 81bab4c38a
			
		
	
	
	81bab4c38a
	
	
	
		
			
			These handlers are not optional and need in our case dummy implementions to avoid NULL pointer bugs within the irq core code. Reported-and-tested-by: Toralf Foester <toralf.foerster@gmx.de> Signed-off-by: Richard Weinberger <richard@nod.at>
		
			
				
	
	
		
			473 lines
		
	
	
	
		
			11 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			473 lines
		
	
	
	
		
			11 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
 | |
|  * Licensed under the GPL
 | |
|  * Derived (i.e. mostly copied) from arch/i386/kernel/irq.c:
 | |
|  *	Copyright (C) 1992, 1998 Linus Torvalds, Ingo Molnar
 | |
|  */
 | |
| 
 | |
| #include <linux/cpumask.h>
 | |
| #include <linux/hardirq.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/kernel_stat.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/seq_file.h>
 | |
| #include <linux/slab.h>
 | |
| #include <as-layout.h>
 | |
| #include <kern_util.h>
 | |
| #include <os.h>
 | |
| 
 | |
| /*
 | |
|  * This list is accessed under irq_lock, except in sigio_handler,
 | |
|  * where it is safe from being modified.  IRQ handlers won't change it -
 | |
|  * if an IRQ source has vanished, it will be freed by free_irqs just
 | |
|  * before returning from sigio_handler.  That will process a separate
 | |
|  * list of irqs to free, with its own locking, coming back here to
 | |
|  * remove list elements, taking the irq_lock to do so.
 | |
|  */
 | |
| static struct irq_fd *active_fds = NULL;
 | |
| static struct irq_fd **last_irq_ptr = &active_fds;
 | |
| 
 | |
| extern void free_irqs(void);
 | |
| 
 | |
| void sigio_handler(int sig, struct siginfo *unused_si, struct uml_pt_regs *regs)
 | |
| {
 | |
| 	struct irq_fd *irq_fd;
 | |
| 	int n;
 | |
| 
 | |
| 	if (smp_sigio_handler())
 | |
| 		return;
 | |
| 
 | |
| 	while (1) {
 | |
| 		n = os_waiting_for_events(active_fds);
 | |
| 		if (n <= 0) {
 | |
| 			if (n == -EINTR)
 | |
| 				continue;
 | |
| 			else break;
 | |
| 		}
 | |
| 
 | |
| 		for (irq_fd = active_fds; irq_fd != NULL;
 | |
| 		     irq_fd = irq_fd->next) {
 | |
| 			if (irq_fd->current_events != 0) {
 | |
| 				irq_fd->current_events = 0;
 | |
| 				do_IRQ(irq_fd->irq, regs);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	free_irqs();
 | |
| }
 | |
| 
 | |
| static DEFINE_SPINLOCK(irq_lock);
 | |
| 
 | |
| static int activate_fd(int irq, int fd, int type, void *dev_id)
 | |
| {
 | |
| 	struct pollfd *tmp_pfd;
 | |
| 	struct irq_fd *new_fd, *irq_fd;
 | |
| 	unsigned long flags;
 | |
| 	int events, err, n;
 | |
| 
 | |
| 	err = os_set_fd_async(fd);
 | |
| 	if (err < 0)
 | |
| 		goto out;
 | |
| 
 | |
| 	err = -ENOMEM;
 | |
| 	new_fd = kmalloc(sizeof(struct irq_fd), GFP_KERNEL);
 | |
| 	if (new_fd == NULL)
 | |
| 		goto out;
 | |
| 
 | |
| 	if (type == IRQ_READ)
 | |
| 		events = UM_POLLIN | UM_POLLPRI;
 | |
| 	else events = UM_POLLOUT;
 | |
| 	*new_fd = ((struct irq_fd) { .next  		= NULL,
 | |
| 				     .id 		= dev_id,
 | |
| 				     .fd 		= fd,
 | |
| 				     .type 		= type,
 | |
| 				     .irq 		= irq,
