 60f583d56a
			
		
	
	
	60f583d56a
	
	
	
		
			
			kernel_map_sync_memtype() is called from a variety of contexts. The pat.c code that calls it seems to ensure that it is not called for non-ram areas by checking via pat_pagerange_is_ram(). It is important that it only be called on the actual identity map because there *IS* no map to sync for highmem pages, or for memory holes. The ioremap.c uses are not as careful as those from pat.c, and call kernel_map_sync_memtype() on PCI space which is in the middle of the kernel identity map _range_, but is not actually mapped. This patch adds a check to kernel_map_sync_memtype() which probably duplicates some of the checks already in pat.c. But, it is necessary for the ioremap.c uses and shouldn't hurt other callers. I have reproduced this bug and this patch fixes it for me and the original bug reporter: https://lkml.org/lkml/2013/2/5/396 Signed-off-by: Dave Hansen <dave@linux.vnet.ibm.com> Link: http://lkml.kernel.org/r/20130307163151.D9B58C4E@kernel.stglabs.ibm.com Signed-off-by: Dave Hansen <dave@sr71.net> Tested-by: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp> Signed-off-by: H. Peter Anvin <hpa@zytor.com>
		
			
				
	
	
		
			884 lines
		
	
	
	
		
			21 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			884 lines
		
	
	
	
		
			21 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Handle caching attributes in page tables (PAT)
 | |
|  *
 | |
|  * Authors: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
 | |
|  *          Suresh B Siddha <suresh.b.siddha@intel.com>
 | |
|  *
 | |
|  * Loosely based on earlier PAT patchset from Eric Biederman and Andi Kleen.
 | |
|  */
 | |
| 
 | |
| #include <linux/seq_file.h>
 | |
| #include <linux/bootmem.h>
 | |
| #include <linux/debugfs.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/fs.h>
 | |
| #include <linux/rbtree.h>
 | |
| 
 | |
| #include <asm/cacheflush.h>
 | |
| #include <asm/processor.h>
 | |
| #include <asm/tlbflush.h>
 | |
| #include <asm/x86_init.h>
 | |
| #include <asm/pgtable.h>
 | |
| #include <asm/fcntl.h>
 | |
| #include <asm/e820.h>
 | |
| #include <asm/mtrr.h>
 | |
| #include <asm/page.h>
 | |
| #include <asm/msr.h>
 | |
| #include <asm/pat.h>
 | |
| #include <asm/io.h>
 | |
| 
 | |
| #include "pat_internal.h"
 | |
| 
 | |
| #ifdef CONFIG_X86_PAT
 | |
| int __read_mostly pat_enabled = 1;
 | |
| 
 | |
| static inline void pat_disable(const char *reason)
 | |
| {
 | |
| 	pat_enabled = 0;
 | |
| 	printk(KERN_INFO "%s\n", reason);
 | |
| }
 | |
| 
 | |
| static int __init nopat(char *str)
 | |
| {
 | |
| 	pat_disable("PAT support disabled.");
 | |
| 	return 0;
 | |
| }
 | |
| early_param("nopat", nopat);
 | |
| #else
 | |
| static inline void pat_disable(const char *reason)
 | |
| {
 | |
| 	(void)reason;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| 
 | |
| int pat_debug_enable;
 | |
| 
 | |
| static int __init pat_debug_setup(char *str)
 | |
| {
 | |
| 	pat_debug_enable = 1;
 | |
| 	return 0;
 | |
| }
 | |
| __setup("debugpat", pat_debug_setup);
 | |
| 
 | |
| static u64 __read_mostly boot_pat_state;
 | |
| 
 | |
| enum {
 | |
| 	PAT_UC = 0,		/* uncached */
 | |
| 	PAT_WC = 1,		/* Write combining */
 | |
| 	PAT_WT = 4,		/* Write Through */
 | |
| 	PAT_WP = 5,		/* Write Protected */
 | |
| 	PAT_WB = 6,		/* Write Back (default) */
 | |
| 	PAT_UC_MINUS = 7,	/* UC, but can be overriden by MTRR */
 | |
| };
 | |
| 
 | |
| #define PAT(x, y)	((u64)PAT_ ## y << ((x)*8))
 | |
| 
 | |
| void pat_init(void)
 | |
| {
 | |
| 	u64 pat;
 | |
| 	bool boot_cpu = !boot_pat_state;
 | |
| 
 | |
| 	if (!pat_enabled)
 | |
| 		return;
 | |
| 
 | |
| 	if (!cpu_has_pat) {
 | |
| 		if (!boot_pat_state) {
 | |
| 			pat_disable("PAT not supported by CPU.");
 | |
| 			return;
 | |
| 		} else {
 | |
| 			/*
 | |
| 			 * If this happens we are on a secondary CPU, but
 | |
| 			 * switched to PAT on the boot CPU. We have no way to
 | |
| 			 * undo PAT.
