 806468f8bf
			
		
	
	
	806468f8bf
	
	
	
		
			
			Conflicts: fs/btrfs/Makefile fs/btrfs/extent_io.c fs/btrfs/extent_io.h fs/btrfs/scrub.c Signed-off-by: Chris Mason <chris.mason@oracle.com>
		
			
				
	
	
		
			3795 lines
		
	
	
	
		
			94 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			3795 lines
		
	
	
	
		
			94 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (C) 2007 Oracle.  All rights reserved.
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU General Public
 | |
|  * License v2 as published by the Free Software Foundation.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public
 | |
|  * License along with this program; if not, write to the
 | |
|  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 | |
|  * Boston, MA 021110-1307, USA.
 | |
|  */
 | |
| #include <linux/sched.h>
 | |
| #include <linux/bio.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/buffer_head.h>
 | |
| #include <linux/blkdev.h>
 | |
| #include <linux/random.h>
 | |
| #include <linux/iocontext.h>
 | |
| #include <linux/capability.h>
 | |
| #include <asm/div64.h>
 | |
| #include "compat.h"
 | |
| #include "ctree.h"
 | |
| #include "extent_map.h"
 | |
| #include "disk-io.h"
 | |
| #include "transaction.h"
 | |
| #include "print-tree.h"
 | |
| #include "volumes.h"
 | |
| #include "async-thread.h"
 | |
| 
 | |
| static int init_first_rw_device(struct btrfs_trans_handle *trans,
 | |
| 				struct btrfs_root *root,
 | |
| 				struct btrfs_device *device);
 | |
| static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
 | |
| 
 | |
| static DEFINE_MUTEX(uuid_mutex);
 | |
| static LIST_HEAD(fs_uuids);
 | |
| 
 | |
| static void lock_chunks(struct btrfs_root *root)
 | |
| {
 | |
| 	mutex_lock(&root->fs_info->chunk_mutex);
 | |
| }
 | |
| 
 | |
| static void unlock_chunks(struct btrfs_root *root)
 | |
| {
 | |
| 	mutex_unlock(&root->fs_info->chunk_mutex);
 | |
| }
 | |
| 
 | |
| static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
 | |
| {
 | |
| 	struct btrfs_device *device;
 | |
| 	WARN_ON(fs_devices->opened);
 | |
| 	while (!list_empty(&fs_devices->devices)) {
 | |
| 		device = list_entry(fs_devices->devices.next,
 | |
| 				    struct btrfs_device, dev_list);
 | |
| 		list_del(&device->dev_list);
 | |
| 		kfree(device->name);
 | |
| 		kfree(device);
 | |
| 	}
 | |
| 	kfree(fs_devices);
 | |
| }
 | |
| 
 | |
| int btrfs_cleanup_fs_uuids(void)
 | |
| {
 | |
| 	struct btrfs_fs_devices *fs_devices;
 | |
| 
 | |
| 	while (!list_empty(&fs_uuids)) {
 | |
| 		fs_devices = list_entry(fs_uuids.next,
 | |
| 					struct btrfs_fs_devices, list);
 | |
| 		list_del(&fs_devices->list);
 | |
| 		free_fs_devices(fs_devices);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static noinline struct btrfs_device *__find_device(struct list_head *head,
 | |
| 						   u64 devid, u8 *uuid)
 | |
| {
 | |
| 	struct btrfs_device *dev;
 | |
| 
 | |
| 	list_for_each_entry(dev, head, dev_list) {
 | |
| 		if (dev->devid == devid &&
 | |
| 		    (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
 | |
| 			return dev;
 | |
| 		}
 | |
| 	}
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
 | |
| {
 | |
| 	struct btrfs_fs_devices *fs_devices;
 | |
| 
 | |
| 	list_for_each_entry(fs_devices, &fs_uuids, list) {
 | |
| 		if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
 | |
| 			return fs_devices;
 | |
| 	}
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static void requeue_list(struct btrfs_pending_bios *pending_bios,
 | |
| 			struct bio *head, struct bio *tail)
 | |
| {
 | |
| 
 | |
| 	struct bio *old_head;
 | |
| 
 | |
| 	old_head = pending_bios->head;
 | |
| 	pending_bios->head = head;
 | |
| 	if (pending_bios->tail)
 | |
| 		tail->bi_next = old_head;
 | |
| 	else
 | |
| 		pending_bios->tail = tail;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * we try to collect pending bios for a device so we don't get a large
 | |
|  * number of procs sending bios down to the same device.  This greatly
 | |
|  * improves the schedulers ability to collect and merge the bios.
 | |
|  *
 | |
|  * But, it also turns into a long list of bios to process and that is sure
 | |
|  * to eventually make the worker thread block.  The solution here is to
 | |
|  * make some progress and then put this work struct back at the end of
 | |
|  * the list if the block device is congested.  This way, multiple devices
 | |
|  * can make progress from a single worker thread.
 | |
|  */
 | |
| static noinline int run_scheduled_bios(struct btrfs_device *device)
 | |
| {
 | |
| 	struct bio *pending;
 | |
| 	struct backing_dev_info *bdi;
 | |
| 	struct btrfs_fs_info *fs_info;
 | |
| 	struct btrfs_pending_bios *pending_bios;
 | |
| 	struct bio *tail;
 | |
| 	struct bio *cur;
 | |
| 	int again = 0;
 | |
| 	unsigned long num_run;
 | |
| 	unsigned long batch_run = 0;
 | |
| 	unsigned long limit;
 | |
| 	unsigned long last_waited = 0;
 | |
| 	int force_reg = 0;
 | |
| 	int sync_pending = 0;
 | |
| 	struct blk_plug plug;
 | |
| 
 | |
| 	/*
 | |
| 	 * this function runs all the bios we've collected for
 | |
| 	 * a particular device.  We don't want to wander off to
 | |
| 	 * another device without first sending all of these down.
 | |
| 	 * So, setup a plug here and finish it off before we return
 | |
| 	 */
 | |
| 	blk_start_plug(&plug);
 | |
| 
 | |
| 	bdi = blk_get_backing_dev_info(device->bdev);
 | |
| 	fs_info = device->dev_root->fs_info;
 | |
| 	limit = btrfs_async_submit_limit(fs_info);
 | |
| 	limit = limit * 2 / 3;
 | |
| 
 | |
| loop:
 | |
| 	spin_lock(&device->io_lock);
 | |
| 
 | |
| loop_lock:
 | |
| 	num_run = 0;
 | |
| 
 | |
| 	/* take all the bios off the list at once and process them
 | |
| 	 * later on (without the lock held).  But, remember the
 | |
| 	 * tail and other pointers so the bios can be properly reinserted
 | |
| 	 * into the list if we hit congestion
 | |
| 	 */
 | |
| 	if (!force_reg && device->pending_sync_bios.head) {
 | |
| 		pending_bios = &device->pending_sync_bios;
 | |
| 		force_reg = 1;
 | |
| 	} else {
 | |
| 		pending_bios = &device->pending_bios;
 | |
| 		force_reg = 0;
 | |
| 	}
 | |
| 
 | |
| 	pending = pending_bios->head;
 | |
| 	tail = pending_bios->tail;
 | |
| 	WARN_ON(pending && !tail);
 | |
| 
 | |
| 	/*
 | |
| 	 * if pending was null this time around, no bios need processing
 | |
| 	 * at all and we can stop.  Otherwise it'll loop back up again
 | |
| 	 * and do an additional check so no bios are missed.
 | |
| 	 *
 | |
| 	 * device->running_pending is used to synchronize with the
 | |
| 	 * schedule_bio code.
 | |
| 	 */
 | |
| 	if (device->pending_sync_bios.head == NULL &&
 | |
| 	    device->pending_bios.head == NULL) {
 | |
| 		again = 0;
 | |
| 		device->running_pending = 0;
 | |
| 	} else {
 | |
| 		again = 1;
 | |
| 		device->running_pending = 1;
 | |
| 	}
 | |
| 
 | |
| 	pending_bios->head = NULL;
 | |
| 	pending_bios->tail = NULL;
 | |
| 
 | |
| 	spin_unlock(&device->io_lock);
 | |
| 
 | |
| 	while (pending) {
 | |
| 
 | |
| 		rmb();
 | |
| 		/* we want to work on both lists, but do more bios on the
 | |
| 		 * sync list than the regular list
 | |
| 		 */
 | |
| 		if ((num_run > 32 &&
 | |
| 		    pending_bios != &device->pending_sync_bios &&
 | |
| 		    device->pending_sync_bios.head) ||
 | |
| 		   (num_run > 64 && pending_bios == &device->pending_sync_bios &&
 | |
| 		    device->pending_bios.head)) {
 | |
| 			spin_lock(&device->io_lock);
 | |
| 			requeue_list(pending_bios, pending, tail);
 | |
| 			goto loop_lock;
 | |
| 		}
 | |
| 
 | |
| 		cur = pending;
 | |
| 		pending = pending->bi_next;
 | |
| 		cur->bi_next = NULL;
 | |
| 		atomic_dec(&fs_info->nr_async_bios);
 | |
| 
 | |
| 		if (atomic_read(&fs_info->nr_async_bios) < limit &&
 | |
| 		    waitqueue_active(&fs_info->async_submit_wait))
 | |
| 			wake_up(&fs_info->async_submit_wait);
 | |
| 
 | |
| 		BUG_ON(atomic_read(&cur->bi_cnt) == 0);
 | |
| 
 | |
| 		/*
 | |
| 		 * if we're doing the sync list, record that our
 | |
| 		 * plug has some sync requests on it
 | |
| 		 *
 | |
| 		 * If we're doing the regular list and there are
 | |
| 		 * sync requests sitting around, unplug before
 | |
| 		 * we add more
 | |
| 		 */
 | |
| 		if (pending_bios == &device->pending_sync_bios) {
 | |
| 			sync_pending = 1;
 | |
| 		} else if (sync_pending) {
 | |
| 			blk_finish_plug(&plug);
 | |
| 			blk_start_plug(&plug);
 | |
| 			sync_pending = 0;
 | |
| 		}
 | |
| 
 | |
| 		submit_bio(cur->bi_rw, cur);
 | |
| 		num_run++;
 | |
| 		batch_run++;
 | |
| 		if (need_resched())
 | |
| 			cond_resched();
 | |
| 
 | |
| 		/*
 | |
| 		 * we made progress, there is more work to do and the bdi
 | |
| 		 * is now congested.  Back off and let other work structs
 | |
| 		 * run instead
 | |
| 		 */
 | |
| 		if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
 | |
| 		    fs_info->fs_devices->open_devices > 1) {
 | |
| 			struct io_context *ioc;
 | |
| 
 | |
| 			ioc = current->io_context;
 | |
| 
 | |
| 			/*
 | |
| 			 * the main goal here is that we don't want to
 | |
| 			 * block if we're going to be able to submit
 | |
| 			 * more requests without blocking.
 | |
| 			 *
 | |
| 			 * This code does two great things, it pokes into
 | |
| 			 * the elevator code from a filesystem _and_
 | |
| 			 * it makes assumptions about how batching works.
 | |
| 			 */
 | |
| 			if (ioc && ioc->nr_batch_requests > 0 &&
 | |
| 			    time_before(jiffies, ioc->last_waited + HZ/50UL) &&
 | |
| 			    (last_waited == 0 ||
 | |
| 			     ioc->last_waited == last_waited)) {
 | |
| 				/*
 | |
| 				 * we want to go through our batch of
 | |
| 				 * requests and stop.  So, we copy out
 | |
| 				 * the ioc->last_waited time and test
 | |
| 				 * against it before looping
 | |
| 				 */
 | |
| 				last_waited = ioc->last_waited;
 | |
| 				if (need_resched())
 | |
| 					cond_resched();
 | |
| 				continue;
 | |
| 			}
 | |
| 			spin_lock(&device->io_lock);
 | |
| 			requeue_list(pending_bios, pending, tail);
 | |
| 			device->running_pending = 1;
 | |
| 
 | |
| 			spin_unlock(&device->io_lock);
 | |
| 			btrfs_requeue_work(&device->work);
 | |
| 			goto done;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	cond_resched();
 | |
| 	if (again)
 | |
| 		goto loop;
 | |
| 
 | |
| 	spin_lock(&device->io_lock);
 | |
| 	if (device->pending_bios.head || device->pending_sync_bios.head)
 | |
| 		goto loop_lock;
 | |
| 	spin_unlock(&device->io_lock);
 | |
| 
 | |
| done:
 | |
| 	blk_finish_plug(&plug);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void pending_bios_fn(struct btrfs_work *work)
 | |
| {
 | |
| 	struct btrfs_device *device;
 | |
| 
 | |
| 	device = container_of(work, struct btrfs_device, work);
 | |
| 	run_scheduled_bios(device);
 | |
| }
 | |
| 
 | |
| static noinline int device_list_add(const char *path,
 | |
| 			   struct btrfs_super_block *disk_super,
 | |
| 			   u64 devid, struct btrfs_fs_devices **fs_devices_ret)
 | |
| {
 | |
| 	struct btrfs_device *device;
 | |
| 	struct btrfs_fs_devices *fs_devices;
 | |
| 	u64 found_transid = btrfs_super_generation(disk_super);
 | |
| 	char *name;
 | |
| 
 | |
| 	fs_devices = find_fsid(disk_super->fsid);
 | |
| 	if (!fs_devices) {
 | |
| 		fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
 | |
| 		if (!fs_devices)
 | |
| 			return -ENOMEM;
 | |
| 		INIT_LIST_HEAD(&fs_devices->devices);
 | |
| 		INIT_LIST_HEAD(&fs_devices->alloc_list);
 | |
| 		list_add(&fs_devices->list, &fs_uuids);
 | |
| 		memcpy(fs_devices->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
 | |
| 		fs_devices->latest_devid = devid;
 | |
| 		fs_devices->latest_trans = found_transid;
 | |
| 		mutex_init(&fs_devices->device_list_mutex);
 | |
| 		device = NULL;
 | |
| 	} else {
 | |
| 		device = __find_device(&fs_devices->devices, devid,
 | |
| 				       disk_super->dev_item.uuid);
 | |
| 	}
 | |
| 	if (!device) {
 | |
| 		if (fs_devices->opened)
 | |
| 			return -EBUSY;
 | |
| 
 | |
| 		device = kzalloc(sizeof(*device), GFP_NOFS);
 | |
| 		if (!device) {
 | |
| 			/* we can safely leave the fs_devices entry around */
 | |
| 			return -ENOMEM;
 | |
| 		}
 | |
| 		device->devid = devid;
 | |
| 		device->work.func = pending_bios_fn;
 | |
| 		memcpy(device->uuid, disk_super->dev_item.uuid,
 | |
| 		       BTRFS_UUID_SIZE);
 | |
| 		spin_lock_init(&device->io_lock);
 | |
| 		device->name = kstrdup(path, GFP_NOFS);
 | |
| 		if (!device->name) {
 | |
| 			kfree(device);
 | |
| 			return -ENOMEM;
 | |
| 		}
 | |
| 		INIT_LIST_HEAD(&device->dev_alloc_list);
 | |
| 
 | |
| 		/* init readahead state */
 | |
| 		spin_lock_init(&device->reada_lock);
 | |
| 		device->reada_curr_zone = NULL;
 | |
| 		atomic_set(&device->reada_in_flight, 0);
 | |
| 		device->reada_next = 0;
 | |
| 		INIT_RADIX_TREE(&device->reada_zones, GFP_NOFS & ~__GFP_WAIT);
 | |
| 		INIT_RADIX_TREE(&device->reada_extents, GFP_NOFS & ~__GFP_WAIT);
 | |
| 
 | |
| 		mutex_lock(&fs_devices->device_list_mutex);
 | |
| 		list_add_rcu(&device->dev_list, &fs_devices->devices);
 | |
| 		mutex_unlock(&fs_devices->device_list_mutex);
 | |
| 
 | |
| 		device->fs_devices = fs_devices;
 | |
| 		fs_devices->num_devices++;
 | |
| 	} else if (!device->name || strcmp(device->name, path)) {
 | |
| 		name = kstrdup(path, GFP_NOFS);
 | |
| 		if (!name)
 | |
| 			return -ENOMEM;
 | |
| 		kfree(device->name);
 | |
| 		device->name = name;
 | |
| 		if (device->missing) {
 | |
| 			fs_devices->missing_devices--;
 | |
| 			device->missing = 0;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (found_transid > fs_devices->latest_trans) {
 | |
| 		fs_devices->latest_devid = devid;
 | |
| 		fs_devices->latest_trans = found_transid;
 | |
| 	}
 | |
| 	*fs_devices_ret = fs_devices;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
 | |
| {
 | |
| 	struct btrfs_fs_devices *fs_devices;
 | |
| 	struct btrfs_device *device;
 | |
| 	struct btrfs_device *orig_dev;
 | |
| 
 | |
| 	fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
 | |
| 	if (!fs_devices)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 
 | |
| 	INIT_LIST_HEAD(&fs_devices->devices);
 | |
| 	INIT_LIST_HEAD(&fs_devices->alloc_list);
 | |
| 	INIT_LIST_HEAD(&fs_devices->list);
 | |
| 	mutex_init(&fs_devices->device_list_mutex);
 | |
| 	fs_devices->latest_devid = orig->latest_devid;
 | |
| 	fs_devices->latest_trans = orig->latest_trans;
 | |
| 	memcpy(fs_devices->fsid, orig->fsid, sizeof(fs_devices->fsid));
 | |
| 
 | |
| 	/* We have held the volume lock, it is safe to get the devices. */
 | |
| 	list_for_each_entry(orig_dev, &orig->devices, dev_list) {
 | |
| 		device = kzalloc(sizeof(*device), GFP_NOFS);
 | |
| 		if (!device)
 | |
| 			goto error;
 | |
| 
 | |
| 		device->name = kstrdup(orig_dev->name, GFP_NOFS);
 | |
| 		if (!device->name) {
 | |
| 			kfree(device);
 | |
| 			goto error;
 | |
| 		}
 | |
| 
 | |
| 		device->devid = orig_dev->devid;
 | |
| 		device->work.func = pending_bios_fn;
 | |
| 		memcpy(device->uuid, orig_dev->uuid, sizeof(device->uuid));
 | |
| 		spin_lock_init(&device->io_lock);
 | |
| 		INIT_LIST_HEAD(&device->dev_list);
 | |
| 		INIT_LIST_HEAD(&device->dev_alloc_list);
 | |
| 
 | |
| 		list_add(&device->dev_list, &fs_devices->devices);
 | |
| 		device->fs_devices = fs_devices;
 | |
| 		fs_devices->num_devices++;
 | |
| 	}
 | |
| 	return fs_devices;
 | |
| error:
 | |
| 	free_fs_devices(fs_devices);
 | |
| 	return ERR_PTR(-ENOMEM);
 | |
| }
 | |
| 
 | |
| int btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices)
