 d4dd100f2e
			
		
	
	
	d4dd100f2e
	
	
	
		
			
			Signed-off-by: Zhi Yong Wu <wuzhy@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
		
			
				
	
	
		
			682 lines
		
	
	
	
		
			19 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			682 lines
		
	
	
	
		
			19 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| #include <linux/gfp.h>
 | |
| #include <linux/initrd.h>
 | |
| #include <linux/ioport.h>
 | |
| #include <linux/swap.h>
 | |
| #include <linux/memblock.h>
 | |
| #include <linux/bootmem.h>	/* for max_low_pfn */
 | |
| 
 | |
| #include <asm/cacheflush.h>
 | |
| #include <asm/e820.h>
 | |
| #include <asm/init.h>
 | |
| #include <asm/page.h>
 | |
| #include <asm/page_types.h>
 | |
| #include <asm/sections.h>
 | |
| #include <asm/setup.h>
 | |
| #include <asm/tlbflush.h>
 | |
| #include <asm/tlb.h>
 | |
| #include <asm/proto.h>
 | |
| #include <asm/dma.h>		/* for MAX_DMA_PFN */
 | |
| #include <asm/microcode.h>
 | |
| 
 | |
| #include "mm_internal.h"
 | |
| 
 | |
| static unsigned long __initdata pgt_buf_start;
 | |
| static unsigned long __initdata pgt_buf_end;
 | |
| static unsigned long __initdata pgt_buf_top;
 | |
| 
 | |
| static unsigned long min_pfn_mapped;
 | |
| 
 | |
| static bool __initdata can_use_brk_pgt = true;
 | |
| 
 | |
| /*
 | |
|  * Pages returned are already directly mapped.
 | |
|  *
 | |
|  * Changing that is likely to break Xen, see commit:
 | |
|  *
 | |
|  *    279b706 x86,xen: introduce x86_init.mapping.pagetable_reserve
 | |
|  *
 | |
|  * for detailed information.
 | |
|  */
 | |
| __ref void *alloc_low_pages(unsigned int num)
 | |
| {
 | |
| 	unsigned long pfn;
 | |
| 	int i;
 | |
| 
 | |
| 	if (after_bootmem) {
 | |
| 		unsigned int order;
 | |
| 
 | |
| 		order = get_order((unsigned long)num << PAGE_SHIFT);
 | |
| 		return (void *)__get_free_pages(GFP_ATOMIC | __GFP_NOTRACK |
 | |
| 						__GFP_ZERO, order);
 | |
| 	}
 | |
| 
 | |
| 	if ((pgt_buf_end + num) > pgt_buf_top || !can_use_brk_pgt) {
 | |
| 		unsigned long ret;
 | |
| 		if (min_pfn_mapped >= max_pfn_mapped)
 | |
| 			panic("alloc_low_pages: ran out of memory");
 | |
| 		ret = memblock_find_in_range(min_pfn_mapped << PAGE_SHIFT,
 | |
| 					max_pfn_mapped << PAGE_SHIFT,
 | |
| 					PAGE_SIZE * num , PAGE_SIZE);
 | |
| 		if (!ret)
 | |
| 			panic("alloc_low_pages: can not alloc memory");
 | |
| 		memblock_reserve(ret, PAGE_SIZE * num);
 | |
| 		pfn = ret >> PAGE_SHIFT;
 | |
| 	} else {
 | |
| 		pfn = pgt_buf_end;
 | |
| 		pgt_buf_end += num;
 | |
| 		printk(KERN_DEBUG "BRK [%#010lx, %#010lx] PGTABLE\n",
 | |
| 			pfn << PAGE_SHIFT, (pgt_buf_end << PAGE_SHIFT) - 1);
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < num; i++) {
 | |
| 		void *adr;
 | |
| 
 | |
| 		adr = __va((pfn + i) << PAGE_SHIFT);
 | |
| 		clear_page(adr);
 | |
| 	}
 | |
| 
 | |
| 	return __va(pfn << PAGE_SHIFT);
 | |
| }
 | |
| 
 | |
