 8b2abcbc5e
			
		
	
	
	8b2abcbc5e
	
	
	
		
			
			None of these files are actually using any __init type directives and hence don't need to include <linux/init.h>. Most are just a left over from __devinit and __cpuinit removal, or simply due to code getting copied from one driver to the next. Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com> Signed-off-by: David S. Miller <davem@davemloft.net>
		
			
				
	
	
		
			435 lines
		
	
	
	
		
			11 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			435 lines
		
	
	
	
		
			11 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /* cpumap.c: used for optimizing CPU assignment
 | |
|  *
 | |
|  * Copyright (C) 2009 Hong H. Pham <hong.pham@windriver.com>
 | |
|  */
 | |
| 
 | |
| #include <linux/export.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/cpumask.h>
 | |
| #include <linux/spinlock.h>
 | |
| #include <asm/cpudata.h>
 | |
| #include "cpumap.h"
 | |
| 
 | |
| 
 | |
| enum {
 | |
| 	CPUINFO_LVL_ROOT = 0,
 | |
| 	CPUINFO_LVL_NODE,
 | |
| 	CPUINFO_LVL_CORE,
 | |
| 	CPUINFO_LVL_PROC,
 | |
| 	CPUINFO_LVL_MAX,
 | |
| };
 | |
| 
 | |
| enum {
 | |
| 	ROVER_NO_OP              = 0,
 | |
| 	/* Increment rover every time level is visited */
 | |
| 	ROVER_INC_ON_VISIT       = 1 << 0,
 | |
| 	/* Increment parent's rover every time rover wraps around */
 | |
| 	ROVER_INC_PARENT_ON_LOOP = 1 << 1,
 | |
| };
 | |
| 
 | |
| struct cpuinfo_node {
 | |
| 	int id;
 | |
| 	int level;
 | |
| 	int num_cpus;    /* Number of CPUs in this hierarchy */
 | |
| 	int parent_index;
 | |
| 	int child_start; /* Array index of the first child node */
 | |
| 	int child_end;   /* Array index of the last child node */
 | |
| 	int rover;       /* Child node iterator */
 | |
| };
 | |
| 
 | |
| struct cpuinfo_level {
 | |
| 	int start_index; /* Index of first node of a level in a cpuinfo tree */
 | |
| 	int end_index;   /* Index of last node of a level in a cpuinfo tree */
 | |
| 	int num_nodes;   /* Number of nodes in a level in a cpuinfo tree */
 | |
| };
 | |
| 
 | |
| struct cpuinfo_tree {
 | |
| 	int total_nodes;
 | |
| 
 | |
| 	/* Offsets into nodes[] for each level of the tree */
 | |
| 	struct cpuinfo_level level[CPUINFO_LVL_MAX];
 | |
| 	struct cpuinfo_node  nodes[0];
 | |
| };
 | |
| 
 | |
| 
 | |
| static struct cpuinfo_tree *cpuinfo_tree;
 | |
| 
 | |
| static u16 cpu_distribution_map[NR_CPUS];
 | |
| static DEFINE_SPINLOCK(cpu_map_lock);
 | |
| 
 | |
| 
 | |
| /* Niagara optimized cpuinfo tree traversal. */
 | |
| static const int niagara_iterate_method[] = {
 | |
| 	[CPUINFO_LVL_ROOT] = ROVER_NO_OP,
 | |
| 
 | |
| 	/* Strands (or virtual CPUs) within a core may not run concurrently
 | |
| 	 * on the Niagara, as instruction pipeline(s) are shared.  Distribute
 | |
| 	 * work to strands in different cores first for better concurrency.
 | |
| 	 * Go to next NUMA node when all cores are used.
 | |
| 	 */
 | |
| 	[CPUINFO_LVL_NODE] = ROVER_INC_ON_VISIT|ROVER_INC_PARENT_ON_LOOP,
