 1b948d6cae
			
		
	
	
	1b948d6cae
	
	
	
		
			
			The zEC12 machines introduced the local-clearing control for the IDTE and IPTE instruction. If the control is set only the TLB of the local CPU is cleared of entries, either all entries of a single address space for IDTE, or the entry for a single page-table entry for IPTE. Without the local-clearing control the TLB flush is broadcasted to all CPUs in the configuration, which is expensive. The reset of the bit mask of the CPUs that need flushing after a non-local IDTE is tricky. As TLB entries for an address space remain in the TLB even if the address space is detached a new bit field is required to keep track of attached CPUs vs. CPUs in the need of a flush. After a non-local flush with IDTE the bit-field of attached CPUs is copied to the bit-field of CPUs in need of a flush. The ordering of operations on cpu_attach_mask, attach_count and mm_cpumask(mm) is such that an underindication in mm_cpumask(mm) is prevented but an overindication in mm_cpumask(mm) is possible. Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
		
			
				
	
	
		
			426 lines
		
	
	
	
		
			9.5 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			426 lines
		
	
	
	
		
			9.5 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *    Copyright IBM Corp. 2006
 | |
|  *    Author(s): Heiko Carstens <heiko.carstens@de.ibm.com>
 | |
|  */
 | |
| 
 | |
| #include <linux/bootmem.h>
 | |
| #include <linux/pfn.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/list.h>
 | |
| #include <linux/hugetlb.h>
 | |
| #include <linux/slab.h>
 | |
| #include <asm/pgalloc.h>
 | |
| #include <asm/pgtable.h>
 | |
| #include <asm/setup.h>
 | |
| #include <asm/tlbflush.h>
 | |
| #include <asm/sections.h>
 | |
| 
 | |
| static DEFINE_MUTEX(vmem_mutex);
 | |
| 
 | |
| struct memory_segment {
 | |
| 	struct list_head list;
 | |
| 	unsigned long start;
 | |
| 	unsigned long size;
 | |
| };
 | |
| 
 | |
| static LIST_HEAD(mem_segs);
 | |
| 
 | |
| static void __ref *vmem_alloc_pages(unsigned int order)
 | |
| {
 | |
| 	if (slab_is_available())
 | |
| 		return (void *)__get_free_pages(GFP_KERNEL, order);
 | |
| 	return alloc_bootmem_pages((1 << order) * PAGE_SIZE);
 | |
| }
 | |
| 
 | |
| static inline pud_t *vmem_pud_alloc(void)
 | |
| {
 | |
| 	pud_t *pud = NULL;
 | |
| 
 | |
| #ifdef CONFIG_64BIT
 | |
| 	pud = vmem_alloc_pages(2);
 | |
| 	if (!pud)
 | |
| 		return NULL;
 | |
| 	clear_table((unsigned long *) pud, _REGION3_ENTRY_EMPTY, PAGE_SIZE * 4);
 | |
| #endif
 | |
| 	return pud;
 | |
| }
 | |
| 
 | |
| static inline pmd_t *vmem_pmd_alloc(void)
 | |
| {
 | |
| 	pmd_t *pmd = NULL;
 | |
| 
 | |
| #ifdef CONFIG_64BIT
 | |
| 	pmd = vmem_alloc_pages(2);
 | |
| 	if (!pmd)
 | |
| 		return NULL;
 | |
| 	clear_table((unsigned long *) pmd, _SEGMENT_ENTRY_EMPTY, PAGE_SIZE * 4);
