix signal number.
 | 
						|
 */
 | 
						|
static int computeSignal(int tt)
 | 
						|
{
 | 
						|
	struct hard_trap_info *ht;
 | 
						|
 | 
						|
	for (ht = hard_trap_info; ht->tt && ht->signo; ht++)
 | 
						|
		if (ht->tt == tt)
 | 
						|
			return ht->signo;
 | 
						|
 | 
						|
	return SIGHUP;		/* default for things we don't know about */
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * While we find nice hex chars, build an int.
 | 
						|
 * Return number of chars processed.
 | 
						|
 */
 | 
						|
static int hexToInt(char **ptr, int *intValue)
 | 
						|
{
 | 
						|
	int numChars = 0;
 | 
						|
	int hexValue;
 | 
						|
 | 
						|
	*intValue = 0;
 | 
						|
 | 
						|
	while (**ptr) {
 | 
						|
		hexValue = hex(**ptr);
 | 
						|
		if (hexValue < 0)
 | 
						|
			break;
 | 
						|
 | 
						|
		*intValue = (*intValue << 4) | hexValue;
 | 
						|
		numChars ++;
 | 
						|
 | 
						|
		(*ptr)++;
 | 
						|
	}
 | 
						|
 | 
						|
	return (numChars);
 | 
						|
}
 | 
						|
 | 
						|
static int hexToLong(char **ptr, long *longValue)
 | 
						|
{
 | 
						|
	int numChars = 0;
 | 
						|
	int hexValue;
 | 
						|
 | 
						|
	*longValue = 0;
 | 
						|
 | 
						|
	while (**ptr) {
 | 
						|
		hexValue = hex(**ptr);
 | 
						|
		if (hexValue < 0)
 | 
						|
			break;
 | 
						|
 | 
						|
		*longValue = (*longValue << 4) | hexValue;
 | 
						|
		numChars ++;
 | 
						|
 | 
						|
		(*ptr)++;
 | 
						|
	}
 | 
						|
 | 
						|
	return numChars;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
#if 0
 | 
						|
/*
 | 
						|
 * Print registers (on target console)
 | 
						|
 * Used only to debug the stub...
 | 
						|
 */
 | 
						|
void show_gdbregs(struct gdb_regs * regs)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * Saved main processor registers
 | 
						|
	 */
 | 
						|
	printk("$0 : %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
 | 
						|
	       regs->reg0, regs->reg1, regs->reg2, regs->reg3,
 | 
						|
               regs->reg4, regs->reg5, regs->reg6, regs->reg7);
 | 
						|
	printk("$8 : %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
 | 
						|
	       regs->reg8, regs->reg9, regs->reg10, regs->reg11,
 | 
						|
               regs->reg12, regs->reg13, regs->reg14, regs->reg15);
 | 
						|
	printk("$16: %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
 | 
						|
	       regs->reg16, regs->reg17, regs->reg18, regs->reg19,
 | 
						|
               regs->reg20, regs->reg21, regs->reg22, regs->reg23);
 | 
						|
	printk("$24: %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
 | 
						|
	       regs->reg24, regs->reg25, regs->reg26, regs->reg27,
 | 
						|
	       regs->reg28, regs->reg29, regs->reg30, regs->reg31);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Saved cp0 registers
 | 
						|
	 */
 | 
						|
	printk("epc  : %08lx\nStatus: %08lx\nCause : %08lx\n",
 | 
						|
	       regs->cp0_epc, regs->cp0_status, regs->cp0_cause);
 | 
						|
}
 | 
						|
#endif /* dead code */
 | 
						|
 | 
						|
/*
 | 
						|
 * We single-step by setting breakpoints. When an exception
 | 
						|
 * is handled, we need to restore the instructions hoisted
 | 
						|
 * when the breakpoints were set.
 | 
						|
 *
 | 
						|
 * This is where we save the original instructions.
 | 
						|
 */
 | 
						|
static struct gdb_bp_save {
 | 
						|
	unsigned long addr;
 | 
						|
	unsigned int val;
 | 
						|
} step_bp[2];
 | 
						|
 | 
						|
#define BP 0x0000000d  /* break opcode */
 | 
						|
 | 
						|
/*
 | 
						|
 * Set breakpoint instructions for single stepping.
