 9508534c5f
			
		
	
	
	9508534c5f
	
	
	
		
			
			Resolved conflicts:
  fs/xfs/xfs_trans_priv.h:
    - deleted struct xfs_ail field xa_flags
    - kept field xa_log_flush in struct xfs_ail
  fs/xfs/xfs_trans_ail.c:
    - in xfsaild_push(), in XFS_ITEM_PUSHBUF case, replaced
      "flush_log = 1" with "ailp->xa_log_flush++"
Signed-off-by: Alex Elder <aelder@sgi.com>
		
	
			
		
			
				
	
	
		
			1053 lines
		
	
	
	
		
			30 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1053 lines
		
	
	
	
		
			30 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
 | |
|  * All Rights Reserved.
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU General Public License as
 | |
|  * published by the Free Software Foundation.
 | |
|  *
 | |
|  * This program is distributed in the hope that it would be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, write the Free Software Foundation,
 | |
|  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 | |
|  */
 | |
| #include "xfs.h"
 | |
| #include "xfs_fs.h"
 | |
| #include "xfs_types.h"
 | |
| #include "xfs_bit.h"
 | |
| #include "xfs_log.h"
 | |
| #include "xfs_inum.h"
 | |
| #include "xfs_trans.h"
 | |
| #include "xfs_sb.h"
 | |
| #include "xfs_ag.h"
 | |
| #include "xfs_mount.h"
 | |
| #include "xfs_trans_priv.h"
 | |
| #include "xfs_bmap_btree.h"
 | |
| #include "xfs_dinode.h"
 | |
| #include "xfs_inode.h"
 | |
| #include "xfs_inode_item.h"
 | |
| #include "xfs_error.h"
 | |
| #include "xfs_trace.h"
 | |
| 
 | |
| 
 | |
| kmem_zone_t	*xfs_ili_zone;		/* inode log item zone */
 | |
| 
 | |
| static inline struct xfs_inode_log_item *INODE_ITEM(struct xfs_log_item *lip)
 | |
| {
 | |
| 	return container_of(lip, struct xfs_inode_log_item, ili_item);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * This returns the number of iovecs needed to log the given inode item.
 | |
|  *
 | |
|  * We need one iovec for the inode log format structure, one for the
 | |
|  * inode core, and possibly one for the inode data/extents/b-tree root
 | |
|  * and one for the inode attribute data/extents/b-tree root.
 | |
|  */
 | |
| STATIC uint
 | |
| xfs_inode_item_size(
 | |
| 	struct xfs_log_item	*lip)
 | |
| {
 | |
| 	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
 | |
| 	struct xfs_inode	*ip = iip->ili_inode;
 | |
| 	uint			nvecs = 2;
 | |
| 
 | |
| 	/*
 | |
| 	 * Only log the data/extents/b-tree root if there is something
 | |
| 	 * left to log.
 | |
| 	 */
 | |
| 	iip->ili_format.ilf_fields |= XFS_ILOG_CORE;
 | |
| 
 | |
| 	switch (ip->i_d.di_format) {
 | |
| 	case XFS_DINODE_FMT_EXTENTS:
 | |
| 		iip->ili_format.ilf_fields &=
 | |
| 			~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
 | |
| 			  XFS_ILOG_DEV | XFS_ILOG_UUID);
 | |
| 		if ((iip->ili_format.ilf_fields & XFS_ILOG_DEXT) &&
 | |
| 		    (ip->i_d.di_nextents > 0) &&
 | |
| 		    (ip->i_df.if_bytes > 0)) {
 | |
| 			ASSERT(ip->i_df.if_u1.if_extents != NULL);
 | |
| 			nvecs++;
 | |
| 		} else {
 | |
| 			iip->ili_format.ilf_fields &= ~XFS_ILOG_DEXT;
 | |
| 		}
 | |
| 		break;
 | |
| 
 | |
| 	case XFS_DINODE_FMT_BTREE:
 | |
| 		ASSERT(ip->i_df.if_ext_max ==
 | |
| 		       XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t));
 | |
| 		iip->ili_format.ilf_fields &=
 | |
| 			~(XFS_ILOG_DDATA | XFS_ILOG_DEXT |
 | |
| 			  XFS_ILOG_DEV | XFS_ILOG_UUID);
 | |
| 		if ((iip->ili_format.ilf_fields & XFS_ILOG_DBROOT) &&
 | |
| 		    (ip->i_df.if_broot_bytes > 0)) {
 | |
| 			ASSERT(ip->i_df.if_broot != NULL);
 | |
| 			nvecs++;
 | |
| 		} else {
 | |
| 			ASSERT(!(iip->ili_format.ilf_fields &
 | |
| 				 XFS_ILOG_DBROOT));
 | |
| #ifdef XFS_TRANS_DEBUG
 | |
| 			if (iip->ili_root_size > 0) {
 | |
| 				ASSERT(iip->ili_root_size ==
 | |
| 				       ip->i_df.if_broot_bytes);
 | |
| 				ASSERT(memcmp(iip->ili_orig_root,
 | |
| 					    ip->i_df.if_broot,
 | |
| 					    iip->ili_root_size) == 0);
 | |
| 			} else {
 | |
| 				ASSERT(ip->i_df.if_broot_bytes == 0);
 | |
| 			}
 | |
| #endif
 | |
| 			iip->ili_format.ilf_fields &= ~XFS_ILOG_DBROOT;
 | |
| 		}
 | |
| 		break;
 | |
| 
 | |
| 	case XFS_DINODE_FMT_LOCAL:
 | |
| 		iip->ili_format.ilf_fields &=
 | |
| 			~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT |
 | |
| 			  XFS_ILOG_DEV | XFS_ILOG_UUID);
 | |
| 		if ((iip->ili_format.ilf_fields & XFS_ILOG_DDATA) &&
 | |
| 		    (ip->i_df.if_bytes > 0)) {
 | |
| 			ASSERT(ip->i_df.if_u1.if_data != NULL);
 | |
| 			ASSERT(ip->i_d.di_size > 0);
 | |
| 			nvecs++;
 | |
| 		} else {
 | |
| 			iip->ili_format.ilf_fields &= ~XFS_ILOG_DDATA;
 | |
| 		}
 | |
| 		break;
 | |
| 
 | |
| 	case XFS_DINODE_FMT_DEV:
 | |
| 		iip->ili_format.ilf_fields &=
 | |
| 			~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
 | |
| 			  XFS_ILOG_DEXT | XFS_ILOG_UUID);
 | |
| 		break;
 | |
| 
 | |
| 	case XFS_DINODE_FMT_UUID:
 | |
| 		iip->ili_format.ilf_fields &=
 | |
