 9073e1a804
			
		
	
	
	9073e1a804
	
	
	
		
			
			Pull trivial tree updates from Jiri Kosina: "Usual earth-shaking, news-breaking, rocket science pile from trivial.git" * 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial: (23 commits) doc: usb: Fix typo in Documentation/usb/gadget_configs.txt doc: add missing files to timers/00-INDEX timekeeping: Fix some trivial typos in comments mm: Fix some trivial typos in comments irq: Fix some trivial typos in comments NUMA: fix typos in Kconfig help text mm: update 00-INDEX doc: Documentation/DMA-attributes.txt fix typo DRM: comment: `halve' -> `half' Docs: Kconfig: `devlopers' -> `developers' doc: typo on word accounting in kprobes.c in mutliple architectures treewide: fix "usefull" typo treewide: fix "distingush" typo mm/Kconfig: Grammar s/an/a/ kexec: Typo s/the/then/ Documentation/kvm: Update cpuid documentation for steal time and pv eoi treewide: Fix common typo in "identify" __page_to_pfn: Fix typo in comment Correct some typos for word frequency clk: fixed-factor: Fix a trivial typo ...
		
			
				
	
	
		
			602 lines
		
	
	
	
		
			16 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			602 lines
		
	
	
	
		
			16 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /* arch/sparc64/kernel/kprobes.c
 | |
|  *
 | |
|  * Copyright (C) 2004 David S. Miller <davem@davemloft.net>
 | |
|  */
 | |
| 
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/kprobes.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/kdebug.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/context_tracking.h>
 | |
| #include <asm/signal.h>
 | |
| #include <asm/cacheflush.h>
 | |
| #include <asm/uaccess.h>
 | |
| 
 | |
| /* We do not have hardware single-stepping on sparc64.
 | |
|  * So we implement software single-stepping with breakpoint
 | |
|  * traps.  The top-level scheme is similar to that used
 | |
|  * in the x86 kprobes implementation.
 | |
|  *
 | |
|  * In the kprobe->ainsn.insn[] array we store the original
 | |
|  * instruction at index zero and a break instruction at
 | |
|  * index one.
 | |
|  *
 | |
|  * When we hit a kprobe we:
 | |
|  * - Run the pre-handler
 | |
|  * - Remember "regs->tnpc" and interrupt level stored in
 | |
|  *   "regs->tstate" so we can restore them later
 | |
|  * - Disable PIL interrupts
 | |
|  * - Set regs->tpc to point to kprobe->ainsn.insn[0]
 | |
|  * - Set regs->tnpc to point to kprobe->ainsn.insn[1]
 | |
|  * - Mark that we are actively in a kprobe
 | |
|  *
 | |
|  * At this point we wait for the second breakpoint at
 | |
|  * kprobe->ainsn.insn[1] to hit.  When it does we:
 | |
|  * - Run the post-handler
 | |
|  * - Set regs->tpc to "remembered" regs->tnpc stored above,
 | |
|  *   restore the PIL interrupt level in "regs->tstate" as well
 | |
|  * - Make any adjustments necessary to regs->tnpc in order
 | |
|  *   to handle relative branches correctly.  See below.
 | |
|  * - Mark that we are no longer actively in a kprobe.
 | |
|  */
 | |
| 
 | |
| DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
 | |
| DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
 | |
| 
 | |
| struct kretprobe_blackpoint kretprobe_blacklist[] = {{NULL, NULL}};
 | |
| 
 | |
| int __kprobes arch_prepare_kprobe(struct kprobe *p)
 | |
| {
 | |
| 	if ((unsigned long) p->addr & 0x3UL)
 | |
| 		return -EILSEQ;
 | |
| 
 | |
| 	p->ainsn.insn[0] = *p->addr;
 | |
| 	flushi(&p->ainsn.insn[0]);
 | |
| 
 | |
| 	p->ainsn.insn[1] = BREAKPOINT_INSTRUCTION_2;
 | |
| 	flushi(&p->ainsn.insn[1]);
 | |
| 
 | |
| 	p->opcode = *p->addr;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void __kprobes arch_arm_kprobe(struct kprobe *p)
 | |
| {
 | |
| 	*p->addr = BREAKPOINT_INSTRUCTION;
 | |
| 	flushi(p->addr);
 | |
| }
 | |
| 
 | |
| void __kprobes arch_disarm_kprobe(struct kprobe *p)
 | |
| {
 | |
| 	*p->addr = p->opcode;
 | |
| 	flushi(p->addr);
 | |
| }
 | |
| 
 | |
| static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
 | |
| {
 | |
| 	kcb->prev_kprobe.kp = kprobe_running();
 | |
| 	kcb->prev_kprobe.status = kcb->kprobe_status;
 | |
| 	kcb->prev_kprobe.orig_tnpc = kcb->kprobe_orig_tnpc;
 | |
| 	kcb->prev_kprobe.orig_tstate_pil = kcb->kprobe_orig_tstate_pil;
 | |
| }
 | |
| 
 | |
| static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
 | |
| {
 | |
| 	__get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
 | |
| 	kcb->kprobe_status = kcb->prev_kprobe.status;
 | |
| 	kcb->kprobe_orig_tnpc = kcb->prev_kprobe.orig_tnpc;
 | |
| 	kcb->kprobe_orig_tstate_pil = kcb->prev_kprobe.orig_tstate_pil;
 | |
| }
 | |
| 
 | |
| static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
 | |
| 				struct kprobe_ctlblk *kcb)
 | |
| {
 | |
| 	__get_cpu_var(current_kprobe) = p;
 | |
| 	kcb->kprobe_orig_tnpc = regs->tnpc;
 | |
| 	kcb->kprobe_orig_tstate_pil = (regs->tstate & TSTATE_PIL);
 | |
| }
 | |
| 
 | |
| static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs,
 | |
| 			struct kprobe_ctlblk *kcb)
 | |
| {
 | |
| 	regs->tstate |= TSTATE_PIL;
 | |
| 
 | |
| 	/*single step inline, if it a breakpoint instruction*/
 | |
| 	if (p->opcode == BREAKPOINT_INSTRUCTION) {
 | |
| 		regs->tpc = (unsigned long) p->addr;
 | |
| 		regs->tnpc = kcb->kprobe_orig_tnpc;
 | |
| 	} else {
 | |
| 		regs->tpc = (unsigned long) &p->ainsn.insn[0];
 | |
| 		regs->tnpc = (unsigned long) &p->ainsn.insn[1];
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int __kprobes kprobe_handler(struct pt_regs *regs)
 | |
| {
 | |
| 	struct kprobe *p;
 | |
| 	void *addr = (void *) regs->tpc;
 | |
| 	int ret = 0;
 | |
| 	struct kprobe_ctlblk *kcb;
 | |
| 
 | |
| 	/*
 | |
| 	 * We don't want to be preempted for the entire
 | |
| 	 * duration of kprobe processing
 | |
| 	 */
 | |
| 	preempt_disable();
 | |
| 	kcb = get_kprobe_ctlblk();
 | |
| 
 | |
| 	if (kprobe_running()) {
 | |
| 		p = get_kprobe(addr);
 | |
| 		if (p) {
 | |
| 			if (kcb->kprobe_status == KPROBE_HIT_SS) {
 | |
| 				regs->tstate = ((regs->tstate & ~TSTATE_PIL) |
 | |
| 					kcb->kprobe_orig_tstate_pil);
 | |
| 				goto no_kprobe;
 | |
| 			}
 | |
| 			/* We have reentered the kprobe_handler(), since
 | |
| 			 * another probe was hit while within the handler.