 | |
| 
 | |
| 	/* Strands are grouped together by proc_id in cpuinfo_sparc, i.e.
 | |
| 	 * a proc_id represents an instruction pipeline.  Distribute work to
 | |
| 	 * strands in different proc_id groups if the core has multiple
 | |
| 	 * instruction pipelines (e.g. the Niagara 2/2+ has two).
 | |
| 	 */
 | |
| 	[CPUINFO_LVL_CORE] = ROVER_INC_ON_VISIT,
 | |
| 
 | |
| 	/* Pick the next strand in the proc_id group. */
 | |
| 	[CPUINFO_LVL_PROC] = ROVER_INC_ON_VISIT,
 | |
| };
 | |
| 
 | |
| /* Generic cpuinfo tree traversal.  Distribute work round robin across NUMA
 | |
|  * nodes.
 | |
|  */
 | |
| static const int generic_iterate_method[] = {
 | |
| 	[CPUINFO_LVL_ROOT] = ROVER_INC_ON_VISIT,
 | |
| 	[CPUINFO_LVL_NODE] = ROVER_NO_OP,
 | |
| 	[CPUINFO_LVL_CORE] = ROVER_INC_PARENT_ON_LOOP,
 | |
| 	[CPUINFO_LVL_PROC] = ROVER_INC_ON_VISIT|ROVER_INC_PARENT_ON_LOOP,
 | |
| };
 | |
| 
 | |
| 
 | |
| static int cpuinfo_id(int cpu, int level)
 | |
| {
 | |
| 	int id;
 | |
| 
 | |
| 	switch (level) {
 | |
| 	case CPUINFO_LVL_ROOT:
 | |
| 		id = 0;
 | |
| 		break;
 | |
| 	case CPUINFO_LVL_NODE:
 | |
| 		id = cpu_to_node(cpu);
 | |
| 		break;
 | |
| 	case CPUINFO_LVL_CORE:
 | |
| 		id = cpu_data(cpu).core_id;
 | |
| 		break;
 | |
| 	case CPUINFO_LVL_PROC:
 | |
| 		id = cpu_data(cpu).proc_id;
 | |
| 		break;
 | |
| 	default:
 | |
| 		id = -EINVAL;
 | |
| 	}
 | |
| 	return id;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Enumerate the CPU information in __cpu_data to determine the start index,
 | |
|  * end index, and number of nodes for each level in the cpuinfo tree.  The
 | |
|  * total number of cpuinfo nodes required to build the tree is returned.
 | |
|  */
 | |
| static int enumerate_cpuinfo_nodes(struct cpuinfo_level *tree_level)
 | |
| {
 | |
| 	int prev_id[CPUINFO_LVL_MAX];
 | |
| 	int i, n, num_nodes;
 | |
| 
 | |
| 	for (i = CPUINFO_LVL_ROOT; i < CPUINFO_LVL_MAX; i++) {
 | |
| 		struct cpuinfo_level *lv = &tree_level[i];
 | |
| 
 | |
| 		prev_id[i] = -1;
 | |
| 		lv->start_index = lv->end_index = lv->num_nodes = 0;
 | |
| 	}
 | |
| 
 | |
| 	num_nodes = 1; /* Include the root node */
 | |
| 
 | |
| 	for (i = 0; i < num_possible_cpus(); i++) {
 | |
| 		if (!cpu_online(i))
 | |
| 			continue;
 | |
| 
 | |
| 		n = cpuinfo_id(i, CPUINFO_LVL_NODE);
 | |
| 		if (n > prev_id[CPUINFO_LVL_NODE]) {
 | |
| 			tree_level[CPUINFO_LVL_NODE].num_nodes++;
 | |
| 			prev_id[CPUINFO_LVL_NODE] = n;
 | |
| 			num_nodes++;
 | |
| 		}
 | |
| 		n = cpuinfo_id(i, CPUINFO_LVL_CORE);
 | |
| 		if (n > prev_id[CPUINFO_LVL_CORE]) {
 | |
| 			tree_level[CPUINFO_LVL_CORE].num_nodes++;
 | |
| 			prev_id[CPUINFO_LVL_CORE] = n;
 | |
| 			num_nodes++;
 | |
| 		}
 | |
| 		n = cpuinfo_id(i, CPUINFO_LVL_PROC);
 | |
| 		if (n > prev_id[CPUINFO_LVL_PROC]) {
 | |
| 			tree_level[CPUINFO_LVL_PROC].num_nodes++;
 | |
| 			prev_id[CPUINFO_LVL_PROC] = n;
 | |