| 			~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
 | |
| 			  XFS_ILOG_DEXT | XFS_ILOG_DEV);
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		ASSERT(0);
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If there are no attributes associated with this file,
 | |
| 	 * then there cannot be anything more to log.
 | |
| 	 * Clear all attribute-related log flags.
 | |
| 	 */
 | |
| 	if (!XFS_IFORK_Q(ip)) {
 | |
| 		iip->ili_format.ilf_fields &=
 | |
| 			~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT);
 | |
| 		return nvecs;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Log any necessary attribute data.
 | |
| 	 */
 | |
| 	switch (ip->i_d.di_aformat) {
 | |
| 	case XFS_DINODE_FMT_EXTENTS:
 | |
| 		iip->ili_format.ilf_fields &=
 | |
| 			~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT);
 | |
| 		if ((iip->ili_format.ilf_fields & XFS_ILOG_AEXT) &&
 | |
| 		    (ip->i_d.di_anextents > 0) &&
 | |
| 		    (ip->i_afp->if_bytes > 0)) {
 | |
| 			ASSERT(ip->i_afp->if_u1.if_extents != NULL);
 | |
| 			nvecs++;
 | |
| 		} else {
 | |
| 			iip->ili_format.ilf_fields &= ~XFS_ILOG_AEXT;
 | |
| 		}
 | |
| 		break;
 | |
| 
 | |
| 	case XFS_DINODE_FMT_BTREE:
 | |
| 		iip->ili_format.ilf_fields &=
 | |
| 			~(XFS_ILOG_ADATA | XFS_ILOG_AEXT);
 | |
| 		if ((iip->ili_format.ilf_fields & XFS_ILOG_ABROOT) &&
 | |
| 		    (ip->i_afp->if_broot_bytes > 0)) {
 | |
| 			ASSERT(ip->i_afp->if_broot != NULL);
 | |
| 			nvecs++;
 | |
| 		} else {
 | |
| 			iip->ili_format.ilf_fields &= ~XFS_ILOG_ABROOT;
 | |
| 		}
 | |
| 		break;
 | |
| 
 | |
| 	case XFS_DINODE_FMT_LOCAL:
 | |
| 		iip->ili_format.ilf_fields &=
 | |
| 			~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT);
 | |
| 		if ((iip->ili_format.ilf_fields & XFS_ILOG_ADATA) &&
 | |
| 		    (ip->i_afp->if_bytes > 0)) {
 | |
| 			ASSERT(ip->i_afp->if_u1.if_data != NULL);
 | |
| 			nvecs++;
 | |
| 		} else {
 | |
| 			iip->ili_format.ilf_fields &= ~XFS_ILOG_ADATA;
 | |
| 		}
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		ASSERT(0);
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return nvecs;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * xfs_inode_item_format_extents - convert in-core extents to on-disk form
 | |
|  *
 | |
|  * For either the data or attr fork in extent format, we need to endian convert
 | |
|  * the in-core extent as we place them into the on-disk inode. In this case, we
 | |
|  * need to do this conversion before we write the extents into the log. Because
 | |
|  * we don't have the disk inode to write into here, we allocate a buffer and
 | |
|  * format the extents into it via xfs_iextents_copy(). We free the buffer in
 | |
|  * the unlock routine after the copy for the log has been made.
 | |
|  *
 | |
|  * In the case of the data fork, the in-core and on-disk fork sizes can be
 | |
|  * different due to delayed allocation extents. We only log on-disk extents
 | |
|  * here, so always use the physical fork size to determine the size of the
 | |
|  * buffer we need to allocate.
 | |
|  */
 | |
| STATIC void
 | |
| xfs_inode_item_format_extents(
 | |
| 	struct xfs_inode	*ip,
 | |
| 	struct xfs_log_iovec	*vecp,
 | |
| 	int			whichfork,
 | |
| 	int			type)
 | |
| {
 | |
| 	xfs_bmbt_rec_t		*ext_buffer;
 | |
| 
 | |
| 	ext_buffer = kmem_alloc(XFS_IFORK_SIZE(ip, whichfork), KM_SLEEP);
 | |
| 	if (whichfork == XFS_DATA_FORK)
 | |
| 		ip->i_itemp->ili_extents_buf = ext_buffer;
 | |
| 	else
 | |
| 		ip->i_itemp->ili_aextents_buf = ext_buffer;
 | |
| 
 | |
| 	vecp->i_addr = ext_buffer;
 | |
| 	vecp->i_len = xfs_iextents_copy(ip, ext_buffer, whichfork);
 | |
| 	vecp->i_type = type;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is called to fill in the vector of log iovecs for the
 | |
|  * given inode log item.  It fills the first item with an inode
 | |
|  * log format structure, the second with the on-disk inode structure,
 | |
|  * and a possible third and/or fourth with the inode data/extents/b-tree
 | |
|  * root and inode attributes data/extents/b-tree root.
 | |
|  */
 | |
| STATIC void
 | |
| xfs_inode_item_format(
 | |
| 	struct xfs_log_item	*lip,
 | |
| 	struct xfs_log_iovec	*vecp)
 | |
| {
 | |
| 	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
 | |
| 	struct xfs_inode	*ip = iip->ili_inode;
 | |
| 	uint			nvecs;
 | |
| 	size_t			data_bytes;
 | |
| 	xfs_mount_t		*mp;
 | |
| 
 | |
| 	vecp->i_addr = &iip->ili_format;
 | |
| 	vecp->i_len  = sizeof(xfs_inode_log_format_t);
 | |
| 	vecp->i_type = XLOG_REG_TYPE_IFORMAT;
 | |
| 	vecp++;
 | |
| 	nvecs	     = 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * Clear i_update_core if the timestamps (or any other
 | |
| 	 * non-transactional modification) need flushing/logging
 | |
| 	 * and we're about to log them with the rest of the core.
 | |
| 	 *
 | |
| 	 * This is the same logic as xfs_iflush() but this code can't