 | |
| {
 | |
| 	struct btrfs_device *device, *next;
 | |
| 
 | |
| 	mutex_lock(&uuid_mutex);
 | |
| again:
 | |
| 	/* This is the initialized path, it is safe to release the devices. */
 | |
| 	list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
 | |
| 		if (device->in_fs_metadata)
 | |
| 			continue;
 | |
| 
 | |
| 		if (device->bdev) {
 | |
| 			blkdev_put(device->bdev, device->mode);
 | |
| 			device->bdev = NULL;
 | |
| 			fs_devices->open_devices--;
 | |
| 		}
 | |
| 		if (device->writeable) {
 | |
| 			list_del_init(&device->dev_alloc_list);
 | |
| 			device->writeable = 0;
 | |
| 			fs_devices->rw_devices--;
 | |
| 		}
 | |
| 		list_del_init(&device->dev_list);
 | |
| 		fs_devices->num_devices--;
 | |
| 		kfree(device->name);
 | |
| 		kfree(device);
 | |
| 	}
 | |
| 
 | |
| 	if (fs_devices->seed) {
 | |
| 		fs_devices = fs_devices->seed;
 | |
| 		goto again;
 | |
| 	}
 | |
| 
 | |
| 	mutex_unlock(&uuid_mutex);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void __free_device(struct work_struct *work)
 | |
| {
 | |
| 	struct btrfs_device *device;
 | |
| 
 | |
| 	device = container_of(work, struct btrfs_device, rcu_work);
 | |
| 
 | |
| 	if (device->bdev)
 | |
| 		blkdev_put(device->bdev, device->mode);
 | |
| 
 | |
| 	kfree(device->name);
 | |
| 	kfree(device);
 | |
| }
 | |
| 
 | |
| static void free_device(struct rcu_head *head)
 | |
| {
 | |
| 	struct btrfs_device *device;
 | |
| 
 | |
| 	device = container_of(head, struct btrfs_device, rcu);
 | |
| 
 | |
| 	INIT_WORK(&device->rcu_work, __free_device);
 | |
| 	schedule_work(&device->rcu_work);
 | |
| }
 | |
| 
 | |
| static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
 | |
| {
 | |
| 	struct btrfs_device *device;
 | |
| 
 | |
| 	if (--fs_devices->opened > 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	mutex_lock(&fs_devices->device_list_mutex);
 | |
| 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
 | |
| 		struct btrfs_device *new_device;
 | |
| 
 | |
| 		if (device->bdev)
 | |
| 			fs_devices->open_devices--;
 | |
| 
 | |
| 		if (device->writeable) {
 | |
| 			list_del_init(&device->dev_alloc_list);
 | |
| 			fs_devices->rw_devices--;
 | |
| 		}
 | |
| 
 | |
| 		if (device->can_discard)
 | |
| 			fs_devices->num_can_discard--;
 | |
| 
 | |
| 		new_device = kmalloc(sizeof(*new_device), GFP_NOFS);
 | |
| 		BUG_ON(!new_device);
 | |
| 		memcpy(new_device, device, sizeof(*new_device));
 | |
| 		new_device->name = kstrdup(device->name, GFP_NOFS);
 | |
| 		BUG_ON(device->name && !new_device->name);
 | |
| 		new_device->bdev = NULL;
 | |
| 		new_device->writeable = 0;
 | |
| 		new_device->in_fs_metadata = 0;
 | |
| 		new_device->can_discard = 0;
 | |
| 		list_replace_rcu(&device->dev_list, &new_device->dev_list);
 | |
| 
 | |
| 		call_rcu(&device->rcu, free_device);
 | |
| 	}
 | |
| 	mutex_unlock(&fs_devices->device_list_mutex);
 | |
| 
 | |
| 	WARN_ON(fs_devices->open_devices);
 | |
| 	WARN_ON(fs_devices->rw_devices);
 | |
| 	fs_devices->opened = 0;
 | |
| 	fs_devices->seeding = 0;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
 | |
| {
 | |
| 	struct btrfs_fs_devices *seed_devices = NULL;
 | |
| 	int ret;
 | |
| 
 | |
| 	mutex_lock(&uuid_mutex);
 | |
| 	ret = __btrfs_close_devices(fs_devices);
 | |
| 	if (!fs_devices->opened) {
 | |
| 		seed_devices = fs_devices->seed;
 | |
| 		fs_devices->seed = NULL;
 | |
| 	}
 | |
| 	mutex_unlock(&uuid_mutex);
 | |
| 
 | |
| 	while (seed_devices) {
 | |
| 		fs_devices = seed_devices;
 | |
| 		seed_devices = fs_devices->seed;
 | |
| 		__btrfs_close_devices(fs_devices);
 | |
| 		free_fs_devices(fs_devices);
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
 | |
| 				fmode_t flags, void *holder)
 | |
| {
 | |
| 	struct request_queue *q;
 | |
| 	struct block_device *bdev;
 | |
| 	struct list_head *head = &fs_devices->devices;
 | |
| 	struct btrfs_device *device;
 | |
| 	struct block_device *latest_bdev = NULL;
 | |
| 	struct buffer_head *bh;
 | |
| 	struct btrfs_super_block *disk_super;
 | |
| 	u64 latest_devid = 0;
 | |
| 	u64 latest_transid = 0;
 | |
| 	u64 devid;
 | |
| 	int seeding = 1;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	flags |= FMODE_EXCL;
 | |
| 
 | |
| 	list_for_each_entry(device, head, dev_list) {
 | |
| 		if (device->bdev)
 | |
| 			continue;
 | |
| 		if (!device->name)
 | |
| 			continue;
 | |
| 
 | |
| 		bdev = blkdev_get_by_path(device->name, flags, holder);
 | |
| 		if (IS_ERR(bdev)) {
 | |
| 			printk(KERN_INFO "open %s failed\n", device->name);
 | |
| 			goto error;
 | |
| 		}
 | |
| 		set_blocksize(bdev, 4096);
 | |
| 
 | |
| 		bh = btrfs_read_dev_super(bdev);
 | |
| 		if (!bh)
 | |
| 			goto error_close;
 | |
| 
 | |
| 		disk_super = (struct btrfs_super_block *)bh->b_data;
 | |
| 		devid = btrfs_stack_device_id(&disk_super->dev_item);
 | |
| 		if (devid != device->devid)
 | |
| 			goto error_brelse;
 | |
| 
 | |
| 		if (memcmp(device->uuid, disk_super->dev_item.uuid,
 | |
| 			   BTRFS_UUID_SIZE))
 | |
| 			goto error_brelse;
 | |
| 
 | |
| 		device->generation = btrfs_super_generation(disk_super);
 | |
| 		if (!latest_transid || device->generation > latest_transid) {
 | |
| 			latest_devid = devid;
 | |
| 			latest_transid = device->generation;
 | |
| 			latest_bdev = bdev;
 | |
| 		}
 | |
| 
 | |
| 		if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
 | |
| 			device->writeable = 0;
 | |
| 		} else {
 | |
| 			device->writeable = !bdev_read_only(bdev);
 | |
| 			seeding = 0;
 | |
| 		}
 | |
| 
 | |
| 		q = bdev_get_queue(bdev);
 | |
| 		if (blk_queue_discard(q)) {
 | |
| 			device->can_discard = 1;
 | |
| 			fs_devices->num_can_discard++;
 | |
| 		}
 | |
| 
 | |
| 		device->bdev = bdev;
 | |
| 		device->in_fs_metadata = 0;
 | |
| 		device->mode = flags;
 | |
| 
 | |
| 		if (!blk_queue_nonrot(bdev_get_queue(bdev)))
 | |
| 			fs_devices->rotating = 1;
 | |
| 
 | |
| 		fs_devices->open_devices++;
 | |
| 		if (device->writeable) {
 | |
| 			fs_devices->rw_devices++;
 | |
| 			list_add(&device->dev_alloc_list,
 | |
| 				 &fs_devices->alloc_list);
 | |
| 		}
 | |
| 		brelse(bh);
 | |
| 		continue;
 | |
| 
 | |
| error_brelse:
 | |
| 		brelse(bh);
 | |
| error_close:
 | |
| 		blkdev_put(bdev, flags);
 | |
| error:
 | |
| 		continue;
 | |
| 	}
 | |
| 	if (fs_devices->open_devices == 0) {
 | |
| 		ret = -EINVAL;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	fs_devices->seeding = seeding;
 | |
| 	fs_devices->opened = 1;
 | |
| 	fs_devices->latest_bdev = latest_bdev;
 | |
| 	fs_devices->latest_devid = latest_devid;
 | |
| 	fs_devices->latest_trans = latest_transid;
 | |
| 	fs_devices->total_rw_bytes = 0;
 | |
| out:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
 | |
| 		       fmode_t flags, void *holder)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	mutex_lock(&uuid_mutex);
 | |
| 	if (fs_devices->opened) {
 | |
| 		fs_devices->opened++;
 | |
| 		ret = 0;
 | |
| 	} else {
 | |
| 		ret = __btrfs_open_devices(fs_devices, flags, holder);
 | |
| 	}
 | |
| 	mutex_unlock(&uuid_mutex);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
 | |
| 			  struct btrfs_fs_devices **fs_devices_ret)
 | |
| {
 | |
| 	struct btrfs_super_block *disk_super;
 | |
| 	struct block_device *bdev;
 | |
| 	struct buffer_head *bh;
 | |
| 	int ret;
 | |
| 	u64 devid;
 | |
| 	u64 transid;
 | |
| 
 | |
| 	mutex_lock(&uuid_mutex);
 | |
| 
 | |
| 	flags |= FMODE_EXCL;
 | |
| 	bdev = blkdev_get_by_path(path, flags, holder);
 | |
| 
 | |
| 	if (IS_ERR(bdev)) {
 | |
| 		ret = PTR_ERR(bdev);
 | |
| 		goto error;
 | |
| 	}
 | |
| 
 | |
| 	ret = set_blocksize(bdev, 4096);
 | |
| 	if (ret)
 | |
| 		goto error_close;
 | |
| 	bh = btrfs_read_dev_super(bdev);
 | |
| 	if (!bh) {
 | |
| 		ret = -EINVAL;
 | |
| 		goto error_close;
 | |
| 	}
 | |
| 	disk_super = (struct btrfs_super_block *)bh->b_data;
 | |
| 	devid = btrfs_stack_device_id(&disk_super->dev_item);
 | |
| 	transid = btrfs_super_generation(disk_super);
 | |
| 	if (disk_super->label[0])
 | |
| 		printk(KERN_INFO "device label %s ", disk_super->label);
 | |
| 	else
 | |
| 		printk(KERN_INFO "device fsid %pU ", disk_super->fsid);
 | |
| 	printk(KERN_CONT "devid %llu transid %llu %s\n",
 | |
| 	       (unsigned long long)devid, (unsigned long long)transid, path);
 | |
| 	ret = device_list_add(path, disk_super, devid, fs_devices_ret);
 | |
| 
 | |
| 	brelse(bh);
 | |
| error_close:
 | |
| 	blkdev_put(bdev, flags);
 | |
| error:
 | |
| 	mutex_unlock(&uuid_mutex);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /* helper to account the used device space in the range */
 | |
| int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
 | |
| 				   u64 end, u64 *length)
 | |
| {
 | |
| 	struct btrfs_key key;
 | |
| 	struct btrfs_root *root = device->dev_root;
 | |
| 	struct btrfs_dev_extent *dev_extent;
 | |
| 	struct btrfs_path *path;
 | |
| 	u64 extent_end;
 | |
| 	int ret;
 | |
| 	int slot;
 | |
| 	struct extent_buffer *l;
 | |
| 
 | |
| 	*length = 0;
 | |
| 
 | |
| 	if (start >= device->total_bytes)
 | |
| 		return 0;
 | |
| 
 | |
| 	path = btrfs_alloc_path();
 | |
| 	if (!path)
 | |
| 		return -ENOMEM;
 | |
| 	path->reada = 2;
 | |
| 
 | |
| 	key.objectid = device->devid;
 | |
| 	key.offset = start;
 | |
| 	key.type = BTRFS_DEV_EXTENT_KEY;
 | |
| 
 | |
| 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 | |
| 	if (ret < 0)
 | |
| 		goto out;
 | |
| 	if (ret > 0) {
 | |
| 		ret = btrfs_previous_item(root, path, key.objectid, key.type);
 | |
| 		if (ret < 0)
 | |
| 			goto out;
 | |
| 	}
 | |
| 
 | |
| 	while (1) {
 | |
| 		l = path->nodes[0];
 | |
| 		slot = path->slots[0];
 | |
| 		if (slot >= btrfs_header_nritems(l)) {
 | |
| 			ret = btrfs_next_leaf(root, path);
 | |
| 			if (ret == 0)
 | |
| 				continue;
 | |
| 			if (ret < 0)
 | |
| 				goto out;
 | |
| 
 | |
| 			break;
 | |
| 		}
 | |
| 		btrfs_item_key_to_cpu(l, &key, slot);
 | |
| 
 | |
| 		if (key.objectid < device->devid)
 | |
| 			goto next;
 | |
| 
 | |
| 		if (key.objectid > device->devid)
 | |
| 			break;
 | |
| 
 | |
| 		if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
 | |
| 			goto next;
 | |
| 
 | |
| 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
 | |
| 		extent_end = key.offset + btrfs_dev_extent_length(l,
 | |
| 								  dev_extent);
 | |
| 		if (key.offset <= start && extent_end > end) {
 | |
| 			*length = end - start + 1;
 | |
| 			break;
 | |
| 		} else if (key.offset <= start && extent_end > start)
 | |
| 			*length += extent_end - start;
 | |
| 		else if (key.offset > start && extent_end <= end)
 | |
| 			*length += extent_end - key.offset;
 | |
| 		else if (key.offset > start && key.offset <= end) {
 | |
| 			*length += end - key.offset + 1;
 | |
| 			break;
 | |
| 		} else if (key.offset > end)
 | |
| 			break;
 | |
| 
 | |
| next:
 | |
| 		path->slots[0]++;
 | |
| 	}
 | |
| 	ret = 0;
 | |
| out:
 | |
| 	btrfs_free_path(path);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * find_free_dev_extent - find free space in the specified device
 | |
|  * @trans:	transaction handler
 | |
|  * @device:	the device which we search the free space in
 | |
|  * @num_bytes:	the size of the free space that we need
 | |
|  * @start:	store the start of the free space.
 | |
|  * @len:	the size of the free space. that we find, or the size of the max
 | |
|  * 		free space if we don't find suitable free space
 | |
|  *
 | |
|  * this uses a pretty simple search, the expectation is that it is
 | |
|  * called very infrequently and that a given device has a small number
 | |
|  * of extents
 | |
|  *
 | |
|  * @start is used to store the start of the free space if we find. But if we
 | |
|  * don't find suitable free space, it will be used to store the start position
 | |
|  * of the max free space.
 | |
|  *
 | |
|  * @len is used to store the size of the free space that we find.
 | |
|  * But if we don't find suitable free space, it is used to store the size of
 | |
|  * the max free space.
 | |
|  */
 | |
| int find_free_dev_extent(struct btrfs_trans_handle *trans,
 | |
| 			 struct btrfs_device *device, u64 num_bytes,
 | |
| 			 u64 *start, u64 *len)
 | |
| {
 | |
| 	struct btrfs_key key;
 | |
| 	struct btrfs_root *root = device->dev_root;
 | |
| 	struct btrfs_dev_extent *dev_extent;
 | |
| 	struct btrfs_path *path;
 | |
| 	u64 hole_size;
 | |
| 	u64 max_hole_start;
 | |
| 	u64 max_hole_size;
 | |
| 	u64 extent_end;
 | |
| 	u64 search_start;
 | |
| 	u64 search_end = device->total_bytes;
 | |
| 	int ret;
 | |
| 	int slot;
 | |
| 	struct extent_buffer *l;
 | |
| 
 | |
| 	/* FIXME use last free of some kind */
 | |
| 
 | |
| 	/* we don't want to overwrite the superblock on the drive,
 | |
| 	 * so we make sure to start at an offset of at least 1MB
 | |
| 	 */
 | |
| 	search_start = max(root->fs_info->alloc_start, 1024ull * 1024);
 | |
| 
 | |
| 	max_hole_start = search_start;
 | |
| 	max_hole_size = 0;
 | |
| 	hole_size = 0;
 | |
| 
 | |
| 	if (search_start >= search_end) {
 | |
| 		ret = -ENOSPC;
 | |
| 		goto error;
 | |
| 	}
 | |
| 
 | |
| 	path = btrfs_alloc_path();
 | |
| 	if (!path) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto error;
 | |
| 	}
 | |
| 	path->reada = 2;
 | |
| 
 | |
| 	key.objectid = device->devid;
 | |
| 	key.offset = search_start;
 | |
| 	key.type = BTRFS_DEV_EXTENT_KEY;
 | |
| 
 | |
| 	ret = btrfs_search_slot(trans, root, &key, path, 0, 0);
 | |
| 	if (ret < 0)
 | |
| 		goto out;
 | |
| 	if (ret > 0) {
 | |
| 		ret = btrfs_previous_item(root, path, key.objectid, key.type);
 | |
| 		if (ret < 0)
 | |
| 			goto out;
 | |
| 	}
 | |
| 
 | |
| 	while (1) {
 | |
| 		l = path->nodes[0];
 | |
| 		slot = path->slots[0];
 | |
| 		if (slot >= btrfs_header_nritems(l)) {
 | |
| 			ret = btrfs_next_leaf(root, path);
 | |
| 			if (ret == 0)
 | |
| 				continue;
 | |
| 			if (ret < 0)
 | |
| 				goto out;
 | |
| 
 | |
| 			break;
 | |
| 		}
 | |
| 		btrfs_item_key_to_cpu(l, &key, slot);
 | |
| 
 | |
| 		if (key.objectid < device->devid)
 | |
| 			goto next;
 | |
| 
 | |
| 		if (key.objectid > device->devid)
 | |
| 			break;
 | |
| 
 | |
| 		if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
 | |
| 			goto next;
 | |
| 
 | |
| 		if (key.offset > search_start) {
 | |
| 			hole_size = key.offset - search_start;
 | |
| 
 | |
| 			if (hole_size > max_hole_size) {
 | |
| 				max_hole_start = search_start;
 | |
| 				max_hole_size = hole_size;
 | |
| 			}
 | |
| 
 | |
| 			/*
 | |
| 			 * If this free space is greater than which we need,
 | |
| 			 * it must be the max free space that we have found
 | |
| 			 * until now, so max_hole_start must point to the start
 | |
| 			 * of this free space and the length of this free space
 | |
| 			 * is stored in max_hole_size. Thus, we return
 | |
| 			 * max_hole_start and max_hole_size and go back to the
 | |
| 			 * caller.
 | |
| 			 */
 | |
| 			if (hole_size >= num_bytes) {
 | |
| 				ret = 0;
 | |
| 				goto out;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
 | |
| 		extent_end = key.offset + btrfs_dev_extent_length(l,
 | |
| 								  dev_extent);
 | |
| 		if (extent_end > search_start)
 | |
| 			search_start = extent_end;
 | |
| next:
 | |
| 		path->slots[0]++;
 | |
| 		cond_resched();
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * At this point, search_start should be the end of
 | |
| 	 * allocated dev extents, and when shrinking the device,
 | |
| 	 * search_end may be smaller than search_start.