 | |
| 				     .events 		= events,
 | |
| 				     .current_events 	= 0 } );
 | |
| 
 | |
| 	err = -EBUSY;
 | |
| 	spin_lock_irqsave(&irq_lock, flags);
 | |
| 	for (irq_fd = active_fds; irq_fd != NULL; irq_fd = irq_fd->next) {
 | |
| 		if ((irq_fd->fd == fd) && (irq_fd->type == type)) {
 | |
| 			printk(KERN_ERR "Registering fd %d twice\n", fd);
 | |
| 			printk(KERN_ERR "Irqs : %d, %d\n", irq_fd->irq, irq);
 | |
| 			printk(KERN_ERR "Ids : 0x%p, 0x%p\n", irq_fd->id,
 | |
| 			       dev_id);
 | |
| 			goto out_unlock;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (type == IRQ_WRITE)
 | |
| 		fd = -1;
 | |
| 
 | |
| 	tmp_pfd = NULL;
 | |
| 	n = 0;
 | |
| 
 | |
| 	while (1) {
 | |
| 		n = os_create_pollfd(fd, events, tmp_pfd, n);
 | |
| 		if (n == 0)
 | |
| 			break;
 | |
| 
 | |
| 		/*
 | |
| 		 * n > 0
 | |
| 		 * It means we couldn't put new pollfd to current pollfds
 | |
| 		 * and tmp_fds is NULL or too small for new pollfds array.
 | |
| 		 * Needed size is equal to n as minimum.
 | |
| 		 *
 | |
| 		 * Here we have to drop the lock in order to call
 | |
| 		 * kmalloc, which might sleep.
 | |
| 		 * If something else came in and changed the pollfds array
 | |
| 		 * so we will not be able to put new pollfd struct to pollfds
 | |
| 		 * then we free the buffer tmp_fds and try again.
 | |
| 		 */
 | |
| 		spin_unlock_irqrestore(&irq_lock, flags);
 | |
| 		kfree(tmp_pfd);
 | |
| 
 | |
| 		tmp_pfd = kmalloc(n, GFP_KERNEL);
 | |
| 		if (tmp_pfd == NULL)
 | |
| 			goto out_kfree;
 | |
| 
 | |
| 		spin_lock_irqsave(&irq_lock, flags);
 | |
| 	}
 | |
| 
 | |
| 	*last_irq_ptr = new_fd;
 | |
| 	last_irq_ptr = &new_fd->next;
 | |
| 
 | |
| 	spin_unlock_irqrestore(&irq_lock, flags);
 | |
| 
 | |
| 	/*
 | |
| 	 * This calls activate_fd, so it has to be outside the critical
 | |
| 	 * section.
 | |
| 	 */
 | |
| 	maybe_sigio_broken(fd, (type == IRQ_READ));
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
|  out_unlock:
 | |
| 	spin_unlock_irqrestore(&irq_lock, flags);
 | |
|  out_kfree:
 | |
| 	kfree(new_fd);
 | |
|  out:
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static void free_irq_by_cb(int (*test)(struct irq_fd *, void *), void *arg)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(&irq_lock, flags);
 | |
| 	os_free_irq_by_cb(test, arg, active_fds, &last_irq_ptr);
 | |
| 	spin_unlock_irqrestore(&irq_lock, flags);
 | |
| }
 | |
| 
 | |
| struct irq_and_dev {
 | |
| 	int irq;
 | |
| 	void *dev;
 | |
| };
 | |
| 
 | |
| static int same_irq_and_dev(struct irq_fd *irq, void *d)
 | |
| {
 | |
| 	struct irq_and_dev *data = d;
 | |
| 
 | |
| 	return ((irq->irq == data->irq) && (irq->id == data->dev));
 | |
| }
 | |
| 
 | |
| static void free_irq_by_irq_and_dev(unsigned int irq, void *dev)
 | |
| {
 | |
| 	struct irq_and_dev data = ((struct irq_and_dev) { .irq  = irq,
 | |
| 							  .dev  = dev });
 | |
| 
 | |
| 	free_irq_by_cb(same_irq_and_dev, &data);
 | |
| }
 | |
| 
 | |
| static int same_fd(struct irq_fd *irq, void *fd)
 | |
| {
 | |
| 	return (irq->fd == *((int *)fd));
 | |
| }