 | |
| 	 * run at the same time as xfs_iflush because we're in commit
 | |
| 	 * processing here and so we have the inode lock held in
 | |
| 	 * exclusive mode.  Although it doesn't really matter
 | |
| 	 * for the timestamps if both routines were to grab the
 | |
| 	 * timestamps or not.  That would be ok.
 | |
| 	 *
 | |
| 	 * We clear i_update_core before copying out the data.
 | |
| 	 * This is for coordination with our timestamp updates
 | |
| 	 * that don't hold the inode lock. They will always
 | |
| 	 * update the timestamps BEFORE setting i_update_core,
 | |
| 	 * so if we clear i_update_core after they set it we
 | |
| 	 * are guaranteed to see their updates to the timestamps
 | |
| 	 * either here.  Likewise, if they set it after we clear it
 | |
| 	 * here, we'll see it either on the next commit of this
 | |
| 	 * inode or the next time the inode gets flushed via
 | |
| 	 * xfs_iflush().  This depends on strongly ordered memory
 | |
| 	 * semantics, but we have that.  We use the SYNCHRONIZE
 | |
| 	 * macro to make sure that the compiler does not reorder
 | |
| 	 * the i_update_core access below the data copy below.
 | |
| 	 */
 | |
| 	if (ip->i_update_core)  {
 | |
| 		ip->i_update_core = 0;
 | |
| 		SYNCHRONIZE();
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Make sure to get the latest timestamps from the Linux inode.
 | |
| 	 */
 | |
| 	xfs_synchronize_times(ip);
 | |
| 
 | |
| 	vecp->i_addr = &ip->i_d;
 | |
| 	vecp->i_len  = sizeof(struct xfs_icdinode);
 | |
| 	vecp->i_type = XLOG_REG_TYPE_ICORE;
 | |
| 	vecp++;
 | |
| 	nvecs++;
 | |
| 	iip->ili_format.ilf_fields |= XFS_ILOG_CORE;
 | |
| 
 | |
| 	/*
 | |
| 	 * If this is really an old format inode, then we need to
 | |
| 	 * log it as such.  This means that we have to copy the link
 | |
| 	 * count from the new field to the old.  We don't have to worry
 | |
| 	 * about the new fields, because nothing trusts them as long as
 | |
| 	 * the old inode version number is there.  If the superblock already
 | |
| 	 * has a new version number, then we don't bother converting back.
 | |
| 	 */
 | |
| 	mp = ip->i_mount;
 | |
| 	ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb));
 | |
| 	if (ip->i_d.di_version == 1) {
 | |
| 		if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
 | |
| 			/*
 | |
| 			 * Convert it back.
 | |
| 			 */
 | |
| 			ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
 | |
| 			ip->i_d.di_onlink = ip->i_d.di_nlink;
 | |
| 		} else {
 | |
| 			/*
 | |
| 			 * The superblock version has already been bumped,
 | |
| 			 * so just make the conversion to the new inode
 | |
| 			 * format permanent.
 | |
| 			 */
 | |
| 			ip->i_d.di_version = 2;
 | |
| 			ip->i_d.di_onlink = 0;
 | |
| 			memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	switch (ip->i_d.di_format) {
 | |
| 	case XFS_DINODE_FMT_EXTENTS:
 | |
| 		ASSERT(!(iip->ili_format.ilf_fields &
 | |
| 			 (XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
 | |
| 			  XFS_ILOG_DEV | XFS_ILOG_UUID)));
 | |
| 		if (iip->ili_format.ilf_fields & XFS_ILOG_DEXT) {
 | |
| 			ASSERT(ip->i_df.if_bytes > 0);
 | |
| 			ASSERT(ip->i_df.if_u1.if_extents != NULL);
 | |
| 			ASSERT(ip->i_d.di_nextents > 0);
 | |
| 			ASSERT(iip->ili_extents_buf == NULL);
 | |
| 			ASSERT((ip->i_df.if_bytes /
 | |
| 				(uint)sizeof(xfs_bmbt_rec_t)) > 0);
 | |
| #ifdef XFS_NATIVE_HOST
 | |
|                        if (ip->i_d.di_nextents == ip->i_df.if_bytes /
 | |
|                                                (uint)sizeof(xfs_bmbt_rec_t)) {
 | |
| 				/*
 | |
| 				 * There are no delayed allocation
 | |
| 				 * extents, so just point to the
 | |
| 				 * real extents array.
 | |
| 				 */
 | |
| 				vecp->i_addr = ip->i_df.if_u1.if_extents;
 | |
| 				vecp->i_len = ip->i_df.if_bytes;
 | |
| 				vecp->i_type = XLOG_REG_TYPE_IEXT;
 | |
| 			} else
 | |
| #endif
 | |
| 			{
 | |
| 				xfs_inode_item_format_extents(ip, vecp,
 | |
| 					XFS_DATA_FORK, XLOG_REG_TYPE_IEXT);
 | |
| 			}
 | |
| 			ASSERT(vecp->i_len <= ip->i_df.if_bytes);
 | |
| 			iip->ili_format.ilf_dsize = vecp->i_len;
 | |
| 			vecp++;
 | |
| 			nvecs++;
 | |
| 		}
 | |
| 		break;
 | |
| 
 | |
| 	case XFS_DINODE_FMT_BTREE:
 | |
| 		ASSERT(!(iip->ili_format.ilf_fields &
 | |
| 			 (XFS_ILOG_DDATA | XFS_ILOG_DEXT |
 | |
| 			  XFS_ILOG_DEV | XFS_ILOG_UUID)));
 | |
| 		if (iip->ili_format.ilf_fields & XFS_ILOG_DBROOT) {
 | |
| 			ASSERT(ip->i_df.if_broot_bytes > 0);
 | |
| 			ASSERT(ip->i_df.if_broot != NULL);
 | |
| 			vecp->i_addr = ip->i_df.if_broot;
 | |
| 			vecp->i_len = ip->i_df.if_broot_bytes;
 | |
| 			vecp->i_type = XLOG_REG_TYPE_IBROOT;
 | |
| 			vecp++;
 | |
| 			nvecs++;
 | |
| 			iip->ili_format.ilf_dsize = ip->i_df.if_broot_bytes;
 | |
| 		}
 | |
| 		break;
 | |
| 
 | |
| 	case XFS_DINODE_FMT_LOCAL:
 | |
| 		ASSERT(!(iip->ili_format.ilf_fields &