| 			num_nodes++;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	tree_level[CPUINFO_LVL_ROOT].num_nodes = 1;
 | |
| 
 | |
| 	n = tree_level[CPUINFO_LVL_NODE].num_nodes;
 | |
| 	tree_level[CPUINFO_LVL_NODE].start_index = 1;
 | |
| 	tree_level[CPUINFO_LVL_NODE].end_index   = n;
 | |
| 
 | |
| 	n++;
 | |
| 	tree_level[CPUINFO_LVL_CORE].start_index = n;
 | |
| 	n += tree_level[CPUINFO_LVL_CORE].num_nodes;
 | |
| 	tree_level[CPUINFO_LVL_CORE].end_index   = n - 1;
 | |
| 
 | |
| 	tree_level[CPUINFO_LVL_PROC].start_index = n;
 | |
| 	n += tree_level[CPUINFO_LVL_PROC].num_nodes;
 | |
| 	tree_level[CPUINFO_LVL_PROC].end_index   = n - 1;
 | |
| 
 | |
| 	return num_nodes;
 | |
| }
 | |
| 
 | |
| /* Build a tree representation of the CPU hierarchy using the per CPU
 | |
|  * information in __cpu_data.  Entries in __cpu_data[0..NR_CPUS] are
 | |
|  * assumed to be sorted in ascending order based on node, core_id, and
 | |
|  * proc_id (in order of significance).
 | |
|  */
 | |
| static struct cpuinfo_tree *build_cpuinfo_tree(void)
 | |
| {
 | |
| 	struct cpuinfo_tree *new_tree;
 | |
| 	struct cpuinfo_node *node;
 | |
| 	struct cpuinfo_level tmp_level[CPUINFO_LVL_MAX];
 | |
| 	int num_cpus[CPUINFO_LVL_MAX];
 | |
| 	int level_rover[CPUINFO_LVL_MAX];
 | |
| 	int prev_id[CPUINFO_LVL_MAX];
 | |
| 	int n, id, cpu, prev_cpu, last_cpu, level;
 | |
| 
 | |
| 	n = enumerate_cpuinfo_nodes(tmp_level);
 | |
| 
 | |
| 	new_tree = kzalloc(sizeof(struct cpuinfo_tree) +
 | |
| 	                   (sizeof(struct cpuinfo_node) * n), GFP_ATOMIC);
 | |
| 	if (!new_tree)
 | |
| 		return NULL;
 | |
| 
 | |
| 	new_tree->total_nodes = n;
 | |
| 	memcpy(&new_tree->level, tmp_level, sizeof(tmp_level));
 | |
| 
 | |
| 	prev_cpu = cpu = cpumask_first(cpu_online_mask);
 | |
| 
 | |
| 	/* Initialize all levels in the tree with the first CPU */
 | |
| 	for (level = CPUINFO_LVL_PROC; level >= CPUINFO_LVL_ROOT; level--) {
 | |
| 		n = new_tree->level[level].start_index;
 | |
| 
 | |
| 		level_rover[level] = n;
 | |
| 		node = &new_tree->nodes[n];
 | |
| 
 | |
| 		id = cpuinfo_id(cpu, level);
 | |
| 		if (unlikely(id < 0)) {
 | |
| 			kfree(new_tree);
 | |
| 			return NULL;
 | |
| 		}
 | |
| 		node->id = id;
 | |
| 		node->level = level;
 | |
| 		node->num_cpus = 1;
 | |
| 
 | |
| 		node->parent_index = (level > CPUINFO_LVL_ROOT)
 | |
| 		    ? new_tree->level[level - 1].start_index : -1;
 | |
| 
 | |
| 		node->child_start = node->child_end = node->rover =
 | |
| 		    (level == CPUINFO_LVL_PROC)
 | |
| 		    ? cpu : new_tree->level[level + 1].start_index;
 | |
| 
 | |
| 		prev_id[level] = node->id;
 | |
| 		num_cpus[level] = 1;
 | |
| 	}
 | |
| 
 | |
| 	for (last_cpu = (num_possible_cpus() - 1); last_cpu >= 0; last_cpu--) {
 | |
| 		if (cpu_online(last_cpu))
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	while (++cpu <= last_cpu) {
 | |
| 		if (!cpu_online(cpu))
 | |
| 			continue;
 | |
| 
 | |
| 		for (level = CPUINFO_LVL_PROC; level >= CPUINFO_LVL_ROOT;