 | |
| 
 | |
| void free_irq_by_fd(int fd)
 | |
| {
 | |
| 	free_irq_by_cb(same_fd, &fd);
 | |
| }
 | |
| 
 | |
| /* Must be called with irq_lock held */
 | |
| static struct irq_fd *find_irq_by_fd(int fd, int irqnum, int *index_out)
 | |
| {
 | |
| 	struct irq_fd *irq;
 | |
| 	int i = 0;
 | |
| 	int fdi;
 | |
| 
 | |
| 	for (irq = active_fds; irq != NULL; irq = irq->next) {
 | |
| 		if ((irq->fd == fd) && (irq->irq == irqnum))
 | |
| 			break;
 | |
| 		i++;
 | |
| 	}
 | |
| 	if (irq == NULL) {
 | |
| 		printk(KERN_ERR "find_irq_by_fd doesn't have descriptor %d\n",
 | |
| 		       fd);
 | |
| 		goto out;
 | |
| 	}
 | |
| 	fdi = os_get_pollfd(i);
 | |
| 	if ((fdi != -1) && (fdi != fd)) {
 | |
| 		printk(KERN_ERR "find_irq_by_fd - mismatch between active_fds "
 | |
| 		       "and pollfds, fd %d vs %d, need %d\n", irq->fd,
 | |
| 		       fdi, fd);
 | |
| 		irq = NULL;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	*index_out = i;
 | |
|  out:
 | |
| 	return irq;
 | |
| }
 | |
| 
 | |
| void reactivate_fd(int fd, int irqnum)
 | |
| {
 | |
| 	struct irq_fd *irq;
 | |
| 	unsigned long flags;
 | |
| 	int i;
 | |
| 
 | |
| 	spin_lock_irqsave(&irq_lock, flags);
 | |
| 	irq = find_irq_by_fd(fd, irqnum, &i);
 | |
| 	if (irq == NULL) {
 | |
| 		spin_unlock_irqrestore(&irq_lock, flags);
 | |
| 		return;
 | |
| 	}
 | |
| 	os_set_pollfd(i, irq->fd);
 | |
| 	spin_unlock_irqrestore(&irq_lock, flags);
 | |
| 
 | |
| 	add_sigio_fd(fd);
 | |
| }
 | |
| 
 | |
| void deactivate_fd(int fd, int irqnum)
 | |
| {
 | |
| 	struct irq_fd *irq;
 | |
| 	unsigned long flags;
 | |
| 	int i;
 | |
| 
 | |
| 	spin_lock_irqsave(&irq_lock, flags);
 | |
| 	irq = find_irq_by_fd(fd, irqnum, &i);
 | |
| 	if (irq == NULL) {
 | |
| 		spin_unlock_irqrestore(&irq_lock, flags);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	os_set_pollfd(i, -1);
 | |
| 	spin_unlock_irqrestore(&irq_lock, flags);
 | |
| 
 | |
| 	ignore_sigio_fd(fd);
 | |
| }
 | |
| EXPORT_SYMBOL(deactivate_fd);
 | |
| 
 | |
| /*
 | |
|  * Called just before shutdown in order to provide a clean exec
 | |
|  * environment in case the system is rebooting.  No locking because
 | |
|  * that would cause a pointless shutdown hang if something hadn't
 | |
|  * released the lock.
 | |
|  */
 | |
| int deactivate_all_fds(void)
 | |
| {
 | |
| 	struct irq_fd *irq;
 | |
| 	int err;
 | |
| 
 | |
| 	for (irq = active_fds; irq != NULL; irq = irq->next) {
 | |
| 		err = os_clear_fd_async(irq->fd);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 	}
 | |
| 	/* If there is a signal already queued, after unblocking ignore it */
 | |
| 	os_set_ioignore();
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * do_IRQ handles all normal device IRQs (the special
 | |
|  * SMP cross-CPU interrupts have their own specific
 | |
|  * handlers).
 | |
|  */
 | |
| unsigned int do_IRQ(int irq, struct uml_pt_regs *regs)
 | |
| {
 | |
| 	struct pt_regs *old_regs = set_irq_regs((struct pt_regs *)regs);
 | |
| 	irq_enter();
 | |
| 	generic_handle_irq(irq);
 | |
| 	irq_exit();
 | |
| 	set_irq_regs(old_regs);