 | |
| 			 (XFS_ILOG_DBROOT | XFS_ILOG_DEXT |
 | |
| 			  XFS_ILOG_DEV | XFS_ILOG_UUID)));
 | |
| 		if (iip->ili_format.ilf_fields & XFS_ILOG_DDATA) {
 | |
| 			ASSERT(ip->i_df.if_bytes > 0);
 | |
| 			ASSERT(ip->i_df.if_u1.if_data != NULL);
 | |
| 			ASSERT(ip->i_d.di_size > 0);
 | |
| 
 | |
| 			vecp->i_addr = ip->i_df.if_u1.if_data;
 | |
| 			/*
 | |
| 			 * Round i_bytes up to a word boundary.
 | |
| 			 * The underlying memory is guaranteed to
 | |
| 			 * to be there by xfs_idata_realloc().
 | |
| 			 */
 | |
| 			data_bytes = roundup(ip->i_df.if_bytes, 4);
 | |
| 			ASSERT((ip->i_df.if_real_bytes == 0) ||
 | |
| 			       (ip->i_df.if_real_bytes == data_bytes));
 | |
| 			vecp->i_len = (int)data_bytes;
 | |
| 			vecp->i_type = XLOG_REG_TYPE_ILOCAL;
 | |
| 			vecp++;
 | |
| 			nvecs++;
 | |
| 			iip->ili_format.ilf_dsize = (unsigned)data_bytes;
 | |
| 		}
 | |
| 		break;
 | |
| 
 | |
| 	case XFS_DINODE_FMT_DEV:
 | |
| 		ASSERT(!(iip->ili_format.ilf_fields &
 | |
| 			 (XFS_ILOG_DBROOT | XFS_ILOG_DEXT |
 | |
| 			  XFS_ILOG_DDATA | XFS_ILOG_UUID)));
 | |
| 		if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
 | |
| 			iip->ili_format.ilf_u.ilfu_rdev =
 | |
| 				ip->i_df.if_u2.if_rdev;
 | |
| 		}
 | |
| 		break;
 | |
| 
 | |
| 	case XFS_DINODE_FMT_UUID:
 | |
| 		ASSERT(!(iip->ili_format.ilf_fields &
 | |
| 			 (XFS_ILOG_DBROOT | XFS_ILOG_DEXT |
 | |
| 			  XFS_ILOG_DDATA | XFS_ILOG_DEV)));
 | |
| 		if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
 | |
| 			iip->ili_format.ilf_u.ilfu_uuid =
 | |
| 				ip->i_df.if_u2.if_uuid;
 | |
| 		}
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		ASSERT(0);
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If there are no attributes associated with the file,
 | |
| 	 * then we're done.
 | |
| 	 * Assert that no attribute-related log flags are set.
 | |
| 	 */
 | |
| 	if (!XFS_IFORK_Q(ip)) {
 | |
| 		ASSERT(nvecs == lip->li_desc->lid_size);
 | |
| 		iip->ili_format.ilf_size = nvecs;
 | |
| 		ASSERT(!(iip->ili_format.ilf_fields &
 | |
| 			 (XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT)));
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	switch (ip->i_d.di_aformat) {
 | |
| 	case XFS_DINODE_FMT_EXTENTS:
 | |
| 		ASSERT(!(iip->ili_format.ilf_fields &
 | |
| 			 (XFS_ILOG_ADATA | XFS_ILOG_ABROOT)));
 | |
| 		if (iip->ili_format.ilf_fields & XFS_ILOG_AEXT) {
 | |
| #ifdef DEBUG
 | |
| 			int nrecs = ip->i_afp->if_bytes /
 | |
| 				(uint)sizeof(xfs_bmbt_rec_t);
 | |
| 			ASSERT(nrecs > 0);
 | |
| 			ASSERT(nrecs == ip->i_d.di_anextents);
 | |
| 			ASSERT(ip->i_afp->if_bytes > 0);
 | |
| 			ASSERT(ip->i_afp->if_u1.if_extents != NULL);
 | |
| 			ASSERT(ip->i_d.di_anextents > 0);
 | |
| #endif
 | |
| #ifdef XFS_NATIVE_HOST
 | |
| 			/*
 | |
| 			 * There are not delayed allocation extents
 | |
| 			 * for attributes, so just point at the array.
 | |
| 			 */
 | |
| 			vecp->i_addr = ip->i_afp->if_u1.if_extents;
 | |
| 			vecp->i_len = ip->i_afp->if_bytes;
 | |
| 			vecp->i_type = XLOG_REG_TYPE_IATTR_EXT;
 | |
| #else
 | |
| 			ASSERT(iip->ili_aextents_buf == NULL);
 | |
| 			xfs_inode_item_format_extents(ip, vecp,
 | |
| 					XFS_ATTR_FORK, XLOG_REG_TYPE_IATTR_EXT);
 | |
| #endif
 | |
| 			iip->ili_format.ilf_asize = vecp->i_len;
 | |
| 			vecp++;
 | |
| 			nvecs++;
 | |
| 		}
 | |
| 		break;
 | |
| 
 | |
| 	case XFS_DINODE_FMT_BTREE:
 | |
| 		ASSERT(!(iip->ili_format.ilf_fields &
 | |
| 			 (XFS_ILOG_ADATA | XFS_ILOG_AEXT)));
 | |
| 		if (iip->ili_format.ilf_fields & XFS_ILOG_ABROOT) {
 | |
| 			ASSERT(ip->i_afp->if_broot_bytes > 0);
 | |
| 			ASSERT(ip->i_afp->if_broot != NULL);
 | |
| 			vecp->i_addr = ip->i_afp->if_broot;
 | |
| 			vecp->i_len = ip->i_afp->if_broot_bytes;
 | |
| 			vecp->i_type = XLOG_REG_TYPE_IATTR_BROOT;
 | |
| 			vecp++;
 | |
| 			nvecs++;
 | |
| 			iip->ili_format.ilf_asize = ip->i_afp->if_broot_bytes;
 | |
| 		}
 | |
| 		break;
 | |
| 
 | |
| 	case XFS_DINODE_FMT_LOCAL:
 | |
| 		ASSERT(!(iip->ili_format.ilf_fields &
 | |
| 			 (XFS_ILOG_ABROOT | XFS_ILOG_AEXT)));
 | |
| 		if (iip->ili_format.ilf_fields & XFS_ILOG_ADATA) {
 | |
| 			ASSERT(ip->i_afp->if_bytes > 0);
 | |
| 			ASSERT(ip->i_afp->if_u1.if_data != NULL);
 | |
| 
 | |
| 			vecp->i_addr = ip->i_afp->if_u1.if_data;
 | |
| 			/*
 | |
| 			 * Round i_bytes up to a word boundary.
 | |
| 			 * The underlying memory is guaranteed to
 | |
| 			 * to be there by xfs_idata_realloc().
 | |
| 			 */
 | |
| 			data_bytes = roundup(ip->i_afp->if_bytes, 4);
 | |
| 			ASSERT((ip->i_afp->if_real_bytes == 0) ||
 | |
| 			       (ip->i_afp->if_real_bytes == data_bytes));
 | |
| 			vecp->i_len = (int)data_bytes;
 | |
| 			vecp->i_type = XLOG_REG_TYPE_IATTR_LOCAL;
 | |
| 			vecp++;
 | |
| 			nvecs++;
 | |
| 			iip->ili_format.ilf_asize = (unsigned)data_bytes;
 | |
| 		}
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		ASSERT(0);