 | |
| 	 */
 | |
| 	if (search_end > search_start)
 | |
| 		hole_size = search_end - search_start;
 | |
| 
 | |
| 	if (hole_size > max_hole_size) {
 | |
| 		max_hole_start = search_start;
 | |
| 		max_hole_size = hole_size;
 | |
| 	}
 | |
| 
 | |
| 	/* See above. */
 | |
| 	if (hole_size < num_bytes)
 | |
| 		ret = -ENOSPC;
 | |
| 	else
 | |
| 		ret = 0;
 | |
| 
 | |
| out:
 | |
| 	btrfs_free_path(path);
 | |
| error:
 | |
| 	*start = max_hole_start;
 | |
| 	if (len)
 | |
| 		*len = max_hole_size;
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
 | |
| 			  struct btrfs_device *device,
 | |
| 			  u64 start)
 | |
| {
 | |
| 	int ret;
 | |
| 	struct btrfs_path *path;
 | |
| 	struct btrfs_root *root = device->dev_root;
 | |
| 	struct btrfs_key key;
 | |
| 	struct btrfs_key found_key;
 | |
| 	struct extent_buffer *leaf = NULL;
 | |
| 	struct btrfs_dev_extent *extent = NULL;
 | |
| 
 | |
| 	path = btrfs_alloc_path();
 | |
| 	if (!path)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	key.objectid = device->devid;
 | |
| 	key.offset = start;
 | |
| 	key.type = BTRFS_DEV_EXTENT_KEY;
 | |
| 
 | |
| 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
 | |
| 	if (ret > 0) {
 | |
| 		ret = btrfs_previous_item(root, path, key.objectid,
 | |
| 					  BTRFS_DEV_EXTENT_KEY);
 | |
| 		if (ret)
 | |
| 			goto out;
 | |
| 		leaf = path->nodes[0];
 | |
| 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
 | |
| 		extent = btrfs_item_ptr(leaf, path->slots[0],
 | |
| 					struct btrfs_dev_extent);
 | |
| 		BUG_ON(found_key.offset > start || found_key.offset +
 | |
| 		       btrfs_dev_extent_length(leaf, extent) < start);
 | |
| 	} else if (ret == 0) {
 | |
| 		leaf = path->nodes[0];
 | |
| 		extent = btrfs_item_ptr(leaf, path->slots[0],
 | |
| 					struct btrfs_dev_extent);
 | |
| 	}
 | |
| 	BUG_ON(ret);
 | |
| 
 | |
| 	if (device->bytes_used > 0) {
 | |
| 		u64 len = btrfs_dev_extent_length(leaf, extent);
 | |
| 		device->bytes_used -= len;
 | |
| 		spin_lock(&root->fs_info->free_chunk_lock);
 | |
| 		root->fs_info->free_chunk_space += len;
 | |
| 		spin_unlock(&root->fs_info->free_chunk_lock);
 | |
| 	}
 | |
| 	ret = btrfs_del_item(trans, root, path);
 | |
| 
 | |
| out:
 | |
| 	btrfs_free_path(path);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
 | |
| 			   struct btrfs_device *device,
 | |
| 			   u64 chunk_tree, u64 chunk_objectid,
 | |
| 			   u64 chunk_offset, u64 start, u64 num_bytes)
 | |
| {
 | |
| 	int ret;
 | |
| 	struct btrfs_path *path;
 | |
| 	struct btrfs_root *root = device->dev_root;
 | |
| 	struct btrfs_dev_extent *extent;
 | |
| 	struct extent_buffer *leaf;
 | |
| 	struct btrfs_key key;
 | |
| 
 | |
| 	WARN_ON(!device->in_fs_metadata);
 | |
| 	path = btrfs_alloc_path();
 | |
| 	if (!path)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	key.objectid = device->devid;
 | |
| 	key.offset = start;
 | |
| 	key.type = BTRFS_DEV_EXTENT_KEY;
 | |
| 	ret = btrfs_insert_empty_item(trans, root, path, &key,
 | |
| 				      sizeof(*extent));
 | |
| 	BUG_ON(ret);
 | |
| 
 | |
| 	leaf = path->nodes[0];
 | |
| 	extent = btrfs_item_ptr(leaf, path->slots[0],
 | |
| 				struct btrfs_dev_extent);
 | |
| 	btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
 | |
| 	btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
 | |
| 	btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
 | |
| 
 | |
| 	write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
 | |
| 		    (unsigned long)btrfs_dev_extent_chunk_tree_uuid(extent),
 | |
| 		    BTRFS_UUID_SIZE);
 | |
| 
 | |
| 	btrfs_set_dev_extent_length(leaf, extent, num_bytes);
 | |
| 	btrfs_mark_buffer_dirty(leaf);
 | |
| 	btrfs_free_path(path);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static noinline int find_next_chunk(struct btrfs_root *root,
 | |
| 				    u64 objectid, u64 *offset)
 | |
| {
 | |
| 	struct btrfs_path *path;
 | |
| 	int ret;
 | |
| 	struct btrfs_key key;
 | |
| 	struct btrfs_chunk *chunk;
 | |
| 	struct btrfs_key found_key;
 | |
| 
 | |
| 	path = btrfs_alloc_path();
 | |
| 	if (!path)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	key.objectid = objectid;
 | |
| 	key.offset = (u64)-1;
 | |
| 	key.type = BTRFS_CHUNK_ITEM_KEY;
 | |
| 
 | |
| 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 | |
| 	if (ret < 0)
 | |
| 		goto error;
 | |
| 
 | |
| 	BUG_ON(ret == 0);
 | |
| 
 | |
| 	ret = btrfs_previous_item(root, path, 0, BTRFS_CHUNK_ITEM_KEY);
 | |
| 	if (ret) {
 | |
| 		*offset = 0;
 | |
| 	} else {
 | |
| 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
 | |
| 				      path->slots[0]);
 | |
| 		if (found_key.objectid != objectid)
 | |
| 			*offset = 0;
 | |
| 		else {
 | |
| 			chunk = btrfs_item_ptr(path->nodes[0], path->slots[0],
 | |
| 					       struct btrfs_chunk);
 | |
| 			*offset = found_key.offset +
 | |
| 				btrfs_chunk_length(path->nodes[0], chunk);
 | |
| 		}
 | |
| 	}
 | |
| 	ret = 0;
 | |
| error:
 | |
| 	btrfs_free_path(path);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static noinline int find_next_devid(struct btrfs_root *root, u64 *objectid)
 | |
| {
 | |
| 	int ret;
 | |
| 	struct btrfs_key key;
 | |
| 	struct btrfs_key found_key;
 | |
| 	struct btrfs_path *path;
 | |
| 
 | |
| 	root = root->fs_info->chunk_root;
 | |
| 
 | |
| 	path = btrfs_alloc_path();
 | |
| 	if (!path)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
 | |
| 	key.type = BTRFS_DEV_ITEM_KEY;
 | |
| 	key.offset = (u64)-1;
 | |
| 
 | |
| 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 | |
| 	if (ret < 0)
 | |
| 		goto error;
 | |
| 
 | |
| 	BUG_ON(ret == 0);
 | |
| 
 | |
| 	ret = btrfs_previous_item(root, path, BTRFS_DEV_ITEMS_OBJECTID,
 | |
| 				  BTRFS_DEV_ITEM_KEY);
 | |
| 	if (ret) {
 | |
| 		*objectid = 1;
 | |
| 	} else {
 | |
| 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
 | |
| 				      path->slots[0]);
 | |
| 		*objectid = found_key.offset + 1;
 | |
| 	}
 | |
| 	ret = 0;
 | |
| error:
 | |
| 	btrfs_free_path(path);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * the device information is stored in the chunk root
 | |
|  * the btrfs_device struct should be fully filled in
 | |
|  */
 | |
| int btrfs_add_device(struct btrfs_trans_handle *trans,
 | |
| 		     struct btrfs_root *root,
 | |
| 		     struct btrfs_device *device)
 | |
| {
 | |
| 	int ret;
 | |
| 	struct btrfs_path *path;
 | |
| 	struct btrfs_dev_item *dev_item;
 | |
| 	struct extent_buffer *leaf;
 | |
| 	struct btrfs_key key;
 | |
| 	unsigned long ptr;
 | |
| 
 | |
| 	root = root->fs_info->chunk_root;
 | |
| 
 | |
| 	path = btrfs_alloc_path();
 | |
| 	if (!path)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
 | |
| 	key.type = BTRFS_DEV_ITEM_KEY;
 | |
| 	key.offset = device->devid;
 | |
| 
 | |
| 	ret = btrfs_insert_empty_item(trans, root, path, &key,
 | |
| 				      sizeof(*dev_item));
 | |
| 	if (ret)
 | |
| 		goto out;
 | |
| 
 | |
| 	leaf = path->nodes[0];
 | |
| 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
 | |
| 
 | |
| 	btrfs_set_device_id(leaf, dev_item, device->devid);
 | |
| 	btrfs_set_device_generation(leaf, dev_item, 0);
 | |
| 	btrfs_set_device_type(leaf, dev_item, device->type);
 | |
| 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
 | |
| 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
 | |
| 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
 | |
| 	btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
 | |
| 	btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
 | |
| 	btrfs_set_device_group(leaf, dev_item, 0);
 | |
| 	btrfs_set_device_seek_speed(leaf, dev_item, 0);
 | |
| 	btrfs_set_device_bandwidth(leaf, dev_item, 0);
 | |
| 	btrfs_set_device_start_offset(leaf, dev_item, 0);
 | |
| 
 | |
| 	ptr = (unsigned long)btrfs_device_uuid(dev_item);
 | |
| 	write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
 | |
| 	ptr = (unsigned long)btrfs_device_fsid(dev_item);
 | |
| 	write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
 | |
| 	btrfs_mark_buffer_dirty(leaf);
 | |
| 
 | |
| 	ret = 0;
 | |
| out:
 | |
| 	btrfs_free_path(path);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int btrfs_rm_dev_item(struct btrfs_root *root,
 | |
| 			     struct btrfs_device *device)
 | |
| {
 | |
| 	int ret;
 | |
| 	struct btrfs_path *path;
 | |
| 	struct btrfs_key key;
 | |
| 	struct btrfs_trans_handle *trans;
 | |
| 
 | |
| 	root = root->fs_info->chunk_root;
 | |
| 
 | |
| 	path = btrfs_alloc_path();
 | |
| 	if (!path)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	trans = btrfs_start_transaction(root, 0);
 | |
| 	if (IS_ERR(trans)) {
 | |
| 		btrfs_free_path(path);
 | |
| 		return PTR_ERR(trans);
 | |
| 	}
 | |
| 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
 | |
| 	key.type = BTRFS_DEV_ITEM_KEY;
 | |
| 	key.offset = device->devid;
 | |
| 	lock_chunks(root);
 | |
| 
 | |
| 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
 | |
| 	if (ret < 0)
 | |
| 		goto out;
 | |
| 
 | |
| 	if (ret > 0) {
 | |
| 		ret = -ENOENT;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	ret = btrfs_del_item(trans, root, path);
 | |
| 	if (ret)
 | |
| 		goto out;
 | |
| out:
 | |
| 	btrfs_free_path(path);
 | |
| 	unlock_chunks(root);
 | |
| 	btrfs_commit_transaction(trans, root);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int btrfs_rm_device(struct btrfs_root *root, char *device_path)
 | |
| {
 | |
| 	struct btrfs_device *device;
 | |
| 	struct btrfs_device *next_device;
 | |
| 	struct block_device *bdev;
 | |
| 	struct buffer_head *bh = NULL;
 | |
| 	struct btrfs_super_block *disk_super;
 | |
| 	struct btrfs_fs_devices *cur_devices;
 | |
| 	u64 all_avail;
 | |
| 	u64 devid;
 | |
| 	u64 num_devices;
 | |
| 	u8 *dev_uuid;
 | |
| 	int ret = 0;
 | |
| 	bool clear_super = false;
 | |
| 
 | |
| 	mutex_lock(&uuid_mutex);
 | |
| 	mutex_lock(&root->fs_info->volume_mutex);
 | |
| 
 | |
| 	all_avail = root->fs_info->avail_data_alloc_bits |
 | |
| 		root->fs_info->avail_system_alloc_bits |
 | |
| 		root->fs_info->avail_metadata_alloc_bits;
 | |
| 
 | |
| 	if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) &&
 | |
| 	    root->fs_info->fs_devices->num_devices <= 4) {
 | |
| 		printk(KERN_ERR "btrfs: unable to go below four devices "
 | |
| 		       "on raid10\n");
 | |
| 		ret = -EINVAL;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) &&
 | |
| 	    root->fs_info->fs_devices->num_devices <= 2) {
 | |
| 		printk(KERN_ERR "btrfs: unable to go below two "
 | |
| 		       "devices on raid1\n");
 | |
| 		ret = -EINVAL;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (strcmp(device_path, "missing") == 0) {
 | |
| 		struct list_head *devices;
 | |
| 		struct btrfs_device *tmp;
 | |
| 
 | |
| 		device = NULL;
 | |
| 		devices = &root->fs_info->fs_devices->devices;
 | |
| 		/*
 | |
| 		 * It is safe to read the devices since the volume_mutex
 | |
| 		 * is held.
 | |
| 		 */
 | |
| 		list_for_each_entry(tmp, devices, dev_list) {
 | |
| 			if (tmp->in_fs_metadata && !tmp->bdev) {
 | |
| 				device = tmp;
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 		bdev = NULL;
 | |
| 		bh = NULL;
 | |
| 		disk_super = NULL;
 | |
| 		if (!device) {
 | |
| 			printk(KERN_ERR "btrfs: no missing devices found to "
 | |
| 			       "remove\n");
 | |
| 			goto out;
 | |
| 		}
 | |
| 	} else {
 | |
| 		bdev = blkdev_get_by_path(device_path, FMODE_READ | FMODE_EXCL,
 | |
| 					  root->fs_info->bdev_holder);
 | |
| 		if (IS_ERR(bdev)) {
 | |
| 			ret = PTR_ERR(bdev);
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		set_blocksize(bdev, 4096);
 | |
| 		bh = btrfs_read_dev_super(bdev);
 | |
| 		if (!bh) {
 | |
| 			ret = -EINVAL;
 | |
| 			goto error_close;
 | |
| 		}
 | |
| 		disk_super = (struct btrfs_super_block *)bh->b_data;
 | |
| 		devid = btrfs_stack_device_id(&disk_super->dev_item);
 | |
| 		dev_uuid = disk_super->dev_item.uuid;
 | |
| 		device = btrfs_find_device(root, devid, dev_uuid,
 | |
| 					   disk_super->fsid);
 | |
| 		if (!device) {
 | |
| 			ret = -ENOENT;
 | |
| 			goto error_brelse;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
 | |
| 		printk(KERN_ERR "btrfs: unable to remove the only writeable "
 | |
| 		       "device\n");
 | |
| 		ret = -EINVAL;
 | |
| 		goto error_brelse;
 | |
| 	}
 | |
| 
 | |
| 	if (device->writeable) {
 | |
| 		lock_chunks(root);
 | |
| 		list_del_init(&device->dev_alloc_list);
 | |
| 		unlock_chunks(root);
 | |
| 		root->fs_info->fs_devices->rw_devices--;
 | |
| 		clear_super = true;
 | |
| 	}
 | |
| 
 | |
| 	ret = btrfs_shrink_device(device, 0);
 | |
| 	if (ret)
 | |
| 		goto error_undo;
 | |
| 
 | |
| 	ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
 | |
| 	if (ret)
 | |
| 		goto error_undo;
 | |
| 
 | |
| 	spin_lock(&root->fs_info->free_chunk_lock);
 | |
| 	root->fs_info->free_chunk_space = device->total_bytes -
 | |
| 		device->bytes_used;
 | |
| 	spin_unlock(&root->fs_info->free_chunk_lock);
 | |
| 
 | |
| 	device->in_fs_metadata = 0;
 | |
| 	btrfs_scrub_cancel_dev(root, device);
 | |
| 
 | |
| 	/*
 | |
| 	 * the device list mutex makes sure that we don't change
 | |
| 	 * the device list while someone else is writing out all
 | |
| 	 * the device supers.
 | |
| 	 */
 | |
| 
 | |
| 	cur_devices = device->fs_devices;
 | |
| 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
 | |
| 	list_del_rcu(&device->dev_list);
 | |
| 
 | |
| 	device->fs_devices->num_devices--;
 | |
| 
 | |
| 	if (device->missing)
 | |
| 		root->fs_info->fs_devices->missing_devices--;
 | |
| 
 | |
| 	next_device = list_entry(root->fs_info->fs_devices->devices.next,
 | |
| 				 struct btrfs_device, dev_list);
 | |
| 	if (device->bdev == root->fs_info->sb->s_bdev)
 | |
| 		root->fs_info->sb->s_bdev = next_device->bdev;
 | |
| 	if (device->bdev == root->fs_info->fs_devices->latest_bdev)
 | |
| 		root->fs_info->fs_devices->latest_bdev = next_device->bdev;
 | |
| 
 | |
| 	if (device->bdev)
 | |
| 		device->fs_devices->open_devices--;
 | |
| 
 | |
| 	call_rcu(&device->rcu, free_device);
 | |
| 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
 | |
| 
 | |
| 	num_devices = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
 | |
| 	btrfs_set_super_num_devices(root->fs_info->super_copy, num_devices);
 | |
| 
 | |
| 	if (cur_devices->open_devices == 0) {
 | |
| 		struct btrfs_fs_devices *fs_devices;
 | |
| 		fs_devices = root->fs_info->fs_devices;
 | |
| 		while (fs_devices) {
 | |
| 			if (fs_devices->seed == cur_devices)
 | |
| 				break;
 | |
| 			fs_devices = fs_devices->seed;
 | |
| 		}
 | |
| 		fs_devices->seed = cur_devices->seed;
 | |
| 		cur_devices->seed = NULL;
 | |
| 		lock_chunks(root);
 | |
| 		__btrfs_close_devices(cur_devices);
 | |
| 		unlock_chunks(root);
 | |
| 		free_fs_devices(cur_devices);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * at this point, the device is zero sized.  We want to
 | |
| 	 * remove it from the devices list and zero out the old super
 | |
| 	 */
 | |
| 	if (clear_super) {
 | |
| 		/* make sure this device isn't detected as part of
 | |
| 		 * the FS anymore
 | |
| 		 */
 | |
| 		memset(&disk_super->magic, 0, sizeof(disk_super->magic));
 | |
| 		set_buffer_dirty(bh);
 | |
| 		sync_dirty_buffer(bh);
 | |
| 	}
 | |
| 
 | |
| 	ret = 0;
 | |
| 
 | |
| error_brelse:
 | |
| 	brelse(bh);
 | |
| error_close:
 | |
| 	if (bdev)
 | |
| 		blkdev_put(bdev, FMODE_READ | FMODE_EXCL);
 | |
| out:
 | |
| 	mutex_unlock(&root->fs_info->volume_mutex);
 | |
| 	mutex_unlock(&uuid_mutex);
 | |
| 	return ret;
 | |
| error_undo:
 | |
| 	if (device->writeable) {
 | |
| 		lock_chunks(root);
 | |
| 		list_add(&device->dev_alloc_list,
 | |
| 			 &root->fs_info->fs_devices->alloc_list);
 | |
| 		unlock_chunks(root);
 | |
| 		root->fs_info->fs_devices->rw_devices++;
 | |
| 	}
 | |
| 	goto error_brelse;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * does all the dirty work required for changing file system's UUID.