 | |
| 			 * We here save the original kprobes variables and
 | |
| 			 * just single step on the instruction of the new probe
 | |
| 			 * without calling any user handlers.
 | |
| 			 */
 | |
| 			save_previous_kprobe(kcb);
 | |
| 			set_current_kprobe(p, regs, kcb);
 | |
| 			kprobes_inc_nmissed_count(p);
 | |
| 			kcb->kprobe_status = KPROBE_REENTER;
 | |
| 			prepare_singlestep(p, regs, kcb);
 | |
| 			return 1;
 | |
| 		} else {
 | |
| 			if (*(u32 *)addr != BREAKPOINT_INSTRUCTION) {
 | |
| 			/* The breakpoint instruction was removed by
 | |
| 			 * another cpu right after we hit, no further
 | |
| 			 * handling of this interrupt is appropriate
 | |
| 			 */
 | |
| 				ret = 1;
 | |
| 				goto no_kprobe;
 | |
| 			}
 | |
| 			p = __get_cpu_var(current_kprobe);
 | |
| 			if (p->break_handler && p->break_handler(p, regs))
 | |
| 				goto ss_probe;
 | |
| 		}
 | |
| 		goto no_kprobe;
 | |
| 	}
 | |
| 
 | |
| 	p = get_kprobe(addr);
 | |
| 	if (!p) {
 | |
| 		if (*(u32 *)addr != BREAKPOINT_INSTRUCTION) {
 | |
| 			/*
 | |
| 			 * The breakpoint instruction was removed right
 | |
| 			 * after we hit it.  Another cpu has removed
 | |
| 			 * either a probepoint or a debugger breakpoint
 | |
| 			 * at this address.  In either case, no further
 | |
| 			 * handling of this interrupt is appropriate.
 | |
| 			 */
 | |
| 			ret = 1;
 | |
| 		}
 | |
| 		/* Not one of ours: let kernel handle it */
 | |
| 		goto no_kprobe;
 | |
| 	}
 | |
| 
 | |
| 	set_current_kprobe(p, regs, kcb);
 | |
| 	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
 | |
| 	if (p->pre_handler && p->pre_handler(p, regs))
 | |
| 		return 1;
 | |
| 
 | |
| ss_probe:
 | |
| 	prepare_singlestep(p, regs, kcb);
 | |
| 	kcb->kprobe_status = KPROBE_HIT_SS;
 | |
| 	return 1;
 | |
| 
 | |
| no_kprobe:
 | |
| 	preempt_enable_no_resched();
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /* If INSN is a relative control transfer instruction,
 | |
|  * return the corrected branch destination value.
 | |
|  *
 | |
|  * regs->tpc and regs->tnpc still hold the values of the
 | |
|  * program counters at the time of trap due to the execution
 | |
|  * of the BREAKPOINT_INSTRUCTION_2 at p->ainsn.insn[1]
 | |
|  * 
 | |
|  */
 | |
| static unsigned long __kprobes relbranch_fixup(u32 insn, struct kprobe *p,
 | |
| 					       struct pt_regs *regs)
 | |
| {
 | |
| 	unsigned long real_pc = (unsigned long) p->addr;
 | |
| 
 | |
| 	/* Branch not taken, no mods necessary.  */
 | |
| 	if (regs->tnpc == regs->tpc + 0x4UL)
 | |
| 		return real_pc + 0x8UL;
 | |
| 
 | |
| 	/* The three cases are call, branch w/prediction,
 | |
| 	 * and traditional branch.
 | |
| 	 */
 | |
| 	if ((insn & 0xc0000000) == 0x40000000 ||
 | |
| 	    (insn & 0xc1c00000) == 0x00400000 ||
 | |
| 	    (insn & 0xc1c00000) == 0x00800000) {
 | |
| 		unsigned long ainsn_addr;
 | |
| 
 | |
| 		ainsn_addr = (unsigned long) &p->ainsn.insn[0];
 | |
| 
 | |
| 		/* The instruction did all the work for us
 | |
| 		 * already, just apply the offset to the correct
 | |
| 		 * instruction location.
 | |
| 		 */