 | |
| 		     level--) {
 | |
| 			id = cpuinfo_id(cpu, level);
 | |
| 			if (unlikely(id < 0)) {
 | |
| 				kfree(new_tree);
 | |
| 				return NULL;
 | |
| 			}
 | |
| 
 | |
| 			if ((id != prev_id[level]) || (cpu == last_cpu)) {
 | |
| 				prev_id[level] = id;
 | |
| 				node = &new_tree->nodes[level_rover[level]];
 | |
| 				node->num_cpus = num_cpus[level];
 | |
| 				num_cpus[level] = 1;
 | |
| 
 | |
| 				if (cpu == last_cpu)
 | |
| 					node->num_cpus++;
 | |
| 
 | |
| 				/* Connect tree node to parent */
 | |
| 				if (level == CPUINFO_LVL_ROOT)
 | |
| 					node->parent_index = -1;
 | |
| 				else
 | |
| 					node->parent_index =
 | |
| 					    level_rover[level - 1];
 | |
| 
 | |
| 				if (level == CPUINFO_LVL_PROC) {
 | |
| 					node->child_end =
 | |
| 					    (cpu == last_cpu) ? cpu : prev_cpu;
 | |
| 				} else {
 | |
| 					node->child_end =
 | |
| 					    level_rover[level + 1] - 1;
 | |
| 				}
 | |
| 
 | |
| 				/* Initialize the next node in the same level */
 | |
| 				n = ++level_rover[level];
 | |
| 				if (n <= new_tree->level[level].end_index) {
 | |
| 					node = &new_tree->nodes[n];
 | |
| 					node->id = id;
 | |
| 					node->level = level;
 | |
| 
 | |
| 					/* Connect node to child */
 | |
| 					node->child_start = node->child_end =
 | |
| 					node->rover =
 | |
| 					    (level == CPUINFO_LVL_PROC)
 | |
| 					    ? cpu : level_rover[level + 1];
 | |
| 				}
 | |
| 			} else
 | |
| 				num_cpus[level]++;
 | |
| 		}
 | |
| 		prev_cpu = cpu;
 | |
| 	}
 | |
| 
 | |
| 	return new_tree;
 | |
| }
 | |
| 
 | |
| static void increment_rover(struct cpuinfo_tree *t, int node_index,
 | |
|                             int root_index, const int *rover_inc_table)
 | |
| {
 | |
| 	struct cpuinfo_node *node = &t->nodes[node_index];
 | |
| 	int top_level, level;
 | |
| 
 | |
| 	top_level = t->nodes[root_index].level;
 | |
| 	for (level = node->level; level >= top_level; level--) {
 | |
| 		node->rover++;
 | |
| 		if (node->rover <= node->child_end)
 | |
| 			return;
 | |
| 
 | |
| 		node->rover = node->child_start;
 | |
| 		/* If parent's rover does not need to be adjusted, stop here. */
 | |
| 		if ((level == top_level) ||
 | |
| 		    !(rover_inc_table[level] & ROVER_INC_PARENT_ON_LOOP))
 | |
| 			return;
 | |
| 
 | |
| 		node = &t->nodes[node->parent_index];
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int iterate_cpu(struct cpuinfo_tree *t, unsigned int root_index)
 | |
| {
 | |
| 	const int *rover_inc_table;
 | |
| 	int level, new_index, index = root_index;
 | |
| 
 | |
| 	switch (sun4v_chip_type) {
 | |
| 	case SUN4V_CHIP_NIAGARA1:
 | |
| 	case SUN4V_CHIP_NIAGARA2:
 | |
| 	case SUN4V_CHIP_NIAGARA3:
 | |
| 	case SUN4V_CHIP_NIAGARA4:
 | |
| 	case SUN4V_CHIP_NIAGARA5:
 | |
| 	case SUN4V_CHIP_SPARC64X:
 | |
| 		rover_inc_table = niagara_iterate_method;
 | |
| 		break;
 | |
| 	default:
 | |
| 		rover_inc_table = generic_iterate_method;
 | |
| 	}
 | |