| /* need 3 4k for initial PMD_SIZE,  3 4k for 0-ISA_END_ADDRESS */
 | |
| #define INIT_PGT_BUF_SIZE	(6 * PAGE_SIZE)
 | |
| RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE);
 | |
| void  __init early_alloc_pgt_buf(void)
 | |
| {
 | |
| 	unsigned long tables = INIT_PGT_BUF_SIZE;
 | |
| 	phys_addr_t base;
 | |
| 
 | |
| 	base = __pa(extend_brk(tables, PAGE_SIZE));
 | |
| 
 | |
| 	pgt_buf_start = base >> PAGE_SHIFT;
 | |
| 	pgt_buf_end = pgt_buf_start;
 | |
| 	pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT);
 | |
| }
 | |
| 
 | |
| int after_bootmem;
 | |
| 
 | |
| int direct_gbpages
 | |
| #ifdef CONFIG_DIRECT_GBPAGES
 | |
| 				= 1
 | |
| #endif
 | |
| ;
 | |
| 
 | |
| static void __init init_gbpages(void)
 | |
| {
 | |
| #ifdef CONFIG_X86_64
 | |
| 	if (direct_gbpages && cpu_has_gbpages)
 | |
| 		printk(KERN_INFO "Using GB pages for direct mapping\n");
 | |
| 	else
 | |
| 		direct_gbpages = 0;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| struct map_range {
 | |
| 	unsigned long start;
 | |
| 	unsigned long end;
 | |
| 	unsigned page_size_mask;
 | |
| };
 | |
| 
 | |
| static int page_size_mask;
 | |
| 
 | |
| static void __init probe_page_size_mask(void)
 | |
| {
 | |
| 	init_gbpages();
 | |
| 
 | |
| #if !defined(CONFIG_DEBUG_PAGEALLOC) && !defined(CONFIG_KMEMCHECK)
 | |
| 	/*
 | |
| 	 * For CONFIG_DEBUG_PAGEALLOC, identity mapping will use small pages.
 | |
| 	 * This will simplify cpa(), which otherwise needs to support splitting
 | |
| 	 * large pages into small in interrupt context, etc.
 | |
| 	 */
 | |
| 	if (direct_gbpages)
 | |
| 		page_size_mask |= 1 << PG_LEVEL_1G;
 | |
| 	if (cpu_has_pse)
 | |
| 		page_size_mask |= 1 << PG_LEVEL_2M;
 | |
| #endif
 | |
| 
 | |
| 	/* Enable PSE if available */
 | |
| 	if (cpu_has_pse)
 | |
| 		set_in_cr4(X86_CR4_PSE);
 | |
| 
 | |
| 	/* Enable PGE if available */
 | |
| 	if (cpu_has_pge) {
 | |
| 		set_in_cr4(X86_CR4_PGE);
 | |
| 		__supported_pte_mask |= _PAGE_GLOBAL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_X86_32
 | |
| #define NR_RANGE_MR 3
 | |
| #else /* CONFIG_X86_64 */
 | |
| #define NR_RANGE_MR 5
 | |
| #endif
 | |
| 
 | |
| static int __meminit save_mr(struct map_range *mr, int nr_range,
 | |
| 			     unsigned long start_pfn, unsigned long end_pfn,
 | |
| 			     unsigned long page_size_mask)
 | |
| {
 | |
| 	if (start_pfn < end_pfn) {
 | |
| 		if (nr_range >= NR_RANGE_MR)
 | |
| 			panic("run out of range for init_memory_mapping\n");
 | |
| 		mr[nr_range].start = start_pfn<<PAGE_SHIFT;
 | |
| 		mr[nr_range].end   = end_pfn<<PAGE_SHIFT;
 | |
| 		mr[nr_range].page_size_mask = page_size_mask;
 | |
| 		nr_range++;
 | |
| 	}
 | |
| 
 | |
| 	return nr_range;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * adjust the page_size_mask for small range to go with
 | |
|  *	big page size instead small one if nearby are ram too.