 | |
| 			 */
 | |
| 			printk(KERN_ERR "PAT enabled, "
 | |
| 			       "but not supported by secondary CPU\n");
 | |
| 			BUG();
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Set PWT to Write-Combining. All other bits stay the same */
 | |
| 	/*
 | |
| 	 * PTE encoding used in Linux:
 | |
| 	 *      PAT
 | |
| 	 *      |PCD
 | |
| 	 *      ||PWT
 | |
| 	 *      |||
 | |
| 	 *      000 WB		_PAGE_CACHE_WB
 | |
| 	 *      001 WC		_PAGE_CACHE_WC
 | |
| 	 *      010 UC-		_PAGE_CACHE_UC_MINUS
 | |
| 	 *      011 UC		_PAGE_CACHE_UC
 | |
| 	 * PAT bit unused
 | |
| 	 */
 | |
| 	pat = PAT(0, WB) | PAT(1, WC) | PAT(2, UC_MINUS) | PAT(3, UC) |
 | |
| 	      PAT(4, WB) | PAT(5, WC) | PAT(6, UC_MINUS) | PAT(7, UC);
 | |
| 
 | |
| 	/* Boot CPU check */
 | |
| 	if (!boot_pat_state)
 | |
| 		rdmsrl(MSR_IA32_CR_PAT, boot_pat_state);
 | |
| 
 | |
| 	wrmsrl(MSR_IA32_CR_PAT, pat);
 | |
| 
 | |
| 	if (boot_cpu)
 | |
| 		printk(KERN_INFO "x86 PAT enabled: cpu %d, old 0x%Lx, new 0x%Lx\n",
 | |
| 		       smp_processor_id(), boot_pat_state, pat);
 | |
| }
 | |
| 
 | |
| #undef PAT
 | |
| 
 | |
| static DEFINE_SPINLOCK(memtype_lock);	/* protects memtype accesses */
 | |
| 
 | |
| /*
 | |
|  * Does intersection of PAT memory type and MTRR memory type and returns
 | |
|  * the resulting memory type as PAT understands it.
 | |
|  * (Type in pat and mtrr will not have same value)
 | |
|  * The intersection is based on "Effective Memory Type" tables in IA-32
 | |
|  * SDM vol 3a
 | |
|  */
 | |
| static unsigned long pat_x_mtrr_type(u64 start, u64 end, unsigned long req_type)
 | |
| {
 | |
| 	/*
 | |
| 	 * Look for MTRR hint to get the effective type in case where PAT
 | |
| 	 * request is for WB.
 | |
| 	 */
 | |
| 	if (req_type == _PAGE_CACHE_WB) {
 | |
| 		u8 mtrr_type;
 | |
| 
 | |
| 		mtrr_type = mtrr_type_lookup(start, end);
 | |
| 		if (mtrr_type != MTRR_TYPE_WRBACK)
 | |
| 			return _PAGE_CACHE_UC_MINUS;
 | |
| 
 | |
| 		return _PAGE_CACHE_WB;
 | |
| 	}
 | |
| 
 | |
| 	return req_type;
 | |
| }
 | |
| 
 | |
| struct pagerange_state {
 | |
| 	unsigned long		cur_pfn;
 | |
| 	int			ram;
 | |
| 	int			not_ram;
 | |
| };
 | |
| 
 | |
| static int
 | |
| pagerange_is_ram_callback(unsigned long initial_pfn, unsigned long total_nr_pages, void *arg)
 | |
| {
 | |
| 	struct pagerange_state *state = arg;
 | |
| 
 | |
| 	state->not_ram	|= initial_pfn > state->cur_pfn;
 | |
| 	state->ram	|= total_nr_pages > 0;
 | |
| 	state->cur_pfn	 = initial_pfn + total_nr_pages;
 | |
| 
 | |
| 	return state->ram && state->not_ram;
 | |
| }
 | |
| 
 | |
| static int pat_pagerange_is_ram(resource_size_t start, resource_size_t end)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 	unsigned long start_pfn = start >> PAGE_SHIFT;
 | |
| 	unsigned long end_pfn = (end + PAGE_SIZE - 1) >> PAGE_SHIFT;
 | |
| 	struct pagerange_state state = {start_pfn, 0, 0};
 | |
| 
 | |
| 	/*
 | |
| 	 * For legacy reasons, physical address range in the legacy ISA
 | |
| 	 * region is tracked as non-RAM. This will allow users of
 | |
| 	 * /dev/mem to map portions of legacy ISA region, even when
 | |
| 	 * some of those portions are listed(or not even listed) with
 | |
| 	 * different e820 types(RAM/reserved/..)
