 993db4b45f
			
		
	
	
	993db4b45f
	
	
	
		
			
			Fix PowerPC/Cell build fallout from:
  8bd75c77b7 sched/rt: Move rt specific bits into new header file
Reported-by: Michael Ellerman <michael@ellerman.id.au>
Cc: Clark Williams <williams@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Link: http://lkml.kernel.org/r/20130207094707.7b9f825f@riff.lan
Signed-off-by: Ingo Molnar <mingo@kernel.org>
		
	
			
		
			
				
	
	
		
			1175 lines
		
	
	
	
		
			30 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1175 lines
		
	
	
	
		
			30 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /* sched.c - SPU scheduler.
 | |
|  *
 | |
|  * Copyright (C) IBM 2005
 | |
|  * Author: Mark Nutter <mnutter@us.ibm.com>
 | |
|  *
 | |
|  * 2006-03-31	NUMA domains added.
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License as published by
 | |
|  * the Free Software Foundation; either version 2, or (at your option)
 | |
|  * any later version.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, write to the Free Software
 | |
|  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 | |
|  */
 | |
| 
 | |
| #undef DEBUG
 | |
| 
 | |
| #include <linux/errno.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/sched/rt.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/completion.h>
 | |
| #include <linux/vmalloc.h>
 | |
| #include <linux/smp.h>
 | |
| #include <linux/stddef.h>
 | |
| #include <linux/unistd.h>
 | |
| #include <linux/numa.h>
 | |
| #include <linux/mutex.h>
 | |
| #include <linux/notifier.h>
 | |
| #include <linux/kthread.h>
 | |
| #include <linux/pid_namespace.h>
 | |
| #include <linux/proc_fs.h>
 | |
| #include <linux/seq_file.h>
 | |
| 
 | |
| #include <asm/io.h>
 | |
| #include <asm/mmu_context.h>
 | |
| #include <asm/spu.h>
 | |
| #include <asm/spu_csa.h>
 | |
| #include <asm/spu_priv1.h>
 | |
| #include "spufs.h"
 | |
| #define CREATE_TRACE_POINTS
 | |
| #include "sputrace.h"
 | |
| 
 | |
| struct spu_prio_array {
 | |
| 	DECLARE_BITMAP(bitmap, MAX_PRIO);
 | |
| 	struct list_head runq[MAX_PRIO];
 | |
| 	spinlock_t runq_lock;
 | |
| 	int nr_waiting;
 | |
| };
 | |
| 
 | |
| static unsigned long spu_avenrun[3];
 | |
| static struct spu_prio_array *spu_prio;
 | |
| static struct task_struct *spusched_task;
 | |
| static struct timer_list spusched_timer;
 | |
| static struct timer_list spuloadavg_timer;
 | |
| 
 | |
| /*
 | |
|  * Priority of a normal, non-rt, non-niced'd process (aka nice level 0).
 | |
|  */
 | |
| #define NORMAL_PRIO		120
 | |
| 
 | |
| /*
 | |
|  * Frequency of the spu scheduler tick.  By default we do one SPU scheduler
 | |
|  * tick for every 10 CPU scheduler ticks.
 | |
|  */
 | |
| #define SPUSCHED_TICK		(10)
 | |
| 
 | |
| /*
 | |
|  * These are the 'tuning knobs' of the scheduler:
 | |
|  *
 | |
|  * Minimum timeslice is 5 msecs (or 1 spu scheduler tick, whichever is
 | |
|  * larger), default timeslice is 100 msecs, maximum timeslice is 800 msecs.
 | |
|  */
 | |
| #define MIN_SPU_TIMESLICE	max(5 * HZ / (1000 * SPUSCHED_TICK), 1)
 | |
| #define DEF_SPU_TIMESLICE	(100 * HZ / (1000 * SPUSCHED_TICK))
 | |
| 
 | |
| #define MAX_USER_PRIO		(MAX_PRIO - MAX_RT_PRIO)
 | |
| #define SCALE_PRIO(x, prio) \
 | |
| 	max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_SPU_TIMESLICE)
 | |
| 
 | |
| /*
 | |
|  * scale user-nice values [ -20 ... 0 ... 19 ] to time slice values:
 | |
|  * [800ms ... 100ms ... 5ms]
 | |
|  *
 | |
|  * The higher a thread's priority, the bigger timeslices
 | |
|  * it gets during one round of execution. But even the lowest
 | |
|  * priority thread gets MIN_TIMESLICE worth of execution time.
 | |
|  */
 | |
| void spu_set_timeslice(struct spu_context *ctx)
 | |
| {
 | |
| 	if (ctx->prio < NORMAL_PRIO)
 | |
| 		ctx->time_slice = SCALE_PRIO(DEF_SPU_TIMESLICE * 4, ctx->prio);
 | |
| 	else
 | |
| 		ctx->time_slice = SCALE_PRIO(DEF_SPU_TIMESLICE, ctx->prio);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Update scheduling information from the owning thread.
 | |
|  */
 | |
| void __spu_update_sched_info(struct spu_context *ctx)
 | |
| {
 | |
| 	/*
 | |
| 	 * assert that the context is not on the runqueue, so it is safe
 | |
| 	 * to change its scheduling parameters.
 | |
| 	 */
 | |
| 	BUG_ON(!list_empty(&ctx->rq));
 | |
| 
 | |
| 	/*
 | |
| 	 * 32-Bit assignments are atomic on powerpc, and we don't care about
 | |
| 	 * memory ordering here because retrieving the controlling thread is
 | |
| 	 * per definition racy.
 | |
| 	 */
 | |
| 	ctx->tid = current->pid;
 | |
| 
 | |
| 	/*
 | |
| 	 * We do our own priority calculations, so we normally want
 | |
| 	 * ->static_prio to start with. Unfortunately this field
 | |
| 	 * contains junk for threads with a realtime scheduling
 | |
| 	 * policy so we have to look at ->prio in this case.
 | |
| 	 */
 | |
| 	if (rt_prio(current->prio))
 | |