 | |
|  */
 | |
| static int btrfs_prepare_sprout(struct btrfs_trans_handle *trans,
 | |
| 				struct btrfs_root *root)
 | |
| {
 | |
| 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
 | |
| 	struct btrfs_fs_devices *old_devices;
 | |
| 	struct btrfs_fs_devices *seed_devices;
 | |
| 	struct btrfs_super_block *disk_super = root->fs_info->super_copy;
 | |
| 	struct btrfs_device *device;
 | |
| 	u64 super_flags;
 | |
| 
 | |
| 	BUG_ON(!mutex_is_locked(&uuid_mutex));
 | |
| 	if (!fs_devices->seeding)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	seed_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
 | |
| 	if (!seed_devices)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	old_devices = clone_fs_devices(fs_devices);
 | |
| 	if (IS_ERR(old_devices)) {
 | |
| 		kfree(seed_devices);
 | |
| 		return PTR_ERR(old_devices);
 | |
| 	}
 | |
| 
 | |
| 	list_add(&old_devices->list, &fs_uuids);
 | |
| 
 | |
| 	memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
 | |
| 	seed_devices->opened = 1;
 | |
| 	INIT_LIST_HEAD(&seed_devices->devices);
 | |
| 	INIT_LIST_HEAD(&seed_devices->alloc_list);
 | |
| 	mutex_init(&seed_devices->device_list_mutex);
 | |
| 
 | |
| 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
 | |
| 	list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
 | |
| 			      synchronize_rcu);
 | |
| 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
 | |
| 
 | |
| 	list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
 | |
| 	list_for_each_entry(device, &seed_devices->devices, dev_list) {
 | |
| 		device->fs_devices = seed_devices;
 | |
| 	}
 | |
| 
 | |
| 	fs_devices->seeding = 0;
 | |
| 	fs_devices->num_devices = 0;
 | |
| 	fs_devices->open_devices = 0;
 | |
| 	fs_devices->seed = seed_devices;
 | |
| 
 | |
| 	generate_random_uuid(fs_devices->fsid);
 | |
| 	memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
 | |
| 	memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
 | |
| 	super_flags = btrfs_super_flags(disk_super) &
 | |
| 		      ~BTRFS_SUPER_FLAG_SEEDING;
 | |
| 	btrfs_set_super_flags(disk_super, super_flags);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * strore the expected generation for seed devices in device items.
 | |
|  */
 | |
| static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
 | |
| 			       struct btrfs_root *root)
 | |
| {
 | |
| 	struct btrfs_path *path;
 | |
| 	struct extent_buffer *leaf;
 | |
| 	struct btrfs_dev_item *dev_item;
 | |
| 	struct btrfs_device *device;
 | |
| 	struct btrfs_key key;
 | |
| 	u8 fs_uuid[BTRFS_UUID_SIZE];
 | |
| 	u8 dev_uuid[BTRFS_UUID_SIZE];
 | |
| 	u64 devid;
 | |
| 	int ret;
 | |
| 
 | |
| 	path = btrfs_alloc_path();
 | |
| 	if (!path)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	root = root->fs_info->chunk_root;
 | |
| 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
 | |
| 	key.offset = 0;
 | |
| 	key.type = BTRFS_DEV_ITEM_KEY;
 | |
| 
 | |
| 	while (1) {
 | |
| 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
 | |
| 		if (ret < 0)
 | |
| 			goto error;
 | |
| 
 | |
| 		leaf = path->nodes[0];
 | |
| next_slot:
 | |
| 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
 | |
| 			ret = btrfs_next_leaf(root, path);
 | |
| 			if (ret > 0)
 | |
| 				break;
 | |
| 			if (ret < 0)
 | |
| 				goto error;
 | |
| 			leaf = path->nodes[0];
 | |
| 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 | |
| 			btrfs_release_path(path);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 | |
| 		if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
 | |
| 		    key.type != BTRFS_DEV_ITEM_KEY)
 | |
| 			break;
 | |
| 
 | |
| 		dev_item = btrfs_item_ptr(leaf, path->slots[0],
 | |
| 					  struct btrfs_dev_item);
 | |
| 		devid = btrfs_device_id(leaf, dev_item);
 | |
| 		read_extent_buffer(leaf, dev_uuid,
 | |
| 				   (unsigned long)btrfs_device_uuid(dev_item),
 | |
| 				   BTRFS_UUID_SIZE);
 | |
| 		read_extent_buffer(leaf, fs_uuid,
 | |
| 				   (unsigned long)btrfs_device_fsid(dev_item),
 | |
| 				   BTRFS_UUID_SIZE);
 | |
| 		device = btrfs_find_device(root, devid, dev_uuid, fs_uuid);
 | |
| 		BUG_ON(!device);
 | |
| 
 | |
| 		if (device->fs_devices->seeding) {
 | |
| 			btrfs_set_device_generation(leaf, dev_item,
 | |
| 						    device->generation);
 | |
| 			btrfs_mark_buffer_dirty(leaf);
 | |
| 		}
 | |
| 
 | |
| 		path->slots[0]++;
 | |
| 		goto next_slot;
 | |
| 	}
 | |
| 	ret = 0;
 | |
| error:
 | |
| 	btrfs_free_path(path);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
 | |
| {
 | |
| 	struct request_queue *q;
 | |
| 	struct btrfs_trans_handle *trans;
 | |
| 	struct btrfs_device *device;
 | |
| 	struct block_device *bdev;
 | |
| 	struct list_head *devices;
 | |
| 	struct super_block *sb = root->fs_info->sb;
 | |
| 	u64 total_bytes;
 | |
| 	int seeding_dev = 0;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	bdev = blkdev_get_by_path(device_path, FMODE_EXCL,
 | |
| 				  root->fs_info->bdev_holder);
 | |
| 	if (IS_ERR(bdev))
 | |
| 		return PTR_ERR(bdev);
 | |
| 
 | |
| 	if (root->fs_info->fs_devices->seeding) {
 | |
| 		seeding_dev = 1;
 | |
| 		down_write(&sb->s_umount);
 | |
| 		mutex_lock(&uuid_mutex);
 | |
| 	}
 | |
| 
 | |
| 	filemap_write_and_wait(bdev->bd_inode->i_mapping);
 | |
| 	mutex_lock(&root->fs_info->volume_mutex);
 | |
| 
 | |
| 	devices = &root->fs_info->fs_devices->devices;
 | |
| 	/*
 | |
| 	 * we have the volume lock, so we don't need the extra
 | |
| 	 * device list mutex while reading the list here.
 | |
| 	 */
 | |
| 	list_for_each_entry(device, devices, dev_list) {
 | |
| 		if (device->bdev == bdev) {
 | |
| 			ret = -EEXIST;
 | |
| 			goto error;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	device = kzalloc(sizeof(*device), GFP_NOFS);
 | |
| 	if (!device) {
 | |
| 		/* we can safely leave the fs_devices entry around */
 | |
| 		ret = -ENOMEM;
 | |
| 		goto error;
 | |
| 	}
 | |
| 
 | |
| 	device->name = kstrdup(device_path, GFP_NOFS);
 | |
| 	if (!device->name) {
 | |
| 		kfree(device);
 | |
| 		ret = -ENOMEM;
 | |
| 		goto error;
 | |
| 	}
 | |
| 
 | |
| 	ret = find_next_devid(root, &device->devid);
 | |
| 	if (ret) {
 | |
| 		kfree(device->name);
 | |
| 		kfree(device);
 | |
| 		goto error;
 | |
| 	}
 | |
| 
 | |
| 	trans = btrfs_start_transaction(root, 0);
 | |
| 	if (IS_ERR(trans)) {
 | |
| 		kfree(device->name);
 | |
| 		kfree(device);
 | |
| 		ret = PTR_ERR(trans);
 | |
| 		goto error;
 | |
| 	}
 | |
| 
 | |
| 	lock_chunks(root);
 | |
| 
 | |
| 	q = bdev_get_queue(bdev);
 | |
| 	if (blk_queue_discard(q))
 | |
| 		device->can_discard = 1;
 | |
| 	device->writeable = 1;
 | |
| 	device->work.func = pending_bios_fn;
 | |
| 	generate_random_uuid(device->uuid);
 | |
| 	spin_lock_init(&device->io_lock);
 | |
| 	device->generation = trans->transid;
 | |
| 	device->io_width = root->sectorsize;
 | |
| 	device->io_align = root->sectorsize;
 | |
| 	device->sector_size = root->sectorsize;
 | |
| 	device->total_bytes = i_size_read(bdev->bd_inode);
 | |
| 	device->disk_total_bytes = device->total_bytes;
 | |
| 	device->dev_root = root->fs_info->dev_root;
 | |
| 	device->bdev = bdev;
 | |
| 	device->in_fs_metadata = 1;
 | |
| 	device->mode = FMODE_EXCL;
 | |
| 	set_blocksize(device->bdev, 4096);
 | |
| 
 | |
| 	if (seeding_dev) {
 | |
| 		sb->s_flags &= ~MS_RDONLY;
 | |
| 		ret = btrfs_prepare_sprout(trans, root);
 | |
| 		BUG_ON(ret);
 | |
| 	}
 | |
| 
 | |
| 	device->fs_devices = root->fs_info->fs_devices;
 | |
| 
 | |
| 	/*
 | |
| 	 * we don't want write_supers to jump in here with our device
 | |
| 	 * half setup
 | |
| 	 */
 | |
| 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
 | |
| 	list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices);
 | |
| 	list_add(&device->dev_alloc_list,
 | |
| 		 &root->fs_info->fs_devices->alloc_list);
 | |
| 	root->fs_info->fs_devices->num_devices++;
 | |
| 	root->fs_info->fs_devices->open_devices++;
 | |
| 	root->fs_info->fs_devices->rw_devices++;
 | |
| 	if (device->can_discard)
 | |
| 		root->fs_info->fs_devices->num_can_discard++;
 | |
| 	root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
 | |
| 
 | |
| 	spin_lock(&root->fs_info->free_chunk_lock);
 | |
| 	root->fs_info->free_chunk_space += device->total_bytes;
 | |
| 	spin_unlock(&root->fs_info->free_chunk_lock);
 | |
| 
 | |
| 	if (!blk_queue_nonrot(bdev_get_queue(bdev)))
 | |
| 		root->fs_info->fs_devices->rotating = 1;
 | |
| 
 | |
| 	total_bytes = btrfs_super_total_bytes(root->fs_info->super_copy);
 | |
| 	btrfs_set_super_total_bytes(root->fs_info->super_copy,
 | |
| 				    total_bytes + device->total_bytes);
 | |
| 
 | |
| 	total_bytes = btrfs_super_num_devices(root->fs_info->super_copy);
 | |
| 	btrfs_set_super_num_devices(root->fs_info->super_copy,
 | |
| 				    total_bytes + 1);
 | |
| 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
 | |
| 
 | |
| 	if (seeding_dev) {
 | |
| 		ret = init_first_rw_device(trans, root, device);
 | |
| 		BUG_ON(ret);
 | |
| 		ret = btrfs_finish_sprout(trans, root);
 | |
| 		BUG_ON(ret);
 | |
| 	} else {
 | |
| 		ret = btrfs_add_device(trans, root, device);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * we've got more storage, clear any full flags on the space
 | |
| 	 * infos
 | |
| 	 */
 | |
| 	btrfs_clear_space_info_full(root->fs_info);
 | |
| 
 | |
| 	unlock_chunks(root);
 | |
| 	btrfs_commit_transaction(trans, root);
 | |
| 
 | |
| 	if (seeding_dev) {
 | |
| 		mutex_unlock(&uuid_mutex);
 | |
| 		up_write(&sb->s_umount);
 | |
| 
 | |
| 		ret = btrfs_relocate_sys_chunks(root);
 | |
| 		BUG_ON(ret);
 | |
| 	}
 | |
| out:
 | |
| 	mutex_unlock(&root->fs_info->volume_mutex);
 | |
| 	return ret;
 | |
| error:
 | |
| 	blkdev_put(bdev, FMODE_EXCL);
 | |
| 	if (seeding_dev) {
 | |
| 		mutex_unlock(&uuid_mutex);
 | |
| 		up_write(&sb->s_umount);
 | |
| 	}
 | |
| 	goto out;
 | |
| }
 | |
| 
 | |
| static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
 | |
| 					struct btrfs_device *device)
 | |
| {
 | |
| 	int ret;
 | |
| 	struct btrfs_path *path;
 | |
| 	struct btrfs_root *root;
 | |
| 	struct btrfs_dev_item *dev_item;
 | |
| 	struct extent_buffer *leaf;
 | |
| 	struct btrfs_key key;
 | |
| 
 | |
| 	root = device->dev_root->fs_info->chunk_root;
 | |
| 
 | |
| 	path = btrfs_alloc_path();
 | |
| 	if (!path)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
 | |
| 	key.type = BTRFS_DEV_ITEM_KEY;
 | |
| 	key.offset = device->devid;
 | |
| 
 | |
| 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
 | |
| 	if (ret < 0)
 | |
| 		goto out;
 | |
| 
 | |
| 	if (ret > 0) {
 | |
| 		ret = -ENOENT;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	leaf = path->nodes[0];
 | |
| 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
 | |
| 
 | |
| 	btrfs_set_device_id(leaf, dev_item, device->devid);
 | |
| 	btrfs_set_device_type(leaf, dev_item, device->type);
 | |
| 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
 | |
| 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
 | |
| 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
 | |
| 	btrfs_set_device_total_bytes(leaf, dev_item, device->disk_total_bytes);
 | |
| 	btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
 | |
| 	btrfs_mark_buffer_dirty(leaf);
 | |
| 
 | |
| out:
 | |
| 	btrfs_free_path(path);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int __btrfs_grow_device(struct btrfs_trans_handle *trans,
 | |
| 		      struct btrfs_device *device, u64 new_size)
 | |
| {
 | |
| 	struct btrfs_super_block *super_copy =
 | |
| 		device->dev_root->fs_info->super_copy;
 | |
| 	u64 old_total = btrfs_super_total_bytes(super_copy);
 | |
| 	u64 diff = new_size - device->total_bytes;
 | |
| 
 | |
| 	if (!device->writeable)
 | |
| 		return -EACCES;
 | |
| 	if (new_size <= device->total_bytes)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	btrfs_set_super_total_bytes(super_copy, old_total + diff);
 | |
| 	device->fs_devices->total_rw_bytes += diff;
 | |
| 
 | |
| 	device->total_bytes = new_size;
 | |
| 	device->disk_total_bytes = new_size;
 | |
| 	btrfs_clear_space_info_full(device->dev_root->fs_info);
 | |
| 
 | |
| 	return btrfs_update_device(trans, device);
 | |
| }
 | |
| 
 | |
| int btrfs_grow_device(struct btrfs_trans_handle *trans,
 | |
| 		      struct btrfs_device *device, u64 new_size)
 | |
| {
 | |
| 	int ret;
 | |
| 	lock_chunks(device->dev_root);
 | |
| 	ret = __btrfs_grow_device(trans, device, new_size);
 | |
| 	unlock_chunks(device->dev_root);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
 | |
| 			    struct btrfs_root *root,
 | |
| 			    u64 chunk_tree, u64 chunk_objectid,
 | |
| 			    u64 chunk_offset)
 | |
| {
 | |
| 	int ret;
 | |
| 	struct btrfs_path *path;
 | |
| 	struct btrfs_key key;
 | |
| 
 | |
| 	root = root->fs_info->chunk_root;
 | |
| 	path = btrfs_alloc_path();
 | |
| 	if (!path)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	key.objectid = chunk_objectid;
 | |
| 	key.offset = chunk_offset;
 | |
| 	key.type = BTRFS_CHUNK_ITEM_KEY;
 | |
| 
 | |
| 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
 | |
| 	BUG_ON(ret);
 | |
| 
 | |
| 	ret = btrfs_del_item(trans, root, path);
 | |
| 
 | |
| 	btrfs_free_path(path);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
 | |
| 			chunk_offset)
 | |
| {
 | |
| 	struct btrfs_super_block *super_copy = root->fs_info->super_copy;
 | |
| 	struct btrfs_disk_key *disk_key;
 | |
| 	struct btrfs_chunk *chunk;
 | |
| 	u8 *ptr;
 | |
| 	int ret = 0;
 | |
| 	u32 num_stripes;
 | |
| 	u32 array_size;
 | |
| 	u32 len = 0;
 | |
| 	u32 cur;
 | |
| 	struct btrfs_key key;
 | |
| 
 | |
| 	array_size = btrfs_super_sys_array_size(super_copy);
 | |
| 
 | |
| 	ptr = super_copy->sys_chunk_array;
 | |
| 	cur = 0;
 | |
| 
 | |
| 	while (cur < array_size) {
 | |
| 		disk_key = (struct btrfs_disk_key *)ptr;
 | |
| 		btrfs_disk_key_to_cpu(&key, disk_key);
 | |
| 
 | |
| 		len = sizeof(*disk_key);
 | |
| 
 | |
| 		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
 | |
| 			chunk = (struct btrfs_chunk *)(ptr + len);
 | |
| 			num_stripes = btrfs_stack_chunk_num_stripes(chunk);
 | |
| 			len += btrfs_chunk_item_size(num_stripes);
 | |
| 		} else {
 | |
| 			ret = -EIO;
 | |
| 			break;
 | |
| 		}
 | |
| 		if (key.objectid == chunk_objectid &&
 | |
| 		    key.offset == chunk_offset) {
 | |
| 			memmove(ptr, ptr + len, array_size - (cur + len));
 | |
| 			array_size -= len;
 | |
| 			btrfs_set_super_sys_array_size(super_copy, array_size);
 | |
| 		} else {
 | |
| 			ptr += len;
 | |
| 			cur += len;
 | |
| 		}
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int btrfs_relocate_chunk(struct btrfs_root *root,
 | |
| 			 u64 chunk_tree, u64 chunk_objectid,
 | |
| 			 u64 chunk_offset)
 | |
| {
 | |
| 	struct extent_map_tree *em_tree;
 | |
| 	struct btrfs_root *extent_root;
 | |
| 	struct btrfs_trans_handle *trans;
 | |
| 	struct extent_map *em;
 | |
| 	struct map_lookup *map;
 | |
| 	int ret;