| 
 | |
| 	for (level = t->nodes[root_index].level; level < CPUINFO_LVL_MAX;
 | |
| 	     level++) {
 | |
| 		new_index = t->nodes[index].rover;
 | |
| 		if (rover_inc_table[level] & ROVER_INC_ON_VISIT)
 | |
| 			increment_rover(t, index, root_index, rover_inc_table);
 | |
| 
 | |
| 		index = new_index;
 | |
| 	}
 | |
| 	return index;
 | |
| }
 | |
| 
 | |
| static void _cpu_map_rebuild(void)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	if (cpuinfo_tree) {
 | |
| 		kfree(cpuinfo_tree);
 | |
| 		cpuinfo_tree = NULL;
 | |
| 	}
 | |
| 
 | |
| 	cpuinfo_tree = build_cpuinfo_tree();
 | |
| 	if (!cpuinfo_tree)
 | |
| 		return;
 | |
| 
 | |
| 	/* Build CPU distribution map that spans all online CPUs.  No need
 | |
| 	 * to check if the CPU is online, as that is done when the cpuinfo
 | |
| 	 * tree is being built.
 | |
| 	 */
 | |
| 	for (i = 0; i < cpuinfo_tree->nodes[0].num_cpus; i++)
 | |
| 		cpu_distribution_map[i] = iterate_cpu(cpuinfo_tree, 0);
 | |
| }
 | |
| 
 | |
| /* Fallback if the cpuinfo tree could not be built.  CPU mapping is linear
 | |
|  * round robin.
 | |
|  */
 | |
| static int simple_map_to_cpu(unsigned int index)
 | |
| {
 | |
| 	int i, end, cpu_rover;
 | |
| 
 | |
| 	cpu_rover = 0;
 | |
| 	end = index % num_online_cpus();
 | |
| 	for (i = 0; i < num_possible_cpus(); i++) {
 | |
| 		if (cpu_online(cpu_rover)) {
 | |
| 			if (cpu_rover >= end)
 | |
| 				return cpu_rover;
 | |
| 
 | |
| 			cpu_rover++;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Impossible, since num_online_cpus() <= num_possible_cpus() */
 | |
| 	return cpumask_first(cpu_online_mask);
 | |
| }
 | |
| 
 | |
| static int _map_to_cpu(unsigned int index)
 | |
| {
 | |
| 	struct cpuinfo_node *root_node;
 | |
| 
 | |
| 	if (unlikely(!cpuinfo_tree)) {
 | |
| 		_cpu_map_rebuild();
 | |
| 		if (!cpuinfo_tree)
 | |
| 			return simple_map_to_cpu(index);
 | |
| 	}
 | |
| 
 | |
| 	root_node = &cpuinfo_tree->nodes[0];
 | |
| #ifdef CONFIG_HOTPLUG_CPU
 | |
| 	if (unlikely(root_node->num_cpus != num_online_cpus())) {
 | |
| 		_cpu_map_rebuild();
 | |
| 		if (!cpuinfo_tree)
 | |
| 			return simple_map_to_cpu(index);
 | |
| 	}
 | |
| #endif
 | |
| 	return cpu_distribution_map[index % root_node->num_cpus];
 | |
| }
 | |
| 
 | |
| int map_to_cpu(unsigned int index)
 | |
| {
 | |
| 	int mapped_cpu;
 | |
| 	unsigned long flag;
 | |
| 
 | |
| 	spin_lock_irqsave(&cpu_map_lock, flag);
 | |
| 	mapped_cpu = _map_to_cpu(index);
 | |
| 
 | |
| #ifdef CONFIG_HOTPLUG_CPU
 | |
| 	while (unlikely(!cpu_online(mapped_cpu)))
 | |
| 		mapped_cpu = _map_to_cpu(index);
 | |
| #endif
 | |
| 	spin_unlock_irqrestore(&cpu_map_lock, flag);
 | |
| 	return mapped_cpu;
 | |
| }
 | |
| EXPORT_SYMBOL(map_to_cpu);
 | |
| 
 | |
| void cpu_map_rebuild(void)
 | |
| {
 | |
| 	unsigned long flag;
 | |
| 
 | |
| 	spin_lock_irqsave(&cpu_map_lock, flag);
 | |
| 	_cpu_map_rebuild();
 | |
| 	spin_unlock_irqrestore(&cpu_map_lock, flag);
 | |
| }
 |