 | |
| 		return (real_pc + (regs->tnpc - ainsn_addr));
 | |
| 	}
 | |
| 
 | |
| 	/* It is jmpl or some other absolute PC modification instruction,
 | |
| 	 * leave NPC as-is.
 | |
| 	 */
 | |
| 	return regs->tnpc;
 | |
| }
 | |
| 
 | |
| /* If INSN is an instruction which writes it's PC location
 | |
|  * into a destination register, fix that up.
 | |
|  */
 | |
| static void __kprobes retpc_fixup(struct pt_regs *regs, u32 insn,
 | |
| 				  unsigned long real_pc)
 | |
| {
 | |
| 	unsigned long *slot = NULL;
 | |
| 
 | |
| 	/* Simplest case is 'call', which always uses %o7 */
 | |
| 	if ((insn & 0xc0000000) == 0x40000000) {
 | |
| 		slot = ®s->u_regs[UREG_I7];
 | |
| 	}
 | |
| 
 | |
| 	/* 'jmpl' encodes the register inside of the opcode */
 | |
| 	if ((insn & 0xc1f80000) == 0x81c00000) {
 | |
| 		unsigned long rd = ((insn >> 25) & 0x1f);
 | |
| 
 | |
| 		if (rd <= 15) {
 | |
| 			slot = ®s->u_regs[rd];
 | |
| 		} else {
 | |
| 			/* Hard case, it goes onto the stack. */
 | |
| 			flushw_all();
 | |
| 
 | |
| 			rd -= 16;
 | |
| 			slot = (unsigned long *)
 | |
| 				(regs->u_regs[UREG_FP] + STACK_BIAS);
 | |
| 			slot += rd;
 | |
| 		}
 | |
| 	}
 | |
| 	if (slot != NULL)
 | |
| 		*slot = real_pc;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Called after single-stepping.  p->addr is the address of the
 | |
|  * instruction which has been replaced by the breakpoint
 | |
|  * instruction.  To avoid the SMP problems that can occur when we
 | |
|  * temporarily put back the original opcode to single-step, we
 | |
|  * single-stepped a copy of the instruction.  The address of this
 | |
|  * copy is &p->ainsn.insn[0].
 | |
|  *
 | |
|  * This function prepares to return from the post-single-step
 | |
|  * breakpoint trap.
 | |
|  */
 | |
| static void __kprobes resume_execution(struct kprobe *p,
 | |
| 		struct pt_regs *regs, struct kprobe_ctlblk *kcb)
 | |
| {
 | |
| 	u32 insn = p->ainsn.insn[0];
 | |
| 
 | |
| 	regs->tnpc = relbranch_fixup(insn, p, regs);
 | |
| 
 | |
| 	/* This assignment must occur after relbranch_fixup() */
 | |
| 	regs->tpc = kcb->kprobe_orig_tnpc;
 | |
| 
 | |
| 	retpc_fixup(regs, insn, (unsigned long) p->addr);
 | |
| 
 | |
| 	regs->tstate = ((regs->tstate & ~TSTATE_PIL) |
 | |
| 			kcb->kprobe_orig_tstate_pil);
 | |
| }
 | |
| 
 | |
| static int __kprobes post_kprobe_handler(struct pt_regs *regs)
 | |
| {
 | |
| 	struct kprobe *cur = kprobe_running();
 | |
| 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 | |
| 
 | |
| 	if (!cur)
 | |
| 		return 0;
 | |
| 
 | |
| 	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
 | |
| 		kcb->kprobe_status = KPROBE_HIT_SSDONE;
 | |
| 		cur->post_handler(cur, regs, 0);
 | |
| 	}
 | |
| 
 | |
| 	resume_execution(cur, regs, kcb);
 | |
| 
 | |
| 	/*Restore back the original saved kprobes variables and continue. */
 | |
| 	if (kcb->kprobe_status == KPROBE_REENTER) {
 | |
| 		restore_previous_kprobe(kcb);
 | |
| 		goto out;
 | |
| 	}
 | |
| 	reset_current_kprobe();
 | |
| out:
 | |
| 	preempt_enable_no_resched();
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
