 9073e1a804
			
		
	
	
	9073e1a804
	
	
	
		
			
			Pull trivial tree updates from Jiri Kosina: "Usual earth-shaking, news-breaking, rocket science pile from trivial.git" * 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial: (23 commits) doc: usb: Fix typo in Documentation/usb/gadget_configs.txt doc: add missing files to timers/00-INDEX timekeeping: Fix some trivial typos in comments mm: Fix some trivial typos in comments irq: Fix some trivial typos in comments NUMA: fix typos in Kconfig help text mm: update 00-INDEX doc: Documentation/DMA-attributes.txt fix typo DRM: comment: `halve' -> `half' Docs: Kconfig: `devlopers' -> `developers' doc: typo on word accounting in kprobes.c in mutliple architectures treewide: fix "usefull" typo treewide: fix "distingush" typo mm/Kconfig: Grammar s/an/a/ kexec: Typo s/the/then/ Documentation/kvm: Update cpuid documentation for steal time and pv eoi treewide: Fix common typo in "identify" __page_to_pfn: Fix typo in comment Correct some typos for word frequency clk: fixed-factor: Fix a trivial typo ...
		
			
				
	
	
		
			825 lines
		
	
	
	
		
			22 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			825 lines
		
	
	
	
		
			22 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *  Kernel Probes (KProbes)
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License as published by
 | |
|  * the Free Software Foundation; either version 2 of the License, or
 | |
|  * (at your option) any later version.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, write to the Free Software
 | |
|  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 | |
|  *
 | |
|  * Copyright IBM Corp. 2002, 2006
 | |
|  *
 | |
|  * s390 port, used ppc64 as template. Mike Grundy <grundym@us.ibm.com>
 | |
|  */
 | |
| 
 | |
| #include <linux/kprobes.h>
 | |
| #include <linux/ptrace.h>
 | |
| #include <linux/preempt.h>
 | |
| #include <linux/stop_machine.h>
 | |
| #include <linux/kdebug.h>
 | |
| #include <linux/uaccess.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/hardirq.h>
 | |
| #include <asm/cacheflush.h>
 | |
| #include <asm/sections.h>
 | |
| #include <asm/dis.h>
 | |
| 
 | |
| DEFINE_PER_CPU(struct kprobe *, current_kprobe);
 | |
| DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
 | |
| 
 | |
| struct kretprobe_blackpoint kretprobe_blacklist[] = { };
 | |
| 
 | |
| DEFINE_INSN_CACHE_OPS(dmainsn);
 | |
| 
 | |
| static void *alloc_dmainsn_page(void)
 | |
| {
 | |
| 	return (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
 | |
| }
 | |
| 
 | |
| static void free_dmainsn_page(void *page)
 | |
| {
 | |
| 	free_page((unsigned long)page);
 | |
| }
 | |
| 
 | |
| struct kprobe_insn_cache kprobe_dmainsn_slots = {
 | |
| 	.mutex = __MUTEX_INITIALIZER(kprobe_dmainsn_slots.mutex),
 | |
| 	.alloc = alloc_dmainsn_page,
 | |
| 	.free = free_dmainsn_page,
 | |
| 	.pages = LIST_HEAD_INIT(kprobe_dmainsn_slots.pages),
 | |
| 	.insn_size = MAX_INSN_SIZE,
 | |
| };
 | |
| 
 | |
| static int __kprobes is_prohibited_opcode(kprobe_opcode_t *insn)
 | |
| {
 | |
| 	if (!is_known_insn((unsigned char *)insn))
 | |
| 		return -EINVAL;
 | |
| 	switch (insn[0] >> 8) {
 | |
| 	case 0x0c:	/* bassm */
 | |
| 	case 0x0b:	/* bsm	 */
 | |
| 	case 0x83:	/* diag  */
 | |
| 	case 0x44:	/* ex	 */
 | |
| 	case 0xac:	/* stnsm */
 | |
| 	case 0xad:	/* stosm */
 | |
| 		return -EINVAL;
 | |
| 	case 0xc6:
 | |
| 		switch (insn[0] & 0x0f) {
 | |
| 		case 0x00: /* exrl   */
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 	}
 | |
| 	switch (insn[0]) {
 | |
| 	case 0x0101:	/* pr	 */
 | |
| 	case 0xb25a:	/* bsa	 */
 | |
| 	case 0xb240:	/* bakr  */
 | |
| 	case 0xb258:	/* bsg	 */
 | |
| 	case 0xb218:	/* pc	 */
 | |
| 	case 0xb228:	/* pt	 */
 | |
| 	case 0xb98d:	/* epsw	 */
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int __kprobes get_fixup_type(kprobe_opcode_t *insn)
 | |
| {
 | |
| 	/* default fixup method */
 | |