 | 
						|
 */
 | 
						|
static void single_step(struct gdb_regs *regs)
 | 
						|
{
 | 
						|
	union mips_instruction insn;
 | 
						|
	unsigned long targ;
 | 
						|
	int is_branch, is_cond, i;
 | 
						|
 | 
						|
	targ = regs->cp0_epc;
 | 
						|
	insn.word = *(unsigned int *)targ;
 | 
						|
	is_branch = is_cond = 0;
 | 
						|
 | 
						|
	switch (insn.i_format.opcode) {
 | 
						|
	/*
 | 
						|
	 * jr and jalr are in r_format format.
 | 
						|
	 */
 | 
						|
	case spec_op:
 | 
						|
		switch (insn.r_format.func) {
 | 
						|
		case jalr_op:
 | 
						|
		case jr_op:
 | 
						|
			targ = *(®s->reg0 + insn.r_format.rs);
 | 
						|
			is_branch = 1;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
		break;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * This group contains:
 | 
						|
	 * bltz_op, bgez_op, bltzl_op, bgezl_op,
 | 
						|
	 * bltzal_op, bgezal_op, bltzall_op, bgezall_op.
 | 
						|
	 */
 | 
						|
	case bcond_op:
 | 
						|
		is_branch = is_cond = 1;
 | 
						|
		targ += 4 + (insn.i_format.simmediate << 2);
 | 
						|
		break;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * These are unconditional and in j_format.
 | 
						|
	 */
 | 
						|
	case jal_op:
 | 
						|
	case j_op:
 | 
						|
		is_branch = 1;
 | 
						|
		targ += 4;
 | 
						|
		targ >>= 28;
 | 
						|
		targ <<= 28;
 | 
						|
		targ |= (insn.j_format.target << 2);
 | 
						|
		break;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * These are conditional.
 | 
						|
	 */
 | 
						|
	case beq_op:
 | 
						|
	case beql_op:
 | 
						|
	case bne_op:
 | 
						|
	case bnel_op:
 | 
						|
	case blez_op:
 | 
						|
	case blezl_op:
 | 
						|
	case bgtz_op:
 | 
						|
	case bgtzl_op:
 | 
						|
	case cop0_op:
 | 
						|
	case cop1_op:
 | 
						|
	case cop2_op:
 | 
						|
	case cop1x_op:
 | 
						|
		is_branch = is_cond = 1;
 | 
						|
		targ += 4 + (insn.i_format.simmediate << 2);
 | 
						|
		break;
 | 
						|
	}
 | 
						|
 | 
						|
	if (is_branch) {
 | 
						|
		i = 0;
 | 
						|
		if (is_cond && targ != (regs->cp0_epc + 8)) {
 | 
						|
			step_bp[i].addr = regs->cp0_epc + 8;
 | 
						|
			step_bp[i++].val = *(unsigned *)(regs->cp0_epc + 8);
 | 
						|
			*(unsigned *)(regs->cp0_epc + 8) = BP;
 | 
						|
		}
 | 
						|
		step_bp[i].addr = targ;
 | 
						|
		step_bp[i].val  = *(unsigned *)targ;
 | 
						|
		*(unsigned *)targ = BP;
 | 
						|
	} else {
 | 
						|
		step_bp[0].addr = regs->cp0_epc + 4;
 | 
						|
		step_bp[0].val  = *(unsigned *)(regs->cp0_epc + 4);
 | 
						|
		*(unsigned *)(regs->cp0_epc + 4) = BP;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  If asynchronously interrupted by gdb, then we need to set a breakpoint
 | 
						|
 *  at the interrupted instruction so that we wind up stopped with a
 | 
						|
 *  reasonable stack frame.
 | 
						|
 */
 | 
						|
static struct gdb_bp_save async_bp;
 | 
						|
 | 
						|
/*
 | 
						|
 * Swap the interrupted EPC with our asynchronous breakpoint routine.
 | 
						|
 * This is safer than stuffing the breakpoint in-place, since no cache
 | 
						|
 * flushes (or resulting smp_call_functions) are required.  The
 | 
						|
 * assumption is that only one CPU will be handling asynchronous bp's,
 | 
						|
 * and only one can be active at a time.