 | |
| {
 | |
| 	struct kprobe *cur = kprobe_running();
 | |
| 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 | |
| 	const struct exception_table_entry *entry;
 | |
| 
 | |
| 	switch(kcb->kprobe_status) {
 | |
| 	case KPROBE_HIT_SS:
 | |
| 	case KPROBE_REENTER:
 | |
| 		/*
 | |
| 		 * We are here because the instruction being single
 | |
| 		 * stepped caused a page fault. We reset the current
 | |
| 		 * kprobe and the tpc points back to the probe address
 | |
| 		 * and allow the page fault handler to continue as a
 | |
| 		 * normal page fault.
 | |
| 		 */
 | |
| 		regs->tpc = (unsigned long)cur->addr;
 | |
| 		regs->tnpc = kcb->kprobe_orig_tnpc;
 | |
| 		regs->tstate = ((regs->tstate & ~TSTATE_PIL) |
 | |
| 				kcb->kprobe_orig_tstate_pil);
 | |
| 		if (kcb->kprobe_status == KPROBE_REENTER)
 | |
| 			restore_previous_kprobe(kcb);
 | |
| 		else
 | |
| 			reset_current_kprobe();
 | |
| 		preempt_enable_no_resched();
 | |
| 		break;
 | |
| 	case KPROBE_HIT_ACTIVE:
 | |
| 	case KPROBE_HIT_SSDONE:
 | |
| 		/*
 | |
| 		 * We increment the nmissed count for accounting,
 | |
| 		 * we can also use npre/npostfault count for accounting
 | |
| 		 * these specific fault cases.
 | |
| 		 */
 | |
| 		kprobes_inc_nmissed_count(cur);
 | |
| 
 | |
| 		/*
 | |
| 		 * We come here because instructions in the pre/post
 | |
| 		 * handler caused the page_fault, this could happen
 | |
| 		 * if handler tries to access user space by
 | |
| 		 * copy_from_user(), get_user() etc. Let the
 | |
| 		 * user-specified handler try to fix it first.
 | |
| 		 */
 | |
| 		if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
 | |
| 			return 1;
 | |
| 
 | |
| 		/*
 | |
| 		 * In case the user-specified fault handler returned
 | |
| 		 * zero, try to fix up.
 | |
| 		 */
 | |
| 
 | |
| 		entry = search_exception_tables(regs->tpc);
 | |
| 		if (entry) {
 | |
| 			regs->tpc = entry->fixup;
 | |
| 			regs->tnpc = regs->tpc + 4;
 | |
| 			return 1;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * fixup_exception() could not handle it,
 | |
| 		 * Let do_page_fault() fix it.
 | |
| 		 */
 | |
| 		break;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Wrapper routine to for handling exceptions.
 | |
|  */
 | |
| int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
 | |
| 				       unsigned long val, void *data)
 | |
| {
 | |
| 	struct die_args *args = (struct die_args *)data;
 | |
| 	int ret = NOTIFY_DONE;
 | |
| 
 | |
| 	if (args->regs && user_mode(args->regs))
 | |
| 		return ret;
 | |
| 
 | |
| 	switch (val) {
 | |
| 	case DIE_DEBUG:
 | |
| 		if (kprobe_handler(args->regs))
 | |
| 			ret = NOTIFY_STOP;
 | |
| 		break;
 | |
| 	case DIE_DEBUG_2:
 | |
| 		if (post_kprobe_handler(args->regs))
 | |
| 			ret = NOTIFY_STOP;
 | |
| 		break;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| asmlinkage void __kprobes kprobe_trap(unsigned long trap_level,
 | |
| 				      struct pt_regs *regs)
 | |
| {
 | |
| 	enum ctx_state prev_state = exception_enter();
 | |
| 
 | |
| 	BUG_ON(trap_level != 0x170 && trap_level != 0x171);
 | |
| 
 | |