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	ASSERT(nvecs == lip->li_desc->lid_size);
 | |
| 	iip->ili_format.ilf_size = nvecs;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * This is called to pin the inode associated with the inode log
 | |
|  * item in memory so it cannot be written out.
 | |
|  */
 | |
| STATIC void
 | |
| xfs_inode_item_pin(
 | |
| 	struct xfs_log_item	*lip)
 | |
| {
 | |
| 	struct xfs_inode	*ip = INODE_ITEM(lip)->ili_inode;
 | |
| 
 | |
| 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
 | |
| 
 | |
| 	trace_xfs_inode_pin(ip, _RET_IP_);
 | |
| 	atomic_inc(&ip->i_pincount);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * This is called to unpin the inode associated with the inode log
 | |
|  * item which was previously pinned with a call to xfs_inode_item_pin().
 | |
|  *
 | |
|  * Also wake up anyone in xfs_iunpin_wait() if the count goes to 0.
 | |
|  */
 | |
| STATIC void
 | |
| xfs_inode_item_unpin(
 | |
| 	struct xfs_log_item	*lip,
 | |
| 	int			remove)
 | |
| {
 | |
| 	struct xfs_inode	*ip = INODE_ITEM(lip)->ili_inode;
 | |
| 
 | |
| 	trace_xfs_inode_unpin(ip, _RET_IP_);
 | |
| 	ASSERT(atomic_read(&ip->i_pincount) > 0);
 | |
| 	if (atomic_dec_and_test(&ip->i_pincount))
 | |
| 		wake_up(&ip->i_ipin_wait);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is called to attempt to lock the inode associated with this
 | |
|  * inode log item, in preparation for the push routine which does the actual
 | |
|  * iflush.  Don't sleep on the inode lock or the flush lock.
 | |
|  *
 | |
|  * If the flush lock is already held, indicating that the inode has
 | |
|  * been or is in the process of being flushed, then (ideally) we'd like to
 | |
|  * see if the inode's buffer is still incore, and if so give it a nudge.
 | |
|  * We delay doing so until the pushbuf routine, though, to avoid holding
 | |
|  * the AIL lock across a call to the blackhole which is the buffer cache.
 | |
|  * Also we don't want to sleep in any device strategy routines, which can happen
 | |
|  * if we do the subsequent bawrite in here.
 | |
|  */
 | |
| STATIC uint
 | |
| xfs_inode_item_trylock(
 | |
| 	struct xfs_log_item	*lip)
 | |
| {
 | |
| 	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
 | |
| 	struct xfs_inode	*ip = iip->ili_inode;
 | |
| 
 | |
| 	if (xfs_ipincount(ip) > 0)
 | |
| 		return XFS_ITEM_PINNED;
 | |
| 
 | |
| 	if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED))
 | |
| 		return XFS_ITEM_LOCKED;
 | |
| 
 | |
| 	if (!xfs_iflock_nowait(ip)) {
 | |
| 		/*
 | |
| 		 * inode has already been flushed to the backing buffer,
 | |
| 		 * leave it locked in shared mode, pushbuf routine will
 | |
| 		 * unlock it.
 | |
| 		 */
 | |
| 		return XFS_ITEM_PUSHBUF;
 | |
| 	}
 | |
| 
 | |
| 	/* Stale items should force out the iclog */
 | |
| 	if (ip->i_flags & XFS_ISTALE) {
 | |
| 		xfs_ifunlock(ip);
 | |
| 		/*
 | |
| 		 * we hold the AIL lock - notify the unlock routine of this
 | |
| 		 * so it doesn't try to get the lock again.
 | |
| 		 */
 | |
| 		xfs_iunlock(ip, XFS_ILOCK_SHARED|XFS_IUNLOCK_NONOTIFY);
 | |
| 		return XFS_ITEM_PINNED;
 | |
| 	}
 | |
| 
 | |
| #ifdef DEBUG
 | |
| 	if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
 | |
| 		ASSERT(iip->ili_format.ilf_fields != 0);
 | |
| 		ASSERT(iip->ili_logged == 0);
 | |
| 		ASSERT(lip->li_flags & XFS_LI_IN_AIL);
 | |
| 	}
 | |
| #endif
 | |
| 	return XFS_ITEM_SUCCESS;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Unlock the inode associated with the inode log item.
 | |
|  * Clear the fields of the inode and inode log item that
 | |
|  * are specific to the current transaction.  If the
 | |
|  * hold flags is set, do not unlock the inode.
 | |
|  */
 | |
| STATIC void
 | |
| xfs_inode_item_unlock(
 | |
| 	struct xfs_log_item	*lip)
 | |
| {
 | |
| 	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
 | |
| 	struct xfs_inode	*ip = iip->ili_inode;
 | |
| 	unsigned short		lock_flags;
 | |
| 
 | |
| 	ASSERT(ip->i_itemp != NULL);
 | |
| 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
 | |
| 
 | |
| 	/*
 | |
| 	 * If the inode needed a separate buffer with which to log
 | |
| 	 * its extents, then free it now.
 | |
| 	 */
 | |
| 	if (iip->ili_extents_buf != NULL) {
 | |
| 		ASSERT(ip->i_d.di_format == XFS_DINODE_FMT_EXTENTS);
 | |
| 		ASSERT(ip->i_d.di_nextents > 0);
 | |
| 		ASSERT(iip->ili_format.ilf_fields & XFS_ILOG_DEXT);
 | |
| 		ASSERT(ip->i_df.if_bytes > 0);
 | |
| 		kmem_free(iip->ili_extents_buf);
 | |
| 		iip->ili_extents_buf = NULL;
 | |
| 	}
 | |
| 	if (iip->ili_aextents_buf != NULL) {
 | |
| 		ASSERT(ip->i_d.di_aformat == XFS_DINODE_FMT_EXTENTS);
 | |
| 		ASSERT(ip->i_d.di_anextents > 0);
 | |
| 		ASSERT(iip->ili_format.ilf_fields & XFS_ILOG_AEXT);
 | |
| 		ASSERT(ip->i_afp->if_bytes > 0);
 | |
| 		kmem_free(iip->ili_aextents_buf);