 | |
| #endif
 | |
| 	return pmd;
 | |
| }
 | |
| 
 | |
| static pte_t __ref *vmem_pte_alloc(unsigned long address)
 | |
| {
 | |
| 	pte_t *pte;
 | |
| 
 | |
| 	if (slab_is_available())
 | |
| 		pte = (pte_t *) page_table_alloc(&init_mm, address);
 | |
| 	else
 | |
| 		pte = alloc_bootmem(PTRS_PER_PTE * sizeof(pte_t));
 | |
| 	if (!pte)
 | |
| 		return NULL;
 | |
| 	clear_table((unsigned long *) pte, _PAGE_INVALID,
 | |
| 		    PTRS_PER_PTE * sizeof(pte_t));
 | |
| 	return pte;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Add a physical memory range to the 1:1 mapping.
 | |
|  */
 | |
| static int vmem_add_mem(unsigned long start, unsigned long size, int ro)
 | |
| {
 | |
| 	unsigned long end = start + size;
 | |
| 	unsigned long address = start;
 | |
| 	pgd_t *pg_dir;
 | |
| 	pud_t *pu_dir;
 | |
| 	pmd_t *pm_dir;
 | |
| 	pte_t *pt_dir;
 | |
| 	int ret = -ENOMEM;
 | |
| 
 | |
| 	while (address < end) {
 | |
| 		pg_dir = pgd_offset_k(address);
 | |
| 		if (pgd_none(*pg_dir)) {
 | |
| 			pu_dir = vmem_pud_alloc();
 | |
| 			if (!pu_dir)
 | |
| 				goto out;
 | |
| 			pgd_populate(&init_mm, pg_dir, pu_dir);
 | |
| 		}
 | |
| 		pu_dir = pud_offset(pg_dir, address);
 | |
| #if defined(CONFIG_64BIT) && !defined(CONFIG_DEBUG_PAGEALLOC)
 | |
| 		if (MACHINE_HAS_EDAT2 && pud_none(*pu_dir) && address &&
 | |
| 		    !(address & ~PUD_MASK) && (address + PUD_SIZE <= end)) {
 | |
| 			pud_val(*pu_dir) = __pa(address) |
 | |
| 				_REGION_ENTRY_TYPE_R3 | _REGION3_ENTRY_LARGE |
 | |
| 				(ro ? _REGION_ENTRY_PROTECT : 0);
 | |
| 			address += PUD_SIZE;
 | |
| 			continue;
 | |
| 		}
 | |
| #endif
 | |
| 		if (pud_none(*pu_dir)) {
 | |
| 			pm_dir = vmem_pmd_alloc();
 | |
| 			if (!pm_dir)
 | |
| 				goto out;
 | |
| 			pud_populate(&init_mm, pu_dir, pm_dir);
 | |
| 		}
 | |
| 		pm_dir = pmd_offset(pu_dir, address);
 | |
| #if defined(CONFIG_64BIT) && !defined(CONFIG_DEBUG_PAGEALLOC)
 | |
| 		if (MACHINE_HAS_EDAT1 && pmd_none(*pm_dir) && address &&
 | |
| 		    !(address & ~PMD_MASK) && (address + PMD_SIZE <= end)) {
 | |
| 			pmd_val(*pm_dir) = __pa(address) |
 | |
| 				_SEGMENT_ENTRY | _SEGMENT_ENTRY_LARGE |
 | |
| 				_SEGMENT_ENTRY_YOUNG |
 | |
| 				(ro ? _SEGMENT_ENTRY_PROTECT : 0);
 | |
| 			address += PMD_SIZE;
 | |
| 			continue;
 | |
| 		}
 | |
| #endif
 | |
| 		if (pmd_none(*pm_dir)) {
 | |
| 			pt_dir = vmem_pte_alloc(address);
 | |
| 			if (!pt_dir)
 | |
| 				goto out;
 | |
| 			pmd_populate(&init_mm, pm_dir, pt_dir);
 | |
| 		}
 | |
| 
 | |
| 		pt_dir = pte_offset_kernel(pm_dir, address);
 | |
| 		pte_val(*pt_dir) = __pa(address) |
 | |
| 			pgprot_val(ro ? PAGE_KERNEL_RO : PAGE_KERNEL);
 | |
| 		address += PAGE_SIZE;
 | |
| 	}
 | |
| 	ret = 0;
 | |
| out:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Remove a physical memory range from the 1:1 mapping.