| 	if (user_mode(regs)) {
 | |
| 		local_irq_enable();
 | |
| 		bad_trap(regs, trap_level);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/* trap_level == 0x170 --> ta 0x70
 | |
| 	 * trap_level == 0x171 --> ta 0x71
 | |
| 	 */
 | |
| 	if (notify_die((trap_level == 0x170) ? DIE_DEBUG : DIE_DEBUG_2,
 | |
| 		       (trap_level == 0x170) ? "debug" : "debug_2",
 | |
| 		       regs, 0, trap_level, SIGTRAP) != NOTIFY_STOP)
 | |
| 		bad_trap(regs, trap_level);
 | |
| out:
 | |
| 	exception_exit(prev_state);
 | |
| }
 | |
| 
 | |
| /* Jprobes support.  */
 | |
| int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
 | |
| {
 | |
| 	struct jprobe *jp = container_of(p, struct jprobe, kp);
 | |
| 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 | |
| 
 | |
| 	memcpy(&(kcb->jprobe_saved_regs), regs, sizeof(*regs));
 | |
| 
 | |
| 	regs->tpc  = (unsigned long) jp->entry;
 | |
| 	regs->tnpc = ((unsigned long) jp->entry) + 0x4UL;
 | |
| 	regs->tstate |= TSTATE_PIL;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| void __kprobes jprobe_return(void)
 | |
| {
 | |
| 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 | |
| 	register unsigned long orig_fp asm("g1");
 | |
| 
 | |
| 	orig_fp = kcb->jprobe_saved_regs.u_regs[UREG_FP];
 | |
| 	__asm__ __volatile__("\n"
 | |
| "1:	cmp		%%sp, %0\n\t"
 | |
| 	"blu,a,pt	%%xcc, 1b\n\t"
 | |
| 	" restore\n\t"
 | |
| 	".globl		jprobe_return_trap_instruction\n"
 | |
| "jprobe_return_trap_instruction:\n\t"
 | |
| 	"ta		0x70"
 | |
| 	: /* no outputs */
 | |
| 	: "r" (orig_fp));
 | |
| }
 | |
| 
 | |
| extern void jprobe_return_trap_instruction(void);
 | |
| 
 | |
| int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
 | |
| {
 | |
| 	u32 *addr = (u32 *) regs->tpc;
 | |
| 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 | |
| 
 | |
| 	if (addr == (u32 *) jprobe_return_trap_instruction) {
 | |
| 		memcpy(regs, &(kcb->jprobe_saved_regs), sizeof(*regs));
 | |
| 		preempt_enable_no_resched();
 | |
| 		return 1;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* The value stored in the return address register is actually 2
 | |
|  * instructions before where the callee will return to.
 | |
|  * Sequences usually look something like this
 | |
|  *
 | |
|  *		call	some_function	<--- return register points here
 | |
|  *		 nop			<--- call delay slot
 | |
|  *		whatever		<--- where callee returns to
 | |
|  *
 | |
|  * To keep trampoline_probe_handler logic simpler, we normalize the
 | |
|  * value kept in ri->ret_addr so we don't need to keep adjusting it
 | |
|  * back and forth.
 | |
|  */
 | |
| void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
 | |
| 				      struct pt_regs *regs)
 | |
| {
 | |
| 	ri->ret_addr = (kprobe_opcode_t *)(regs->u_regs[UREG_RETPC] + 8);
 | |
| 
 | |
| 	/* Replace the return addr with trampoline addr */
 | |
| 	regs->u_regs[UREG_RETPC] =
 | |
| 		((unsigned long)kretprobe_trampoline) - 8;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Called when the probe at kretprobe trampoline is hit
 | |
|  */
 | |
| int __kprobes trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
