The cpu_topology symbol is required by any driver using the topology interfaces, which leads to a couple of build errors: ERROR: "cpu_topology" [drivers/net/ethernet/sfc/sfc.ko] undefined! ERROR: "cpu_topology" [drivers/cpufreq/arm_big_little.ko] undefined! ERROR: "cpu_topology" [drivers/block/mtip32xx/mtip32xx.ko] undefined! The obvious solution is to export this symbol. Signed-off-by: Arnd Bergmann <arnd@arndb.de> Acked-by: Will Deacon <will.deacon@arm.com> Cc: stable@vger.kernel.org Cc: Nicolas Pitre <nico@linaro.org> Cc: Vincent Guittot <vincent.guittot@linaro.org> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
		
			
				
	
	
		
			315 lines
		
	
	
	
		
			8.5 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			315 lines
		
	
	
	
		
			8.5 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * arch/arm/kernel/topology.c
 | 
						|
 *
 | 
						|
 * Copyright (C) 2011 Linaro Limited.
 | 
						|
 * Written by: Vincent Guittot
 | 
						|
 *
 | 
						|
 * based on arch/sh/kernel/topology.c
 | 
						|
 *
 | 
						|
 * This file is subject to the terms and conditions of the GNU General Public
 | 
						|
 * License.  See the file "COPYING" in the main directory of this archive
 | 
						|
 * for more details.
 | 
						|
 */
 | 
						|
 | 
						|
#include <linux/cpu.h>
 | 
						|
#include <linux/cpumask.h>
 | 
						|
#include <linux/export.h>
 | 
						|
#include <linux/init.h>
 | 
						|
#include <linux/percpu.h>
 | 
						|
#include <linux/node.h>
 | 
						|
#include <linux/nodemask.h>
 | 
						|
#include <linux/of.h>
 | 
						|
#include <linux/sched.h>
 | 
						|
#include <linux/slab.h>
 | 
						|
 | 
						|
#include <asm/cputype.h>
 | 
						|
#include <asm/topology.h>
 | 
						|
 | 
						|
/*
 | 
						|
 * cpu power scale management
 | 
						|
 */
 | 
						|
 | 
						|
/*
 | 
						|
 * cpu power table
 | 
						|
 * This per cpu data structure describes the relative capacity of each core.
 | 
						|
 * On a heteregenous system, cores don't have the same computation capacity
 | 
						|
 * and we reflect that difference in the cpu_power field so the scheduler can
 | 
						|
 * take this difference into account during load balance. A per cpu structure
 | 
						|
 * is preferred because each CPU updates its own cpu_power field during the
 | 
						|
 * load balance except for idle cores. One idle core is selected to run the
 | 
						|
 * rebalance_domains for all idle cores and the cpu_power can be updated
 | 
						|
 * during this sequence.
 | 
						|
 */
 | 
						|
static DEFINE_PER_CPU(unsigned long, cpu_scale);
 | 
						|
 | 
						|
unsigned long arch_scale_freq_power(struct sched_domain *sd, int cpu)
 | 
						|
{
 | 
						|
	return per_cpu(cpu_scale, cpu);
 | 
						|
}
 | 
						|
 | 
						|
static void set_power_scale(unsigned int cpu, unsigned long power)
 | 
						|
{
 | 
						|
	per_cpu(cpu_scale, cpu) = power;
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_OF
 | 
						|
struct cpu_efficiency {
 | 
						|
	const char *compatible;
 | 
						|
	unsigned long efficiency;
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
 * Table of relative efficiency of each processors
 | 
						|
 * The efficiency value must fit in 20bit and the final
 | 
						|