 | 
						|
 */
 | 
						|
extern spinlock_t smp_call_lock;
 | 
						|
 | 
						|
void set_async_breakpoint(unsigned long *epc)
 | 
						|
{
 | 
						|
	/* skip breaking into userland */
 | 
						|
	if ((*epc & 0x80000000) == 0)
 | 
						|
		return;
 | 
						|
 | 
						|
#ifdef CONFIG_SMP
 | 
						|
	/* avoid deadlock if someone is make IPC */
 | 
						|
	if (spin_is_locked(&smp_call_lock))
 | 
						|
		return;
 | 
						|
#endif
 | 
						|
 | 
						|
	async_bp.addr = *epc;
 | 
						|
	*epc = (unsigned long)async_breakpoint;
 | 
						|
}
 | 
						|
 | 
						|
static void kgdb_wait(void *arg)
 | 
						|
{
 | 
						|
	unsigned flags;
 | 
						|
	int cpu = smp_processor_id();
 | 
						|
 | 
						|
	local_irq_save(flags);
 | 
						|
 | 
						|
	__raw_spin_lock(&kgdb_cpulock[cpu]);
 | 
						|
	__raw_spin_unlock(&kgdb_cpulock[cpu]);
 | 
						|
 | 
						|
	local_irq_restore(flags);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
 * This function does all command processing for interfacing to gdb.  It
 | 
						|
 * returns 1 if you should skip the instruction at the trap address, 0
 | 
						|
 * otherwise.
 | 
						|
 */
 | 
						|
void handle_exception (struct gdb_regs *regs)
 | 
						|
{
 | 
						|
	int trap;			/* Trap type */
 | 
						|
	int sigval;
 | 
						|
	long addr;
 | 
						|
	int length;
 | 
						|
	char *ptr;
 | 
						|
	unsigned long *stack;
 | 
						|
	int i;
 | 
						|
	int bflag = 0;
 | 
						|
 | 
						|
	kgdb_started = 1;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * acquire the big kgdb spinlock
 | 
						|
	 */
 | 
						|
	if (!spin_trylock(&kgdb_lock)) {
 | 
						|
		/*
 | 
						|
		 * some other CPU has the lock, we should go back to
 | 
						|
		 * receive the gdb_wait IPC
 | 
						|
		 */
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If we're in async_breakpoint(), restore the real EPC from
 | 
						|
	 * the breakpoint.
 | 
						|
	 */
 | 
						|
	if (regs->cp0_epc == (unsigned long)async_breakinst) {
 | 
						|
		regs->cp0_epc = async_bp.addr;
 | 
						|
		async_bp.addr = 0;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * acquire the CPU spinlocks
 | 
						|
	 */
 | 
						|
	for (i = num_online_cpus()-1; i >= 0; i--)
 | 
						|
		if (__raw_spin_trylock(&kgdb_cpulock[i]) == 0)
 | 
						|
			panic("kgdb: couldn't get cpulock %d\n", i);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * force other cpus to enter kgdb
 | 
						|
	 */
 | 
						|
	smp_call_function(kgdb_wait, NULL, 0, 0);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If we're in breakpoint() increment the PC
 | 
						|
	 */
 | 
						|
	trap = (regs->cp0_cause & 0x7c) >> 2;
 | 
						|
	if (trap == 9 && regs->cp0_epc == (unsigned long)breakinst)
 | 
						|
		regs->cp0_epc += 4;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If we were single_stepping, restore the opcodes hoisted
 | 
						|
	 * for the breakpoint[s].
 | 
						|
	 */
 | 
						|
	if (step_bp[0].addr) {
 | 
						|
		*(unsigned *)step_bp[0].addr = step_bp[0].val;
 | 
						|
		step_bp[0].addr = 0;
 | 
						|
 | 
						|
		if (step_bp[1].addr) {
 | 
						|
			*(unsigned *)step_bp[1].addr = step_bp[1].val;
 | 
						|
			step_bp[1].addr = 0;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	stack = (long *)regs->reg29;			/* stack ptr */
 | 
						|
	sigval = computeSignal(trap);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * reply to host that an exception has occurred
 | 
						|
	 */
 | 
						|
	ptr = output_buffer;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Send trap type (converted to signal)
 | 
						|
	 */
 | 
						|
	*ptr++ = 'T';
 | 
						|
	*ptr++ = hexchars[sigval >> 4];
 | 
						|
	*ptr++ = hexchars[sigval & 0xf];
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Send Error PC
 | 
						|
	 */
 | 
						|
	*ptr++ = hexchars[REG_EPC >> 4];
 | 
						|
	*ptr++ = hexchars[REG_EPC & 0xf];
 | 
						|
	*ptr++ = ':';
 | 
						|