 | |
| 	int i;
 | |
| 
 | |
| 	root = root->fs_info->chunk_root;
 | |
| 	extent_root = root->fs_info->extent_root;
 | |
| 	em_tree = &root->fs_info->mapping_tree.map_tree;
 | |
| 
 | |
| 	ret = btrfs_can_relocate(extent_root, chunk_offset);
 | |
| 	if (ret)
 | |
| 		return -ENOSPC;
 | |
| 
 | |
| 	/* step one, relocate all the extents inside this chunk */
 | |
| 	ret = btrfs_relocate_block_group(extent_root, chunk_offset);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	trans = btrfs_start_transaction(root, 0);
 | |
| 	BUG_ON(IS_ERR(trans));
 | |
| 
 | |
| 	lock_chunks(root);
 | |
| 
 | |
| 	/*
 | |
| 	 * step two, delete the device extents and the
 | |
| 	 * chunk tree entries
 | |
| 	 */
 | |
| 	read_lock(&em_tree->lock);
 | |
| 	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
 | |
| 	read_unlock(&em_tree->lock);
 | |
| 
 | |
| 	BUG_ON(em->start > chunk_offset ||
 | |
| 	       em->start + em->len < chunk_offset);
 | |
| 	map = (struct map_lookup *)em->bdev;
 | |
| 
 | |
| 	for (i = 0; i < map->num_stripes; i++) {
 | |
| 		ret = btrfs_free_dev_extent(trans, map->stripes[i].dev,
 | |
| 					    map->stripes[i].physical);
 | |
| 		BUG_ON(ret);
 | |
| 
 | |
| 		if (map->stripes[i].dev) {
 | |
| 			ret = btrfs_update_device(trans, map->stripes[i].dev);
 | |
| 			BUG_ON(ret);
 | |
| 		}
 | |
| 	}
 | |
| 	ret = btrfs_free_chunk(trans, root, chunk_tree, chunk_objectid,
 | |
| 			       chunk_offset);
 | |
| 
 | |
| 	BUG_ON(ret);
 | |
| 
 | |
| 	trace_btrfs_chunk_free(root, map, chunk_offset, em->len);
 | |
| 
 | |
| 	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
 | |
| 		ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
 | |
| 		BUG_ON(ret);
 | |
| 	}
 | |
| 
 | |
| 	ret = btrfs_remove_block_group(trans, extent_root, chunk_offset);
 | |
| 	BUG_ON(ret);
 | |
| 
 | |
| 	write_lock(&em_tree->lock);
 | |
| 	remove_extent_mapping(em_tree, em);
 | |
| 	write_unlock(&em_tree->lock);
 | |
| 
 | |
| 	kfree(map);
 | |
| 	em->bdev = NULL;
 | |
| 
 | |
| 	/* once for the tree */
 | |
| 	free_extent_map(em);
 | |
| 	/* once for us */
 | |
| 	free_extent_map(em);
 | |
| 
 | |
| 	unlock_chunks(root);
 | |
| 	btrfs_end_transaction(trans, root);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
 | |
| {
 | |
| 	struct btrfs_root *chunk_root = root->fs_info->chunk_root;
 | |
| 	struct btrfs_path *path;
 | |
| 	struct extent_buffer *leaf;
 | |
| 	struct btrfs_chunk *chunk;
 | |
| 	struct btrfs_key key;
 | |
| 	struct btrfs_key found_key;
 | |
| 	u64 chunk_tree = chunk_root->root_key.objectid;
 | |
| 	u64 chunk_type;
 | |
| 	bool retried = false;
 | |
| 	int failed = 0;
 | |
| 	int ret;
 | |
| 
 | |
| 	path = btrfs_alloc_path();
 | |
| 	if (!path)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| again:
 | |
| 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
 | |
| 	key.offset = (u64)-1;
 | |
| 	key.type = BTRFS_CHUNK_ITEM_KEY;
 | |
| 
 | |
| 	while (1) {
 | |
| 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
 | |
| 		if (ret < 0)
 | |
| 			goto error;
 | |
| 		BUG_ON(ret == 0);
 | |
| 
 | |
| 		ret = btrfs_previous_item(chunk_root, path, key.objectid,
 | |
| 					  key.type);
 | |
| 		if (ret < 0)
 | |
| 			goto error;
 | |
| 		if (ret > 0)
 | |
| 			break;
 | |
| 
 | |
| 		leaf = path->nodes[0];
 | |
| 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
 | |
| 
 | |
| 		chunk = btrfs_item_ptr(leaf, path->slots[0],
 | |
| 				       struct btrfs_chunk);
 | |
| 		chunk_type = btrfs_chunk_type(leaf, chunk);
 | |
| 		btrfs_release_path(path);
 | |
| 
 | |
| 		if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
 | |
| 			ret = btrfs_relocate_chunk(chunk_root, chunk_tree,
 | |
| 						   found_key.objectid,
 | |
| 						   found_key.offset);
 | |
| 			if (ret == -ENOSPC)
 | |
| 				failed++;
 | |
| 			else if (ret)
 | |
| 				BUG();
 | |
| 		}
 | |
| 
 | |
| 		if (found_key.offset == 0)
 | |
| 			break;
 | |
| 		key.offset = found_key.offset - 1;
 | |
| 	}
 | |
| 	ret = 0;
 | |
| 	if (failed && !retried) {
 | |
| 		failed = 0;
 | |
| 		retried = true;
 | |
| 		goto again;
 | |
| 	} else if (failed && retried) {
 | |
| 		WARN_ON(1);
 | |
| 		ret = -ENOSPC;
 | |
| 	}
 | |
| error:
 | |
| 	btrfs_free_path(path);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static u64 div_factor(u64 num, int factor)
 | |
| {
 | |
| 	if (factor == 10)
 | |
| 		return num;
 | |
| 	num *= factor;
 | |
| 	do_div(num, 10);
 | |
| 	return num;
 | |
| }
 | |
| 
 | |
| int btrfs_balance(struct btrfs_root *dev_root)
 | |
| {
 | |
| 	int ret;
 | |
| 	struct list_head *devices = &dev_root->fs_info->fs_devices->devices;
 | |
| 	struct btrfs_device *device;
 | |
| 	u64 old_size;
 | |
| 	u64 size_to_free;
 | |
| 	struct btrfs_path *path;
 | |
| 	struct btrfs_key key;
 | |
| 	struct btrfs_root *chunk_root = dev_root->fs_info->chunk_root;
 | |
| 	struct btrfs_trans_handle *trans;
 | |
| 	struct btrfs_key found_key;
 | |
| 
 | |
| 	if (dev_root->fs_info->sb->s_flags & MS_RDONLY)
 | |
| 		return -EROFS;
 | |
| 
 | |
| 	if (!capable(CAP_SYS_ADMIN))
 | |
| 		return -EPERM;
 | |
| 
 | |
| 	mutex_lock(&dev_root->fs_info->volume_mutex);
 | |
| 	dev_root = dev_root->fs_info->dev_root;
 | |
| 
 | |
| 	/* step one make some room on all the devices */
 | |
| 	list_for_each_entry(device, devices, dev_list) {
 | |
| 		old_size = device->total_bytes;
 | |
| 		size_to_free = div_factor(old_size, 1);
 | |
| 		size_to_free = min(size_to_free, (u64)1 * 1024 * 1024);
 | |
| 		if (!device->writeable ||
 | |
| 		    device->total_bytes - device->bytes_used > size_to_free)
 | |
| 			continue;
 | |
| 
 | |
| 		ret = btrfs_shrink_device(device, old_size - size_to_free);
 | |
| 		if (ret == -ENOSPC)
 | |
| 			break;
 | |
| 		BUG_ON(ret);
 | |
| 
 | |
| 		trans = btrfs_start_transaction(dev_root, 0);
 | |
| 		BUG_ON(IS_ERR(trans));
 | |
| 
 | |
| 		ret = btrfs_grow_device(trans, device, old_size);
 | |
| 		BUG_ON(ret);
 | |
| 
 | |
| 		btrfs_end_transaction(trans, dev_root);
 | |
| 	}
 | |
| 
 | |
| 	/* step two, relocate all the chunks */
 | |
| 	path = btrfs_alloc_path();
 | |
| 	if (!path) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto error;
 | |
| 	}
 | |
| 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
 | |
| 	key.offset = (u64)-1;
 | |
| 	key.type = BTRFS_CHUNK_ITEM_KEY;
 | |
| 
 | |
| 	while (1) {
 | |
| 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
 | |
| 		if (ret < 0)
 | |
| 			goto error;
 | |
| 
 | |
| 		/*
 | |
| 		 * this shouldn't happen, it means the last relocate
 | |
| 		 * failed
 | |
| 		 */
 | |
| 		if (ret == 0)
 | |
| 			break;
 | |
| 
 | |
| 		ret = btrfs_previous_item(chunk_root, path, 0,
 | |
| 					  BTRFS_CHUNK_ITEM_KEY);
 | |
| 		if (ret)
 | |
| 			break;
 | |
| 
 | |
| 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
 | |
| 				      path->slots[0]);
 | |
| 		if (found_key.objectid != key.objectid)
 | |
| 			break;
 | |
| 
 | |
| 		/* chunk zero is special */
 | |
| 		if (found_key.offset == 0)
 | |
| 			break;
 | |
| 
 | |
| 		btrfs_release_path(path);
 | |
| 		ret = btrfs_relocate_chunk(chunk_root,
 | |
| 					   chunk_root->root_key.objectid,
 | |
| 					   found_key.objectid,
 | |
| 					   found_key.offset);
 | |
| 		if (ret && ret != -ENOSPC)
 | |
| 			goto error;
 | |
| 		key.offset = found_key.offset - 1;
 | |
| 	}
 | |
| 	ret = 0;
 | |
| error:
 | |
| 	btrfs_free_path(path);
 | |
| 	mutex_unlock(&dev_root->fs_info->volume_mutex);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * shrinking a device means finding all of the device extents past
 | |
|  * the new size, and then following the back refs to the chunks.
 | |
|  * The chunk relocation code actually frees the device extent
 | |
|  */
 | |
| int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
 | |
| {
 | |
| 	struct btrfs_trans_handle *trans;
 | |
| 	struct btrfs_root *root = device->dev_root;
 | |
| 	struct btrfs_dev_extent *dev_extent = NULL;
 | |
| 	struct btrfs_path *path;
 | |
| 	u64 length;
 | |
| 	u64 chunk_tree;
 | |
| 	u64 chunk_objectid;
 | |
| 	u64 chunk_offset;
 | |
| 	int ret;
 | |
| 	int slot;
 | |
| 	int failed = 0;
 | |
| 	bool retried = false;
 | |
| 	struct extent_buffer *l;
 | |
| 	struct btrfs_key key;
 | |
| 	struct btrfs_super_block *super_copy = root->fs_info->super_copy;
 | |
| 	u64 old_total = btrfs_super_total_bytes(super_copy);
 | |
| 	u64 old_size = device->total_bytes;
 | |
| 	u64 diff = device->total_bytes - new_size;
 | |
| 
 | |
| 	if (new_size >= device->total_bytes)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	path = btrfs_alloc_path();
 | |
| 	if (!path)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	path->reada = 2;
 | |
| 
 | |
| 	lock_chunks(root);
 | |
| 
 | |
| 	device->total_bytes = new_size;
 | |
| 	if (device->writeable) {
 | |
| 		device->fs_devices->total_rw_bytes -= diff;
 | |
| 		spin_lock(&root->fs_info->free_chunk_lock);
 | |
| 		root->fs_info->free_chunk_space -= diff;
 | |
| 		spin_unlock(&root->fs_info->free_chunk_lock);
 | |
| 	}
 | |
| 	unlock_chunks(root);
 | |
| 
 | |
| again:
 | |
| 	key.objectid = device->devid;
 | |
| 	key.offset = (u64)-1;
 | |
| 	key.type = BTRFS_DEV_EXTENT_KEY;
 | |
| 
 | |
| 	while (1) {
 | |
| 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 | |
| 		if (ret < 0)
 | |
| 			goto done;
 | |
| 
 | |
| 		ret = btrfs_previous_item(root, path, 0, key.type);
 | |
| 		if (ret < 0)
 | |
| 			goto done;
 | |
| 		if (ret) {
 | |
| 			ret = 0;
 | |
| 			btrfs_release_path(path);
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		l = path->nodes[0];
 | |
| 		slot = path->slots[0];
 | |
| 		btrfs_item_key_to_cpu(l, &key, path->slots[0]);
 | |
| 
 | |
| 		if (key.objectid != device->devid) {
 | |
| 			btrfs_release_path(path);
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
 | |
| 		length = btrfs_dev_extent_length(l, dev_extent);
 | |
| 
 | |
| 		if (key.offset + length <= new_size) {
 | |
| 			btrfs_release_path(path);
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
 | |
| 		chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
 | |
| 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
 | |
| 		btrfs_release_path(path);
 | |
| 
 | |
| 		ret = btrfs_relocate_chunk(root, chunk_tree, chunk_objectid,
 | |
| 					   chunk_offset);
 | |
| 		if (ret && ret != -ENOSPC)
 | |
| 			goto done;
 | |
| 		if (ret == -ENOSPC)
 | |
| 			failed++;
 | |
| 		key.offset -= 1;
 | |
| 	}
 | |
| 
 | |
| 	if (failed && !retried) {
 | |
| 		failed = 0;
 | |
| 		retried = true;
 | |
| 		goto again;
 | |
| 	} else if (failed && retried) {
 | |
| 		ret = -ENOSPC;
 | |
| 		lock_chunks(root);
 | |
| 
 | |
| 		device->total_bytes = old_size;
 | |
| 		if (device->writeable)
 | |
| 			device->fs_devices->total_rw_bytes += diff;
 | |
| 		spin_lock(&root->fs_info->free_chunk_lock);
 | |
| 		root->fs_info->free_chunk_space += diff;
 | |
| 		spin_unlock(&root->fs_info->free_chunk_lock);
 | |
| 		unlock_chunks(root);
 | |
| 		goto done;
 | |
| 	}
 | |
| 
 | |
| 	/* Shrinking succeeded, else we would be at "done". */
 | |
| 	trans = btrfs_start_transaction(root, 0);
 | |
| 	if (IS_ERR(trans)) {
 | |
| 		ret = PTR_ERR(trans);
 | |
| 		goto done;
 | |
| 	}
 | |
| 
 | |
| 	lock_chunks(root);
 | |
| 
 | |
| 	device->disk_total_bytes = new_size;
 | |
| 	/* Now btrfs_update_device() will change the on-disk size. */
 | |
| 	ret = btrfs_update_device(trans, device);
 | |
| 	if (ret) {
 | |
| 		unlock_chunks(root);
 | |
| 		btrfs_end_transaction(trans, root);
 | |
| 		goto done;
 | |
| 	}
 | |
| 	WARN_ON(diff > old_total);
 | |
| 	btrfs_set_super_total_bytes(super_copy, old_total - diff);
 | |
| 	unlock_chunks(root);
 | |
| 	btrfs_end_transaction(trans, root);
 | |
| done:
 | |
| 	btrfs_free_path(path);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int btrfs_add_system_chunk(struct btrfs_trans_handle *trans,
 | |
| 			   struct btrfs_root *root,
 | |
| 			   struct btrfs_key *key,
 | |
| 			   struct btrfs_chunk *chunk, int item_size)
 | |
| {
 | |
| 	struct btrfs_super_block *super_copy = root->fs_info->super_copy;
 | |
| 	struct btrfs_disk_key disk_key;
 | |
| 	u32 array_size;
 | |
| 	u8 *ptr;
 | |
| 
 | |
| 	array_size = btrfs_super_sys_array_size(super_copy);
 | |
| 	if (array_size + item_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
 | |
| 		return -EFBIG;
 | |
| 
 | |
| 	ptr = super_copy->sys_chunk_array + array_size;
 | |
| 	btrfs_cpu_key_to_disk(&disk_key, key);
 | |
| 	memcpy(ptr, &disk_key, sizeof(disk_key));
 | |
| 	ptr += sizeof(disk_key);
 | |
| 	memcpy(ptr, chunk, item_size);
 | |
| 	item_size += sizeof(disk_key);
 | |
| 	btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * sort the devices in descending order by max_avail, total_avail
 | |
|  */
 | |
| static int btrfs_cmp_device_info(const void *a, const void *b)
 | |
| {
 | |
| 	const struct btrfs_device_info *di_a = a;
 | |
| 	const struct btrfs_device_info *di_b = b;
 | |
| 
 | |
| 	if (di_a->max_avail > di_b->max_avail)
 | |
| 		return -1;
 | |
| 	if (di_a->max_avail < di_b->max_avail)
 | |
| 		return 1;
 | |
| 	if (di_a->total_avail > di_b->total_avail)
 | |
| 		return -1;
 | |
| 	if (di_a->total_avail < di_b->total_avail)
 | |
| 		return 1;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
 | |
| 			       struct btrfs_root *extent_root,
 | |
| 			       struct map_lookup **map_ret,
 | |
| 			       u64 *num_bytes_out, u64 *stripe_size_out,
 | |
| 			       u64 start, u64 type)
 | |
| {
 | |
| 	struct btrfs_fs_info *info = extent_root->fs_info;
 | |
| 	struct btrfs_fs_devices *fs_devices = info->fs_devices;
 | |
| 	struct list_head *cur;
 | |
| 	struct map_lookup *map = NULL;
 | |
| 	struct extent_map_tree *em_tree;
 | |
| 	struct extent_map *em;
 | |
| 	struct btrfs_device_info *devices_info = NULL;
 | |
| 	u64 total_avail;
 | |
| 	int num_stripes;	/* total number of stripes to allocate */
 | |
| 	int sub_stripes;	/* sub_stripes info for map */
 | |
| 	int dev_stripes;	/* stripes per dev */
 | |
| 	int devs_max;		/* max devs to use */
 | |
| 	int devs_min;		/* min devs needed */
 | |
| 	int devs_increment;	/* ndevs has to be a multiple of this */
 | |
| 	int ncopies;		/* how many copies to data has */
 | |
| 	int ret;
 | |
| 	u64 max_stripe_size;
 | |
| 	u64 max_chunk_size;
 | |
| 	u64 stripe_size;
 | |
| 	u64 num_bytes;
 | |
| 	int ndevs;
 | |
| 	int i;
 | |
| 	int j;
 | |
| 
 | |
| 	if ((type & BTRFS_BLOCK_GROUP_RAID1) &&
 | |
| 	    (type & BTRFS_BLOCK_GROUP_DUP)) {
 | |
| 		WARN_ON(1);
 | |
| 		type &= ~BTRFS_BLOCK_GROUP_DUP;
 | |
| 	}
 | |
| 
 | |
| 	if (list_empty(&fs_devices->alloc_list))
 | |
| 		return -ENOSPC;
 | |
| 
 | |
| 	sub_stripes = 1;
 | |
| 	dev_stripes = 1;
 | |
| 	devs_increment = 1;
 | |
| 	ncopies = 1;
 | |
| 	devs_max = 0;	/* 0 == as many as possible */
 | |
| 	devs_min = 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * define the properties of each RAID type.