 * cpu_scale value must be in the range
 | 
						|
 *   0 < cpu_scale < 3*SCHED_POWER_SCALE/2
 | 
						|
 * in order to return at most 1 when DIV_ROUND_CLOSEST
 | 
						|
 * is used to compute the capacity of a CPU.
 | 
						|
 * Processors that are not defined in the table,
 | 
						|
 * use the default SCHED_POWER_SCALE value for cpu_scale.
 | 
						|
 */
 | 
						|
struct cpu_efficiency table_efficiency[] = {
 | 
						|
	{"arm,cortex-a15", 3891},
 | 
						|
	{"arm,cortex-a7",  2048},
 | 
						|
	{NULL, },
 | 
						|
};
 | 
						|
 | 
						|
struct cpu_capacity {
 | 
						|
	unsigned long hwid;
 | 
						|
	unsigned long capacity;
 | 
						|
};
 | 
						|
 | 
						|
struct cpu_capacity *cpu_capacity;
 | 
						|
 | 
						|
unsigned long middle_capacity = 1;
 | 
						|
 | 
						|
/*
 | 
						|
 * Iterate all CPUs' descriptor in DT and compute the efficiency
 | 
						|
 * (as per table_efficiency). Also calculate a middle efficiency
 | 
						|
 * as close as possible to  (max{eff_i} - min{eff_i}) / 2
 | 
						|
 * This is later used to scale the cpu_power field such that an
 | 
						|
 * 'average' CPU is of middle power. Also see the comments near
 | 
						|
 * table_efficiency[] and update_cpu_power().
 | 
						|
 */
 | 
						|
static void __init parse_dt_topology(void)
 | 
						|
{
 | 
						|
	struct cpu_efficiency *cpu_eff;
 | 
						|
	struct device_node *cn = NULL;
 | 
						|
	unsigned long min_capacity = (unsigned long)(-1);
 | 
						|
	unsigned long max_capacity = 0;
 | 
						|
	unsigned long capacity = 0;
 | 
						|
	int alloc_size, cpu = 0;
 | 
						|
 | 
						|
	alloc_size = nr_cpu_ids * sizeof(struct cpu_capacity);
 | 
						|
	cpu_capacity = kzalloc(alloc_size, GFP_NOWAIT);
 | 
						|
 | 
						|
	while ((cn = of_find_node_by_type(cn, "cpu"))) {
 | 
						|
		const u32 *rate, *reg;
 | 
						|
		int len;
 | 
						|
 | 
						|
		if (cpu >= num_possible_cpus())
 | 
						|
			break;
 | 
						|
 | 
						|
		for (cpu_eff = table_efficiency; cpu_eff->compatible; cpu_eff++)
 | 
						|
			if (of_device_is_compatible(cn, cpu_eff->compatible))
 | 
						|
				break;
 | 
						|
 | 
						|
		if (cpu_eff->compatible == NULL)
 | 
						|
			continue;
 | 
						|
 | 
						|
		rate = of_get_property(cn, "clock-frequency", &len);
 | 
						|
		if (!rate || len != 4) {
 | 
						|
			pr_err("%s missing clock-frequency property\n",
 | 
						|
				cn->full_name);
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		reg = of_get_property(cn, "reg", &len);
 | 
						|
		if (!reg || len != 4) {
 | 
						|
			pr_err("%s missing reg property\n", cn->full_name);
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		capacity = ((be32_to_cpup(rate)) >> 20) * cpu_eff->efficiency;
 | 
						|
 | 
						|
		/* Save min capacity of the system */
 | 
						|
		if (capacity < min_capacity)
 | 
						|
			min_capacity = capacity;
 | 
						|
 | 
						|
		/* Save max capacity of the system */
 | 
						|
		if (capacity > max_capacity)
 | 
						|
			max_capacity = capacity;
 | 
						|
 | 
						|
		cpu_capacity[cpu].capacity = capacity;
 | 
						|
		cpu_capacity[cpu++].hwid = be32_to_cpup(reg);
 | 
						|
	}
 | 
						|
 | 
						|
	if (cpu < num_possible_cpus())
 | 
						|
		cpu_capacity[cpu].hwid = (unsigned long)(-1);