	ptr = mem2hex((char *)®s->cp0_epc, ptr, sizeof(long), 0);
 | 
						|
	*ptr++ = ';';
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Send frame pointer
 | 
						|
	 */
 | 
						|
	*ptr++ = hexchars[REG_FP >> 4];
 | 
						|
	*ptr++ = hexchars[REG_FP & 0xf];
 | 
						|
	*ptr++ = ':';
 | 
						|
	ptr = mem2hex((char *)®s->reg30, ptr, sizeof(long), 0);
 | 
						|
	*ptr++ = ';';
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Send stack pointer
 | 
						|
	 */
 | 
						|
	*ptr++ = hexchars[REG_SP >> 4];
 | 
						|
	*ptr++ = hexchars[REG_SP & 0xf];
 | 
						|
	*ptr++ = ':';
 | 
						|
	ptr = mem2hex((char *)®s->reg29, ptr, sizeof(long), 0);
 | 
						|
	*ptr++ = ';';
 | 
						|
 | 
						|
	*ptr++ = 0;
 | 
						|
	putpacket(output_buffer);	/* send it off... */
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Wait for input from remote GDB
 | 
						|
	 */
 | 
						|
	while (1) {
 | 
						|
		output_buffer[0] = 0;
 | 
						|
		getpacket(input_buffer);
 | 
						|
 | 
						|
		switch (input_buffer[0])
 | 
						|
		{
 | 
						|
		case '?':
 | 
						|
			output_buffer[0] = 'S';
 | 
						|
			output_buffer[1] = hexchars[sigval >> 4];
 | 
						|
			output_buffer[2] = hexchars[sigval & 0xf];
 | 
						|
			output_buffer[3] = 0;
 | 
						|
			break;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Detach debugger; let CPU run
 | 
						|
		 */
 | 
						|
		case 'D':
 | 
						|
			putpacket(output_buffer);
 | 
						|
			goto finish_kgdb;
 | 
						|
			break;
 | 
						|
 | 
						|
		case 'd':
 | 
						|
			/* toggle debug flag */
 | 
						|
			break;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Return the value of the CPU registers
 | 
						|
		 */
 | 
						|
		case 'g':
 | 
						|
			ptr = output_buffer;
 | 
						|
			ptr = mem2hex((char *)®s->reg0, ptr, 32*sizeof(long), 0); /* r0...r31 */
 | 
						|
			ptr = mem2hex((char *)®s->cp0_status, ptr, 6*sizeof(long), 0); /* cp0 */
 | 
						|
			ptr = mem2hex((char *)®s->fpr0, ptr, 32*sizeof(long), 0); /* f0...31 */
 | 
						|
			ptr = mem2hex((char *)®s->cp1_fsr, ptr, 2*sizeof(long), 0); /* cp1 */
 | 
						|
			ptr = mem2hex((char *)®s->frame_ptr, ptr, 2*sizeof(long), 0); /* frp */
 | 
						|
			ptr = mem2hex((char *)®s->cp0_index, ptr, 16*sizeof(long), 0); /* cp0 */
 | 
						|
			break;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * set the value of the CPU registers - return OK
 | 
						|
		 */
 | 
						|
		case 'G':
 | 
						|
		{
 | 
						|
			ptr = &input_buffer[1];
 | 
						|
			hex2mem(ptr, (char *)®s->reg0, 32*sizeof(long), 0, 0);
 | 
						|
			ptr += 32*(2*sizeof(long));
 | 
						|
			hex2mem(ptr, (char *)®s->cp0_status, 6*sizeof(long), 0, 0);
 | 
						|
			ptr += 6*(2*sizeof(long));
 | 
						|
			hex2mem(ptr, (char *)®s->fpr0, 32*sizeof(long), 0, 0);
 | 
						|
			ptr += 32*(2*sizeof(long));
 | 
						|
			hex2mem(ptr, (char *)®s->cp1_fsr, 2*sizeof(long), 0, 0);
 | 
						|
			ptr += 2*(2*sizeof(long));
 | 
						|
			hex2mem(ptr, (char *)®s->frame_ptr, 2*sizeof(long), 0, 0);
 | 
						|
			ptr += 2*(2*sizeof(long));
 | 
						|
			hex2mem(ptr, (char *)®s->cp0_index, 16*sizeof(long), 0, 0);
 | 
						|
			strcpy(output_buffer,"OK");
 | 
						|
		 }
 | 
						|
		break;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * mAA..AA,LLLL  Read LLLL bytes at address AA..AA
 | 
						|
		 */
 | 
						|
		case 'm':
 | 
						|
			ptr = &input_buffer[1];
 | 
						|
 | 
						|
			if (hexToLong(&ptr, &addr)
 | 
						|
				&& *ptr++ == ','
 | 
						|
				&& hexToInt(&ptr, &length)) {
 | 
						|
				if (mem2hex((char *)addr, output_buffer, length, 1))
 | 
						|
					break;
 | 
						|
				strcpy (output_buffer, "E03");
 | 
						|
			} else
 | 
						|
				strcpy(output_buffer,"E01");
 | 
						|
			break;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * XAA..AA,LLLL: Write LLLL escaped binary bytes at address AA.AA
 | 
						|
		 */
 | 
						|
		case 'X':
 | 
						|
			bflag = 1;
 | 