 | |
| 	 * FIXME: move this to a global table and use it in all RAID
 | |
| 	 * calculation code
 | |
| 	 */
 | |
| 	if (type & (BTRFS_BLOCK_GROUP_DUP)) {
 | |
| 		dev_stripes = 2;
 | |
| 		ncopies = 2;
 | |
| 		devs_max = 1;
 | |
| 	} else if (type & (BTRFS_BLOCK_GROUP_RAID0)) {
 | |
| 		devs_min = 2;
 | |
| 	} else if (type & (BTRFS_BLOCK_GROUP_RAID1)) {
 | |
| 		devs_increment = 2;
 | |
| 		ncopies = 2;
 | |
| 		devs_max = 2;
 | |
| 		devs_min = 2;
 | |
| 	} else if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
 | |
| 		sub_stripes = 2;
 | |
| 		devs_increment = 2;
 | |
| 		ncopies = 2;
 | |
| 		devs_min = 4;
 | |
| 	} else {
 | |
| 		devs_max = 1;
 | |
| 	}
 | |
| 
 | |
| 	if (type & BTRFS_BLOCK_GROUP_DATA) {
 | |
| 		max_stripe_size = 1024 * 1024 * 1024;
 | |
| 		max_chunk_size = 10 * max_stripe_size;
 | |
| 	} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
 | |
| 		max_stripe_size = 256 * 1024 * 1024;
 | |
| 		max_chunk_size = max_stripe_size;
 | |
| 	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
 | |
| 		max_stripe_size = 8 * 1024 * 1024;
 | |
| 		max_chunk_size = 2 * max_stripe_size;
 | |
| 	} else {
 | |
| 		printk(KERN_ERR "btrfs: invalid chunk type 0x%llx requested\n",
 | |
| 		       type);
 | |
| 		BUG_ON(1);
 | |
| 	}
 | |
| 
 | |
| 	/* we don't want a chunk larger than 10% of writeable space */
 | |
| 	max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
 | |
| 			     max_chunk_size);
 | |
| 
 | |
| 	devices_info = kzalloc(sizeof(*devices_info) * fs_devices->rw_devices,
 | |
| 			       GFP_NOFS);
 | |
| 	if (!devices_info)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	cur = fs_devices->alloc_list.next;
 | |
| 
 | |
| 	/*
 | |
| 	 * in the first pass through the devices list, we gather information
 | |
| 	 * about the available holes on each device.
 | |
| 	 */
 | |
| 	ndevs = 0;
 | |
| 	while (cur != &fs_devices->alloc_list) {
 | |
| 		struct btrfs_device *device;
 | |
| 		u64 max_avail;
 | |
| 		u64 dev_offset;
 | |
| 
 | |
| 		device = list_entry(cur, struct btrfs_device, dev_alloc_list);
 | |
| 
 | |
| 		cur = cur->next;
 | |
| 
 | |
| 		if (!device->writeable) {
 | |
| 			printk(KERN_ERR
 | |
| 			       "btrfs: read-only device in alloc_list\n");
 | |
| 			WARN_ON(1);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (!device->in_fs_metadata)
 | |
| 			continue;
 | |
| 
 | |
| 		if (device->total_bytes > device->bytes_used)
 | |
| 			total_avail = device->total_bytes - device->bytes_used;
 | |
| 		else
 | |
| 			total_avail = 0;
 | |
| 
 | |
| 		/* If there is no space on this device, skip it. */
 | |
| 		if (total_avail == 0)
 | |
| 			continue;
 | |
| 
 | |
| 		ret = find_free_dev_extent(trans, device,
 | |
| 					   max_stripe_size * dev_stripes,
 | |
| 					   &dev_offset, &max_avail);
 | |
| 		if (ret && ret != -ENOSPC)
 | |
| 			goto error;
 | |
| 
 | |
| 		if (ret == 0)
 | |
| 			max_avail = max_stripe_size * dev_stripes;
 | |
| 
 | |
| 		if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
 | |
| 			continue;
 | |
| 
 | |
| 		devices_info[ndevs].dev_offset = dev_offset;
 | |
| 		devices_info[ndevs].max_avail = max_avail;
 | |
| 		devices_info[ndevs].total_avail = total_avail;
 | |
| 		devices_info[ndevs].dev = device;
 | |
| 		++ndevs;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * now sort the devices by hole size / available space
 | |
| 	 */
 | |
| 	sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
 | |
| 	     btrfs_cmp_device_info, NULL);
 | |
| 
 | |
| 	/* round down to number of usable stripes */
 | |
| 	ndevs -= ndevs % devs_increment;
 | |
| 
 | |
| 	if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
 | |
| 		ret = -ENOSPC;
 | |
| 		goto error;
 | |
| 	}
 | |
| 
 | |
| 	if (devs_max && ndevs > devs_max)
 | |
| 		ndevs = devs_max;
 | |
| 	/*
 | |
| 	 * the primary goal is to maximize the number of stripes, so use as many
 | |
| 	 * devices as possible, even if the stripes are not maximum sized.
 | |
| 	 */
 | |
| 	stripe_size = devices_info[ndevs-1].max_avail;
 | |
| 	num_stripes = ndevs * dev_stripes;
 | |
| 
 | |
| 	if (stripe_size * num_stripes > max_chunk_size * ncopies) {
 | |
| 		stripe_size = max_chunk_size * ncopies;
 | |
| 		do_div(stripe_size, num_stripes);
 | |
| 	}
 | |
| 
 | |
| 	do_div(stripe_size, dev_stripes);
 | |
| 	do_div(stripe_size, BTRFS_STRIPE_LEN);
 | |
| 	stripe_size *= BTRFS_STRIPE_LEN;
 | |
| 
 | |
| 	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
 | |
| 	if (!map) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto error;
 | |
| 	}
 | |
| 	map->num_stripes = num_stripes;
 | |
| 
 | |
| 	for (i = 0; i < ndevs; ++i) {
 | |
| 		for (j = 0; j < dev_stripes; ++j) {
 | |
| 			int s = i * dev_stripes + j;
 | |
| 			map->stripes[s].dev = devices_info[i].dev;
 | |
| 			map->stripes[s].physical = devices_info[i].dev_offset +
 | |
| 						   j * stripe_size;
 | |
| 		}
 | |
| 	}
 | |
| 	map->sector_size = extent_root->sectorsize;
 | |
| 	map->stripe_len = BTRFS_STRIPE_LEN;
 | |
| 	map->io_align = BTRFS_STRIPE_LEN;
 | |
| 	map->io_width = BTRFS_STRIPE_LEN;
 | |
| 	map->type = type;
 | |
| 	map->sub_stripes = sub_stripes;
 | |
| 
 | |
| 	*map_ret = map;
 | |
| 	num_bytes = stripe_size * (num_stripes / ncopies);
 | |
| 
 | |
| 	*stripe_size_out = stripe_size;
 | |
| 	*num_bytes_out = num_bytes;
 | |
| 
 | |
| 	trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes);
 | |
| 
 | |
| 	em = alloc_extent_map();
 | |
| 	if (!em) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto error;
 | |
| 	}
 | |
| 	em->bdev = (struct block_device *)map;
 | |
| 	em->start = start;
 | |
| 	em->len = num_bytes;
 | |
| 	em->block_start = 0;
 | |
| 	em->block_len = em->len;
 | |
| 
 | |
| 	em_tree = &extent_root->fs_info->mapping_tree.map_tree;
 | |
| 	write_lock(&em_tree->lock);
 | |
| 	ret = add_extent_mapping(em_tree, em);
 | |
| 	write_unlock(&em_tree->lock);
 | |
| 	BUG_ON(ret);
 | |
| 	free_extent_map(em);
 | |
| 
 | |
| 	ret = btrfs_make_block_group(trans, extent_root, 0, type,
 | |
| 				     BTRFS_FIRST_CHUNK_TREE_OBJECTID,
 | |
| 				     start, num_bytes);
 | |
| 	BUG_ON(ret);
 | |
| 
 | |
| 	for (i = 0; i < map->num_stripes; ++i) {
 | |
| 		struct btrfs_device *device;
 | |
| 		u64 dev_offset;
 | |
| 
 | |
| 		device = map->stripes[i].dev;
 | |
| 		dev_offset = map->stripes[i].physical;
 | |
| 
 | |
| 		ret = btrfs_alloc_dev_extent(trans, device,
 | |
| 				info->chunk_root->root_key.objectid,
 | |
| 				BTRFS_FIRST_CHUNK_TREE_OBJECTID,
 | |
| 				start, dev_offset, stripe_size);
 | |
| 		BUG_ON(ret);
 | |
| 	}
 | |
| 
 | |
| 	kfree(devices_info);
 | |
| 	return 0;
 | |
| 
 | |
| error:
 | |
| 	kfree(map);
 | |
| 	kfree(devices_info);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int __finish_chunk_alloc(struct btrfs_trans_handle *trans,
 | |
| 				struct btrfs_root *extent_root,
 | |
| 				struct map_lookup *map, u64 chunk_offset,
 | |
| 				u64 chunk_size, u64 stripe_size)
 | |
| {
 | |
| 	u64 dev_offset;
 | |
| 	struct btrfs_key key;
 | |
| 	struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
 | |
| 	struct btrfs_device *device;
 | |
| 	struct btrfs_chunk *chunk;
 | |
| 	struct btrfs_stripe *stripe;
 | |
| 	size_t item_size = btrfs_chunk_item_size(map->num_stripes);
 | |
| 	int index = 0;
 | |
| 	int ret;
 | |
| 
 | |
| 	chunk = kzalloc(item_size, GFP_NOFS);
 | |
| 	if (!chunk)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	index = 0;
 | |
| 	while (index < map->num_stripes) {
 | |
| 		device = map->stripes[index].dev;
 | |
| 		device->bytes_used += stripe_size;
 | |
| 		ret = btrfs_update_device(trans, device);
 | |
| 		BUG_ON(ret);
 | |
| 		index++;
 | |
| 	}
 | |
| 
 | |
| 	spin_lock(&extent_root->fs_info->free_chunk_lock);
 | |
| 	extent_root->fs_info->free_chunk_space -= (stripe_size *
 | |
| 						   map->num_stripes);
 | |
| 	spin_unlock(&extent_root->fs_info->free_chunk_lock);
 | |
| 
 | |
| 	index = 0;
 | |
| 	stripe = &chunk->stripe;
 | |
| 	while (index < map->num_stripes) {
 | |
| 		device = map->stripes[index].dev;
 | |
| 		dev_offset = map->stripes[index].physical;
 | |
| 
 | |
| 		btrfs_set_stack_stripe_devid(stripe, device->devid);
 | |
| 		btrfs_set_stack_stripe_offset(stripe, dev_offset);
 | |
| 		memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
 | |
| 		stripe++;
 | |
| 		index++;
 | |
| 	}
 | |
| 
 | |
| 	btrfs_set_stack_chunk_length(chunk, chunk_size);
 | |
| 	btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
 | |
| 	btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
 | |
| 	btrfs_set_stack_chunk_type(chunk, map->type);
 | |
| 	btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
 | |
| 	btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
 | |
| 	btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
 | |
| 	btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
 | |
| 	btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
 | |
| 
 | |
| 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
 | |
| 	key.type = BTRFS_CHUNK_ITEM_KEY;
 | |
| 	key.offset = chunk_offset;
 | |
| 
 | |
| 	ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
 | |
| 	BUG_ON(ret);
 | |
| 
 | |
| 	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
 | |
| 		ret = btrfs_add_system_chunk(trans, chunk_root, &key, chunk,
 | |
| 					     item_size);
 | |
| 		BUG_ON(ret);
 | |
| 	}
 | |
| 
 | |
| 	kfree(chunk);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Chunk allocation falls into two parts. The first part does works
 | |
|  * that make the new allocated chunk useable, but not do any operation
 | |
|  * that modifies the chunk tree. The second part does the works that
 | |
|  * require modifying the chunk tree. This division is important for the
 | |
|  * bootstrap process of adding storage to a seed btrfs.
 | |
|  */
 | |
| int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
 | |
| 		      struct btrfs_root *extent_root, u64 type)
 | |
| {
 | |
| 	u64 chunk_offset;
 | |
| 	u64 chunk_size;
 | |
| 	u64 stripe_size;
 | |
| 	struct map_lookup *map;
 | |
| 	struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = find_next_chunk(chunk_root, BTRFS_FIRST_CHUNK_TREE_OBJECTID,
 | |
| 			      &chunk_offset);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size,
 | |
| 				  &stripe_size, chunk_offset, type);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset,
 | |
| 				   chunk_size, stripe_size);
 | |
| 	BUG_ON(ret);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
 | |
| 					 struct btrfs_root *root,
 | |
| 					 struct btrfs_device *device)
 | |
| {
 | |
| 	u64 chunk_offset;
 | |
| 	u64 sys_chunk_offset;
 | |
| 	u64 chunk_size;
 | |
| 	u64 sys_chunk_size;
 | |
| 	u64 stripe_size;
 | |
| 	u64 sys_stripe_size;
 | |
| 	u64 alloc_profile;
 | |
| 	struct map_lookup *map;
 | |
| 	struct map_lookup *sys_map;
 | |
| 	struct btrfs_fs_info *fs_info = root->fs_info;
 | |
| 	struct btrfs_root *extent_root = fs_info->extent_root;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = find_next_chunk(fs_info->chunk_root,
 | |
| 			      BTRFS_FIRST_CHUNK_TREE_OBJECTID, &chunk_offset);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	alloc_profile = BTRFS_BLOCK_GROUP_METADATA |
 | |
| 			(fs_info->metadata_alloc_profile &
 | |
| 			 fs_info->avail_metadata_alloc_bits);
 | |
| 	alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile);
 | |
| 
 | |
| 	ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size,
 | |
| 				  &stripe_size, chunk_offset, alloc_profile);
 | |
| 	BUG_ON(ret);
 | |
| 
 | |
| 	sys_chunk_offset = chunk_offset + chunk_size;
 | |
| 
 | |
| 	alloc_profile = BTRFS_BLOCK_GROUP_SYSTEM |
 | |
| 			(fs_info->system_alloc_profile &
 | |
| 			 fs_info->avail_system_alloc_bits);
 | |
| 	alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile);
 | |
| 
 | |
| 	ret = __btrfs_alloc_chunk(trans, extent_root, &sys_map,
 | |
| 				  &sys_chunk_size, &sys_stripe_size,
 | |
| 				  sys_chunk_offset, alloc_profile);
 | |
| 	BUG_ON(ret);
 | |
| 
 | |
| 	ret = btrfs_add_device(trans, fs_info->chunk_root, device);
 | |
| 	BUG_ON(ret);
 | |
| 
 | |
| 	/*
 | |
| 	 * Modifying chunk tree needs allocating new blocks from both
 | |
| 	 * system block group and metadata block group. So we only can
 | |
| 	 * do operations require modifying the chunk tree after both
 | |
| 	 * block groups were created.