| 		ctx->prio = current->prio;
 | |
| 	else
 | |
| 		ctx->prio = current->static_prio;
 | |
| 	ctx->policy = current->policy;
 | |
| 
 | |
| 	/*
 | |
| 	 * TO DO: the context may be loaded, so we may need to activate
 | |
| 	 * it again on a different node. But it shouldn't hurt anything
 | |
| 	 * to update its parameters, because we know that the scheduler
 | |
| 	 * is not actively looking at this field, since it is not on the
 | |
| 	 * runqueue. The context will be rescheduled on the proper node
 | |
| 	 * if it is timesliced or preempted.
 | |
| 	 */
 | |
| 	cpumask_copy(&ctx->cpus_allowed, tsk_cpus_allowed(current));
 | |
| 
 | |
| 	/* Save the current cpu id for spu interrupt routing. */
 | |
| 	ctx->last_ran = raw_smp_processor_id();
 | |
| }
 | |
| 
 | |
| void spu_update_sched_info(struct spu_context *ctx)
 | |
| {
 | |
| 	int node;
 | |
| 
 | |
| 	if (ctx->state == SPU_STATE_RUNNABLE) {
 | |
| 		node = ctx->spu->node;
 | |
| 
 | |
| 		/*
 | |
| 		 * Take list_mutex to sync with find_victim().
 | |
| 		 */
 | |
| 		mutex_lock(&cbe_spu_info[node].list_mutex);
 | |
| 		__spu_update_sched_info(ctx);
 | |
| 		mutex_unlock(&cbe_spu_info[node].list_mutex);
 | |
| 	} else {
 | |
| 		__spu_update_sched_info(ctx);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int __node_allowed(struct spu_context *ctx, int node)
 | |
| {
 | |
| 	if (nr_cpus_node(node)) {
 | |
| 		const struct cpumask *mask = cpumask_of_node(node);
 | |
| 
 | |
| 		if (cpumask_intersects(mask, &ctx->cpus_allowed))
 | |
| 			return 1;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int node_allowed(struct spu_context *ctx, int node)
 | |
| {
 | |
| 	int rval;
 | |
| 
 | |
| 	spin_lock(&spu_prio->runq_lock);
 | |
| 	rval = __node_allowed(ctx, node);
 | |
| 	spin_unlock(&spu_prio->runq_lock);
 | |
| 
 | |
| 	return rval;
 | |
| }
 | |
| 
 | |
| void do_notify_spus_active(void)
 | |
| {
 | |
| 	int node;
 | |
| 
 | |
| 	/*
 | |
| 	 * Wake up the active spu_contexts.
 | |
| 	 *
 | |
| 	 * When the awakened processes see their "notify_active" flag is set,
 | |
| 	 * they will call spu_switch_notify().
 | |
| 	 */
 | |
| 	for_each_online_node(node) {
 | |
| 		struct spu *spu;
 | |
| 
 | |
| 		mutex_lock(&cbe_spu_info[node].list_mutex);
 | |
| 		list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
 | |
| 			if (spu->alloc_state != SPU_FREE) {
 | |
| 				struct spu_context *ctx = spu->ctx;
 | |
| 				set_bit(SPU_SCHED_NOTIFY_ACTIVE,
 | |
| 					&ctx->sched_flags);
 | |
| 				mb();
 | |
| 				wake_up_all(&ctx->stop_wq);
 | |
| 			}
 | |
| 		}
 | |
| 		mutex_unlock(&cbe_spu_info[node].list_mutex);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * spu_bind_context - bind spu context to physical spu
 | |
|  * @spu:	physical spu to bind to
 | |
|  * @ctx:	context to bind
 | |
|  */
 | |
| static void spu_bind_context(struct spu *spu, struct spu_context *ctx)
 | |
| {
 | |
| 	spu_context_trace(spu_bind_context__enter, ctx, spu);
 | |
| 
 | |
| 	spuctx_switch_state(ctx, SPU_UTIL_SYSTEM);
 | |
| 
 | |
| 	if (ctx->flags & SPU_CREATE_NOSCHED)
 | |
| 		atomic_inc(&cbe_spu_info[spu->node].reserved_spus);
 | |
| 
 | |
| 	ctx->stats.slb_flt_base = spu->stats.slb_flt;
 | |
| 	ctx->stats.class2_intr_base = spu->stats.class2_intr;
 | |
| 
 | |
| 	spu_associate_mm(spu, ctx->owner);
 | |
| 
 | |
| 	spin_lock_irq(&spu->register_lock);
 | |
| 	spu->ctx = ctx;
 | |
| 	spu->flags = 0;
 | |
| 	ctx->spu = spu;
 | |
| 	ctx->ops = &spu_hw_ops;
 | |
| 	spu->pid = current->pid;
 | |
| 	spu->tgid = current->tgid;
 | |
| 	spu->ibox_callback = spufs_ibox_callback;
 | |
| 	spu->wbox_callback = spufs_wbox_callback;
 | |
| 	spu->stop_callback = spufs_stop_callback;
 | |
| 	spu->mfc_callback = spufs_mfc_callback;
 | |
| 	spin_unlock_irq(&spu->register_lock);
 | |
| 
 | |
| 	spu_unmap_mappings(ctx);
 | |
| 
 | |
| 	spu_switch_log_notify(spu, ctx, SWITCH_LOG_START, 0);
 | |
| 	spu_restore(&ctx->csa, spu);
 | |
| 	spu->timestamp = jiffies;
 | |
| 	spu_switch_notify(spu, ctx);
 | |
| 	ctx->state = SPU_STATE_RUNNABLE;
 | |
| 
 | |
| 	spuctx_switch_state(ctx, SPU_UTIL_USER);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Must be used with the list_mutex held.
 | |
|  */
 | |
| static inline int sched_spu(struct spu *spu)
 | |
| {
 | |
| 	BUG_ON(!mutex_is_locked(&cbe_spu_info[spu->node].list_mutex));
 | |
| 
 | |
| 	return (!spu->ctx || !(spu->ctx->flags & SPU_CREATE_NOSCHED));
 | |
| }
 | |
| 
 | |
| static void aff_merge_remaining_ctxs(struct spu_gang *gang)
 | |
| {
 | |
| 	struct spu_context *ctx;
 | |
| 
 | |
| 	list_for_each_entry(ctx, &gang->aff_list_head, aff_list) {
 | |
| 		if (list_empty(&ctx->aff_list))
 | |
| 			list_add(&ctx->aff_list, &gang->aff_list_head);
 | |
| 	}
 | |
| 	gang->aff_flags |= AFF_MERGED;
 | |
| }
 | |
| 
 | |
| static void aff_set_offsets(struct spu_gang *gang)
 | |
| {
 | |