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| void um_free_irq(unsigned int irq, void *dev)
 | |
| {
 | |
| 	free_irq_by_irq_and_dev(irq, dev);
 | |
| 	free_irq(irq, dev);
 | |
| }
 | |
| EXPORT_SYMBOL(um_free_irq);
 | |
| 
 | |
| int um_request_irq(unsigned int irq, int fd, int type,
 | |
| 		   irq_handler_t handler,
 | |
| 		   unsigned long irqflags, const char * devname,
 | |
| 		   void *dev_id)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	if (fd != -1) {
 | |
| 		err = activate_fd(irq, fd, type, dev_id);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 	}
 | |
| 
 | |
| 	return request_irq(irq, handler, irqflags, devname, dev_id);
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL(um_request_irq);
 | |
| EXPORT_SYMBOL(reactivate_fd);
 | |
| 
 | |
| /*
 | |
|  * irq_chip must define at least enable/disable and ack when
 | |
|  * the edge handler is used.
 | |
|  */
 | |
| static void dummy(struct irq_data *d)
 | |
| {
 | |
| }
 | |
| 
 | |
| /* This is used for everything else than the timer. */
 | |
| static struct irq_chip normal_irq_type = {
 | |
| 	.name = "SIGIO",
 | |
| 	.irq_disable = dummy,
 | |
| 	.irq_enable = dummy,
 | |
| 	.irq_ack = dummy,
 | |
| 	.irq_mask = dummy,
 | |
| 	.irq_unmask = dummy,
 | |
| };
 | |
| 
 | |
| static struct irq_chip SIGVTALRM_irq_type = {
 | |
| 	.name = "SIGVTALRM",
 | |
| 	.irq_disable = dummy,
 | |
| 	.irq_enable = dummy,
 | |
| 	.irq_ack = dummy,
 | |
| 	.irq_mask = dummy,
 | |
| 	.irq_unmask = dummy,
 | |
| };
 | |
| 
 | |
| void __init init_IRQ(void)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	irq_set_chip_and_handler(TIMER_IRQ, &SIGVTALRM_irq_type, handle_edge_irq);
 | |
| 
 | |
| 	for (i = 1; i < NR_IRQS; i++)
 | |
| 		irq_set_chip_and_handler(i, &normal_irq_type, handle_edge_irq);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * IRQ stack entry and exit:
 | |
|  *
 | |
|  * Unlike i386, UML doesn't receive IRQs on the normal kernel stack
 | |
|  * and switch over to the IRQ stack after some preparation.  We use
 | |
|  * sigaltstack to receive signals on a separate stack from the start.
 | |
|  * These two functions make sure the rest of the kernel won't be too
 | |
|  * upset by being on a different stack.  The IRQ stack has a
 | |
|  * thread_info structure at the bottom so that current et al continue
 | |
|  * to work.
 | |
|  *
 | |
|  * to_irq_stack copies the current task's thread_info to the IRQ stack
 | |
|  * thread_info and sets the tasks's stack to point to the IRQ stack.
 | |
|  *
 | |
|  * from_irq_stack copies the thread_info struct back (flags may have
 | |
|  * been modified) and resets the task's stack pointer.
 | |
|  *
 | |
|  * Tricky bits -
 | |
|  *
 | |
|  * What happens when two signals race each other?  UML doesn't block
 | |
|  * signals with sigprocmask, SA_DEFER, or sa_mask, so a second signal
 | |
|  * could arrive while a previous one is still setting up the
 | |
|  * thread_info.
 | |
|  *
 | |
|  * There are three cases -
 | |
|  *     The first interrupt on the stack - sets up the thread_info and