 | |
| 	 */
 | |
| 	if (start_pfn < ISA_END_ADDRESS >> PAGE_SHIFT)
 | |
| 		start_pfn = ISA_END_ADDRESS >> PAGE_SHIFT;
 | |
| 
 | |
| 	if (start_pfn < end_pfn) {
 | |
| 		ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn,
 | |
| 				&state, pagerange_is_ram_callback);
 | |
| 	}
 | |
| 
 | |
| 	return (ret > 0) ? -1 : (state.ram ? 1 : 0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * For RAM pages, we use page flags to mark the pages with appropriate type.
 | |
|  * Here we do two pass:
 | |
|  * - Find the memtype of all the pages in the range, look for any conflicts
 | |
|  * - In case of no conflicts, set the new memtype for pages in the range
 | |
|  */
 | |
| static int reserve_ram_pages_type(u64 start, u64 end, unsigned long req_type,
 | |
| 				  unsigned long *new_type)
 | |
| {
 | |
| 	struct page *page;
 | |
| 	u64 pfn;
 | |
| 
 | |
| 	if (req_type == _PAGE_CACHE_UC) {
 | |
| 		/* We do not support strong UC */
 | |
| 		WARN_ON_ONCE(1);
 | |
| 		req_type = _PAGE_CACHE_UC_MINUS;
 | |
| 	}
 | |
| 
 | |
| 	for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
 | |
| 		unsigned long type;
 | |
| 
 | |
| 		page = pfn_to_page(pfn);
 | |
| 		type = get_page_memtype(page);
 | |
| 		if (type != -1) {
 | |
| 			printk(KERN_INFO "reserve_ram_pages_type failed [mem %#010Lx-%#010Lx], track 0x%lx, req 0x%lx\n",
 | |
| 				start, end - 1, type, req_type);
 | |
| 			if (new_type)
 | |
| 				*new_type = type;
 | |
| 
 | |
| 			return -EBUSY;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (new_type)
 | |
| 		*new_type = req_type;
 | |
| 
 | |
| 	for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
 | |
| 		page = pfn_to_page(pfn);
 | |
| 		set_page_memtype(page, req_type);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int free_ram_pages_type(u64 start, u64 end)
 | |
| {
 | |
| 	struct page *page;
 | |
| 	u64 pfn;
 | |
| 
 | |
| 	for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
 | |
| 		page = pfn_to_page(pfn);
 | |
| 		set_page_memtype(page, -1);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * req_type typically has one of the:
 | |
|  * - _PAGE_CACHE_WB
 | |
|  * - _PAGE_CACHE_WC
 | |
|  * - _PAGE_CACHE_UC_MINUS
 | |
|  * - _PAGE_CACHE_UC
 | |
|  *
 | |
|  * If new_type is NULL, function will return an error if it cannot reserve the
 | |
|  * region with req_type. If new_type is non-NULL, function will return
 | |
|  * available type in new_type in case of no error. In case of any error
 | |
|  * it will return a negative return value.
 | |
|  */
 | |
| int reserve_memtype(u64 start, u64 end, unsigned long req_type,
 | |
| 		    unsigned long *new_type)
 | |
| {
 | |
| 	struct memtype *new;
 | |
| 	unsigned long actual_type;
 | |
| 	int is_range_ram;
 | |
| 	int err = 0;
 | |
| 
 | |
| 	BUG_ON(start >= end); /* end is exclusive */
 | |
| 
 | |
| 	if (!pat_enabled) {
 | |
| 		/* This is identical to page table setting without PAT */
 | |
| 		if (new_type) {
 | |
| 			if (req_type == _PAGE_CACHE_WC)
 | |
| 				*new_type = _PAGE_CACHE_UC_MINUS;
 | |
| 			else
 | |
| 				*new_type = req_type & _PAGE_CACHE_MASK;
 | |
| 		}
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* Low ISA region is always mapped WB in page table. No need to track */
 | |
| 	if (x86_platform.is_untracked_pat_range(start, end)) {
 | |
| 		if (new_type)
 | |
| 			*new_type = _PAGE_CACHE_WB;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Call mtrr_lookup to get the type hint. This is an
 | |
| 	 * optimization for /dev/mem mmap'ers into WB memory (BIOS
 | |
| 	 * tools and ACPI tools). Use WB request for WB memory and use
 | |
| 	 * UC_MINUS otherwise.