 | |
| 	 */
 | |
| 	ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset,
 | |
| 				   chunk_size, stripe_size);
 | |
| 	BUG_ON(ret);
 | |
| 
 | |
| 	ret = __finish_chunk_alloc(trans, extent_root, sys_map,
 | |
| 				   sys_chunk_offset, sys_chunk_size,
 | |
| 				   sys_stripe_size);
 | |
| 	BUG_ON(ret);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
 | |
| {
 | |
| 	struct extent_map *em;
 | |
| 	struct map_lookup *map;
 | |
| 	struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
 | |
| 	int readonly = 0;
 | |
| 	int i;
 | |
| 
 | |
| 	read_lock(&map_tree->map_tree.lock);
 | |
| 	em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
 | |
| 	read_unlock(&map_tree->map_tree.lock);
 | |
| 	if (!em)
 | |
| 		return 1;
 | |
| 
 | |
| 	if (btrfs_test_opt(root, DEGRADED)) {
 | |
| 		free_extent_map(em);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	map = (struct map_lookup *)em->bdev;
 | |
| 	for (i = 0; i < map->num_stripes; i++) {
 | |
| 		if (!map->stripes[i].dev->writeable) {
 | |
| 			readonly = 1;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	free_extent_map(em);
 | |
| 	return readonly;
 | |
| }
 | |
| 
 | |
| void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
 | |
| {
 | |
| 	extent_map_tree_init(&tree->map_tree);
 | |
| }
 | |
| 
 | |
| void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
 | |
| {
 | |
| 	struct extent_map *em;
 | |
| 
 | |
| 	while (1) {
 | |
| 		write_lock(&tree->map_tree.lock);
 | |
| 		em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
 | |
| 		if (em)
 | |
| 			remove_extent_mapping(&tree->map_tree, em);
 | |
| 		write_unlock(&tree->map_tree.lock);
 | |
| 		if (!em)
 | |
| 			break;
 | |
| 		kfree(em->bdev);
 | |
| 		/* once for us */
 | |
| 		free_extent_map(em);
 | |
| 		/* once for the tree */
 | |
| 		free_extent_map(em);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| int btrfs_num_copies(struct btrfs_mapping_tree *map_tree, u64 logical, u64 len)
 | |
| {
 | |
| 	struct extent_map *em;
 | |
| 	struct map_lookup *map;
 | |
| 	struct extent_map_tree *em_tree = &map_tree->map_tree;
 | |
| 	int ret;
 | |
| 
 | |
| 	read_lock(&em_tree->lock);
 | |
| 	em = lookup_extent_mapping(em_tree, logical, len);
 | |
| 	read_unlock(&em_tree->lock);
 | |
| 	BUG_ON(!em);
 | |
| 
 | |
| 	BUG_ON(em->start > logical || em->start + em->len < logical);
 | |
| 	map = (struct map_lookup *)em->bdev;
 | |
| 	if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
 | |
| 		ret = map->num_stripes;
 | |
| 	else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
 | |
| 		ret = map->sub_stripes;
 | |
| 	else
 | |
| 		ret = 1;
 | |
| 	free_extent_map(em);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int find_live_mirror(struct map_lookup *map, int first, int num,
 | |
| 			    int optimal)
 | |
| {
 | |
| 	int i;
 | |
| 	if (map->stripes[optimal].dev->bdev)
 | |
| 		return optimal;
 | |
| 	for (i = first; i < first + num; i++) {
 | |
| 		if (map->stripes[i].dev->bdev)
 | |
| 			return i;
 | |
| 	}
 | |
| 	/* we couldn't find one that doesn't fail.  Just return something
 | |
| 	 * and the io error handling code will clean up eventually
 | |
| 	 */
 | |
| 	return optimal;
 | |
| }
 | |
| 
 | |
| static int __btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
 | |
| 			     u64 logical, u64 *length,
 | |
| 			     struct btrfs_bio **bbio_ret,
 | |
| 			     int mirror_num)
 | |
| {
 | |
| 	struct extent_map *em;
 | |
| 	struct map_lookup *map;
 | |
| 	struct extent_map_tree *em_tree = &map_tree->map_tree;
 | |
| 	u64 offset;
 | |
| 	u64 stripe_offset;
 | |
| 	u64 stripe_end_offset;
 | |
| 	u64 stripe_nr;
 | |
| 	u64 stripe_nr_orig;
 | |
| 	u64 stripe_nr_end;
 | |
| 	int stripes_allocated = 8;
 | |
| 	int stripes_required = 1;
 | |
| 	int stripe_index;
 | |
| 	int i;
 | |
| 	int num_stripes;
 | |
| 	int max_errors = 0;
 | |
| 	struct btrfs_bio *bbio = NULL;
 | |
| 
 | |
| 	if (bbio_ret && !(rw & (REQ_WRITE | REQ_DISCARD)))
 | |
| 		stripes_allocated = 1;
 | |
| again:
 | |
| 	if (bbio_ret) {
 | |
| 		bbio = kzalloc(btrfs_bio_size(stripes_allocated),
 | |
| 				GFP_NOFS);
 | |
| 		if (!bbio)
 | |
| 			return -ENOMEM;
 | |
| 
 | |
| 		atomic_set(&bbio->error, 0);
 | |
| 	}
 | |
| 
 | |
| 	read_lock(&em_tree->lock);
 | |
| 	em = lookup_extent_mapping(em_tree, logical, *length);
 | |
| 	read_unlock(&em_tree->lock);
 | |
| 
 | |
| 	if (!em) {
 | |
| 		printk(KERN_CRIT "unable to find logical %llu len %llu\n",
 | |
| 		       (unsigned long long)logical,
 | |
| 		       (unsigned long long)*length);
 | |
| 		BUG();
 | |
| 	}
 | |
| 
 | |
| 	BUG_ON(em->start > logical || em->start + em->len < logical);
 | |
| 	map = (struct map_lookup *)em->bdev;
 | |
| 	offset = logical - em->start;
 | |
| 
 | |
| 	if (mirror_num > map->num_stripes)
 | |
| 		mirror_num = 0;
 | |
| 
 | |
| 	/* if our btrfs_bio struct is too small, back off and try again */
 | |
| 	if (rw & REQ_WRITE) {
 | |
| 		if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
 | |
| 				 BTRFS_BLOCK_GROUP_DUP)) {
 | |
| 			stripes_required = map->num_stripes;
 | |
| 			max_errors = 1;
 | |
| 		} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
 | |
| 			stripes_required = map->sub_stripes;
 | |
| 			max_errors = 1;
 | |
| 		}
 | |
| 	}
 | |
| 	if (rw & REQ_DISCARD) {
 | |
| 		if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
 | |
| 				 BTRFS_BLOCK_GROUP_RAID1 |
 | |
| 				 BTRFS_BLOCK_GROUP_DUP |
 | |
| 				 BTRFS_BLOCK_GROUP_RAID10)) {
 | |
| 			stripes_required = map->num_stripes;
 | |
| 		}
 | |
| 	}
 | |
| 	if (bbio_ret && (rw & (REQ_WRITE | REQ_DISCARD)) &&
 | |
| 	    stripes_allocated < stripes_required) {
 | |
| 		stripes_allocated = map->num_stripes;
 | |
| 		free_extent_map(em);
 | |
| 		kfree(bbio);
 | |
| 		goto again;
 | |
| 	}
 | |
| 	stripe_nr = offset;
 | |
| 	/*
 | |
| 	 * stripe_nr counts the total number of stripes we have to stride
 | |
| 	 * to get to this block
 | |
| 	 */
 | |
| 	do_div(stripe_nr, map->stripe_len);
 | |
| 
 | |
| 	stripe_offset = stripe_nr * map->stripe_len;
 | |
| 	BUG_ON(offset < stripe_offset);
 | |
| 
 | |
| 	/* stripe_offset is the offset of this block in its stripe*/
 | |
| 	stripe_offset = offset - stripe_offset;
 | |
| 
 | |
| 	if (rw & REQ_DISCARD)
 | |
| 		*length = min_t(u64, em->len - offset, *length);
 | |
| 	else if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
 | |
| 			      BTRFS_BLOCK_GROUP_RAID1 |
 | |
| 			      BTRFS_BLOCK_GROUP_RAID10 |
 | |
| 			      BTRFS_BLOCK_GROUP_DUP)) {
 | |
| 		/* we limit the length of each bio to what fits in a stripe */
 | |
| 		*length = min_t(u64, em->len - offset,
 | |
| 				map->stripe_len - stripe_offset);
 | |
| 	} else {
 | |
| 		*length = em->len - offset;
 | |
| 	}
 | |
| 
 | |
| 	if (!bbio_ret)
 | |
| 		goto out;
 | |
| 
 | |
| 	num_stripes = 1;
 | |
| 	stripe_index = 0;
 | |
| 	stripe_nr_orig = stripe_nr;
 | |
| 	stripe_nr_end = (offset + *length + map->stripe_len - 1) &
 | |
| 			(~(map->stripe_len - 1));
 | |
| 	do_div(stripe_nr_end, map->stripe_len);
 | |
| 	stripe_end_offset = stripe_nr_end * map->stripe_len -
 | |
| 			    (offset + *length);
 | |
| 	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
 | |
| 		if (rw & REQ_DISCARD)
 | |
| 			num_stripes = min_t(u64, map->num_stripes,
 | |
| 					    stripe_nr_end - stripe_nr_orig);
 | |
| 		stripe_index = do_div(stripe_nr, map->num_stripes);
 | |
| 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
 | |
| 		if (rw & (REQ_WRITE | REQ_DISCARD))
 | |
| 			num_stripes = map->num_stripes;
 | |
| 		else if (mirror_num)
 | |
| 			stripe_index = mirror_num - 1;
 | |
| 		else {
 | |
| 			stripe_index = find_live_mirror(map, 0,
 | |
| 					    map->num_stripes,
 | |
| 					    current->pid % map->num_stripes);
 | |
| 			mirror_num = stripe_index + 1;
 | |
| 		}
 | |
| 
 | |
| 	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
 | |
| 		if (rw & (REQ_WRITE | REQ_DISCARD)) {
 | |
| 			num_stripes = map->num_stripes;
 | |
| 		} else if (mirror_num) {
 | |
| 			stripe_index = mirror_num - 1;
 | |
| 		} else {
 | |
| 			mirror_num = 1;
 | |
| 		}
 | |
| 
 | |
| 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
 | |
| 		int factor = map->num_stripes / map->sub_stripes;
 | |
| 
 | |
| 		stripe_index = do_div(stripe_nr, factor);
 | |
| 		stripe_index *= map->sub_stripes;
 | |
| 
 | |
| 		if (rw & REQ_WRITE)
 | |
| 			num_stripes = map->sub_stripes;
 | |
| 		else if (rw & REQ_DISCARD)
 | |
| 			num_stripes = min_t(u64, map->sub_stripes *
 | |
| 					    (stripe_nr_end - stripe_nr_orig),
 | |
| 					    map->num_stripes);
 | |
| 		else if (mirror_num)
 | |
| 			stripe_index += mirror_num - 1;
 | |
| 		else {
 | |
| 			stripe_index = find_live_mirror(map, stripe_index,
 | |
| 					      map->sub_stripes, stripe_index +
 | |
| 					      current->pid % map->sub_stripes);
 | |
| 			mirror_num = stripe_index + 1;
 | |
| 		}
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * after this do_div call, stripe_nr is the number of stripes
 | |
| 		 * on this device we have to walk to find the data, and
 | |
| 		 * stripe_index is the number of our device in the stripe array
 | |
| 		 */
 | |
| 		stripe_index = do_div(stripe_nr, map->num_stripes);
 | |
| 		mirror_num = stripe_index + 1;
 | |
| 	}
 | |
| 	BUG_ON(stripe_index >= map->num_stripes);
 | |
| 
 | |
| 	if (rw & REQ_DISCARD) {
 | |
| 		for (i = 0; i < num_stripes; i++) {
 | |
| 			bbio->stripes[i].physical =
 | |
| 				map->stripes[stripe_index].physical +
 | |
| 				stripe_offset + stripe_nr * map->stripe_len;
 | |
| 			bbio->stripes[i].dev = map->stripes[stripe_index].dev;
 | |
| 
 | |
| 			if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
 | |
| 				u64 stripes;
 | |
| 				u32 last_stripe = 0;
 | |
| 				int j;
 | |
| 
 | |
| 				div_u64_rem(stripe_nr_end - 1,
 | |
| 					    map->num_stripes,
 | |
| 					    &last_stripe);
 | |
| 
 | |
| 				for (j = 0; j < map->num_stripes; j++) {
 | |
| 					u32 test;
 | |
| 
 | |
| 					div_u64_rem(stripe_nr_end - 1 - j,
 | |
| 						    map->num_stripes, &test);
 | |
| 					if (test == stripe_index)
 | |
| 						break;
 | |
| 				}
 | |
| 				stripes = stripe_nr_end - 1 - j;
 | |
| 				do_div(stripes, map->num_stripes);
 | |
| 				bbio->stripes[i].length = map->stripe_len *
 | |
| 					(stripes - stripe_nr + 1);
 | |
| 
 | |
| 				if (i == 0) {
 | |
| 					bbio->stripes[i].length -=
 | |
| 						stripe_offset;
 | |
| 					stripe_offset = 0;
 | |
| 				}
 | |
| 				if (stripe_index == last_stripe)
 | |
| 					bbio->stripes[i].length -=
 | |
| 						stripe_end_offset;
 | |
| 			} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
 | |
| 				u64 stripes;
 | |
| 				int j;
 | |
| 				int factor = map->num_stripes /
 | |
| 					     map->sub_stripes;
 | |
| 				u32 last_stripe = 0;
 | |
| 
 | |
| 				div_u64_rem(stripe_nr_end - 1,
 | |
| 					    factor, &last_stripe);
 | |
| 				last_stripe *= map->sub_stripes;
 | |
| 
 | |
| 				for (j = 0; j < factor; j++) {
 | |
| 					u32 test;
 | |
| 
 | |
| 					div_u64_rem(stripe_nr_end - 1 - j,
 | |
| 						    factor, &test);
 | |
| 
 | |
| 					if (test ==
 | |
| 					    stripe_index / map->sub_stripes)
 | |
| 						break;
 | |
| 				}
 | |
| 				stripes = stripe_nr_end - 1 - j;
 | |
| 				do_div(stripes, factor);
 | |
| 				bbio->stripes[i].length = map->stripe_len *
 | |
| 					(stripes - stripe_nr + 1);
 | |
| 
 | |
| 				if (i < map->sub_stripes) {
 | |
| 					bbio->stripes[i].length -=
 | |
| 						stripe_offset;
 | |
| 					if (i == map->sub_stripes - 1)
 | |
| 						stripe_offset = 0;
 | |
| 				}
 | |
| 				if (stripe_index >= last_stripe &&
 | |
| 				    stripe_index <= (last_stripe +
 | |
| 						     map->sub_stripes - 1)) {
 | |
| 					bbio->stripes[i].length -=
 | |
| 						stripe_end_offset;
 | |
| 				}
 | |
| 			} else
 | |
| 				bbio->stripes[i].length = *length;
 | |
| 
 | |
| 			stripe_index++;
 | |
| 			if (stripe_index == map->num_stripes) {
 | |
| 				/* This could only happen for RAID0/10 */
 | |
| 				stripe_index = 0;
 | |
| 				stripe_nr++;
 | |
| 			}
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i = 0; i < num_stripes; i++) {
 | |
| 			bbio->stripes[i].physical =
 | |
| 				map->stripes[stripe_index].physical +
 | |
| 				stripe_offset +
 | |
| 				stripe_nr * map->stripe_len;
 | |
| 			bbio->stripes[i].dev =
 | |
| 				map->stripes[stripe_index].dev;
 | |
| 			stripe_index++;
 | |
| 		}
 | |
| 	}
 | |
| 	if (bbio_ret) {
 | |
| 		*bbio_ret = bbio;
 | |
| 		bbio->num_stripes = num_stripes;
 | |
| 		bbio->max_errors = max_errors;
 | |
| 		bbio->mirror_num = mirror_num;
 | |
| 	}
 | |
| out:
 | |
| 	free_extent_map(em);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
 | |
| 		      u64 logical, u64 *length,
 | |
| 		      struct btrfs_bio **bbio_ret, int mirror_num)
 | |
| {
 | |
| 	return __btrfs_map_block(map_tree, rw, logical, length, bbio_ret,
 | |
| 				 mirror_num);
 | |
| }
 | |
| 
 | |
| int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
 | |
| 		     u64 chunk_start, u64 physical, u64 devid,
 | |
| 		     u64 **logical, int *naddrs, int *stripe_len)
 | |
| {
 | |
| 	struct extent_map_tree *em_tree = &map_tree->map_tree;
 | |
| 	struct extent_map *em;
 | |
| 	struct map_lookup *map;
 | |
| 	u64 *buf;
 | |
| 	u64 bytenr;
 | |
| 	u64 length;
 | |
| 	u64 stripe_nr;
 | |
| 	int i, j, nr = 0;
 | |
| 
 | |
| 	read_lock(&em_tree->lock);
 | |
| 	em = lookup_extent_mapping(em_tree, chunk_start, 1);
 | |
| 	read_unlock(&em_tree->lock);
 | |
| 
 | |
| 	BUG_ON(!em || em->start != chunk_start);
 | |
| 	map = (struct map_lookup *)em->bdev;
 | |
| 
 | |
| 	length = em->len;
 | |
| 	if (map->type & BTRFS_BLOCK_GROUP_RAID10)
 | |
| 		do_div(length, map->num_stripes / map->sub_stripes);
 | |
| 	else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
 | |
| 		do_div(length, map->num_stripes);
 | |
| 
 | |
| 	buf = kzalloc(sizeof(u64) * map->num_stripes, GFP_NOFS);
 | |
| 	BUG_ON(!buf);
 | |
| 
 | |
| 	for (i = 0; i < map->num_stripes; i++) {
 | |
| 		if (devid && map->stripes[i].dev->devid != devid)
 | |
| 			continue;
 | |
| 		if (map->stripes[i].physical > physical ||
 | |
| 		    map->stripes[i].physical + length <= physical)
 | |
| 			continue;
 | |
| 
 | |
| 		stripe_nr = physical - map->stripes[i].physical;
 | |
| 		do_div(stripe_nr, map->stripe_len);
 | |
| 
 | |
| 		if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
 | |
| 			stripe_nr = stripe_nr * map->num_stripes + i;
 | |
| 			do_div(stripe_nr, map->sub_stripes);
 | |
| 		} else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
 | |
| 			stripe_nr = stripe_nr * map->num_stripes + i;
 | |
| 		}
 | |
| 		bytenr = chunk_start + stripe_nr * map->stripe_len;
 | |
| 		WARN_ON(nr >= map->num_stripes);
 | |
| 		for (j = 0; j < nr; j++) {
 | |
| 			if (buf[j] == bytenr)
 | |
| 				break;
 | |
| 		}
 | |
| 		if (j == nr) {
 | |
| 			WARN_ON(nr >= map->num_stripes);
 | |
| 			buf[nr++] = bytenr;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	*logical = buf;
 | |
| 	*naddrs = nr;
 | |
| 	*stripe_len = map->stripe_len;
 | |
| 
 | |
| 	free_extent_map(em);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void btrfs_end_bio(struct bio *bio, int err)
 | |
| {
 | |
| 	struct btrfs_bio *bbio = bio->bi_private;
 | |
| 	int is_orig_bio = 0;
 | |
| 
 | |
| 	if (err)
 | |
| 		atomic_inc(&bbio->error);
 | |
| 
 | |
| 	if (bio == bbio->orig_bio)
 | |
| 		is_orig_bio = 1;
 | |
| 
 | |
| 	if (atomic_dec_and_test(&bbio->stripes_pending)) {
 | |
| 		if (!is_orig_bio) {
 | |
| 			bio_put(bio);
 | |
| 			bio = bbio->orig_bio;
 | |
| 		}
 | |
| 		bio->bi_private = bbio->private;
 | |
| 		bio->bi_end_io = bbio->end_io;
 | |
| 		bio->bi_bdev = (struct block_device *)
 | |
| 					(unsigned long)bbio->mirror_num;
 | |
| 		/* only send an error to the higher layers if it is
 | |
| 		 * beyond the tolerance of the multi-bio
 | |
| 		 */
 | |
| 		if (atomic_read(&bbio->error) > bbio->max_errors) {
 | |
| 			err = -EIO;
 | |
| 		} else if (err) {
 | |
| 			/*
 | |
| 			 * this bio is actually up to date, we didn't
 | |
| 			 * go over the max number of errors
 | |
| 			 */
 | |
| 			set_bit(BIO_UPTODATE, &bio->bi_flags);
 | |
| 			err = 0;
 | |
| 		}
 | |
| 		kfree(bbio);
 | |
| 
 | |
| 		bio_endio(bio, err);
 | |
| 	} else if (!is_orig_bio) {
 | |
| 		bio_put(bio);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| struct async_sched {
 | |
| 	struct bio *bio;
 | |
| 	int rw;
 | |
| 	struct btrfs_fs_info *info;
 | |
| 	struct btrfs_work work;
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * see run_scheduled_bios for a description of why bios are collected for
 | |
|  * async submit.
 | |
|  *
 | |
|  * This will add one bio to the pending list for a device and make sure
 | |
|  * the work struct is scheduled.