 | |
| 		iip->ili_aextents_buf = NULL;
 | |
| 	}
 | |
| 
 | |
| 	lock_flags = iip->ili_lock_flags;
 | |
| 	iip->ili_lock_flags = 0;
 | |
| 	if (lock_flags)
 | |
| 		xfs_iunlock(ip, lock_flags);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is called to find out where the oldest active copy of the inode log
 | |
|  * item in the on disk log resides now that the last log write of it completed
 | |
|  * at the given lsn.  Since we always re-log all dirty data in an inode, the
 | |
|  * latest copy in the on disk log is the only one that matters.  Therefore,
 | |
|  * simply return the given lsn.
 | |
|  *
 | |
|  * If the inode has been marked stale because the cluster is being freed, we
 | |
|  * don't want to (re-)insert this inode into the AIL. There is a race condition
 | |
|  * where the cluster buffer may be unpinned before the inode is inserted into
 | |
|  * the AIL during transaction committed processing. If the buffer is unpinned
 | |
|  * before the inode item has been committed and inserted, then it is possible
 | |
|  * for the buffer to be written and IO completes before the inode is inserted
 | |
|  * into the AIL. In that case, we'd be inserting a clean, stale inode into the
 | |
|  * AIL which will never get removed. It will, however, get reclaimed which
 | |
|  * triggers an assert in xfs_inode_free() complaining about freein an inode
 | |
|  * still in the AIL.
 | |
|  *
 | |
|  * To avoid this, just unpin the inode directly and return a LSN of -1 so the
 | |
|  * transaction committed code knows that it does not need to do any further
 | |
|  * processing on the item.
 | |
|  */
 | |
| STATIC xfs_lsn_t
 | |
| xfs_inode_item_committed(
 | |
| 	struct xfs_log_item	*lip,
 | |
| 	xfs_lsn_t		lsn)
 | |
| {
 | |
| 	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
 | |
| 	struct xfs_inode	*ip = iip->ili_inode;
 | |
| 
 | |
| 	if (xfs_iflags_test(ip, XFS_ISTALE)) {
 | |
| 		xfs_inode_item_unpin(lip, 0);
 | |
| 		return -1;
 | |
| 	}
 | |
| 	return lsn;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This gets called by xfs_trans_push_ail(), when IOP_TRYLOCK
 | |
|  * failed to get the inode flush lock but did get the inode locked SHARED.
 | |
|  * Here we're trying to see if the inode buffer is incore, and if so whether it's
 | |
|  * marked delayed write. If that's the case, we'll promote it and that will
 | |
|  * allow the caller to write the buffer by triggering the xfsbufd to run.
 | |
|  */
 | |
| STATIC bool
 | |
| xfs_inode_item_pushbuf(
 | |
| 	struct xfs_log_item	*lip)
 | |
| {
 | |
| 	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
 | |
| 	struct xfs_inode	*ip = iip->ili_inode;
 | |
| 	struct xfs_buf		*bp;
 | |
| 	bool			ret = true;
 | |
| 
 | |
| 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_SHARED));
 | |
| 
 | |
| 	/*
 | |
| 	 * If a flush is not in progress anymore, chances are that the
 | |
| 	 * inode was taken off the AIL. So, just get out.
 | |
| 	 */
 | |
| 	if (completion_done(&ip->i_flush) ||
 | |
| 	    !(lip->li_flags & XFS_LI_IN_AIL)) {
 | |
| 		xfs_iunlock(ip, XFS_ILOCK_SHARED);
 | |
| 		return true;
 | |
| 	}
 | |
| 
 | |
| 	bp = xfs_incore(ip->i_mount->m_ddev_targp, iip->ili_format.ilf_blkno,
 | |
| 			iip->ili_format.ilf_len, XBF_TRYLOCK);
 | |
| 
 | |
| 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
 | |
| 	if (!bp)
 | |
| 		return true;
 | |
| 	if (XFS_BUF_ISDELAYWRITE(bp))
 | |
| 		xfs_buf_delwri_promote(bp);
 | |
| 	if (xfs_buf_ispinned(bp))
 | |
| 		ret = false;
 | |
| 	xfs_buf_relse(bp);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is called to asynchronously write the inode associated with this
 | |
|  * inode log item out to disk. The inode will already have been locked by
 | |
|  * a successful call to xfs_inode_item_trylock().
 | |
|  */
 | |
| STATIC void
 | |
| xfs_inode_item_push(
 | |
| 	struct xfs_log_item	*lip)
 | |
| {
 | |
| 	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
 | |
| 	struct xfs_inode	*ip = iip->ili_inode;
 | |
| 
 | |
| 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_SHARED));
 | |
| 	ASSERT(!completion_done(&ip->i_flush));
 | |
| 
 | |
| 	/*
 | |
| 	 * Since we were able to lock the inode's flush lock and
 | |
| 	 * we found it on the AIL, the inode must be dirty.  This
 | |
| 	 * is because the inode is removed from the AIL while still
 | |
| 	 * holding the flush lock in xfs_iflush_done().  Thus, if
 | |
| 	 * we found it in the AIL and were able to obtain the flush
 | |
| 	 * lock without sleeping, then there must not have been
 | |
| 	 * anyone in the process of flushing the inode.
 | |
| 	 */
 | |
| 	ASSERT(XFS_FORCED_SHUTDOWN(ip->i_mount) ||
 | |
| 	       iip->ili_format.ilf_fields != 0);
 | |
| 
 | |
| 	/*
 | |
| 	 * Push the inode to it's backing buffer. This will not remove the
 | |