 | |
| 	 */
 | |
| 	actual_type = pat_x_mtrr_type(start, end, req_type & _PAGE_CACHE_MASK);
 | |
| 
 | |
| 	if (new_type)
 | |
| 		*new_type = actual_type;
 | |
| 
 | |
| 	is_range_ram = pat_pagerange_is_ram(start, end);
 | |
| 	if (is_range_ram == 1) {
 | |
| 
 | |
| 		err = reserve_ram_pages_type(start, end, req_type, new_type);
 | |
| 
 | |
| 		return err;
 | |
| 	} else if (is_range_ram < 0) {
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	new  = kzalloc(sizeof(struct memtype), GFP_KERNEL);
 | |
| 	if (!new)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	new->start	= start;
 | |
| 	new->end	= end;
 | |
| 	new->type	= actual_type;
 | |
| 
 | |
| 	spin_lock(&memtype_lock);
 | |
| 
 | |
| 	err = rbt_memtype_check_insert(new, new_type);
 | |
| 	if (err) {
 | |
| 		printk(KERN_INFO "reserve_memtype failed [mem %#010Lx-%#010Lx], track %s, req %s\n",
 | |
| 		       start, end - 1,
 | |
| 		       cattr_name(new->type), cattr_name(req_type));
 | |
| 		kfree(new);
 | |
| 		spin_unlock(&memtype_lock);
 | |
| 
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock(&memtype_lock);
 | |
| 
 | |
| 	dprintk("reserve_memtype added [mem %#010Lx-%#010Lx], track %s, req %s, ret %s\n",
 | |
| 		start, end - 1, cattr_name(new->type), cattr_name(req_type),
 | |
| 		new_type ? cattr_name(*new_type) : "-");
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| int free_memtype(u64 start, u64 end)
 | |
| {
 | |
| 	int err = -EINVAL;
 | |
| 	int is_range_ram;
 | |
| 	struct memtype *entry;
 | |
| 
 | |
| 	if (!pat_enabled)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* Low ISA region is always mapped WB. No need to track */
 | |
| 	if (x86_platform.is_untracked_pat_range(start, end))
 | |
| 		return 0;
 | |
| 
 | |
| 	is_range_ram = pat_pagerange_is_ram(start, end);
 | |
| 	if (is_range_ram == 1) {
 | |
| 
 | |
| 		err = free_ram_pages_type(start, end);
 | |
| 
 | |
| 		return err;
 | |
| 	} else if (is_range_ram < 0) {
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	spin_lock(&memtype_lock);
 | |
| 	entry = rbt_memtype_erase(start, end);
 | |
| 	spin_unlock(&memtype_lock);
 | |
| 
 | |
| 	if (!entry) {
 | |
| 		printk(KERN_INFO "%s:%d freeing invalid memtype [mem %#010Lx-%#010Lx]\n",
 | |
| 		       current->comm, current->pid, start, end - 1);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	kfree(entry);
 | |
| 
 | |
| 	dprintk("free_memtype request [mem %#010Lx-%#010Lx]\n", start, end - 1);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * lookup_memtype - Looksup the memory type for a physical address
 | |
|  * @paddr: physical address of which memory type needs to be looked up
 | |
|  *
 | |
|  * Only to be called when PAT is enabled
 | |
|  *
 | |
|  * Returns _PAGE_CACHE_WB, _PAGE_CACHE_WC, _PAGE_CACHE_UC_MINUS or
 | |
|  * _PAGE_CACHE_UC
 | |
|  */
 | |
| static unsigned long lookup_memtype(u64 paddr)
 | |
| {
 | |
| 	int rettype = _PAGE_CACHE_WB;
 | |
| 	struct memtype *entry;
 | |
| 
 | |
| 	if (x86_platform.is_untracked_pat_range(paddr, paddr + PAGE_SIZE))
 | |
| 		return rettype;
 | |
| 
 | |
| 	if (pat_pagerange_is_ram(paddr, paddr + PAGE_SIZE)) {
 | |
| 		struct page *page;
 | |
| 		page = pfn_to_page(paddr >> PAGE_SHIFT);
 | |
| 		rettype = get_page_memtype(page);
 | |
| 		/*
 | |
| 		 * -1 from get_page_memtype() implies RAM page is in its
 | |
| 		 * default state and not reserved, and hence of type WB
 | |
| 		 */
 | |
| 		if (rettype == -1)
 | |
| 			rettype = _PAGE_CACHE_WB;
 | |
| 
 | |
| 		return rettype;
 | |
| 	}
 | |
| 
 | |
| 	spin_lock(&memtype_lock);
 | |
| 
 | |