 | |
|  */
 | |
| static noinline int schedule_bio(struct btrfs_root *root,
 | |
| 				 struct btrfs_device *device,
 | |
| 				 int rw, struct bio *bio)
 | |
| {
 | |
| 	int should_queue = 1;
 | |
| 	struct btrfs_pending_bios *pending_bios;
 | |
| 
 | |
| 	/* don't bother with additional async steps for reads, right now */
 | |
| 	if (!(rw & REQ_WRITE)) {
 | |
| 		bio_get(bio);
 | |
| 		submit_bio(rw, bio);
 | |
| 		bio_put(bio);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * nr_async_bios allows us to reliably return congestion to the
 | |
| 	 * higher layers.  Otherwise, the async bio makes it appear we have
 | |
| 	 * made progress against dirty pages when we've really just put it
 | |
| 	 * on a queue for later
 | |
| 	 */
 | |
| 	atomic_inc(&root->fs_info->nr_async_bios);
 | |
| 	WARN_ON(bio->bi_next);
 | |
| 	bio->bi_next = NULL;
 | |
| 	bio->bi_rw |= rw;
 | |
| 
 | |
| 	spin_lock(&device->io_lock);
 | |
| 	if (bio->bi_rw & REQ_SYNC)
 | |
| 		pending_bios = &device->pending_sync_bios;
 | |
| 	else
 | |
| 		pending_bios = &device->pending_bios;
 | |
| 
 | |
| 	if (pending_bios->tail)
 | |
| 		pending_bios->tail->bi_next = bio;
 | |
| 
 | |
| 	pending_bios->tail = bio;
 | |
| 	if (!pending_bios->head)
 | |
| 		pending_bios->head = bio;
 | |
| 	if (device->running_pending)
 | |
| 		should_queue = 0;
 | |
| 
 | |
| 	spin_unlock(&device->io_lock);
 | |
| 
 | |
| 	if (should_queue)
 | |
| 		btrfs_queue_worker(&root->fs_info->submit_workers,
 | |
| 				   &device->work);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
 | |
| 		  int mirror_num, int async_submit)
 | |
| {
 | |
| 	struct btrfs_mapping_tree *map_tree;
 | |
| 	struct btrfs_device *dev;
 | |
| 	struct bio *first_bio = bio;
 | |
| 	u64 logical = (u64)bio->bi_sector << 9;
 | |
| 	u64 length = 0;
 | |
| 	u64 map_length;
 | |
| 	int ret;
 | |
| 	int dev_nr = 0;
 | |
| 	int total_devs = 1;
 | |
| 	struct btrfs_bio *bbio = NULL;
 | |
| 
 | |
| 	length = bio->bi_size;
 | |
| 	map_tree = &root->fs_info->mapping_tree;
 | |
| 	map_length = length;
 | |
| 
 | |
| 	ret = btrfs_map_block(map_tree, rw, logical, &map_length, &bbio,
 | |
| 			      mirror_num);
 | |
| 	BUG_ON(ret);
 | |
| 
 | |
| 	total_devs = bbio->num_stripes;
 | |
| 	if (map_length < length) {
 | |
| 		printk(KERN_CRIT "mapping failed logical %llu bio len %llu "
 | |
| 		       "len %llu\n", (unsigned long long)logical,
 | |
| 		       (unsigned long long)length,
 | |
| 		       (unsigned long long)map_length);
 | |
| 		BUG();
 | |
| 	}
 | |
| 
 | |
| 	bbio->orig_bio = first_bio;
 | |
| 	bbio->private = first_bio->bi_private;
 | |
| 	bbio->end_io = first_bio->bi_end_io;
 | |
| 	atomic_set(&bbio->stripes_pending, bbio->num_stripes);
 | |
| 
 | |
| 	while (dev_nr < total_devs) {
 | |
| 		if (dev_nr < total_devs - 1) {
 | |
| 			bio = bio_clone(first_bio, GFP_NOFS);
 | |
| 			BUG_ON(!bio);
 | |
| 		} else {
 | |
| 			bio = first_bio;
 | |
| 		}
 | |
| 		bio->bi_private = bbio;
 | |
| 		bio->bi_end_io = btrfs_end_bio;
 | |
| 		bio->bi_sector = bbio->stripes[dev_nr].physical >> 9;
 | |
| 		dev = bbio->stripes[dev_nr].dev;
 | |
| 		if (dev && dev->bdev && (rw != WRITE || dev->writeable)) {
 | |
| 			pr_debug("btrfs_map_bio: rw %d, secor=%llu, dev=%lu "
 | |
| 				 "(%s id %llu), size=%u\n", rw,
 | |
| 				 (u64)bio->bi_sector, (u_long)dev->bdev->bd_dev,
 | |
| 				 dev->name, dev->devid, bio->bi_size);
 | |
| 			bio->bi_bdev = dev->bdev;
 | |
| 			if (async_submit)
 | |
| 				schedule_bio(root, dev, rw, bio);
 | |
| 			else
 | |
| 				submit_bio(rw, bio);
 | |
| 		} else {
 | |
| 			bio->bi_bdev = root->fs_info->fs_devices->latest_bdev;
 | |
| 			bio->bi_sector = logical >> 9;
 | |
| 			bio_endio(bio, -EIO);
 | |
| 		}
 | |
| 		dev_nr++;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| struct btrfs_device *btrfs_find_device(struct btrfs_root *root, u64 devid,
 | |
| 				       u8 *uuid, u8 *fsid)
 | |
| {
 | |
| 	struct btrfs_device *device;
 | |
| 	struct btrfs_fs_devices *cur_devices;
 | |
| 
 | |
| 	cur_devices = root->fs_info->fs_devices;
 | |
| 	while (cur_devices) {
 | |
| 		if (!fsid ||
 | |
| 		    !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
 | |
| 			device = __find_device(&cur_devices->devices,
 | |
| 					       devid, uuid);
 | |
| 			if (device)
 | |
| 				return device;
 | |
| 		}
 | |
| 		cur_devices = cur_devices->seed;
 | |
| 	}
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
 | |
| 					    u64 devid, u8 *dev_uuid)
 | |
| {
 | |
| 	struct btrfs_device *device;
 | |
| 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
 | |
| 
 | |
| 	device = kzalloc(sizeof(*device), GFP_NOFS);
 | |
| 	if (!device)
 | |
| 		return NULL;
 | |
| 	list_add(&device->dev_list,
 | |
| 		 &fs_devices->devices);
 | |
| 	device->dev_root = root->fs_info->dev_root;
 | |
| 	device->devid = devid;
 | |
| 	device->work.func = pending_bios_fn;
 | |
| 	device->fs_devices = fs_devices;
 | |
| 	device->missing = 1;
 | |
| 	fs_devices->num_devices++;
 | |
| 	fs_devices->missing_devices++;
 | |
| 	spin_lock_init(&device->io_lock);
 | |
| 	INIT_LIST_HEAD(&device->dev_alloc_list);
 | |
| 	memcpy(device->uuid, dev_uuid, BTRFS_UUID_SIZE);
 | |
| 	return device;
 | |
| }
 | |
| 
 | |
| static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
 | |
| 			  struct extent_buffer *leaf,
 | |
| 			  struct btrfs_chunk *chunk)
 | |
| {
 | |
| 	struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
 | |
| 	struct map_lookup *map;
 | |
| 	struct extent_map *em;
 | |
| 	u64 logical;
 | |
| 	u64 length;
 | |
| 	u64 devid;
 | |
| 	u8 uuid[BTRFS_UUID_SIZE];
 | |
| 	int num_stripes;
 | |
| 	int ret;
 | |
| 	int i;
 | |
| 
 | |
| 	logical = key->offset;
 | |
| 	length = btrfs_chunk_length(leaf, chunk);
 | |
| 
 | |
| 	read_lock(&map_tree->map_tree.lock);
 | |
| 	em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
 | |
| 	read_unlock(&map_tree->map_tree.lock);
 | |
| 
 | |
| 	/* already mapped? */
 | |
| 	if (em && em->start <= logical && em->start + em->len > logical) {
 | |
| 		free_extent_map(em);
 | |
| 		return 0;
 | |
| 	} else if (em) {
 | |
| 		free_extent_map(em);
 | |
| 	}
 | |
| 
 | |
| 	em = alloc_extent_map();
 | |
| 	if (!em)
 | |
| 		return -ENOMEM;
 | |
| 	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
 | |
| 	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
 | |
| 	if (!map) {
 | |
| 		free_extent_map(em);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	em->bdev = (struct block_device *)map;
 | |
| 	em->start = logical;
 | |
| 	em->len = length;
 | |
| 	em->block_start = 0;
 | |
| 	em->block_len = em->len;
 | |
| 
 | |
| 	map->num_stripes = num_stripes;
 | |
| 	map->io_width = btrfs_chunk_io_width(leaf, chunk);
 | |
| 	map->io_align = btrfs_chunk_io_align(leaf, chunk);
 | |
| 	map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
 | |
| 	map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
 | |
| 	map->type = btrfs_chunk_type(leaf, chunk);
 | |
| 	map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
 | |
| 	for (i = 0; i < num_stripes; i++) {
 | |
| 		map->stripes[i].physical =
 | |
| 			btrfs_stripe_offset_nr(leaf, chunk, i);
 | |
| 		devid = btrfs_stripe_devid_nr(leaf, chunk, i);
 | |
| 		read_extent_buffer(leaf, uuid, (unsigned long)
 | |
| 				   btrfs_stripe_dev_uuid_nr(chunk, i),
 | |
| 				   BTRFS_UUID_SIZE);
 | |
| 		map->stripes[i].dev = btrfs_find_device(root, devid, uuid,
 | |
| 							NULL);
 | |
| 		if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
 | |
| 			kfree(map);
 | |
| 			free_extent_map(em);
 | |
| 			return -EIO;
 | |
| 		}
 | |
| 		if (!map->stripes[i].dev) {
 | |
| 			map->stripes[i].dev =
 | |
| 				add_missing_dev(root, devid, uuid);
 | |
| 			if (!map->stripes[i].dev) {
 | |
| 				kfree(map);
 | |
| 				free_extent_map(em);
 | |
| 				return -EIO;
 | |
| 			}
 | |
| 		}
 | |
| 		map->stripes[i].dev->in_fs_metadata = 1;
 | |
| 	}
 | |
| 
 | |
| 	write_lock(&map_tree->map_tree.lock);
 | |
| 	ret = add_extent_mapping(&map_tree->map_tree, em);
 | |
| 	write_unlock(&map_tree->map_tree.lock);
 | |
| 	BUG_ON(ret);
 | |
| 	free_extent_map(em);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int fill_device_from_item(struct extent_buffer *leaf,
 | |
| 				 struct btrfs_dev_item *dev_item,
 | |
| 				 struct btrfs_device *device)
 | |
| {
 | |
| 	unsigned long ptr;
 | |
| 
 | |
| 	device->devid = btrfs_device_id(leaf, dev_item);
 | |
| 	device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
 | |
| 	device->total_bytes = device->disk_total_bytes;
 | |
| 	device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
 | |
| 	device->type = btrfs_device_type(leaf, dev_item);
 | |
| 	device->io_align = btrfs_device_io_align(leaf, dev_item);
 | |
| 	device->io_width = btrfs_device_io_width(leaf, dev_item);
 | |
| 	device->sector_size = btrfs_device_sector_size(leaf, dev_item);
 | |
| 
 | |
| 	ptr = (unsigned long)btrfs_device_uuid(dev_item);
 | |
| 	read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int open_seed_devices(struct btrfs_root *root, u8 *fsid)
 | |
| {
 | |
| 	struct btrfs_fs_devices *fs_devices;
 | |
| 	int ret;
 | |
| 
 | |
| 	mutex_lock(&uuid_mutex);
 | |
| 
 | |
| 	fs_devices = root->fs_info->fs_devices->seed;
 | |
| 	while (fs_devices) {
 | |
| 		if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
 | |
| 			ret = 0;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		fs_devices = fs_devices->seed;
 | |
| 	}
 | |
| 
 | |
| 	fs_devices = find_fsid(fsid);
 | |
| 	if (!fs_devices) {
 | |
| 		ret = -ENOENT;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	fs_devices = clone_fs_devices(fs_devices);
 | |
| 	if (IS_ERR(fs_devices)) {
 | |
| 		ret = PTR_ERR(fs_devices);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	ret = __btrfs_open_devices(fs_devices, FMODE_READ,
 | |
| 				   root->fs_info->bdev_holder);
 | |
| 	if (ret)
 | |
| 		goto out;
 | |
| 
 | |
| 	if (!fs_devices->seeding) {
 | |
| 		__btrfs_close_devices(fs_devices);
 | |
| 		free_fs_devices(fs_devices);
 | |
| 		ret = -EINVAL;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	fs_devices->seed = root->fs_info->fs_devices->seed;
 | |
| 	root->fs_info->fs_devices->seed = fs_devices;
 | |
| out:
 | |
| 	mutex_unlock(&uuid_mutex);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int read_one_dev(struct btrfs_root *root,
 | |
| 			struct extent_buffer *leaf,
 | |
| 			struct btrfs_dev_item *dev_item)
 | |
| {
 | |
| 	struct btrfs_device *device;
 | |
| 	u64 devid;
 | |
| 	int ret;
 | |
| 	u8 fs_uuid[BTRFS_UUID_SIZE];
 | |
| 	u8 dev_uuid[BTRFS_UUID_SIZE];
 | |
| 
 | |
| 	devid = btrfs_device_id(leaf, dev_item);
 | |
| 	read_extent_buffer(leaf, dev_uuid,
 | |
| 			   (unsigned long)btrfs_device_uuid(dev_item),
 | |
| 			   BTRFS_UUID_SIZE);
 | |
| 	read_extent_buffer(leaf, fs_uuid,
 | |
| 			   (unsigned long)btrfs_device_fsid(dev_item),
 | |
| 			   BTRFS_UUID_SIZE);
 | |
| 
 | |
| 	if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
 | |
| 		ret = open_seed_devices(root, fs_uuid);
 | |
| 		if (ret && !btrfs_test_opt(root, DEGRADED))
 | |
| 			return ret;
 | |
| 	}
 | |
| 
 | |
| 	device = btrfs_find_device(root, devid, dev_uuid, fs_uuid);
 | |
| 	if (!device || !device->bdev) {
 | |
| 		if (!btrfs_test_opt(root, DEGRADED))
 | |
| 			return -EIO;
 | |
| 
 | |
| 		if (!device) {
 | |
| 			printk(KERN_WARNING "warning devid %llu missing\n",
 | |
| 			       (unsigned long long)devid);
 | |
| 			device = add_missing_dev(root, devid, dev_uuid);
 | |
| 			if (!device)
 | |
| 				return -ENOMEM;
 | |
| 		} else if (!device->missing) {
 | |
| 			/*
 | |
| 			 * this happens when a device that was properly setup
 | |
| 			 * in the device info lists suddenly goes bad.
 | |
| 			 * device->bdev is NULL, and so we have to set
 | |
| 			 * device->missing to one here
 | |
| 			 */
 | |
| 			root->fs_info->fs_devices->missing_devices++;
 | |
| 			device->missing = 1;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (device->fs_devices != root->fs_info->fs_devices) {
 | |
| 		BUG_ON(device->writeable);
 | |
| 		if (device->generation !=
 | |
| 		    btrfs_device_generation(leaf, dev_item))
 | |
| 			return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	fill_device_from_item(leaf, dev_item, device);
 | |
| 	device->dev_root = root->fs_info->dev_root;
 | |
| 	device->in_fs_metadata = 1;
 | |
| 	if (device->writeable) {
 | |
| 		device->fs_devices->total_rw_bytes += device->total_bytes;
 | |
| 		spin_lock(&root->fs_info->free_chunk_lock);
 | |
| 		root->fs_info->free_chunk_space += device->total_bytes -
 | |
| 			device->bytes_used;
 | |
| 		spin_unlock(&root->fs_info->free_chunk_lock);
 | |
| 	}
 | |
| 	ret = 0;
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int btrfs_read_sys_array(struct btrfs_root *root)
 | |
| {
 | |
| 	struct btrfs_super_block *super_copy = root->fs_info->super_copy;
 | |
| 	struct extent_buffer *sb;
 | |
| 	struct btrfs_disk_key *disk_key;
 | |
| 	struct btrfs_chunk *chunk;
 | |
| 	u8 *ptr;
 | |
| 	unsigned long sb_ptr;
 | |
| 	int ret = 0;
 | |
| 	u32 num_stripes;
 | |
| 	u32 array_size;
 | |
| 	u32 len = 0;
 | |
| 	u32 cur;
 | |
| 	struct btrfs_key key;
 | |
| 
 | |
| 	sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET,
 | |
| 					  BTRFS_SUPER_INFO_SIZE);
 | |
| 	if (!sb)
 | |
| 		return -ENOMEM;
 | |
| 	btrfs_set_buffer_uptodate(sb);
 | |
| 	btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
 | |
| 
 | |
| 	write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
 | |
| 	array_size = btrfs_super_sys_array_size(super_copy);
 | |
| 
 | |
| 	ptr = super_copy->sys_chunk_array;
 | |
| 	sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array);
 | |
| 	cur = 0;
 | |
| 
 | |
| 	while (cur < array_size) {
 | |
| 		disk_key = (struct btrfs_disk_key *)ptr;
 | |
| 		btrfs_disk_key_to_cpu(&key, disk_key);
 | |
| 
 | |
| 		len = sizeof(*disk_key); ptr += len;
 | |
| 		sb_ptr += len;
 | |
| 		cur += len;
 | |
| 
 | |
| 		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
 | |
| 			chunk = (struct btrfs_chunk *)sb_ptr;
 | |
| 			ret = read_one_chunk(root, &key, sb, chunk);
 | |
| 			if (ret)
 | |
| 				break;
 | |
| 			num_stripes = btrfs_chunk_num_stripes(sb, chunk);
 | |
| 			len = btrfs_chunk_item_size(num_stripes);
 | |
| 		} else {
 | |
| 			ret = -EIO;
 | |
| 			break;
 | |
| 		}
 | |
| 		ptr += len;
 | |
| 		sb_ptr += len;
 | |
| 		cur += len;
 | |
| 	}
 | |
| 	free_extent_buffer(sb);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int btrfs_read_chunk_tree(struct btrfs_root *root)
 | |
| {
 | |
| 	struct btrfs_path *path;
 | |
| 	struct extent_buffer *leaf;
 | |
| 	struct btrfs_key key;
 | |
| 	struct btrfs_key found_key;
 | |
| 	int ret;
 | |
| 	int slot;
 | |
| 
 | |
| 	root = root->fs_info->chunk_root;
 | |
| 
 | |
| 	path = btrfs_alloc_path();
 | |
| 	if (!path)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	/* first we search for all of the device items, and then we
 | |
| 	 * read in all of the chunk items.  This way we can create chunk
 | |
| 	 * mappings that reference all of the devices that are afound
 | |
| 	 */
 | |
| 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
 | |
| 	key.offset = 0;
 | |
| 	key.type = 0;
 | |
| again:
 | |
| 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 | |
| 	if (ret < 0)
 | |
| 		goto error;
 | |
| 	while (1) {
 | |
| 		leaf = path->nodes[0];
 | |
| 		slot = path->slots[0];
 | |
| 		if (slot >= btrfs_header_nritems(leaf)) {
 | |
| 			ret = btrfs_next_leaf(root, path);
 | |
| 			if (ret == 0)
 | |
| 				continue;
 | |
| 			if (ret < 0)
 | |
| 				goto error;
 | |
| 			break;
 | |
| 		}
 | |
| 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
 | |
| 		if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
 | |
| 			if (found_key.objectid != BTRFS_DEV_ITEMS_OBJECTID)
 | |
| 				break;
 | |
| 			if (found_key.type == BTRFS_DEV_ITEM_KEY) {
 | |
| 				struct btrfs_dev_item *dev_item;
 | |
| 				dev_item = btrfs_item_ptr(leaf, slot,
 | |
| 						  struct btrfs_dev_item);
 | |
| 				ret = read_one_dev(root, leaf, dev_item);
 | |
| 				if (ret)
 | |
| 					goto error;
 | |
| 			}
 | |
| 		} else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
 | |
| 			struct btrfs_chunk *chunk;
 | |
| 			chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
 | |
| 			ret = read_one_chunk(root, &found_key, leaf, chunk);
 | |
| 			if (ret)
 | |
| 				goto error;
 | |
| 		}
 | |
| 		path->slots[0]++;
 | |
| 	}
 | |
| 	if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
 | |
| 		key.objectid = 0;
 | |
| 		btrfs_release_path(path);
 | |
| 		goto again;
 | |
| 	}
 | |
| 	ret = 0;
 | |
| error:
 | |
| 	btrfs_free_path(path);
 | |
| 	return ret;
 | |
| }
 |