| 	struct spu_context *ctx;
 | |
| 	int offset;
 | |
| 
 | |
| 	offset = -1;
 | |
| 	list_for_each_entry_reverse(ctx, &gang->aff_ref_ctx->aff_list,
 | |
| 								aff_list) {
 | |
| 		if (&ctx->aff_list == &gang->aff_list_head)
 | |
| 			break;
 | |
| 		ctx->aff_offset = offset--;
 | |
| 	}
 | |
| 
 | |
| 	offset = 0;
 | |
| 	list_for_each_entry(ctx, gang->aff_ref_ctx->aff_list.prev, aff_list) {
 | |
| 		if (&ctx->aff_list == &gang->aff_list_head)
 | |
| 			break;
 | |
| 		ctx->aff_offset = offset++;
 | |
| 	}
 | |
| 
 | |
| 	gang->aff_flags |= AFF_OFFSETS_SET;
 | |
| }
 | |
| 
 | |
| static struct spu *aff_ref_location(struct spu_context *ctx, int mem_aff,
 | |
| 		 int group_size, int lowest_offset)
 | |
| {
 | |
| 	struct spu *spu;
 | |
| 	int node, n;
 | |
| 
 | |
| 	/*
 | |
| 	 * TODO: A better algorithm could be used to find a good spu to be
 | |
| 	 *       used as reference location for the ctxs chain.
 | |
| 	 */
 | |
| 	node = cpu_to_node(raw_smp_processor_id());
 | |
| 	for (n = 0; n < MAX_NUMNODES; n++, node++) {
 | |
| 		/*
 | |
| 		 * "available_spus" counts how many spus are not potentially
 | |
| 		 * going to be used by other affinity gangs whose reference
 | |
| 		 * context is already in place. Although this code seeks to
 | |
| 		 * avoid having affinity gangs with a summed amount of
 | |
| 		 * contexts bigger than the amount of spus in the node,
 | |
| 		 * this may happen sporadically. In this case, available_spus
 | |
| 		 * becomes negative, which is harmless.
 | |
| 		 */
 | |
| 		int available_spus;
 | |
| 
 | |
| 		node = (node < MAX_NUMNODES) ? node : 0;
 | |
| 		if (!node_allowed(ctx, node))
 | |
| 			continue;
 | |
| 
 | |
| 		available_spus = 0;
 | |
| 		mutex_lock(&cbe_spu_info[node].list_mutex);
 | |
| 		list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
 | |
| 			if (spu->ctx && spu->ctx->gang && !spu->ctx->aff_offset
 | |
| 					&& spu->ctx->gang->aff_ref_spu)
 | |
| 				available_spus -= spu->ctx->gang->contexts;
 | |
| 			available_spus++;
 | |
| 		}
 | |
| 		if (available_spus < ctx->gang->contexts) {
 | |
| 			mutex_unlock(&cbe_spu_info[node].list_mutex);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
 | |
| 			if ((!mem_aff || spu->has_mem_affinity) &&
 | |
| 							sched_spu(spu)) {
 | |
| 				mutex_unlock(&cbe_spu_info[node].list_mutex);
 | |
| 				return spu;
 | |
| 			}
 | |
| 		}
 | |
| 		mutex_unlock(&cbe_spu_info[node].list_mutex);
 | |
| 	}
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static void aff_set_ref_point_location(struct spu_gang *gang)
 | |
| {
 | |
| 	int mem_aff, gs, lowest_offset;
 | |
| 	struct spu_context *ctx;
 | |
| 	struct spu *tmp;
 | |
| 
 | |
| 	mem_aff = gang->aff_ref_ctx->flags & SPU_CREATE_AFFINITY_MEM;
 | |
| 	lowest_offset = 0;
 | |
| 	gs = 0;
 | |
| 
 | |
| 	list_for_each_entry(tmp, &gang->aff_list_head, aff_list)
 | |
| 		gs++;
 | |
| 
 | |
| 	list_for_each_entry_reverse(ctx, &gang->aff_ref_ctx->aff_list,
 | |
| 								aff_list) {
 | |
| 		if (&ctx->aff_list == &gang->aff_list_head)
 | |
| 			break;
 | |
| 		lowest_offset = ctx->aff_offset;
 | |
| 	}
 | |
| 
 | |
| 	gang->aff_ref_spu = aff_ref_location(gang->aff_ref_ctx, mem_aff, gs,
 | |
| 							lowest_offset);
 | |
| }
 | |
| 
 | |
| static struct spu *ctx_location(struct spu *ref, int offset, int node)
 | |
| {
 | |
| 	struct spu *spu;
 | |
| 
 | |
| 	spu = NULL;
 | |
| 	if (offset >= 0) {
 | |
| 		list_for_each_entry(spu, ref->aff_list.prev, aff_list) {
 | |
| 			BUG_ON(spu->node != node);
 | |
| 			if (offset == 0)
 | |
| 				break;
 | |
| 			if (sched_spu(spu))
 | |
| 				offset--;
 | |
| 		}
 | |
| 	} else {
 | |
| 		list_for_each_entry_reverse(spu, ref->aff_list.next, aff_list) {
 | |
| 			BUG_ON(spu->node != node);
 | |
| 			if (offset == 0)
 | |
| 				break;
 | |
| 			if (sched_spu(spu))
 | |
| 				offset++;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return spu;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * affinity_check is called each time a context is going to be scheduled.
 | |
|  * It returns the spu ptr on which the context must run.
 | |
|  */
 | |
| static int has_affinity(struct spu_context *ctx)
 | |
| {
 | |
| 	struct spu_gang *gang = ctx->gang;
 | |
| 
 | |
| 	if (list_empty(&ctx->aff_list))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (atomic_read(&ctx->gang->aff_sched_count) == 0)
 | |
| 		ctx->gang->aff_ref_spu = NULL;
 | |
| 
 | |
| 	if (!gang->aff_ref_spu) {
 | |
| 		if (!(gang->aff_flags & AFF_MERGED))
 | |
| 			aff_merge_remaining_ctxs(gang);
 | |
| 		if (!(gang->aff_flags & AFF_OFFSETS_SET))
 | |
| 			aff_set_offsets(gang);
 | |
| 		aff_set_ref_point_location(gang);
 | |
| 	}
 | |
| 
 | |
| 	return gang->aff_ref_spu != NULL;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * spu_unbind_context - unbind spu context from physical spu
 | |
|  * @spu:	physical spu to unbind from