| 	entry = rbt_memtype_lookup(paddr);
 | |
| 	if (entry != NULL)
 | |
| 		rettype = entry->type;
 | |
| 	else
 | |
| 		rettype = _PAGE_CACHE_UC_MINUS;
 | |
| 
 | |
| 	spin_unlock(&memtype_lock);
 | |
| 	return rettype;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * io_reserve_memtype - Request a memory type mapping for a region of memory
 | |
|  * @start: start (physical address) of the region
 | |
|  * @end: end (physical address) of the region
 | |
|  * @type: A pointer to memtype, with requested type. On success, requested
 | |
|  * or any other compatible type that was available for the region is returned
 | |
|  *
 | |
|  * On success, returns 0
 | |
|  * On failure, returns non-zero
 | |
|  */
 | |
| int io_reserve_memtype(resource_size_t start, resource_size_t end,
 | |
| 			unsigned long *type)
 | |
| {
 | |
| 	resource_size_t size = end - start;
 | |
| 	unsigned long req_type = *type;
 | |
| 	unsigned long new_type;
 | |
| 	int ret;
 | |
| 
 | |
| 	WARN_ON_ONCE(iomem_map_sanity_check(start, size));
 | |
| 
 | |
| 	ret = reserve_memtype(start, end, req_type, &new_type);
 | |
| 	if (ret)
 | |
| 		goto out_err;
 | |
| 
 | |
| 	if (!is_new_memtype_allowed(start, size, req_type, new_type))
 | |
| 		goto out_free;
 | |
| 
 | |
| 	if (kernel_map_sync_memtype(start, size, new_type) < 0)
 | |
| 		goto out_free;
 | |
| 
 | |
| 	*type = new_type;
 | |
| 	return 0;
 | |
| 
 | |
| out_free:
 | |
| 	free_memtype(start, end);
 | |
| 	ret = -EBUSY;
 | |
| out_err:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * io_free_memtype - Release a memory type mapping for a region of memory
 | |
|  * @start: start (physical address) of the region
 | |
|  * @end: end (physical address) of the region
 | |
|  */
 | |
| void io_free_memtype(resource_size_t start, resource_size_t end)
 | |
| {
 | |
| 	free_memtype(start, end);
 | |
| }
 | |
| 
 | |
| pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
 | |
| 				unsigned long size, pgprot_t vma_prot)
 | |
| {
 | |
| 	return vma_prot;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_STRICT_DEVMEM
 | |
| /* This check is done in drivers/char/mem.c in case of STRICT_DEVMEM*/
 | |
| static inline int range_is_allowed(unsigned long pfn, unsigned long size)
 | |
| {
 | |
| 	return 1;
 | |
| }
 | |
| #else
 | |
| /* This check is needed to avoid cache aliasing when PAT is enabled */
 | |
| static inline int range_is_allowed(unsigned long pfn, unsigned long size)
 | |
| {
 | |
| 	u64 from = ((u64)pfn) << PAGE_SHIFT;
 | |
| 	u64 to = from + size;
 | |
| 	u64 cursor = from;
 | |
| 
 | |
| 	if (!pat_enabled)
 | |
| 		return 1;
 | |
| 
 | |
| 	while (cursor < to) {
 | |
| 		if (!devmem_is_allowed(pfn)) {
 | |
| 			printk(KERN_INFO "Program %s tried to access /dev/mem between [mem %#010Lx-%#010Lx]\n",
 | |
| 				current->comm, from, to - 1);
 | |
| 			return 0;
 | |
| 		}
 | |
| 		cursor += PAGE_SIZE;
 | |
| 		pfn++;
 | |
| 	}
 | |
| 	return 1;
 | |
| }
 | |
| #endif /* CONFIG_STRICT_DEVMEM */
 | |
| 
 | |
| int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
 | |
| 				unsigned long size, pgprot_t *vma_prot)
 | |
| {
 | |
| 	unsigned long flags = _PAGE_CACHE_WB;
 | |
| 
 | |
| 	if (!range_is_allowed(pfn, size))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (file->f_flags & O_DSYNC)
 | |
| 		flags = _PAGE_CACHE_UC_MINUS;
 | |
| 
 | |
| #ifdef CONFIG_X86_32
 | |
| 	/*
 | |
| 	 * On the PPro and successors, the MTRRs are used to set
 | |
| 	 * memory types for physical addresses outside main memory,
 | |
| 	 * so blindly setting UC or PWT on those pages is wrong.