 | |
|  * Currently only invalidates page table entries.
 | |
|  */
 | |
| static void vmem_remove_range(unsigned long start, unsigned long size)
 | |
| {
 | |
| 	unsigned long end = start + size;
 | |
| 	unsigned long address = start;
 | |
| 	pgd_t *pg_dir;
 | |
| 	pud_t *pu_dir;
 | |
| 	pmd_t *pm_dir;
 | |
| 	pte_t *pt_dir;
 | |
| 	pte_t  pte;
 | |
| 
 | |
| 	pte_val(pte) = _PAGE_INVALID;
 | |
| 	while (address < end) {
 | |
| 		pg_dir = pgd_offset_k(address);
 | |
| 		if (pgd_none(*pg_dir)) {
 | |
| 			address += PGDIR_SIZE;
 | |
| 			continue;
 | |
| 		}
 | |
| 		pu_dir = pud_offset(pg_dir, address);
 | |
| 		if (pud_none(*pu_dir)) {
 | |
| 			address += PUD_SIZE;
 | |
| 			continue;
 | |
| 		}
 | |
| 		if (pud_large(*pu_dir)) {
 | |
| 			pud_clear(pu_dir);
 | |
| 			address += PUD_SIZE;
 | |
| 			continue;
 | |
| 		}
 | |
| 		pm_dir = pmd_offset(pu_dir, address);
 | |
| 		if (pmd_none(*pm_dir)) {
 | |
| 			address += PMD_SIZE;
 | |
| 			continue;
 | |
| 		}
 | |
| 		if (pmd_large(*pm_dir)) {
 | |
| 			pmd_clear(pm_dir);
 | |
| 			address += PMD_SIZE;
 | |
| 			continue;
 | |
| 		}
 | |
| 		pt_dir = pte_offset_kernel(pm_dir, address);
 | |
| 		*pt_dir = pte;
 | |
| 		address += PAGE_SIZE;
 | |
| 	}
 | |
| 	flush_tlb_kernel_range(start, end);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Add a backed mem_map array to the virtual mem_map array.
 | |
|  */
 | |
| int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node)
 | |
| {
 | |
| 	unsigned long address = start;
 | |
| 	pgd_t *pg_dir;
 | |
| 	pud_t *pu_dir;
 | |
| 	pmd_t *pm_dir;
 | |
| 	pte_t *pt_dir;
 | |
| 	int ret = -ENOMEM;
 | |
| 
 | |
| 	for (address = start; address < end;) {
 | |
| 		pg_dir = pgd_offset_k(address);
 | |
| 		if (pgd_none(*pg_dir)) {
 | |
| 			pu_dir = vmem_pud_alloc();
 | |
| 			if (!pu_dir)
 | |
| 				goto out;
 | |
| 			pgd_populate(&init_mm, pg_dir, pu_dir);
 | |
| 		}
 | |
| 
 | |
| 		pu_dir = pud_offset(pg_dir, address);
 | |
| 		if (pud_none(*pu_dir)) {
 | |
| 			pm_dir = vmem_pmd_alloc();
 | |
| 			if (!pm_dir)
 | |
| 				goto out;
 | |
| 			pud_populate(&init_mm, pu_dir, pm_dir);
 | |
| 		}
 | |
| 
 | |
| 		pm_dir = pmd_offset(pu_dir, address);
 | |
| 		if (pmd_none(*pm_dir)) {
 | |
| #ifdef CONFIG_64BIT
 | |
| 			/* Use 1MB frames for vmemmap if available. We always
 | |
| 			 * use large frames even if they are only partially
 | |
| 			 * used.
 | |
| 			 * Otherwise we would have also page tables since
 | |
| 			 * vmemmap_populate gets called for each section
 | |
| 			 * separately. */
 | |
| 			if (MACHINE_HAS_EDAT1) {
 | |
| 				void *new_page;
 | |
| 
 | |
| 				new_page = vmemmap_alloc_block(PMD_SIZE, node);
 | |
| 				if (!new_page)
 | |
| 					goto out;
 | |
| 				pmd_val(*pm_dir) = __pa(new_page) |
 | |