 | |
|  */
 | |
| static void __init_refok adjust_range_page_size_mask(struct map_range *mr,
 | |
| 							 int nr_range)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < nr_range; i++) {
 | |
| 		if ((page_size_mask & (1<<PG_LEVEL_2M)) &&
 | |
| 		    !(mr[i].page_size_mask & (1<<PG_LEVEL_2M))) {
 | |
| 			unsigned long start = round_down(mr[i].start, PMD_SIZE);
 | |
| 			unsigned long end = round_up(mr[i].end, PMD_SIZE);
 | |
| 
 | |
| #ifdef CONFIG_X86_32
 | |
| 			if ((end >> PAGE_SHIFT) > max_low_pfn)
 | |
| 				continue;
 | |
| #endif
 | |
| 
 | |
| 			if (memblock_is_region_memory(start, end - start))
 | |
| 				mr[i].page_size_mask |= 1<<PG_LEVEL_2M;
 | |
| 		}
 | |
| 		if ((page_size_mask & (1<<PG_LEVEL_1G)) &&
 | |
| 		    !(mr[i].page_size_mask & (1<<PG_LEVEL_1G))) {
 | |
| 			unsigned long start = round_down(mr[i].start, PUD_SIZE);
 | |
| 			unsigned long end = round_up(mr[i].end, PUD_SIZE);
 | |
| 
 | |
| 			if (memblock_is_region_memory(start, end - start))
 | |
| 				mr[i].page_size_mask |= 1<<PG_LEVEL_1G;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int __meminit split_mem_range(struct map_range *mr, int nr_range,
 | |
| 				     unsigned long start,
 | |
| 				     unsigned long end)
 | |
| {
 | |
| 	unsigned long start_pfn, end_pfn, limit_pfn;
 | |
| 	unsigned long pfn;
 | |
| 	int i;
 | |
| 
 | |
| 	limit_pfn = PFN_DOWN(end);
 | |
| 
 | |
| 	/* head if not big page alignment ? */
 | |
| 	pfn = start_pfn = PFN_DOWN(start);
 | |
| #ifdef CONFIG_X86_32
 | |
| 	/*
 | |
| 	 * Don't use a large page for the first 2/4MB of memory
 | |
| 	 * because there are often fixed size MTRRs in there
 | |
| 	 * and overlapping MTRRs into large pages can cause
 | |
| 	 * slowdowns.
 | |
| 	 */
 | |
| 	if (pfn == 0)
 | |
| 		end_pfn = PFN_DOWN(PMD_SIZE);
 | |
| 	else
 | |
| 		end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
 | |
| #else /* CONFIG_X86_64 */
 | |
| 	end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
 | |
| #endif
 | |
| 	if (end_pfn > limit_pfn)
 | |
| 		end_pfn = limit_pfn;
 | |
| 	if (start_pfn < end_pfn) {
 | |
| 		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
 | |
| 		pfn = end_pfn;
 | |
| 	}
 | |
| 
 | |
| 	/* big page (2M) range */
 | |
| 	start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
 | |
| #ifdef CONFIG_X86_32
 | |
| 	end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
 | |
| #else /* CONFIG_X86_64 */
 | |
| 	end_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
 | |
| 	if (end_pfn > round_down(limit_pfn, PFN_DOWN(PMD_SIZE)))
 | |
| 		end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
 | |
| #endif
 | |
| 
 | |
| 	if (start_pfn < end_pfn) {
 | |
| 		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
 | |
| 				page_size_mask & (1<<PG_LEVEL_2M));
 | |
| 		pfn = end_pfn;
 | |
| 	}
 | |
| 
 | |
| #ifdef CONFIG_X86_64
 | |
| 	/* big page (1G) range */
 | |
| 	start_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