 | |
| 	 * For Pentiums and earlier, the surround logic should disable
 | |
| 	 * caching for the high addresses through the KEN pin, but
 | |
| 	 * we maintain the tradition of paranoia in this code.
 | |
| 	 */
 | |
| 	if (!pat_enabled &&
 | |
| 	    !(boot_cpu_has(X86_FEATURE_MTRR) ||
 | |
| 	      boot_cpu_has(X86_FEATURE_K6_MTRR) ||
 | |
| 	      boot_cpu_has(X86_FEATURE_CYRIX_ARR) ||
 | |
| 	      boot_cpu_has(X86_FEATURE_CENTAUR_MCR)) &&
 | |
| 	    (pfn << PAGE_SHIFT) >= __pa(high_memory)) {
 | |
| 		flags = _PAGE_CACHE_UC;
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	*vma_prot = __pgprot((pgprot_val(*vma_prot) & ~_PAGE_CACHE_MASK) |
 | |
| 			     flags);
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Change the memory type for the physial address range in kernel identity
 | |
|  * mapping space if that range is a part of identity map.
 | |
|  */
 | |
| int kernel_map_sync_memtype(u64 base, unsigned long size, unsigned long flags)
 | |
| {
 | |
| 	unsigned long id_sz;
 | |
| 
 | |
| 	if (base > __pa(high_memory-1))
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * some areas in the middle of the kernel identity range
 | |
| 	 * are not mapped, like the PCI space.
 | |
| 	 */
 | |
| 	if (!page_is_ram(base >> PAGE_SHIFT))
 | |
| 		return 0;
 | |
| 
 | |
| 	id_sz = (__pa(high_memory-1) <= base + size) ?
 | |
| 				__pa(high_memory) - base :
 | |
| 				size;
 | |
| 
 | |
| 	if (ioremap_change_attr((unsigned long)__va(base), id_sz, flags) < 0) {
 | |
| 		printk(KERN_INFO "%s:%d ioremap_change_attr failed %s "
 | |
| 			"for [mem %#010Lx-%#010Lx]\n",
 | |
| 			current->comm, current->pid,
 | |
| 			cattr_name(flags),
 | |
| 			base, (unsigned long long)(base + size-1));
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Internal interface to reserve a range of physical memory with prot.
 | |
|  * Reserved non RAM regions only and after successful reserve_memtype,
 | |
|  * this func also keeps identity mapping (if any) in sync with this new prot.
 | |
|  */
 | |
| static int reserve_pfn_range(u64 paddr, unsigned long size, pgprot_t *vma_prot,
 | |
| 				int strict_prot)
 | |
| {
 | |
| 	int is_ram = 0;
 | |
| 	int ret;
 | |
| 	unsigned long want_flags = (pgprot_val(*vma_prot) & _PAGE_CACHE_MASK);
 | |
| 	unsigned long flags = want_flags;
 | |
| 
 | |
| 	is_ram = pat_pagerange_is_ram(paddr, paddr + size);
 | |
| 
 | |
| 	/*
 | |
| 	 * reserve_pfn_range() for RAM pages. We do not refcount to keep
 | |
| 	 * track of number of mappings of RAM pages. We can assert that
 | |
| 	 * the type requested matches the type of first page in the range.
 | |
| 	 */
 | |
| 	if (is_ram) {
 | |
| 		if (!pat_enabled)
 | |
| 			return 0;
 | |
| 
 | |
| 		flags = lookup_memtype(paddr);
 | |
| 		if (want_flags != flags) {
 | |
| 			printk(KERN_WARNING "%s:%d map pfn RAM range req %s for [mem %#010Lx-%#010Lx], got %s\n",
 | |
| 				current->comm, current->pid,
 | |
| 				cattr_name(want_flags),
 | |
| 				(unsigned long long)paddr,
 | |
| 				(unsigned long long)(paddr + size - 1),
 | |
| 				cattr_name(flags));
 | |
| 			*vma_prot = __pgprot((pgprot_val(*vma_prot) &
 | |
| 					      (~_PAGE_CACHE_MASK)) |
 | |
| 					     flags);
 | |
| 		}
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	ret = reserve_memtype(paddr, paddr + size, want_flags, &flags);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	if (flags != want_flags) {
 | |
| 		if (strict_prot ||
 | |
| 		    !is_new_memtype_allowed(paddr, size, want_flags, flags)) {
 | |
| 			free_memtype(paddr, paddr + size);
 | |
| 			printk(KERN_ERR "%s:%d map pfn expected mapping type %s"
 | |
| 				" for [mem %#010Lx-%#010Lx], got %s\n",
 | |
| 				current->comm, current->pid,
 | |
| 				cattr_name(want_flags),
 | |
| 				(unsigned long long)paddr,
 | |
| 				(unsigned long long)(paddr + size - 1),
 | |
| 				cattr_name(flags));
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 		/*
 | |
| 		 * We allow returning different type than the one requested in
 | |
| 		 * non strict case.