 | 
						|
 | 
						|
	/* If min and max capacities are equals, we bypass the update of the
 | 
						|
	 * cpu_scale because all CPUs have the same capacity. Otherwise, we
 | 
						|
	 * compute a middle_capacity factor that will ensure that the capacity
 | 
						|
	 * of an 'average' CPU of the system will be as close as possible to
 | 
						|
	 * SCHED_POWER_SCALE, which is the default value, but with the
 | 
						|
	 * constraint explained near table_efficiency[].
 | 
						|
	 */
 | 
						|
	if (min_capacity == max_capacity)
 | 
						|
		cpu_capacity[0].hwid = (unsigned long)(-1);
 | 
						|
	else if (4*max_capacity < (3*(max_capacity + min_capacity)))
 | 
						|
		middle_capacity = (min_capacity + max_capacity)
 | 
						|
				>> (SCHED_POWER_SHIFT+1);
 | 
						|
	else
 | 
						|
		middle_capacity = ((max_capacity / 3)
 | 
						|
				>> (SCHED_POWER_SHIFT-1)) + 1;
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Look for a customed capacity of a CPU in the cpu_capacity table during the
 | 
						|
 * boot. The update of all CPUs is in O(n^2) for heteregeneous system but the
 | 
						|
 * function returns directly for SMP system.
 | 
						|
 */
 | 
						|
void update_cpu_power(unsigned int cpu, unsigned long hwid)
 | 
						|
{
 | 
						|
	unsigned int idx = 0;
 | 
						|
 | 
						|
	/* look for the cpu's hwid in the cpu capacity table */
 | 
						|
	for (idx = 0; idx < num_possible_cpus(); idx++) {
 | 
						|
		if (cpu_capacity[idx].hwid == hwid)
 | 
						|
			break;
 | 
						|
 | 
						|
		if (cpu_capacity[idx].hwid == -1)
 | 
						|
			return;
 | 
						|
	}
 | 
						|
 | 
						|
	if (idx == num_possible_cpus())
 | 
						|
		return;
 | 
						|
 | 
						|
	set_power_scale(cpu, cpu_capacity[idx].capacity / middle_capacity);
 | 
						|
 | 
						|
	printk(KERN_INFO "CPU%u: update cpu_power %lu\n",
 | 
						|
		cpu, arch_scale_freq_power(NULL, cpu));
 | 
						|
}
 | 
						|
 | 
						|
#else
 | 
						|
static inline void parse_dt_topology(void) {}
 | 
						|
static inline void update_cpu_power(unsigned int cpuid, unsigned int mpidr) {}
 | 
						|
#endif
 | 
						|
 | 
						|
 /*
 | 
						|
 * cpu topology table
 | 
						|
 */
 | 
						|
struct cputopo_arm cpu_topology[NR_CPUS];
 | 
						|
EXPORT_SYMBOL_GPL(cpu_topology);
 | 
						|
 | 
						|
const struct cpumask *cpu_coregroup_mask(int cpu)
 | 
						|
{
 | 
						|
	return &cpu_topology[cpu].core_sibling;
 | 
						|
}
 | 
						|
 | 
						|
void update_siblings_masks(unsigned int cpuid)
 | 
						|
{
 | 
						|
	struct cputopo_arm *cpu_topo, *cpuid_topo = &cpu_topology[cpuid];
 | 
						|
	int cpu;
 | 
						|
 | 
						|
	/* update core and thread sibling masks */
 | 
						|
	for_each_possible_cpu(cpu) {
 | 
						|
		cpu_topo = &cpu_topology[cpu];
 | 
						|
 | 
						|
		if (cpuid_topo->socket_id != cpu_topo->socket_id)
 | 
						|
			continue;
 | 
						|
 | 
						|
		cpumask_set_cpu(cpuid, &cpu_topo->core_sibling);
 | 
						|
		if (cpu != cpuid)
 | 
						|
			cpumask_set_cpu(cpu, &cpuid_topo->core_sibling);
 | 
						|
 | 
						|
		if (cpuid_topo->core_id != cpu_topo->core_id)
 | 
						|
			continue;
 | 
						|
 | 
						|
		cpumask_set_cpu(cpuid, &cpu_topo->thread_sibling);
 | 
						|
		if (cpu != cpuid)