 | |
|  * @ctx:	context to unbind
 | |
|  */
 | |
| static void spu_unbind_context(struct spu *spu, struct spu_context *ctx)
 | |
| {
 | |
| 	u32 status;
 | |
| 
 | |
| 	spu_context_trace(spu_unbind_context__enter, ctx, spu);
 | |
| 
 | |
| 	spuctx_switch_state(ctx, SPU_UTIL_SYSTEM);
 | |
| 
 | |
|  	if (spu->ctx->flags & SPU_CREATE_NOSCHED)
 | |
| 		atomic_dec(&cbe_spu_info[spu->node].reserved_spus);
 | |
| 
 | |
| 	if (ctx->gang)
 | |
| 		/*
 | |
| 		 * If ctx->gang->aff_sched_count is positive, SPU affinity is
 | |
| 		 * being considered in this gang. Using atomic_dec_if_positive
 | |
| 		 * allow us to skip an explicit check for affinity in this gang
 | |
| 		 */
 | |
| 		atomic_dec_if_positive(&ctx->gang->aff_sched_count);
 | |
| 
 | |
| 	spu_switch_notify(spu, NULL);
 | |
| 	spu_unmap_mappings(ctx);
 | |
| 	spu_save(&ctx->csa, spu);
 | |
| 	spu_switch_log_notify(spu, ctx, SWITCH_LOG_STOP, 0);
 | |
| 
 | |
| 	spin_lock_irq(&spu->register_lock);
 | |
| 	spu->timestamp = jiffies;
 | |
| 	ctx->state = SPU_STATE_SAVED;
 | |
| 	spu->ibox_callback = NULL;
 | |
| 	spu->wbox_callback = NULL;
 | |
| 	spu->stop_callback = NULL;
 | |
| 	spu->mfc_callback = NULL;
 | |
| 	spu->pid = 0;
 | |
| 	spu->tgid = 0;
 | |
| 	ctx->ops = &spu_backing_ops;
 | |
| 	spu->flags = 0;
 | |
| 	spu->ctx = NULL;
 | |
| 	spin_unlock_irq(&spu->register_lock);
 | |
| 
 | |
| 	spu_associate_mm(spu, NULL);
 | |
| 
 | |
| 	ctx->stats.slb_flt +=
 | |
| 		(spu->stats.slb_flt - ctx->stats.slb_flt_base);
 | |
| 	ctx->stats.class2_intr +=
 | |
| 		(spu->stats.class2_intr - ctx->stats.class2_intr_base);
 | |
| 
 | |
| 	/* This maps the underlying spu state to idle */
 | |
| 	spuctx_switch_state(ctx, SPU_UTIL_IDLE_LOADED);
 | |
| 	ctx->spu = NULL;
 | |
| 
 | |
| 	if (spu_stopped(ctx, &status))
 | |
| 		wake_up_all(&ctx->stop_wq);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * spu_add_to_rq - add a context to the runqueue
 | |
|  * @ctx:       context to add
 | |
|  */
 | |
| static void __spu_add_to_rq(struct spu_context *ctx)
 | |
| {
 | |
| 	/*
 | |
| 	 * Unfortunately this code path can be called from multiple threads
 | |
| 	 * on behalf of a single context due to the way the problem state
 | |
| 	 * mmap support works.
 | |
| 	 *
 | |
| 	 * Fortunately we need to wake up all these threads at the same time
 | |
| 	 * and can simply skip the runqueue addition for every but the first
 | |
| 	 * thread getting into this codepath.
 | |
| 	 *
 | |
| 	 * It's still quite hacky, and long-term we should proxy all other
 | |
| 	 * threads through the owner thread so that spu_run is in control
 | |
| 	 * of all the scheduling activity for a given context.
 | |
| 	 */
 | |
| 	if (list_empty(&ctx->rq)) {
 | |
| 		list_add_tail(&ctx->rq, &spu_prio->runq[ctx->prio]);
 | |
| 		set_bit(ctx->prio, spu_prio->bitmap);
 | |
| 		if (!spu_prio->nr_waiting++)
 | |
| 			mod_timer(&spusched_timer, jiffies + SPUSCHED_TICK);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void spu_add_to_rq(struct spu_context *ctx)
 | |
| {
 | |
| 	spin_lock(&spu_prio->runq_lock);
 | |
| 	__spu_add_to_rq(ctx);
 | |
| 	spin_unlock(&spu_prio->runq_lock);
 | |
| }
 | |
| 
 | |
| static void __spu_del_from_rq(struct spu_context *ctx)
 | |
| {
 | |
| 	int prio = ctx->prio;
 | |
| 
 | |
| 	if (!list_empty(&ctx->rq)) {
 | |
| 		if (!--spu_prio->nr_waiting)
 | |
| 			del_timer(&spusched_timer);
 | |
| 		list_del_init(&ctx->rq);
 | |
| 
 | |
| 		if (list_empty(&spu_prio->runq[prio]))
 | |
| 			clear_bit(prio, spu_prio->bitmap);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void spu_del_from_rq(struct spu_context *ctx)
 | |
| {
 | |
| 	spin_lock(&spu_prio->runq_lock);
 | |
| 	__spu_del_from_rq(ctx);
 | |
| 	spin_unlock(&spu_prio->runq_lock);
 | |
| }
 | |
| 
 | |
| static void spu_prio_wait(struct spu_context *ctx)
 | |
| {
 | |
| 	DEFINE_WAIT(wait);
 | |
| 
 | |
| 	/*
 | |
| 	 * The caller must explicitly wait for a context to be loaded
 | |
| 	 * if the nosched flag is set.  If NOSCHED is not set, the caller
 | |
| 	 * queues the context and waits for an spu event or error.
 | |
| 	 */
 | |
| 	BUG_ON(!(ctx->flags & SPU_CREATE_NOSCHED));
 | |
| 
 | |
| 	spin_lock(&spu_prio->runq_lock);
 | |
| 	prepare_to_wait_exclusive(&ctx->stop_wq, &wait, TASK_INTERRUPTIBLE);
 | |
| 	if (!signal_pending(current)) {
 | |
| 		__spu_add_to_rq(ctx);
 | |
| 		spin_unlock(&spu_prio->runq_lock);
 | |
| 		mutex_unlock(&ctx->state_mutex);
 | |
| 		schedule();
 | |
| 		mutex_lock(&ctx->state_mutex);
 | |
| 		spin_lock(&spu_prio->runq_lock);
 | |
| 		__spu_del_from_rq(ctx);
 | |
| 	}
 | |
| 	spin_unlock(&spu_prio->runq_lock);
 | |
| 	__set_current_state(TASK_RUNNING);
 | |
| 	remove_wait_queue(&ctx->stop_wq, &wait);
 | |
| }
 | |
| 
 | |
| static struct spu *spu_get_idle(struct spu_context *ctx)
 | |
| {
 | |
| 	struct spu *spu, *aff_ref_spu;