 | |
| 	end_pfn = round_down(limit_pfn, PFN_DOWN(PUD_SIZE));
 | |
| 	if (start_pfn < end_pfn) {
 | |
| 		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
 | |
| 				page_size_mask &
 | |
| 				 ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
 | |
| 		pfn = end_pfn;
 | |
| 	}
 | |
| 
 | |
| 	/* tail is not big page (1G) alignment */
 | |
| 	start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
 | |
| 	end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
 | |
| 	if (start_pfn < end_pfn) {
 | |
| 		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
 | |
| 				page_size_mask & (1<<PG_LEVEL_2M));
 | |
| 		pfn = end_pfn;
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	/* tail is not big page (2M) alignment */
 | |
| 	start_pfn = pfn;
 | |
| 	end_pfn = limit_pfn;
 | |
| 	nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
 | |
| 
 | |
| 	if (!after_bootmem)
 | |
| 		adjust_range_page_size_mask(mr, nr_range);
 | |
| 
 | |
| 	/* try to merge same page size and continuous */
 | |
| 	for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
 | |
| 		unsigned long old_start;
 | |
| 		if (mr[i].end != mr[i+1].start ||
 | |
| 		    mr[i].page_size_mask != mr[i+1].page_size_mask)
 | |
| 			continue;
 | |
| 		/* move it */
 | |
| 		old_start = mr[i].start;
 | |
| 		memmove(&mr[i], &mr[i+1],
 | |
| 			(nr_range - 1 - i) * sizeof(struct map_range));
 | |
| 		mr[i--].start = old_start;
 | |
| 		nr_range--;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < nr_range; i++)
 | |
| 		printk(KERN_DEBUG " [mem %#010lx-%#010lx] page %s\n",
 | |
| 				mr[i].start, mr[i].end - 1,
 | |
| 			(mr[i].page_size_mask & (1<<PG_LEVEL_1G))?"1G":(
 | |
| 			 (mr[i].page_size_mask & (1<<PG_LEVEL_2M))?"2M":"4k"));
 | |
| 
 | |
| 	return nr_range;
 | |
| }
 | |
| 
 | |
| struct range pfn_mapped[E820_X_MAX];
 | |
| int nr_pfn_mapped;
 | |
| 
 | |
| static void add_pfn_range_mapped(unsigned long start_pfn, unsigned long end_pfn)
 | |
| {
 | |
| 	nr_pfn_mapped = add_range_with_merge(pfn_mapped, E820_X_MAX,
 | |
| 					     nr_pfn_mapped, start_pfn, end_pfn);
 | |
| 	nr_pfn_mapped = clean_sort_range(pfn_mapped, E820_X_MAX);
 | |
| 
 | |
| 	max_pfn_mapped = max(max_pfn_mapped, end_pfn);
 | |
| 
 | |
| 	if (start_pfn < (1UL<<(32-PAGE_SHIFT)))
 | |
| 		max_low_pfn_mapped = max(max_low_pfn_mapped,
 | |
| 					 min(end_pfn, 1UL<<(32-PAGE_SHIFT)));
 | |
| }
 | |
| 
 | |
| bool pfn_range_is_mapped(unsigned long start_pfn, unsigned long end_pfn)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < nr_pfn_mapped; i++)
 | |
| 		if ((start_pfn >= pfn_mapped[i].start) &&
 | |
| 		    (end_pfn <= pfn_mapped[i].end))
 | |
| 			return true;
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Setup the direct mapping of the physical memory at PAGE_OFFSET.
 | |
|  * This runs before bootmem is initialized and gets pages directly from
 | |
|  * the physical memory. To access them they are temporarily mapped.