						|
			/* fall through */
 | 
						|
 | 
						|
		/*
 | 
						|
		 * MAA..AA,LLLL: Write LLLL bytes at address AA.AA return OK
 | 
						|
		 */
 | 
						|
		case 'M':
 | 
						|
			ptr = &input_buffer[1];
 | 
						|
 | 
						|
			if (hexToLong(&ptr, &addr)
 | 
						|
				&& *ptr++ == ','
 | 
						|
				&& hexToInt(&ptr, &length)
 | 
						|
				&& *ptr++ == ':') {
 | 
						|
				if (hex2mem(ptr, (char *)addr, length, bflag, 1))
 | 
						|
					strcpy(output_buffer, "OK");
 | 
						|
				else
 | 
						|
					strcpy(output_buffer, "E03");
 | 
						|
			}
 | 
						|
			else
 | 
						|
				strcpy(output_buffer, "E02");
 | 
						|
			break;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * cAA..AA    Continue at address AA..AA(optional)
 | 
						|
		 */
 | 
						|
		case 'c':
 | 
						|
			/* try to read optional parameter, pc unchanged if no parm */
 | 
						|
 | 
						|
			ptr = &input_buffer[1];
 | 
						|
			if (hexToLong(&ptr, &addr))
 | 
						|
				regs->cp0_epc = addr;
 | 
						|
 | 
						|
			goto exit_kgdb_exception;
 | 
						|
			break;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * kill the program; let us try to restart the machine
 | 
						|
		 * Reset the whole machine.
 | 
						|
		 */
 | 
						|
		case 'k':
 | 
						|
		case 'r':
 | 
						|
			machine_restart("kgdb restarts machine");
 | 
						|
			break;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Step to next instruction
 | 
						|
		 */
 | 
						|
		case 's':
 | 
						|
			/*
 | 
						|
			 * There is no single step insn in the MIPS ISA, so we
 | 
						|
			 * use breakpoints and continue, instead.
 | 
						|
			 */
 | 
						|
			single_step(regs);
 | 
						|
			goto exit_kgdb_exception;
 | 
						|
			/* NOTREACHED */
 | 
						|
			break;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Set baud rate (bBB)
 | 
						|
		 * FIXME: Needs to be written
 | 
						|
		 */
 | 
						|
		case 'b':
 | 
						|
		{
 | 
						|
#if 0
 | 
						|
			int baudrate;
 | 
						|
			extern void set_timer_3();
 | 
						|
 | 
						|
			ptr = &input_buffer[1];
 | 
						|
			if (!hexToInt(&ptr, &baudrate))
 | 
						|
			{
 | 
						|
				strcpy(output_buffer,"B01");
 | 
						|
				break;
 | 
						|
			}
 | 
						|
 | 
						|
			/* Convert baud rate to uart clock divider */
 | 
						|
 | 
						|
			switch (baudrate)
 | 
						|
			{
 | 
						|
				case 38400:
 | 
						|
					baudrate = 16;
 | 
						|
					break;
 | 
						|
				case 19200:
 | 
						|
					baudrate = 33;
 | 
						|
					break;
 | 
						|
				case 9600:
 | 
						|
					baudrate = 65;
 | 
						|
					break;
 | 
						|
				default:
 | 
						|
					baudrate = 0;
 | 
						|
					strcpy(output_buffer,"B02");
 | 
						|
					goto x1;
 | 
						|
			}
 | 
						|
 | 
						|
			if (baudrate) {
 | 
						|
				putpacket("OK");	/* Ack before changing speed */
 | 
						|
				set_timer_3(baudrate); /* Set it */
 | 
						|
			}
 | 
						|
#endif
 | 
						|
		}
 | 
						|
		break;
 | 
						|
 | 
						|
		}			/* switch */
 | 
						|
 | 
						|
		/*
 | 
						|
		 * reply to the request
 | 
						|
		 */
 | 
						|
 | 
						|
		putpacket(output_buffer);
 | 
						|
 | 
						|
	} /* while */
 | 
						|
 | 
						|
	return;
 | 
						|
 | 
						|
finish_kgdb:
 | 
						|
	restore_debug_traps();
 | 
						|
 | 
						|
exit_kgdb_exception:
 | 
						|
	/* release locks so other CPUs can go */
 | 
						|
	for (i = num_online_cpus()-1; i >= 0; i--)
 | 
						|
		__raw_spin_unlock(&kgdb_cpulock[i]);
 | 
						|
	spin_unlock(&kgdb_lock);
 | 
						|
 | 
						|
	__flush_cache_all();
 | 
						|
	return;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * This function will generate a breakpoint exception.  It is used at the
 | 
						|
 * beginning of a program to sync up with a debugger and can be used
 | 
						|
 * otherwise as a quick means to stop program execution and "break" into
 | 
						|
 * the debugger.