 | |
| 	int node, n;
 | |
| 
 | |
| 	spu_context_nospu_trace(spu_get_idle__enter, ctx);
 | |
| 
 | |
| 	if (ctx->gang) {
 | |
| 		mutex_lock(&ctx->gang->aff_mutex);
 | |
| 		if (has_affinity(ctx)) {
 | |
| 			aff_ref_spu = ctx->gang->aff_ref_spu;
 | |
| 			atomic_inc(&ctx->gang->aff_sched_count);
 | |
| 			mutex_unlock(&ctx->gang->aff_mutex);
 | |
| 			node = aff_ref_spu->node;
 | |
| 
 | |
| 			mutex_lock(&cbe_spu_info[node].list_mutex);
 | |
| 			spu = ctx_location(aff_ref_spu, ctx->aff_offset, node);
 | |
| 			if (spu && spu->alloc_state == SPU_FREE)
 | |
| 				goto found;
 | |
| 			mutex_unlock(&cbe_spu_info[node].list_mutex);
 | |
| 
 | |
| 			atomic_dec(&ctx->gang->aff_sched_count);
 | |
| 			goto not_found;
 | |
| 		}
 | |
| 		mutex_unlock(&ctx->gang->aff_mutex);
 | |
| 	}
 | |
| 	node = cpu_to_node(raw_smp_processor_id());
 | |
| 	for (n = 0; n < MAX_NUMNODES; n++, node++) {
 | |
| 		node = (node < MAX_NUMNODES) ? node : 0;
 | |
| 		if (!node_allowed(ctx, node))
 | |
| 			continue;
 | |
| 
 | |
| 		mutex_lock(&cbe_spu_info[node].list_mutex);
 | |
| 		list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
 | |
| 			if (spu->alloc_state == SPU_FREE)
 | |
| 				goto found;
 | |
| 		}
 | |
| 		mutex_unlock(&cbe_spu_info[node].list_mutex);
 | |
| 	}
 | |
| 
 | |
|  not_found:
 | |
| 	spu_context_nospu_trace(spu_get_idle__not_found, ctx);
 | |
| 	return NULL;
 | |
| 
 | |
|  found:
 | |
| 	spu->alloc_state = SPU_USED;
 | |
| 	mutex_unlock(&cbe_spu_info[node].list_mutex);
 | |
| 	spu_context_trace(spu_get_idle__found, ctx, spu);
 | |
| 	spu_init_channels(spu);
 | |
| 	return spu;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * find_victim - find a lower priority context to preempt
 | |
|  * @ctx:	canidate context for running
 | |
|  *
 | |
|  * Returns the freed physical spu to run the new context on.
 | |
|  */
 | |
| static struct spu *find_victim(struct spu_context *ctx)
 | |
| {
 | |
| 	struct spu_context *victim = NULL;
 | |
| 	struct spu *spu;
 | |
| 	int node, n;
 | |
| 
 | |
| 	spu_context_nospu_trace(spu_find_victim__enter, ctx);
 | |
| 
 | |
| 	/*
 | |
| 	 * Look for a possible preemption candidate on the local node first.
 | |
| 	 * If there is no candidate look at the other nodes.  This isn't
 | |
| 	 * exactly fair, but so far the whole spu scheduler tries to keep
 | |
| 	 * a strong node affinity.  We might want to fine-tune this in
 | |
| 	 * the future.
 | |
| 	 */
 | |
|  restart:
 | |
| 	node = cpu_to_node(raw_smp_processor_id());
 | |
| 	for (n = 0; n < MAX_NUMNODES; n++, node++) {
 | |
| 		node = (node < MAX_NUMNODES) ? node : 0;
 | |
| 		if (!node_allowed(ctx, node))
 | |
| 			continue;
 | |
| 
 | |
| 		mutex_lock(&cbe_spu_info[node].list_mutex);
 | |
| 		list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
 | |
| 			struct spu_context *tmp = spu->ctx;
 | |
| 
 | |
| 			if (tmp && tmp->prio > ctx->prio &&
 | |
| 			    !(tmp->flags & SPU_CREATE_NOSCHED) &&
 | |
| 			    (!victim || tmp->prio > victim->prio)) {
 | |
| 				victim = spu->ctx;
 | |
| 			}
 | |
| 		}
 | |
| 		if (victim)
 | |
| 			get_spu_context(victim);
 | |
| 		mutex_unlock(&cbe_spu_info[node].list_mutex);
 | |
| 
 | |
| 		if (victim) {
 | |
| 			/*
 | |
| 			 * This nests ctx->state_mutex, but we always lock
 | |
| 			 * higher priority contexts before lower priority
 | |
| 			 * ones, so this is safe until we introduce
 | |
| 			 * priority inheritance schemes.
 | |
| 			 *
 | |
| 			 * XXX if the highest priority context is locked,
 | |
| 			 * this can loop a long time.  Might be better to
 | |
| 			 * look at another context or give up after X retries.
 | |
| 			 */
 | |
| 			if (!mutex_trylock(&victim->state_mutex)) {
 | |
| 				put_spu_context(victim);
 | |
| 				victim = NULL;
 | |
| 				goto restart;
 | |
| 			}
 | |
| 
 | |
| 			spu = victim->spu;
 | |
| 			if (!spu || victim->prio <= ctx->prio) {
 | |
| 				/*
 | |
| 				 * This race can happen because we've dropped
 | |
| 				 * the active list mutex.  Not a problem, just
 | |
| 				 * restart the search.
 | |
| 				 */
 | |
| 				mutex_unlock(&victim->state_mutex);
 | |
| 				put_spu_context(victim);
 | |
| 				victim = NULL;
 | |
| 				goto restart;
 | |
| 			}
 | |
| 
 | |
| 			spu_context_trace(__spu_deactivate__unload, ctx, spu);
 | |
| 
 | |
| 			mutex_lock(&cbe_spu_info[node].list_mutex);
 | |
| 			cbe_spu_info[node].nr_active--;
 | |
| 			spu_unbind_context(spu, victim);
 | |
| 			mutex_unlock(&cbe_spu_info[node].list_mutex);
 | |
| 
 | |
| 			victim->stats.invol_ctx_switch++;
 | |
| 			spu->stats.invol_ctx_switch++;
 | |
| 			if (test_bit(SPU_SCHED_SPU_RUN, &victim->sched_flags))
 | |
| 				spu_add_to_rq(victim);
 | |
| 
 | |
| 			mutex_unlock(&victim->state_mutex);
 | |
| 			put_spu_context(victim);
 | |
| 
 | |