 | |
|  */
 | |
| unsigned long __init_refok init_memory_mapping(unsigned long start,
 | |
| 					       unsigned long end)
 | |
| {
 | |
| 	struct map_range mr[NR_RANGE_MR];
 | |
| 	unsigned long ret = 0;
 | |
| 	int nr_range, i;
 | |
| 
 | |
| 	pr_info("init_memory_mapping: [mem %#010lx-%#010lx]\n",
 | |
| 	       start, end - 1);
 | |
| 
 | |
| 	memset(mr, 0, sizeof(mr));
 | |
| 	nr_range = split_mem_range(mr, 0, start, end);
 | |
| 
 | |
| 	for (i = 0; i < nr_range; i++)
 | |
| 		ret = kernel_physical_mapping_init(mr[i].start, mr[i].end,
 | |
| 						   mr[i].page_size_mask);
 | |
| 
 | |
| 	add_pfn_range_mapped(start >> PAGE_SHIFT, ret >> PAGE_SHIFT);
 | |
| 
 | |
| 	return ret >> PAGE_SHIFT;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We need to iterate through the E820 memory map and create direct mappings
 | |
|  * for only E820_RAM and E820_KERN_RESERVED regions. We cannot simply
 | |
|  * create direct mappings for all pfns from [0 to max_low_pfn) and
 | |
|  * [4GB to max_pfn) because of possible memory holes in high addresses
 | |
|  * that cannot be marked as UC by fixed/variable range MTRRs.
 | |
|  * Depending on the alignment of E820 ranges, this may possibly result
 | |
|  * in using smaller size (i.e. 4K instead of 2M or 1G) page tables.
 | |
|  *
 | |
|  * init_mem_mapping() calls init_range_memory_mapping() with big range.
 | |
|  * That range would have hole in the middle or ends, and only ram parts
 | |
|  * will be mapped in init_range_memory_mapping().
 | |
|  */
 | |
| static unsigned long __init init_range_memory_mapping(
 | |
| 					   unsigned long r_start,
 | |
| 					   unsigned long r_end)
 | |
| {
 | |
| 	unsigned long start_pfn, end_pfn;
 | |
| 	unsigned long mapped_ram_size = 0;
 | |
| 	int i;
 | |
| 
 | |
| 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
 | |
| 		u64 start = clamp_val(PFN_PHYS(start_pfn), r_start, r_end);
 | |
| 		u64 end = clamp_val(PFN_PHYS(end_pfn), r_start, r_end);
 | |
| 		if (start >= end)
 | |
| 			continue;
 | |
| 
 | |
| 		/*
 | |
| 		 * if it is overlapping with brk pgt, we need to
 | |
| 		 * alloc pgt buf from memblock instead.
 | |
| 		 */
 | |
| 		can_use_brk_pgt = max(start, (u64)pgt_buf_end<<PAGE_SHIFT) >=
 | |
| 				    min(end, (u64)pgt_buf_top<<PAGE_SHIFT);
 | |
| 		init_memory_mapping(start, end);
 | |
| 		mapped_ram_size += end - start;
 | |
| 		can_use_brk_pgt = true;
 | |
| 	}
 | |
| 
 | |
| 	return mapped_ram_size;
 | |
| }
 | |
| 
 | |
| static unsigned long __init get_new_step_size(unsigned long step_size)
 | |
| {
 | |
| 	/*
 | |
| 	 * Explain why we shift by 5 and why we don't have to worry about
 | |
| 	 * 'step_size << 5' overflowing:
 | |
| 	 *
 | |
| 	 * initial mapped size is PMD_SIZE (2M).
 | |
| 	 * We can not set step_size to be PUD_SIZE (1G) yet.
 | |
| 	 * In worse case, when we cross the 1G boundary, and
 | |
| 	 * PG_LEVEL_2M is not set, we will need 1+1+512 pages (2M + 8k)
 | |
| 	 * to map 1G range with PTE. Use 5 as shift for now.
 | |
| 	 *
 | |
| 	 * Don't need to worry about overflow, on 32bit, when step_size
 | |
| 	 * is 0, round_down() returns 0 for start, and that turns it
 | |
| 	 * into 0x100000000ULL.