 | |
| 		 */
 | |
| 		*vma_prot = __pgprot((pgprot_val(*vma_prot) &
 | |
| 				      (~_PAGE_CACHE_MASK)) |
 | |
| 				     flags);
 | |
| 	}
 | |
| 
 | |
| 	if (kernel_map_sync_memtype(paddr, size, flags) < 0) {
 | |
| 		free_memtype(paddr, paddr + size);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Internal interface to free a range of physical memory.
 | |
|  * Frees non RAM regions only.
 | |
|  */
 | |
| static void free_pfn_range(u64 paddr, unsigned long size)
 | |
| {
 | |
| 	int is_ram;
 | |
| 
 | |
| 	is_ram = pat_pagerange_is_ram(paddr, paddr + size);
 | |
| 	if (is_ram == 0)
 | |
| 		free_memtype(paddr, paddr + size);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * track_pfn_copy is called when vma that is covering the pfnmap gets
 | |
|  * copied through copy_page_range().
 | |
|  *
 | |
|  * If the vma has a linear pfn mapping for the entire range, we get the prot
 | |
|  * from pte and reserve the entire vma range with single reserve_pfn_range call.
 | |
|  */
 | |
| int track_pfn_copy(struct vm_area_struct *vma)
 | |
| {
 | |
| 	resource_size_t paddr;
 | |
| 	unsigned long prot;
 | |
| 	unsigned long vma_size = vma->vm_end - vma->vm_start;
 | |
| 	pgprot_t pgprot;
 | |
| 
 | |
| 	if (vma->vm_flags & VM_PAT) {
 | |
| 		/*
 | |
| 		 * reserve the whole chunk covered by vma. We need the
 | |
| 		 * starting address and protection from pte.
 | |
| 		 */
 | |
| 		if (follow_phys(vma, vma->vm_start, 0, &prot, &paddr)) {
 | |
| 			WARN_ON_ONCE(1);
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 		pgprot = __pgprot(prot);
 | |
| 		return reserve_pfn_range(paddr, vma_size, &pgprot, 1);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * prot is passed in as a parameter for the new mapping. If the vma has a
 | |
|  * linear pfn mapping for the entire range reserve the entire vma range with
 | |
|  * single reserve_pfn_range call.
 | |
|  */
 | |
| int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
 | |
| 		    unsigned long pfn, unsigned long addr, unsigned long size)
 | |
| {
 | |
| 	resource_size_t paddr = (resource_size_t)pfn << PAGE_SHIFT;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	/* reserve the whole chunk starting from paddr */
 | |
| 	if (addr == vma->vm_start && size == (vma->vm_end - vma->vm_start)) {
 | |
| 		int ret;
 | |
| 
 | |
| 		ret = reserve_pfn_range(paddr, size, prot, 0);
 | |
| 		if (!ret)
 | |
| 			vma->vm_flags |= VM_PAT;
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	if (!pat_enabled)
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * For anything smaller than the vma size we set prot based on the
 | |
| 	 * lookup.
 | |
| 	 */
 | |
| 	flags = lookup_memtype(paddr);
 | |
| 
 | |
| 	/* Check memtype for the remaining pages */
 | |
| 	while (size > PAGE_SIZE) {
 | |
| 		size -= PAGE_SIZE;
 | |
| 		paddr += PAGE_SIZE;
 | |
| 		if (flags != lookup_memtype(paddr))
 | |
| 			return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	*prot = __pgprot((pgprot_val(vma->vm_page_prot) & (~_PAGE_CACHE_MASK)) |
 | |
| 			 flags);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
 | |
| 		     unsigned long pfn)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	if (!pat_enabled)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* Set prot based on lookup */
 | |
| 	flags = lookup_memtype((resource_size_t)pfn << PAGE_SHIFT);
 | |
| 	*prot = __pgprot((pgprot_val(vma->vm_page_prot) & (~_PAGE_CACHE_MASK)) |
 | |
| 			 flags);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * untrack_pfn is called while unmapping a pfnmap for a region.
 | |
|  * untrack can be called for a specific region indicated by pfn and size or
 | |
|  * can be for the entire vma (in which case pfn, size are zero).