| 	 * inode from the AIL - a further push will be required to trigger a
 | |
| 	 * buffer push. However, this allows all the dirty inodes to be pushed
 | |
| 	 * to the buffer before it is pushed to disk. The buffer IO completion
 | |
| 	 * will pull the inode from the AIL, mark it clean and unlock the flush
 | |
| 	 * lock.
 | |
| 	 */
 | |
| 	(void) xfs_iflush(ip, SYNC_TRYLOCK);
 | |
| 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * XXX rcc - this one really has to do something.  Probably needs
 | |
|  * to stamp in a new field in the incore inode.
 | |
|  */
 | |
| STATIC void
 | |
| xfs_inode_item_committing(
 | |
| 	struct xfs_log_item	*lip,
 | |
| 	xfs_lsn_t		lsn)
 | |
| {
 | |
| 	INODE_ITEM(lip)->ili_last_lsn = lsn;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is the ops vector shared by all buf log items.
 | |
|  */
 | |
| static struct xfs_item_ops xfs_inode_item_ops = {
 | |
| 	.iop_size	= xfs_inode_item_size,
 | |
| 	.iop_format	= xfs_inode_item_format,
 | |
| 	.iop_pin	= xfs_inode_item_pin,
 | |
| 	.iop_unpin	= xfs_inode_item_unpin,
 | |
| 	.iop_trylock	= xfs_inode_item_trylock,
 | |
| 	.iop_unlock	= xfs_inode_item_unlock,
 | |
| 	.iop_committed	= xfs_inode_item_committed,
 | |
| 	.iop_push	= xfs_inode_item_push,
 | |
| 	.iop_pushbuf	= xfs_inode_item_pushbuf,
 | |
| 	.iop_committing = xfs_inode_item_committing
 | |
| };
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Initialize the inode log item for a newly allocated (in-core) inode.
 | |
|  */
 | |
| void
 | |
| xfs_inode_item_init(
 | |
| 	struct xfs_inode	*ip,
 | |
| 	struct xfs_mount	*mp)
 | |
| {
 | |
| 	struct xfs_inode_log_item *iip;
 | |
| 
 | |
| 	ASSERT(ip->i_itemp == NULL);
 | |
| 	iip = ip->i_itemp = kmem_zone_zalloc(xfs_ili_zone, KM_SLEEP);
 | |
| 
 | |
| 	iip->ili_inode = ip;
 | |
| 	xfs_log_item_init(mp, &iip->ili_item, XFS_LI_INODE,
 | |
| 						&xfs_inode_item_ops);
 | |
| 	iip->ili_format.ilf_type = XFS_LI_INODE;
 | |
| 	iip->ili_format.ilf_ino = ip->i_ino;
 | |
| 	iip->ili_format.ilf_blkno = ip->i_imap.im_blkno;
 | |
| 	iip->ili_format.ilf_len = ip->i_imap.im_len;
 | |
| 	iip->ili_format.ilf_boffset = ip->i_imap.im_boffset;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Free the inode log item and any memory hanging off of it.
 | |
|  */
 | |
| void
 | |
| xfs_inode_item_destroy(
 | |
| 	xfs_inode_t	*ip)
 | |
| {
 | |
| #ifdef XFS_TRANS_DEBUG
 | |
| 	if (ip->i_itemp->ili_root_size != 0) {
 | |
| 		kmem_free(ip->i_itemp->ili_orig_root);
 | |
| 	}
 | |
| #endif
 | |
| 	kmem_zone_free(xfs_ili_zone, ip->i_itemp);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * This is the inode flushing I/O completion routine.  It is called
 | |
|  * from interrupt level when the buffer containing the inode is
 | |
|  * flushed to disk.  It is responsible for removing the inode item
 | |
|  * from the AIL if it has not been re-logged, and unlocking the inode's
 | |
|  * flush lock.
 | |
|  *
 | |
|  * To reduce AIL lock traffic as much as possible, we scan the buffer log item
 | |
|  * list for other inodes that will run this function. We remove them from the
 | |
|  * buffer list so we can process all the inode IO completions in one AIL lock
 | |
|  * traversal.
 | |
|  */
 | |
| void
 | |
| xfs_iflush_done(
 | |
| 	struct xfs_buf		*bp,
 | |
| 	struct xfs_log_item	*lip)
 | |
| {
 | |
| 	struct xfs_inode_log_item *iip;
 | |
| 	struct xfs_log_item	*blip;
 | |
| 	struct xfs_log_item	*next;
 | |
| 	struct xfs_log_item	*prev;
 | |
| 	struct xfs_ail		*ailp = lip->li_ailp;
 | |
| 	int			need_ail = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Scan the buffer IO completions for other inodes being completed and
 | |
| 	 * attach them to the current inode log item.
 | |
| 	 */
 | |
| 	blip = bp->b_fspriv;
 | |
| 	prev = NULL;
 | |
| 	while (blip != NULL) {
 | |
| 		if (lip->li_cb != xfs_iflush_done) {
 | |
| 			prev = blip;
 | |
| 			blip = blip->li_bio_list;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/* remove from list */
 | |
| 		next = blip->li_bio_list;
 | |
| 		if (!prev) {
 | |
| 			bp->b_fspriv = next;
 | |
| 		} else {
 | |
| 			prev->li_bio_list = next;
 | |
| 		}
 | |
| 
 | |
| 		/* add to current list */
 | |
| 		blip->li_bio_list = lip->li_bio_list;
 | |
| 		lip->li_bio_list = blip;
 | |
| 
 | |
| 		/*
 | |
| 		 * while we have the item, do the unlocked check for needing
 | |
| 		 * the AIL lock.
 | |
| 		 */
 | |
| 		iip = INODE_ITEM(blip);
 | |
| 		if (iip->ili_logged && blip->li_lsn == iip->ili_flush_lsn)
 | |
| 			need_ail++;
 | |
| 
 | |
| 		blip = next;
 | |
| 	}
 | |
| 
 | |
| 	/* make sure we capture the state of the initial inode. */
 | |
| 	iip = INODE_ITEM(lip);
 | |
| 	if (iip->ili_logged && lip->li_lsn == iip->ili_flush_lsn)
 | |
| 		need_ail++;
 | |
| 
 | |
| 	/*
 | |
| 	 * We only want to pull the item from the AIL if it is
 | |
| 	 * actually there and its location in the log has not