| 			return spu;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static void __spu_schedule(struct spu *spu, struct spu_context *ctx)
 | |
| {
 | |
| 	int node = spu->node;
 | |
| 	int success = 0;
 | |
| 
 | |
| 	spu_set_timeslice(ctx);
 | |
| 
 | |
| 	mutex_lock(&cbe_spu_info[node].list_mutex);
 | |
| 	if (spu->ctx == NULL) {
 | |
| 		spu_bind_context(spu, ctx);
 | |
| 		cbe_spu_info[node].nr_active++;
 | |
| 		spu->alloc_state = SPU_USED;
 | |
| 		success = 1;
 | |
| 	}
 | |
| 	mutex_unlock(&cbe_spu_info[node].list_mutex);
 | |
| 
 | |
| 	if (success)
 | |
| 		wake_up_all(&ctx->run_wq);
 | |
| 	else
 | |
| 		spu_add_to_rq(ctx);
 | |
| }
 | |
| 
 | |
| static void spu_schedule(struct spu *spu, struct spu_context *ctx)
 | |
| {
 | |
| 	/* not a candidate for interruptible because it's called either
 | |
| 	   from the scheduler thread or from spu_deactivate */
 | |
| 	mutex_lock(&ctx->state_mutex);
 | |
| 	if (ctx->state == SPU_STATE_SAVED)
 | |
| 		__spu_schedule(spu, ctx);
 | |
| 	spu_release(ctx);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * spu_unschedule - remove a context from a spu, and possibly release it.
 | |
|  * @spu:	The SPU to unschedule from
 | |
|  * @ctx:	The context currently scheduled on the SPU
 | |
|  * @free_spu	Whether to free the SPU for other contexts
 | |
|  *
 | |
|  * Unbinds the context @ctx from the SPU @spu. If @free_spu is non-zero, the
 | |
|  * SPU is made available for other contexts (ie, may be returned by
 | |
|  * spu_get_idle). If this is zero, the caller is expected to schedule another
 | |
|  * context to this spu.
 | |
|  *
 | |
|  * Should be called with ctx->state_mutex held.
 | |
|  */
 | |
| static void spu_unschedule(struct spu *spu, struct spu_context *ctx,
 | |
| 		int free_spu)
 | |
| {
 | |
| 	int node = spu->node;
 | |
| 
 | |
| 	mutex_lock(&cbe_spu_info[node].list_mutex);
 | |
| 	cbe_spu_info[node].nr_active--;
 | |
| 	if (free_spu)
 | |
| 		spu->alloc_state = SPU_FREE;
 | |
| 	spu_unbind_context(spu, ctx);
 | |
| 	ctx->stats.invol_ctx_switch++;
 | |
| 	spu->stats.invol_ctx_switch++;
 | |
| 	mutex_unlock(&cbe_spu_info[node].list_mutex);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * spu_activate - find a free spu for a context and execute it
 | |
|  * @ctx:	spu context to schedule
 | |
|  * @flags:	flags (currently ignored)
 | |
|  *
 | |
|  * Tries to find a free spu to run @ctx.  If no free spu is available
 | |
|  * add the context to the runqueue so it gets woken up once an spu
 | |
|  * is available.
 | |
|  */
 | |
| int spu_activate(struct spu_context *ctx, unsigned long flags)
 | |
| {
 | |
| 	struct spu *spu;
 | |
| 
 | |
| 	/*
 | |
| 	 * If there are multiple threads waiting for a single context
 | |
| 	 * only one actually binds the context while the others will
 | |
| 	 * only be able to acquire the state_mutex once the context
 | |
| 	 * already is in runnable state.
 | |
| 	 */
 | |
| 	if (ctx->spu)
 | |
| 		return 0;
 | |
| 
 | |
| spu_activate_top:
 | |
| 	if (signal_pending(current))
 | |
| 		return -ERESTARTSYS;
 | |
| 
 | |
| 	spu = spu_get_idle(ctx);
 | |
| 	/*
 | |
| 	 * If this is a realtime thread we try to get it running by
 | |
| 	 * preempting a lower priority thread.
 | |
| 	 */
 | |
| 	if (!spu && rt_prio(ctx->prio))
 | |
| 		spu = find_victim(ctx);
 | |
| 	if (spu) {
 | |
| 		unsigned long runcntl;
 | |
| 
 | |
| 		runcntl = ctx->ops->runcntl_read(ctx);
 | |
| 		__spu_schedule(spu, ctx);
 | |
| 		if (runcntl & SPU_RUNCNTL_RUNNABLE)
 | |
| 			spuctx_switch_state(ctx, SPU_UTIL_USER);
 | |
| 
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (ctx->flags & SPU_CREATE_NOSCHED) {
 | |
| 		spu_prio_wait(ctx);
 | |
| 		goto spu_activate_top;
 | |
| 	}
 | |
| 
 | |
| 	spu_add_to_rq(ctx);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * grab_runnable_context - try to find a runnable context
 | |
|  *
 | |
|  * Remove the highest priority context on the runqueue and return it
 | |
|  * to the caller.  Returns %NULL if no runnable context was found.
 | |
|  */
 | |
| static struct spu_context *grab_runnable_context(int prio, int node)
 | |
| {
 | |
| 	struct spu_context *ctx;
 | |
| 	int best;
 | |
| 
 | |
| 	spin_lock(&spu_prio->runq_lock);
 | |
| 	best = find_first_bit(spu_prio->bitmap, prio);
 | |
| 	while (best < prio) {
 | |
| 		struct list_head *rq = &spu_prio->runq[best];
 | |
| 
 | |
| 		list_for_each_entry(ctx, rq, rq) {
 | |
| 			/* XXX(hch): check for affinity here as well */
 | |
| 			if (__node_allowed(ctx, node)) {
 | |
| 				__spu_del_from_rq(ctx);
 | |
| 				goto found;
 | |
| 			}
 | |
| 		}
 | |
| 		best++;
 | |
| 	}
 | |
| 	ctx = NULL;
 | |
|  found:
 | |
| 	spin_unlock(&spu_prio->runq_lock);
 | |
| 	return ctx;
 | |
| }
 | |
| 
 | |
| static int __spu_deactivate(struct spu_context *ctx, int force, int max_prio)
 | |
| {
 | |
| 	struct spu *spu = ctx->spu;
 | |
| 	struct spu_context *new = NULL;
 | |