 | |
| 	 */
 | |
| 	return step_size << 5;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * memory_map_top_down - Map [map_start, map_end) top down
 | |
|  * @map_start: start address of the target memory range
 | |
|  * @map_end: end address of the target memory range
 | |
|  *
 | |
|  * This function will setup direct mapping for memory range
 | |
|  * [map_start, map_end) in top-down. That said, the page tables
 | |
|  * will be allocated at the end of the memory, and we map the
 | |
|  * memory in top-down.
 | |
|  */
 | |
| static void __init memory_map_top_down(unsigned long map_start,
 | |
| 				       unsigned long map_end)
 | |
| {
 | |
| 	unsigned long real_end, start, last_start;
 | |
| 	unsigned long step_size;
 | |
| 	unsigned long addr;
 | |
| 	unsigned long mapped_ram_size = 0;
 | |
| 	unsigned long new_mapped_ram_size;
 | |
| 
 | |
| 	/* xen has big range in reserved near end of ram, skip it at first.*/
 | |
| 	addr = memblock_find_in_range(map_start, map_end, PMD_SIZE, PMD_SIZE);
 | |
| 	real_end = addr + PMD_SIZE;
 | |
| 
 | |
| 	/* step_size need to be small so pgt_buf from BRK could cover it */
 | |
| 	step_size = PMD_SIZE;
 | |
| 	max_pfn_mapped = 0; /* will get exact value next */
 | |
| 	min_pfn_mapped = real_end >> PAGE_SHIFT;
 | |
| 	last_start = start = real_end;
 | |
| 
 | |
| 	/*
 | |
| 	 * We start from the top (end of memory) and go to the bottom.
 | |
| 	 * The memblock_find_in_range() gets us a block of RAM from the
 | |
| 	 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
 | |
| 	 * for page table.
 | |
| 	 */
 | |
| 	while (last_start > map_start) {
 | |
| 		if (last_start > step_size) {
 | |
| 			start = round_down(last_start - 1, step_size);
 | |
| 			if (start < map_start)
 | |
| 				start = map_start;
 | |
| 		} else
 | |
| 			start = map_start;
 | |
| 		new_mapped_ram_size = init_range_memory_mapping(start,
 | |
| 							last_start);
 | |
| 		last_start = start;
 | |
| 		min_pfn_mapped = last_start >> PAGE_SHIFT;
 | |
| 		/* only increase step_size after big range get mapped */
 | |
| 		if (new_mapped_ram_size > mapped_ram_size)
 | |
| 			step_size = get_new_step_size(step_size);
 | |
| 		mapped_ram_size += new_mapped_ram_size;
 | |
| 	}
 | |
| 
 | |
| 	if (real_end < map_end)
 | |
| 		init_range_memory_mapping(real_end, map_end);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * memory_map_bottom_up - Map [map_start, map_end) bottom up
 | |
|  * @map_start: start address of the target memory range
 | |
|  * @map_end: end address of the target memory range
 | |
|  *
 | |
|  * This function will setup direct mapping for memory range
 | |
|  * [map_start, map_end) in bottom-up. Since we have limited the
 | |
|  * bottom-up allocation above the kernel, the page tables will
 | |
|  * be allocated just above the kernel and we map the memory
 | |
|  * in [map_start, map_end) in bottom-up.
 | |
|  */
 | |
| static void __init memory_map_bottom_up(unsigned long map_start,
 | |
| 					unsigned long map_end)
 | |
| {
 | |
| 	unsigned long next, new_mapped_ram_size, start;
 | |
| 	unsigned long mapped_ram_size = 0;
 | |
| 	/* step_size need to be small so pgt_buf from BRK could cover it */
 | |
| 	unsigned long step_size = PMD_SIZE;
 | |
| 
 | |
| 	start = map_start;
 | |
| 	min_pfn_mapped = start >> PAGE_SHIFT;
 | |
| 
 | |
| 	/*
 | |
| 	 * We start from the bottom (@map_start) and go to the top (@map_end).
 | |
| 	 * The memblock_find_in_range() gets us a block of RAM from the
 | |
| 	 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
 | |
| 	 * for page table.