 | |
|  */
 | |
| void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
 | |
| 		 unsigned long size)
 | |
| {
 | |
| 	resource_size_t paddr;
 | |
| 	unsigned long prot;
 | |
| 
 | |
| 	if (!(vma->vm_flags & VM_PAT))
 | |
| 		return;
 | |
| 
 | |
| 	/* free the chunk starting from pfn or the whole chunk */
 | |
| 	paddr = (resource_size_t)pfn << PAGE_SHIFT;
 | |
| 	if (!paddr && !size) {
 | |
| 		if (follow_phys(vma, vma->vm_start, 0, &prot, &paddr)) {
 | |
| 			WARN_ON_ONCE(1);
 | |
| 			return;
 | |
| 		}
 | |
| 
 | |
| 		size = vma->vm_end - vma->vm_start;
 | |
| 	}
 | |
| 	free_pfn_range(paddr, size);
 | |
| 	vma->vm_flags &= ~VM_PAT;
 | |
| }
 | |
| 
 | |
| pgprot_t pgprot_writecombine(pgprot_t prot)
 | |
| {
 | |
| 	if (pat_enabled)
 | |
| 		return __pgprot(pgprot_val(prot) | _PAGE_CACHE_WC);
 | |
| 	else
 | |
| 		return pgprot_noncached(prot);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(pgprot_writecombine);
 | |
| 
 | |
| #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_X86_PAT)
 | |
| 
 | |
| static struct memtype *memtype_get_idx(loff_t pos)
 | |
| {
 | |
| 	struct memtype *print_entry;
 | |
| 	int ret;
 | |
| 
 | |
| 	print_entry  = kzalloc(sizeof(struct memtype), GFP_KERNEL);
 | |
| 	if (!print_entry)
 | |
| 		return NULL;
 | |
| 
 | |
| 	spin_lock(&memtype_lock);
 | |
| 	ret = rbt_memtype_copy_nth_element(print_entry, pos);
 | |
| 	spin_unlock(&memtype_lock);
 | |
| 
 | |
| 	if (!ret) {
 | |
| 		return print_entry;
 | |
| 	} else {
 | |
| 		kfree(print_entry);
 | |
| 		return NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void *memtype_seq_start(struct seq_file *seq, loff_t *pos)
 | |
| {
 | |
| 	if (*pos == 0) {
 | |
| 		++*pos;
 | |
| 		seq_printf(seq, "PAT memtype list:\n");
 | |
| 	}
 | |
| 
 | |
| 	return memtype_get_idx(*pos);
 | |
| }
 | |
| 
 | |
| static void *memtype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
 | |
| {
 | |
| 	++*pos;
 | |
| 	return memtype_get_idx(*pos);
 | |
| }
 | |
| 
 | |
| static void memtype_seq_stop(struct seq_file *seq, void *v)
 | |
| {
 | |
| }
 | |
| 
 | |
| static int memtype_seq_show(struct seq_file *seq, void *v)
 | |
| {
 | |
| 	struct memtype *print_entry = (struct memtype *)v;
 | |
| 
 | |
| 	seq_printf(seq, "%s @ 0x%Lx-0x%Lx\n", cattr_name(print_entry->type),
 | |
| 			print_entry->start, print_entry->end);
 | |
| 	kfree(print_entry);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static const struct seq_operations memtype_seq_ops = {
 | |
| 	.start = memtype_seq_start,
 | |
| 	.next  = memtype_seq_next,
 | |
| 	.stop  = memtype_seq_stop,
 | |
| 	.show  = memtype_seq_show,
 | |
| };
 | |
| 
 | |
| static int memtype_seq_open(struct inode *inode, struct file *file)
 | |
| {
 | |
| 	return seq_open(file, &memtype_seq_ops);
 | |
| }
 | |
| 
 | |
| static const struct file_operations memtype_fops = {
 | |
| 	.open    = memtype_seq_open,
 | |
| 	.read    = seq_read,
 | |
| 	.llseek  = seq_lseek,
 | |
| 	.release = seq_release,
 | |
| };
 | |
| 
 | |
| static int __init pat_memtype_list_init(void)
 | |
| {
 | |
| 	if (pat_enabled) {
 | |
| 		debugfs_create_file("pat_memtype_list", S_IRUSR,
 | |
| 				    arch_debugfs_dir, NULL, &memtype_fops);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| late_initcall(pat_memtype_list_init);
 | |
| 
 | |
| #endif /* CONFIG_DEBUG_FS && CONFIG_X86_PAT */
 |