| 
 | |
| 	if (spu) {
 | |
| 		new = grab_runnable_context(max_prio, spu->node);
 | |
| 		if (new || force) {
 | |
| 			spu_unschedule(spu, ctx, new == NULL);
 | |
| 			if (new) {
 | |
| 				if (new->flags & SPU_CREATE_NOSCHED)
 | |
| 					wake_up(&new->stop_wq);
 | |
| 				else {
 | |
| 					spu_release(ctx);
 | |
| 					spu_schedule(spu, new);
 | |
| 					/* this one can't easily be made
 | |
| 					   interruptible */
 | |
| 					mutex_lock(&ctx->state_mutex);
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return new != NULL;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * spu_deactivate - unbind a context from it's physical spu
 | |
|  * @ctx:	spu context to unbind
 | |
|  *
 | |
|  * Unbind @ctx from the physical spu it is running on and schedule
 | |
|  * the highest priority context to run on the freed physical spu.
 | |
|  */
 | |
| void spu_deactivate(struct spu_context *ctx)
 | |
| {
 | |
| 	spu_context_nospu_trace(spu_deactivate__enter, ctx);
 | |
| 	__spu_deactivate(ctx, 1, MAX_PRIO);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * spu_yield -	yield a physical spu if others are waiting
 | |
|  * @ctx:	spu context to yield
 | |
|  *
 | |
|  * Check if there is a higher priority context waiting and if yes
 | |
|  * unbind @ctx from the physical spu and schedule the highest
 | |
|  * priority context to run on the freed physical spu instead.
 | |
|  */
 | |
| void spu_yield(struct spu_context *ctx)
 | |
| {
 | |
| 	spu_context_nospu_trace(spu_yield__enter, ctx);
 | |
| 	if (!(ctx->flags & SPU_CREATE_NOSCHED)) {
 | |
| 		mutex_lock(&ctx->state_mutex);
 | |
| 		__spu_deactivate(ctx, 0, MAX_PRIO);
 | |
| 		mutex_unlock(&ctx->state_mutex);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static noinline void spusched_tick(struct spu_context *ctx)
 | |
| {
 | |
| 	struct spu_context *new = NULL;
 | |
| 	struct spu *spu = NULL;
 | |
| 
 | |
| 	if (spu_acquire(ctx))
 | |
| 		BUG();	/* a kernel thread never has signals pending */
 | |
| 
 | |
| 	if (ctx->state != SPU_STATE_RUNNABLE)
 | |
| 		goto out;
 | |
| 	if (ctx->flags & SPU_CREATE_NOSCHED)
 | |
| 		goto out;
 | |
| 	if (ctx->policy == SCHED_FIFO)
 | |
| 		goto out;
 | |
| 
 | |
| 	if (--ctx->time_slice && test_bit(SPU_SCHED_SPU_RUN, &ctx->sched_flags))
 | |
| 		goto out;
 | |
| 
 | |
| 	spu = ctx->spu;
 | |
| 
 | |
| 	spu_context_trace(spusched_tick__preempt, ctx, spu);
 | |
| 
 | |
| 	new = grab_runnable_context(ctx->prio + 1, spu->node);
 | |
| 	if (new) {
 | |
| 		spu_unschedule(spu, ctx, 0);
 | |
| 		if (test_bit(SPU_SCHED_SPU_RUN, &ctx->sched_flags))
 | |
| 			spu_add_to_rq(ctx);
 | |
| 	} else {
 | |
| 		spu_context_nospu_trace(spusched_tick__newslice, ctx);
 | |
| 		if (!ctx->time_slice)
 | |
| 			ctx->time_slice++;
 | |
| 	}
 | |
| out:
 | |
| 	spu_release(ctx);
 | |
| 
 | |
| 	if (new)
 | |
| 		spu_schedule(spu, new);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * count_active_contexts - count nr of active tasks
 | |
|  *
 | |
|  * Return the number of tasks currently running or waiting to run.
 | |
|  *
 | |
|  * Note that we don't take runq_lock / list_mutex here.  Reading
 | |
|  * a single 32bit value is atomic on powerpc, and we don't care
 | |
|  * about memory ordering issues here.
 | |
|  */
 | |
| static unsigned long count_active_contexts(void)
 | |
| {
 | |
| 	int nr_active = 0, node;
 | |
| 
 | |
| 	for (node = 0; node < MAX_NUMNODES; node++)
 | |
| 		nr_active += cbe_spu_info[node].nr_active;
 | |
| 	nr_active += spu_prio->nr_waiting;
 | |
| 
 | |
| 	return nr_active;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * spu_calc_load - update the avenrun load estimates.
 | |
|  *
 | |
|  * No locking against reading these values from userspace, as for
 | |
|  * the CPU loadavg code.
 | |
|  */
 | |
| static void spu_calc_load(void)
 | |
| {
 | |
| 	unsigned long active_tasks; /* fixed-point */
 | |
| 
 | |
| 	active_tasks = count_active_contexts() * FIXED_1;
 | |
| 	CALC_LOAD(spu_avenrun[0], EXP_1, active_tasks);
 | |
| 	CALC_LOAD(spu_avenrun[1], EXP_5, active_tasks);
 | |
| 	CALC_LOAD(spu_avenrun[2], EXP_15, active_tasks);
 | |
| }
 | |
| 
 | |
| static void spusched_wake(unsigned long data)
 | |
| {
 | |
| 	mod_timer(&spusched_timer, jiffies + SPUSCHED_TICK);
 | |
| 	wake_up_process(spusched_task);
 | |
| }
 | |
| 
 | |
| static void spuloadavg_wake(unsigned long data)
 | |
| {
 | |
| 	mod_timer(&spuloadavg_timer, jiffies + LOAD_FREQ);
 | |
| 	spu_calc_load();
 | |
| }
 | |
| 
 | |
| static int spusched_thread(void *unused)
 | |
| {
 | |
| 	struct spu *spu;
 | |
| 	int node;
 | |
| 
 | |
| 	while (!kthread_should_stop()) {
 | |
| 		set_current_state(TASK_INTERRUPTIBLE);
 | |
| 		schedule();
 | |
| 		for (node = 0; node < MAX_NUMNODES; node++) {
 | |
| 			struct mutex *mtx = &cbe_spu_info[node].list_mutex;
 | |
| 
 | |
| 			mutex_lock(mtx);
 | |