| 					_SEGMENT_ENTRY | _SEGMENT_ENTRY_LARGE |
 | |
| 					_SEGMENT_ENTRY_CO;
 | |
| 				address = (address + PMD_SIZE) & PMD_MASK;
 | |
| 				continue;
 | |
| 			}
 | |
| #endif
 | |
| 			pt_dir = vmem_pte_alloc(address);
 | |
| 			if (!pt_dir)
 | |
| 				goto out;
 | |
| 			pmd_populate(&init_mm, pm_dir, pt_dir);
 | |
| 		} else if (pmd_large(*pm_dir)) {
 | |
| 			address = (address + PMD_SIZE) & PMD_MASK;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		pt_dir = pte_offset_kernel(pm_dir, address);
 | |
| 		if (pte_none(*pt_dir)) {
 | |
| 			unsigned long new_page;
 | |
| 
 | |
| 			new_page =__pa(vmem_alloc_pages(0));
 | |
| 			if (!new_page)
 | |
| 				goto out;
 | |
| 			pte_val(*pt_dir) =
 | |
| 				__pa(new_page) | pgprot_val(PAGE_KERNEL);
 | |
| 		}
 | |
| 		address += PAGE_SIZE;
 | |
| 	}
 | |
| 	memset((void *)start, 0, end - start);
 | |
| 	ret = 0;
 | |
| out:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| void vmemmap_free(unsigned long start, unsigned long end)
 | |
| {
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Add memory segment to the segment list if it doesn't overlap with
 | |
|  * an already present segment.
 | |
|  */
 | |
| static int insert_memory_segment(struct memory_segment *seg)
 | |
| {
 | |
| 	struct memory_segment *tmp;
 | |
| 
 | |
| 	if (seg->start + seg->size > VMEM_MAX_PHYS ||
 | |
| 	    seg->start + seg->size < seg->start)
 | |
| 		return -ERANGE;
 | |
| 
 | |
| 	list_for_each_entry(tmp, &mem_segs, list) {
 | |
| 		if (seg->start >= tmp->start + tmp->size)
 | |
| 			continue;
 | |
| 		if (seg->start + seg->size <= tmp->start)
 | |
| 			continue;
 | |
| 		return -ENOSPC;
 | |
| 	}
 | |
| 	list_add(&seg->list, &mem_segs);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Remove memory segment from the segment list.
 | |
|  */
 | |
| static void remove_memory_segment(struct memory_segment *seg)
 | |
| {
 | |
| 	list_del(&seg->list);
 | |
| }
 | |
| 
 | |
| static void __remove_shared_memory(struct memory_segment *seg)
 | |
| {
 | |
| 	remove_memory_segment(seg);
 | |
| 	vmem_remove_range(seg->start, seg->size);
 | |
| }
 | |
| 
 | |
| int vmem_remove_mapping(unsigned long start, unsigned long size)
 | |
| {
 | |
| 	struct memory_segment *seg;
 | |
| 	int ret;
 | |
| 
 | |
| 	mutex_lock(&vmem_mutex);
 | |
| 
 | |
| 	ret = -ENOENT;
 | |
| 	list_for_each_entry(seg, &mem_segs, list) {
 | |
| 		if (seg->start == start && seg->size == size)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	if (seg->start != start || seg->size != size)
 | |
| 		goto out;
 | |
| 
 | |
| 	ret = 0;
 | |
| 	__remove_shared_memory(seg);
 | |
| 	kfree(seg);
 | |
| out:
 | |
| 	mutex_unlock(&vmem_mutex);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int vmem_add_mapping(unsigned long start, unsigned long size)
 | |
| {