 | 
						|
			cpumask_set_cpu(cpu, &cpuid_topo->thread_sibling);
 | 
						|
	}
 | 
						|
	smp_wmb();
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * store_cpu_topology is called at boot when only one cpu is running
 | 
						|
 * and with the mutex cpu_hotplug.lock locked, when several cpus have booted,
 | 
						|
 * which prevents simultaneous write access to cpu_topology array
 | 
						|
 */
 | 
						|
void store_cpu_topology(unsigned int cpuid)
 | 
						|
{
 | 
						|
	struct cputopo_arm *cpuid_topo = &cpu_topology[cpuid];
 | 
						|
	unsigned int mpidr;
 | 
						|
 | 
						|
	/* If the cpu topology has been already set, just return */
 | 
						|
	if (cpuid_topo->core_id != -1)
 | 
						|
		return;
 | 
						|
 | 
						|
	mpidr = read_cpuid_mpidr();
 | 
						|
 | 
						|
	/* create cpu topology mapping */
 | 
						|
	if ((mpidr & MPIDR_SMP_BITMASK) == MPIDR_SMP_VALUE) {
 | 
						|
		/*
 | 
						|
		 * This is a multiprocessor system
 | 
						|
		 * multiprocessor format & multiprocessor mode field are set
 | 
						|
		 */
 | 
						|
 | 
						|
		if (mpidr & MPIDR_MT_BITMASK) {
 | 
						|
			/* core performance interdependency */
 | 
						|
			cpuid_topo->thread_id = MPIDR_AFFINITY_LEVEL(mpidr, 0);
 | 
						|
			cpuid_topo->core_id = MPIDR_AFFINITY_LEVEL(mpidr, 1);
 | 
						|
			cpuid_topo->socket_id = MPIDR_AFFINITY_LEVEL(mpidr, 2);
 | 
						|
		} else {
 | 
						|
			/* largely independent cores */
 | 
						|
			cpuid_topo->thread_id = -1;
 | 
						|
			cpuid_topo->core_id = MPIDR_AFFINITY_LEVEL(mpidr, 0);
 | 
						|
			cpuid_topo->socket_id = MPIDR_AFFINITY_LEVEL(mpidr, 1);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		/*
 | 
						|
		 * This is an uniprocessor system
 | 
						|
		 * we are in multiprocessor format but uniprocessor system
 | 
						|
		 * or in the old uniprocessor format
 | 
						|
		 */
 | 
						|
		cpuid_topo->thread_id = -1;
 | 
						|
		cpuid_topo->core_id = 0;
 | 
						|
		cpuid_topo->socket_id = -1;
 | 
						|
	}
 | 
						|
 | 
						|
	update_siblings_masks(cpuid);
 | 
						|
 | 
						|
	update_cpu_power(cpuid, mpidr & MPIDR_HWID_BITMASK);
 | 
						|
 | 
						|
	printk(KERN_INFO "CPU%u: thread %d, cpu %d, socket %d, mpidr %x\n",
 | 
						|
		cpuid, cpu_topology[cpuid].thread_id,
 | 
						|
		cpu_topology[cpuid].core_id,
 | 
						|
		cpu_topology[cpuid].socket_id, mpidr);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * init_cpu_topology is called at boot when only one cpu is running
 | 
						|
 * which prevent simultaneous write access to cpu_topology array
 | 
						|
 */
 | 
						|
void __init init_cpu_topology(void)
 | 
						|
{
 | 
						|
	unsigned int cpu;
 | 
						|
 | 
						|
	/* init core mask and power*/
 | 
						|
	for_each_possible_cpu(cpu) {
 | 
						|
		struct cputopo_arm *cpu_topo = &(cpu_topology[cpu]);
 | 
						|
 | 
						|
		cpu_topo->thread_id = -1;
 | 
						|
		cpu_topo->core_id =  -1;
 | 
						|
		cpu_topo->socket_id = -1;
 | 
						|
		cpumask_clear(&cpu_topo->core_sibling);
 | 
						|
		cpumask_clear(&cpu_topo->thread_sibling);
 | 
						|
 | 
						|
		set_power_scale(cpu, SCHED_POWER_SCALE);
 | 
						|
	}
 | 
						|
	smp_wmb();
 | 
						|
 | 
						|
	parse_dt_topology();
 | 
						|
}
 |