| 			list_for_each_entry(spu, &cbe_spu_info[node].spus,
 | |
| 					cbe_list) {
 | |
| 				struct spu_context *ctx = spu->ctx;
 | |
| 
 | |
| 				if (ctx) {
 | |
| 					get_spu_context(ctx);
 | |
| 					mutex_unlock(mtx);
 | |
| 					spusched_tick(ctx);
 | |
| 					mutex_lock(mtx);
 | |
| 					put_spu_context(ctx);
 | |
| 				}
 | |
| 			}
 | |
| 			mutex_unlock(mtx);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void spuctx_switch_state(struct spu_context *ctx,
 | |
| 		enum spu_utilization_state new_state)
 | |
| {
 | |
| 	unsigned long long curtime;
 | |
| 	signed long long delta;
 | |
| 	struct timespec ts;
 | |
| 	struct spu *spu;
 | |
| 	enum spu_utilization_state old_state;
 | |
| 	int node;
 | |
| 
 | |
| 	ktime_get_ts(&ts);
 | |
| 	curtime = timespec_to_ns(&ts);
 | |
| 	delta = curtime - ctx->stats.tstamp;
 | |
| 
 | |
| 	WARN_ON(!mutex_is_locked(&ctx->state_mutex));
 | |
| 	WARN_ON(delta < 0);
 | |
| 
 | |
| 	spu = ctx->spu;
 | |
| 	old_state = ctx->stats.util_state;
 | |
| 	ctx->stats.util_state = new_state;
 | |
| 	ctx->stats.tstamp = curtime;
 | |
| 
 | |
| 	/*
 | |
| 	 * Update the physical SPU utilization statistics.
 | |
| 	 */
 | |
| 	if (spu) {
 | |
| 		ctx->stats.times[old_state] += delta;
 | |
| 		spu->stats.times[old_state] += delta;
 | |
| 		spu->stats.util_state = new_state;
 | |
| 		spu->stats.tstamp = curtime;
 | |
| 		node = spu->node;
 | |
| 		if (old_state == SPU_UTIL_USER)
 | |
| 			atomic_dec(&cbe_spu_info[node].busy_spus);
 | |
| 		if (new_state == SPU_UTIL_USER)
 | |
| 			atomic_inc(&cbe_spu_info[node].busy_spus);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #define LOAD_INT(x) ((x) >> FSHIFT)
 | |
| #define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)
 | |
| 
 | |
| static int show_spu_loadavg(struct seq_file *s, void *private)
 | |
| {
 | |
| 	int a, b, c;
 | |
| 
 | |
| 	a = spu_avenrun[0] + (FIXED_1/200);
 | |
| 	b = spu_avenrun[1] + (FIXED_1/200);
 | |
| 	c = spu_avenrun[2] + (FIXED_1/200);
 | |
| 
 | |
| 	/*
 | |
| 	 * Note that last_pid doesn't really make much sense for the
 | |
| 	 * SPU loadavg (it even seems very odd on the CPU side...),
 | |
| 	 * but we include it here to have a 100% compatible interface.
 | |
| 	 */
 | |
| 	seq_printf(s, "%d.%02d %d.%02d %d.%02d %ld/%d %d\n",
 | |
| 		LOAD_INT(a), LOAD_FRAC(a),
 | |
| 		LOAD_INT(b), LOAD_FRAC(b),
 | |
| 		LOAD_INT(c), LOAD_FRAC(c),
 | |
| 		count_active_contexts(),
 | |
| 		atomic_read(&nr_spu_contexts),
 | |
| 		task_active_pid_ns(current)->last_pid);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int spu_loadavg_open(struct inode *inode, struct file *file)
 | |
| {
 | |
| 	return single_open(file, show_spu_loadavg, NULL);
 | |
| }
 | |
| 
 | |
| static const struct file_operations spu_loadavg_fops = {
 | |
| 	.open		= spu_loadavg_open,
 | |
| 	.read		= seq_read,
 | |
| 	.llseek		= seq_lseek,
 | |
| 	.release	= single_release,
 | |
| };
 | |
| 
 | |
| int __init spu_sched_init(void)
 | |
| {
 | |
| 	struct proc_dir_entry *entry;
 | |
| 	int err = -ENOMEM, i;
 | |
| 
 | |
| 	spu_prio = kzalloc(sizeof(struct spu_prio_array), GFP_KERNEL);
 | |
| 	if (!spu_prio)
 | |
| 		goto out;
 | |
| 
 | |
| 	for (i = 0; i < MAX_PRIO; i++) {
 | |
| 		INIT_LIST_HEAD(&spu_prio->runq[i]);
 | |
| 		__clear_bit(i, spu_prio->bitmap);
 | |
| 	}
 | |
| 	spin_lock_init(&spu_prio->runq_lock);
 | |
| 
 | |
| 	setup_timer(&spusched_timer, spusched_wake, 0);
 | |
| 	setup_timer(&spuloadavg_timer, spuloadavg_wake, 0);
 | |
| 
 | |
| 	spusched_task = kthread_run(spusched_thread, NULL, "spusched");
 | |
| 	if (IS_ERR(spusched_task)) {
 | |
| 		err = PTR_ERR(spusched_task);
 | |
| 		goto out_free_spu_prio;
 | |
| 	}
 | |
| 
 | |
| 	mod_timer(&spuloadavg_timer, 0);
 | |
| 
 | |
| 	entry = proc_create("spu_loadavg", 0, NULL, &spu_loadavg_fops);
 | |
| 	if (!entry)
 | |
| 		goto out_stop_kthread;
 | |
| 
 | |
| 	pr_debug("spusched: tick: %d, min ticks: %d, default ticks: %d\n",
 | |
| 			SPUSCHED_TICK, MIN_SPU_TIMESLICE, DEF_SPU_TIMESLICE);
 | |
| 	return 0;
 | |
| 
 | |
|  out_stop_kthread:
 | |
| 	kthread_stop(spusched_task);
 | |
|  out_free_spu_prio:
 | |
| 	kfree(spu_prio);
 | |
|  out:
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| void spu_sched_exit(void)
 | |
| {
 | |
| 	struct spu *spu;
 | |
| 	int node;
 | |
| 
 | |
| 	remove_proc_entry("spu_loadavg", NULL);
 | |
| 
 | |
| 	del_timer_sync(&spusched_timer);
 | |
| 	del_timer_sync(&spuloadavg_timer);
 | |
| 	kthread_stop(spusched_task);
 | |
| 
 | |
| 	for (node = 0; node < MAX_NUMNODES; node++) {
 | |
| 		mutex_lock(&cbe_spu_info[node].list_mutex);
 | |
| 		list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list)
 | |
| 			if (spu->alloc_state != SPU_FREE)
 | |
| 				spu->alloc_state = SPU_FREE;
 | |
| 		mutex_unlock(&cbe_spu_info[node].list_mutex);
 | |
| 	}
 | |
| 	kfree(spu_prio);
 | |
| }
 |