 | |
| 	 */
 | |
| 	while (start < map_end) {
 | |
| 		if (map_end - start > step_size) {
 | |
| 			next = round_up(start + 1, step_size);
 | |
| 			if (next > map_end)
 | |
| 				next = map_end;
 | |
| 		} else
 | |
| 			next = map_end;
 | |
| 
 | |
| 		new_mapped_ram_size = init_range_memory_mapping(start, next);
 | |
| 		start = next;
 | |
| 
 | |
| 		if (new_mapped_ram_size > mapped_ram_size)
 | |
| 			step_size = get_new_step_size(step_size);
 | |
| 		mapped_ram_size += new_mapped_ram_size;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void __init init_mem_mapping(void)
 | |
| {
 | |
| 	unsigned long end;
 | |
| 
 | |
| 	probe_page_size_mask();
 | |
| 
 | |
| #ifdef CONFIG_X86_64
 | |
| 	end = max_pfn << PAGE_SHIFT;
 | |
| #else
 | |
| 	end = max_low_pfn << PAGE_SHIFT;
 | |
| #endif
 | |
| 
 | |
| 	/* the ISA range is always mapped regardless of memory holes */
 | |
| 	init_memory_mapping(0, ISA_END_ADDRESS);
 | |
| 
 | |
| 	/*
 | |
| 	 * If the allocation is in bottom-up direction, we setup direct mapping
 | |
| 	 * in bottom-up, otherwise we setup direct mapping in top-down.
 | |
| 	 */
 | |
| 	if (memblock_bottom_up()) {
 | |
| 		unsigned long kernel_end = __pa_symbol(_end);
 | |
| 
 | |
| 		/*
 | |
| 		 * we need two separate calls here. This is because we want to
 | |
| 		 * allocate page tables above the kernel. So we first map
 | |
| 		 * [kernel_end, end) to make memory above the kernel be mapped
 | |
| 		 * as soon as possible. And then use page tables allocated above
 | |
| 		 * the kernel to map [ISA_END_ADDRESS, kernel_end).
 | |
| 		 */
 | |
| 		memory_map_bottom_up(kernel_end, end);
 | |
| 		memory_map_bottom_up(ISA_END_ADDRESS, kernel_end);
 | |
| 	} else {
 | |
| 		memory_map_top_down(ISA_END_ADDRESS, end);
 | |
| 	}
 | |
| 
 | |
| #ifdef CONFIG_X86_64
 | |
| 	if (max_pfn > max_low_pfn) {
 | |
| 		/* can we preseve max_low_pfn ?*/
 | |
| 		max_low_pfn = max_pfn;
 | |
| 	}
 | |
| #else
 | |
| 	early_ioremap_page_table_range_init();
 | |
| #endif
 | |
| 
 | |
| 	load_cr3(swapper_pg_dir);
 | |
| 	__flush_tlb_all();
 | |
| 
 | |
| 	early_memtest(0, max_pfn_mapped << PAGE_SHIFT);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * devmem_is_allowed() checks to see if /dev/mem access to a certain address
 | |
|  * is valid. The argument is a physical page number.
 | |
|  *
 | |
|  *
 | |
|  * On x86, access has to be given to the first megabyte of ram because that area
 | |
|  * contains bios code and data regions used by X and dosemu and similar apps.
 | |
|  * Access has to be given to non-kernel-ram areas as well, these contain the PCI
 | |
|  * mmio resources as well as potential bios/acpi data regions.