 | 
						|
 */
 | 
						|
void breakpoint(void)
 | 
						|
{
 | 
						|
	if (!initialized)
 | 
						|
		return;
 | 
						|
 | 
						|
	__asm__ __volatile__(
 | 
						|
			".globl	breakinst\n\t"
 | 
						|
			".set\tnoreorder\n\t"
 | 
						|
			"nop\n"
 | 
						|
			"breakinst:\tbreak\n\t"
 | 
						|
			"nop\n\t"
 | 
						|
			".set\treorder"
 | 
						|
			);
 | 
						|
}
 | 
						|
 | 
						|
/* Nothing but the break; don't pollute any registers */
 | 
						|
void async_breakpoint(void)
 | 
						|
{
 | 
						|
	__asm__ __volatile__(
 | 
						|
			".globl	async_breakinst\n\t"
 | 
						|
			".set\tnoreorder\n\t"
 | 
						|
			"nop\n"
 | 
						|
			"async_breakinst:\tbreak\n\t"
 | 
						|
			"nop\n\t"
 | 
						|
			".set\treorder"
 | 
						|
			);
 | 
						|
}
 | 
						|
 | 
						|
void adel(void)
 | 
						|
{
 | 
						|
	__asm__ __volatile__(
 | 
						|
			".globl\tadel\n\t"
 | 
						|
			"lui\t$8,0x8000\n\t"
 | 
						|
			"lw\t$9,1($8)\n\t"
 | 
						|
			);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * malloc is needed by gdb client in "call func()", even a private one
 | 
						|
 * will make gdb happy
 | 
						|
 */
 | 
						|
static void * __attribute_used__ malloc(size_t size)
 | 
						|
{
 | 
						|
	return kmalloc(size, GFP_ATOMIC);
 | 
						|
}
 | 
						|
 | 
						|
static void __attribute_used__ free (void *where)
 | 
						|
{
 | 
						|
	kfree(where);
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_GDB_CONSOLE
 | 
						|
 | 
						|
void gdb_putsn(const char *str, int l)
 | 
						|
{
 | 
						|
	char outbuf[18];
 | 
						|
 | 
						|
	if (!kgdb_started)
 | 
						|
		return;
 | 
						|
 | 
						|
	outbuf[0]='O';
 | 
						|
 | 
						|
	while(l) {
 | 
						|
		int i = (l>8)?8:l;
 | 
						|
		mem2hex((char *)str, &outbuf[1], i, 0);
 | 
						|
		outbuf[(i*2)+1]=0;
 | 
						|
		putpacket(outbuf);
 | 
						|
		str += i;
 | 
						|
		l -= i;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void gdb_console_write(struct console *con, const char *s, unsigned n)
 | 
						|
{
 | 
						|
	gdb_putsn(s, n);
 | 
						|
}
 | 
						|
 | 
						|
static struct console gdb_console = {
 | 
						|
	.name	= "gdb",
 | 
						|
	.write	= gdb_console_write,
 | 
						|
	.flags	= CON_PRINTBUFFER,
 | 
						|
	.index	= -1
 | 
						|
};
 | 
						|
 | 
						|
static int __init register_gdb_console(void)
 | 
						|
{
 | 
						|
	register_console(&gdb_console);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
console_initcall(register_gdb_console);
 | 
						|
 | 
						|
#endif
 |