 | |
|  * handles the interrupt
 | |
|  *     A nested interrupt interrupting the copying of the thread_info -
 | |
|  * can't handle the interrupt, as the stack is in an unknown state
 | |
|  *     A nested interrupt not interrupting the copying of the
 | |
|  * thread_info - doesn't do any setup, just handles the interrupt
 | |
|  *
 | |
|  * The first job is to figure out whether we interrupted stack setup.
 | |
|  * This is done by xchging the signal mask with thread_info->pending.
 | |
|  * If the value that comes back is zero, then there is no setup in
 | |
|  * progress, and the interrupt can be handled.  If the value is
 | |
|  * non-zero, then there is stack setup in progress.  In order to have
 | |
|  * the interrupt handled, we leave our signal in the mask, and it will
 | |
|  * be handled by the upper handler after it has set up the stack.
 | |
|  *
 | |
|  * Next is to figure out whether we are the outer handler or a nested
 | |
|  * one.  As part of setting up the stack, thread_info->real_thread is
 | |
|  * set to non-NULL (and is reset to NULL on exit).  This is the
 | |
|  * nesting indicator.  If it is non-NULL, then the stack is already
 | |
|  * set up and the handler can run.
 | |
|  */
 | |
| 
 | |
| static unsigned long pending_mask;
 | |
| 
 | |
| unsigned long to_irq_stack(unsigned long *mask_out)
 | |
| {
 | |
| 	struct thread_info *ti;
 | |
| 	unsigned long mask, old;
 | |
| 	int nested;
 | |
| 
 | |
| 	mask = xchg(&pending_mask, *mask_out);
 | |
| 	if (mask != 0) {
 | |
| 		/*
 | |
| 		 * If any interrupts come in at this point, we want to
 | |
| 		 * make sure that their bits aren't lost by our
 | |
| 		 * putting our bit in.  So, this loop accumulates bits
 | |
| 		 * until xchg returns the same value that we put in.
 | |
| 		 * When that happens, there were no new interrupts,
 | |
| 		 * and pending_mask contains a bit for each interrupt
 | |
| 		 * that came in.
 | |
| 		 */
 | |
| 		old = *mask_out;
 | |
| 		do {
 | |
| 			old |= mask;
 | |
| 			mask = xchg(&pending_mask, old);
 | |
| 		} while (mask != old);
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	ti = current_thread_info();
 | |
| 	nested = (ti->real_thread != NULL);
 | |
| 	if (!nested) {
 | |
| 		struct task_struct *task;
 | |
| 		struct thread_info *tti;
 | |
| 
 | |
| 		task = cpu_tasks[ti->cpu].task;
 | |
| 		tti = task_thread_info(task);
 | |
| 
 | |
| 		*ti = *tti;
 | |
| 		ti->real_thread = tti;
 | |
| 		task->stack = ti;
 | |
| 	}
 | |
| 
 | |
| 	mask = xchg(&pending_mask, 0);
 | |
| 	*mask_out |= mask | nested;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| unsigned long from_irq_stack(int nested)
 | |
| {
 | |
| 	struct thread_info *ti, *to;
 | |
| 	unsigned long mask;
 | |
| 
 | |
| 	ti = current_thread_info();
 | |
| 
 | |
| 	pending_mask = 1;
 | |
| 
 | |
| 	to = ti->real_thread;
 | |
| 	current->stack = to;
 | |
| 	ti->real_thread = NULL;
 | |
| 	*to = *ti;
 | |
| 
 | |
| 	mask = xchg(&pending_mask, 0);
 | |
| 	return mask & ~1;
 | |
| }
 | |
| 
 |