 | |
| {
 | |
| 	struct kretprobe_instance *ri = NULL;
 | |
| 	struct hlist_head *head, empty_rp;
 | |
| 	struct hlist_node *tmp;
 | |
| 	unsigned long flags, orig_ret_address = 0;
 | |
| 	unsigned long trampoline_address =(unsigned long)&kretprobe_trampoline;
 | |
| 
 | |
| 	INIT_HLIST_HEAD(&empty_rp);
 | |
| 	kretprobe_hash_lock(current, &head, &flags);
 | |
| 
 | |
| 	/*
 | |
| 	 * It is possible to have multiple instances associated with a given
 | |
| 	 * task either because an multiple functions in the call path
 | |
| 	 * have a return probe installed on them, and/or more than one return
 | |
| 	 * return probe was registered for a target function.
 | |
| 	 *
 | |
| 	 * We can handle this because:
 | |
| 	 *     - instances are always inserted at the head of the list
 | |
| 	 *     - when multiple return probes are registered for the same
 | |
| 	 *       function, the first instance's ret_addr will point to the
 | |
| 	 *       real return address, and all the rest will point to
 | |
| 	 *       kretprobe_trampoline
 | |
| 	 */
 | |
| 	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
 | |
| 		if (ri->task != current)
 | |
| 			/* another task is sharing our hash bucket */
 | |
| 			continue;
 | |
| 
 | |
| 		if (ri->rp && ri->rp->handler)
 | |
| 			ri->rp->handler(ri, regs);
 | |
| 
 | |
| 		orig_ret_address = (unsigned long)ri->ret_addr;
 | |
| 		recycle_rp_inst(ri, &empty_rp);
 | |
| 
 | |
| 		if (orig_ret_address != trampoline_address)
 | |
| 			/*
 | |
| 			 * This is the real return address. Any other
 | |
| 			 * instances associated with this task are for
 | |
| 			 * other calls deeper on the call stack
 | |
| 			 */
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	kretprobe_assert(ri, orig_ret_address, trampoline_address);
 | |
| 	regs->tpc = orig_ret_address;
 | |
| 	regs->tnpc = orig_ret_address + 4;
 | |
| 
 | |
| 	reset_current_kprobe();
 | |
| 	kretprobe_hash_unlock(current, &flags);
 | |
| 	preempt_enable_no_resched();
 | |
| 
 | |
| 	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
 | |
| 		hlist_del(&ri->hlist);
 | |
| 		kfree(ri);
 | |
| 	}
 | |
| 	/*
 | |
| 	 * By returning a non-zero value, we are telling
 | |
| 	 * kprobe_handler() that we don't want the post_handler
 | |
| 	 * to run (and have re-enabled preemption)
 | |
| 	 */
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| void kretprobe_trampoline_holder(void)
 | |
| {
 | |
| 	asm volatile(".global kretprobe_trampoline\n"
 | |
| 		     "kretprobe_trampoline:\n"
 | |
| 		     "\tnop\n"
 | |
| 		     "\tnop\n");
 | |
| }
 | |
| static struct kprobe trampoline_p = {
 | |
| 	.addr = (kprobe_opcode_t *) &kretprobe_trampoline,
 | |
| 	.pre_handler = trampoline_probe_handler
 | |
| };
 | |
| 
 | |
| int __init arch_init_kprobes(void)
 | |
| {
 | |
| 	return register_kprobe(&trampoline_p);
 | |
| }
 | |
| 
 | |
| int __kprobes arch_trampoline_kprobe(struct kprobe *p)
 | |
| {
 | |
| 	if (p->addr == (kprobe_opcode_t *)&kretprobe_trampoline)
 | |
| 		return 1;
 | |
| 
 | |
| 	return 0;
 | |
| }
 |