 | |
|  */
 | |
| int devmem_is_allowed(unsigned long pagenr)
 | |
| {
 | |
| 	if (pagenr < 256)
 | |
| 		return 1;
 | |
| 	if (iomem_is_exclusive(pagenr << PAGE_SHIFT))
 | |
| 		return 0;
 | |
| 	if (!page_is_ram(pagenr))
 | |
| 		return 1;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void free_init_pages(char *what, unsigned long begin, unsigned long end)
 | |
| {
 | |
| 	unsigned long begin_aligned, end_aligned;
 | |
| 
 | |
| 	/* Make sure boundaries are page aligned */
 | |
| 	begin_aligned = PAGE_ALIGN(begin);
 | |
| 	end_aligned   = end & PAGE_MASK;
 | |
| 
 | |
| 	if (WARN_ON(begin_aligned != begin || end_aligned != end)) {
 | |
| 		begin = begin_aligned;
 | |
| 		end   = end_aligned;
 | |
| 	}
 | |
| 
 | |
| 	if (begin >= end)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * If debugging page accesses then do not free this memory but
 | |
| 	 * mark them not present - any buggy init-section access will
 | |
| 	 * create a kernel page fault:
 | |
| 	 */
 | |
| #ifdef CONFIG_DEBUG_PAGEALLOC
 | |
| 	printk(KERN_INFO "debug: unmapping init [mem %#010lx-%#010lx]\n",
 | |
| 		begin, end - 1);
 | |
| 	set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
 | |
| #else
 | |
| 	/*
 | |
| 	 * We just marked the kernel text read only above, now that
 | |
| 	 * we are going to free part of that, we need to make that
 | |
| 	 * writeable and non-executable first.
 | |
| 	 */
 | |
| 	set_memory_nx(begin, (end - begin) >> PAGE_SHIFT);
 | |
| 	set_memory_rw(begin, (end - begin) >> PAGE_SHIFT);
 | |
| 
 | |
| 	free_reserved_area((void *)begin, (void *)end, POISON_FREE_INITMEM, what);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| void free_initmem(void)
 | |
| {
 | |
| 	free_init_pages("unused kernel",
 | |
| 			(unsigned long)(&__init_begin),
 | |
| 			(unsigned long)(&__init_end));
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_BLK_DEV_INITRD
 | |
| void __init free_initrd_mem(unsigned long start, unsigned long end)
 | |
| {
 | |
| #ifdef CONFIG_MICROCODE_EARLY
 | |
| 	/*
 | |
| 	 * Remember, initrd memory may contain microcode or other useful things.
 | |
| 	 * Before we lose initrd mem, we need to find a place to hold them
 | |
| 	 * now that normal virtual memory is enabled.
 | |
| 	 */
 | |
| 	save_microcode_in_initrd();
 | |
| #endif
 | |
| 
 | |
| 	/*
 | |
| 	 * end could be not aligned, and We can not align that,
 | |
| 	 * decompresser could be confused by aligned initrd_end
 | |
| 	 * We already reserve the end partial page before in
 | |
| 	 *   - i386_start_kernel()
 | |
| 	 *   - x86_64_start_kernel()
 | |
| 	 *   - relocate_initrd()
 | |
| 	 * So here We can do PAGE_ALIGN() safely to get partial page to be freed
 | |
| 	 */
 | |
| 	free_init_pages("initrd", start, PAGE_ALIGN(end));
 | |
| }
 | |
| #endif
 | |
| 
 | |
| void __init zone_sizes_init(void)
 | |
| {
 | |
| 	unsigned long max_zone_pfns[MAX_NR_ZONES];
 | |
| 
 | |
| 	memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
 | |
| 
 | |
| #ifdef CONFIG_ZONE_DMA
 | |
| 	max_zone_pfns[ZONE_DMA]		= MAX_DMA_PFN;
 | |
| #endif
 | |
| #ifdef CONFIG_ZONE_DMA32
 | |
| 	max_zone_pfns[ZONE_DMA32]	= MAX_DMA32_PFN;
 | |
| #endif
 | |
| 	max_zone_pfns[ZONE_NORMAL]	= max_low_pfn;
 | |
| #ifdef CONFIG_HIGHMEM
 | |
| 	max_zone_pfns[ZONE_HIGHMEM]	= max_pfn;
 | |
| #endif
 | |
| 
 | |
| 	free_area_init_nodes(max_zone_pfns);
 | |
| }
 | |
| 
 |