 | |
| 	struct memory_segment *seg;
 | |
| 	int ret;
 | |
| 
 | |
| 	mutex_lock(&vmem_mutex);
 | |
| 	ret = -ENOMEM;
 | |
| 	seg = kzalloc(sizeof(*seg), GFP_KERNEL);
 | |
| 	if (!seg)
 | |
| 		goto out;
 | |
| 	seg->start = start;
 | |
| 	seg->size = size;
 | |
| 
 | |
| 	ret = insert_memory_segment(seg);
 | |
| 	if (ret)
 | |
| 		goto out_free;
 | |
| 
 | |
| 	ret = vmem_add_mem(start, size, 0);
 | |
| 	if (ret)
 | |
| 		goto out_remove;
 | |
| 	goto out;
 | |
| 
 | |
| out_remove:
 | |
| 	__remove_shared_memory(seg);
 | |
| out_free:
 | |
| 	kfree(seg);
 | |
| out:
 | |
| 	mutex_unlock(&vmem_mutex);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * map whole physical memory to virtual memory (identity mapping)
 | |
|  * we reserve enough space in the vmalloc area for vmemmap to hotplug
 | |
|  * additional memory segments.
 | |
|  */
 | |
| void __init vmem_map_init(void)
 | |
| {
 | |
| 	unsigned long ro_start, ro_end;
 | |
| 	unsigned long start, end;
 | |
| 	int i;
 | |
| 
 | |
| 	ro_start = PFN_ALIGN((unsigned long)&_stext);
 | |
| 	ro_end = (unsigned long)&_eshared & PAGE_MASK;
 | |
| 	for (i = 0; i < MEMORY_CHUNKS; i++) {
 | |
| 		if (!memory_chunk[i].size)
 | |
| 			continue;
 | |
| 		start = memory_chunk[i].addr;
 | |
| 		end = memory_chunk[i].addr + memory_chunk[i].size;
 | |
| 		if (start >= ro_end || end <= ro_start)
 | |
| 			vmem_add_mem(start, end - start, 0);
 | |
| 		else if (start >= ro_start && end <= ro_end)
 | |
| 			vmem_add_mem(start, end - start, 1);
 | |
| 		else if (start >= ro_start) {
 | |
| 			vmem_add_mem(start, ro_end - start, 1);
 | |
| 			vmem_add_mem(ro_end, end - ro_end, 0);
 | |
| 		} else if (end < ro_end) {
 | |
| 			vmem_add_mem(start, ro_start - start, 0);
 | |
| 			vmem_add_mem(ro_start, end - ro_start, 1);
 | |
| 		} else {
 | |
| 			vmem_add_mem(start, ro_start - start, 0);
 | |
| 			vmem_add_mem(ro_start, ro_end - ro_start, 1);
 | |
| 			vmem_add_mem(ro_end, end - ro_end, 0);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Convert memory chunk array to a memory segment list so there is a single
 | |
|  * list that contains both r/w memory and shared memory segments.
 | |
|  */
 | |
| static int __init vmem_convert_memory_chunk(void)
 | |
| {
 | |
| 	struct memory_segment *seg;
 | |
| 	int i;
 | |
| 
 | |
| 	mutex_lock(&vmem_mutex);
 | |
| 	for (i = 0; i < MEMORY_CHUNKS; i++) {
 | |
| 		if (!memory_chunk[i].size)
 | |
| 			continue;
 | |
| 		seg = kzalloc(sizeof(*seg), GFP_KERNEL);
 | |
| 		if (!seg)
 | |
| 			panic("Out of memory...\n");
 | |
| 		seg->start = memory_chunk[i].addr;
 | |
| 		seg->size = memory_chunk[i].size;
 | |
| 		insert_memory_segment(seg);
 | |
| 	}
 | |
| 	mutex_unlock(&vmem_mutex);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| core_initcall(vmem_convert_memory_chunk);
 |