 | |
| 	 * changed since we started the flush.  Thus, we only bother
 | |
| 	 * if the ili_logged flag is set and the inode's lsn has not
 | |
| 	 * changed.  First we check the lsn outside
 | |
| 	 * the lock since it's cheaper, and then we recheck while
 | |
| 	 * holding the lock before removing the inode from the AIL.
 | |
| 	 */
 | |
| 	if (need_ail) {
 | |
| 		struct xfs_log_item *log_items[need_ail];
 | |
| 		int i = 0;
 | |
| 		spin_lock(&ailp->xa_lock);
 | |
| 		for (blip = lip; blip; blip = blip->li_bio_list) {
 | |
| 			iip = INODE_ITEM(blip);
 | |
| 			if (iip->ili_logged &&
 | |
| 			    blip->li_lsn == iip->ili_flush_lsn) {
 | |
| 				log_items[i++] = blip;
 | |
| 			}
 | |
| 			ASSERT(i <= need_ail);
 | |
| 		}
 | |
| 		/* xfs_trans_ail_delete_bulk() drops the AIL lock. */
 | |
| 		xfs_trans_ail_delete_bulk(ailp, log_items, i);
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	/*
 | |
| 	 * clean up and unlock the flush lock now we are done. We can clear the
 | |
| 	 * ili_last_fields bits now that we know that the data corresponding to
 | |
| 	 * them is safely on disk.
 | |
| 	 */
 | |
| 	for (blip = lip; blip; blip = next) {
 | |
| 		next = blip->li_bio_list;
 | |
| 		blip->li_bio_list = NULL;
 | |
| 
 | |
| 		iip = INODE_ITEM(blip);
 | |
| 		iip->ili_logged = 0;
 | |
| 		iip->ili_last_fields = 0;
 | |
| 		xfs_ifunlock(iip->ili_inode);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is the inode flushing abort routine.  It is called
 | |
|  * from xfs_iflush when the filesystem is shutting down to clean
 | |
|  * up the inode state.
 | |
|  * It is responsible for removing the inode item
 | |
|  * from the AIL if it has not been re-logged, and unlocking the inode's
 | |
|  * flush lock.
 | |
|  */
 | |
| void
 | |
| xfs_iflush_abort(
 | |
| 	xfs_inode_t		*ip)
 | |
| {
 | |
| 	xfs_inode_log_item_t	*iip = ip->i_itemp;
 | |
| 
 | |
| 	if (iip) {
 | |
| 		struct xfs_ail	*ailp = iip->ili_item.li_ailp;
 | |
| 		if (iip->ili_item.li_flags & XFS_LI_IN_AIL) {
 | |
| 			spin_lock(&ailp->xa_lock);
 | |
| 			if (iip->ili_item.li_flags & XFS_LI_IN_AIL) {
 | |
| 				/* xfs_trans_ail_delete() drops the AIL lock. */
 | |
| 				xfs_trans_ail_delete(ailp, (xfs_log_item_t *)iip);
 | |
| 			} else
 | |
| 				spin_unlock(&ailp->xa_lock);
 | |
| 		}
 | |
| 		iip->ili_logged = 0;
 | |
| 		/*
 | |
| 		 * Clear the ili_last_fields bits now that we know that the
 | |
| 		 * data corresponding to them is safely on disk.
 | |
| 		 */
 | |
| 		iip->ili_last_fields = 0;
 | |
| 		/*
 | |
| 		 * Clear the inode logging fields so no more flushes are
 | |
| 		 * attempted.
 | |
| 		 */
 | |
| 		iip->ili_format.ilf_fields = 0;
 | |
| 	}
 | |
| 	/*
 | |
| 	 * Release the inode's flush lock since we're done with it.
 | |
| 	 */
 | |
| 	xfs_ifunlock(ip);
 | |
| }
 | |
| 
 | |
| void
 | |
| xfs_istale_done(
 | |
| 	struct xfs_buf		*bp,
 | |
| 	struct xfs_log_item	*lip)
 | |
| {
 | |
| 	xfs_iflush_abort(INODE_ITEM(lip)->ili_inode);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * convert an xfs_inode_log_format struct from either 32 or 64 bit versions
 | |
|  * (which can have different field alignments) to the native version
 | |
|  */
 | |
| int
 | |
| xfs_inode_item_format_convert(
 | |
| 	xfs_log_iovec_t		*buf,
 | |
| 	xfs_inode_log_format_t	*in_f)
 | |
| {
 | |
| 	if (buf->i_len == sizeof(xfs_inode_log_format_32_t)) {
 | |
| 		xfs_inode_log_format_32_t *in_f32 = buf->i_addr;
 | |
| 
 | |
| 		in_f->ilf_type = in_f32->ilf_type;
 | |
| 		in_f->ilf_size = in_f32->ilf_size;
 | |
| 		in_f->ilf_fields = in_f32->ilf_fields;
 | |
| 		in_f->ilf_asize = in_f32->ilf_asize;
 | |
| 		in_f->ilf_dsize = in_f32->ilf_dsize;
 | |
| 		in_f->ilf_ino = in_f32->ilf_ino;
 | |
| 		/* copy biggest field of ilf_u */
 | |
| 		memcpy(in_f->ilf_u.ilfu_uuid.__u_bits,
 | |
| 		       in_f32->ilf_u.ilfu_uuid.__u_bits,
 | |
| 		       sizeof(uuid_t));
 | |
| 		in_f->ilf_blkno = in_f32->ilf_blkno;
 | |
| 		in_f->ilf_len = in_f32->ilf_len;
 | |
| 		in_f->ilf_boffset = in_f32->ilf_boffset;
 | |
| 		return 0;
 | |
| 	} else if (buf->i_len == sizeof(xfs_inode_log_format_64_t)){
 | |
| 		xfs_inode_log_format_64_t *in_f64 = buf->i_addr;
 | |
| 
 | |
| 		in_f->ilf_type = in_f64->ilf_type;
 | |
| 		in_f->ilf_size = in_f64->ilf_size;
 | |
| 		in_f->ilf_fields = in_f64->ilf_fields;
 | |
| 		in_f->ilf_asize = in_f64->ilf_asize;
 | |
| 		in_f->ilf_dsize = in_f64->ilf_dsize;
 | |
| 		in_f->ilf_ino = in_f64->ilf_ino;
 | |
| 		/* copy biggest field of ilf_u */
 | |
| 		memcpy(in_f->ilf_u.ilfu_uuid.__u_bits,
 | |
| 		       in_f64->ilf_u.ilfu_uuid.__u_bits,
 | |
| 		       sizeof(uuid_t));
 | |
| 		in_f->ilf_blkno = in_f64->ilf_blkno;
 | |
| 		in_f->ilf_len = in_f64->ilf_len;
 | |
| 		in_f->ilf_boffset = in_f64->ilf_boffset;
 | |
| 		return 0;
 | |
| 	}
 | |
| 	return EFSCORRUPTED;
 | |
| }
 |