| 	int fixup = FIXUP_PSW_NORMAL;
 | |
| 
 | |
| 	switch (insn[0] >> 8) {
 | |
| 	case 0x05:	/* balr	*/
 | |
| 	case 0x0d:	/* basr */
 | |
| 		fixup = FIXUP_RETURN_REGISTER;
 | |
| 		/* if r2 = 0, no branch will be taken */
 | |
| 		if ((insn[0] & 0x0f) == 0)
 | |
| 			fixup |= FIXUP_BRANCH_NOT_TAKEN;
 | |
| 		break;
 | |
| 	case 0x06:	/* bctr	*/
 | |
| 	case 0x07:	/* bcr	*/
 | |
| 		fixup = FIXUP_BRANCH_NOT_TAKEN;
 | |
| 		break;
 | |
| 	case 0x45:	/* bal	*/
 | |
| 	case 0x4d:	/* bas	*/
 | |
| 		fixup = FIXUP_RETURN_REGISTER;
 | |
| 		break;
 | |
| 	case 0x47:	/* bc	*/
 | |
| 	case 0x46:	/* bct	*/
 | |
| 	case 0x86:	/* bxh	*/
 | |
| 	case 0x87:	/* bxle	*/
 | |
| 		fixup = FIXUP_BRANCH_NOT_TAKEN;
 | |
| 		break;
 | |
| 	case 0x82:	/* lpsw	*/
 | |
| 		fixup = FIXUP_NOT_REQUIRED;
 | |
| 		break;
 | |
| 	case 0xb2:	/* lpswe */
 | |
| 		if ((insn[0] & 0xff) == 0xb2)
 | |
| 			fixup = FIXUP_NOT_REQUIRED;
 | |
| 		break;
 | |
| 	case 0xa7:	/* bras	*/
 | |
| 		if ((insn[0] & 0x0f) == 0x05)
 | |
| 			fixup |= FIXUP_RETURN_REGISTER;
 | |
| 		break;
 | |
| 	case 0xc0:
 | |
| 		if ((insn[0] & 0x0f) == 0x05)	/* brasl */
 | |
| 			fixup |= FIXUP_RETURN_REGISTER;
 | |
| 		break;
 | |
| 	case 0xeb:
 | |
| 		switch (insn[2] & 0xff) {
 | |
| 		case 0x44: /* bxhg  */
 | |
| 		case 0x45: /* bxleg */
 | |
| 			fixup = FIXUP_BRANCH_NOT_TAKEN;
 | |
| 			break;
 | |
| 		}
 | |
| 		break;
 | |
| 	case 0xe3:	/* bctg	*/
 | |
| 		if ((insn[2] & 0xff) == 0x46)
 | |
| 			fixup = FIXUP_BRANCH_NOT_TAKEN;
 | |
| 		break;
 | |
| 	case 0xec:
 | |
| 		switch (insn[2] & 0xff) {
 | |
| 		case 0xe5: /* clgrb */
 | |
| 		case 0xe6: /* cgrb  */
 | |
| 		case 0xf6: /* crb   */
 | |
| 		case 0xf7: /* clrb  */
 | |
| 		case 0xfc: /* cgib  */
 | |
| 		case 0xfd: /* cglib */
 | |
| 		case 0xfe: /* cib   */
 | |
| 		case 0xff: /* clib  */
 | |
| 			fixup = FIXUP_BRANCH_NOT_TAKEN;
 | |
| 			break;
 | |
| 		}
 | |
| 		break;
 | |
| 	}
 | |
| 	return fixup;
 | |
| }
 | |
| 
 | |
| static int __kprobes is_insn_relative_long(kprobe_opcode_t *insn)
 | |
| {
 | |
| 	/* Check if we have a RIL-b or RIL-c format instruction which
 | |
| 	 * we need to modify in order to avoid instruction emulation. */
 | |
| 	switch (insn[0] >> 8) {
 | |
| 	case 0xc0:
 | |
| 		if ((insn[0] & 0x0f) == 0x00) /* larl */
 | |
| 			return true;
 | |
| 		break;
 | |
| 	case 0xc4:
 | |
| 		switch (insn[0] & 0x0f) {
 | |
| 		case 0x02: /* llhrl  */
 | |
| 		case 0x04: /* lghrl  */
 | |
| 		case 0x05: /* lhrl   */
 | |
| 		case 0x06: /* llghrl */
 | |
| 		case 0x07: /* sthrl  */
 | |
| 		case 0x08: /* lgrl   */
 | |
| 		case 0x0b: /* stgrl  */
 | |
| 		case 0x0c: /* lgfrl  */
 | |
| 		case 0x0d: /* lrl    */
 | |
| 		case 0x0e: /* llgfrl */
 | |
| 		case 0x0f: /* strl   */
 | |
| 			return true;
 | |
| 		}
 | |
| 		break;
 | |
| 	case 0xc6:
 | |
| 		switch (insn[0] & 0x0f) {
 | |
| 		case 0x02: /* pfdrl  */
 | |
| 		case 0x04: /* cghrl  */
 | |
| 		case 0x05: /* chrl   */
 | |
| 		case 0x06: /* clghrl */
 | |
| 		case 0x07: /* clhrl  */
 | |
| 		case 0x08: /* cgrl   */
 | |
| 		case 0x0a: /* clgrl  */
 | |
| 		case 0x0c: /* cgfrl  */
 | |
| 		case 0x0d: /* crl    */
 | |
| 		case 0x0e: /* clgfrl */
 | |
| 		case 0x0f: /* clrl   */
 | |
| 			return true;
 | |
| 		}
 | |
| 		break;
 | |
| 	}
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static void __kprobes copy_instruction(struct kprobe *p)
 | |
| {
 | |
| 	s64 disp, new_disp;
 | |
| 	u64 addr, new_addr;
 | |
| 
 | |
| 	memcpy(p->ainsn.insn, p->addr, insn_length(p->opcode >> 8));
 | |
| 	if (!is_insn_relative_long(p->ainsn.insn))
 | |
| 		return;
 | |
| 	/*
 | |
| 	 * For pc-relative instructions in RIL-b or RIL-c format patch the
 | |
| 	 * RI2 displacement field. We have already made sure that the insn
 | |
| 	 * slot for the patched instruction is within the same 2GB area
 | |
| 	 * as the original instruction (either kernel image or module area).
 | |
| 	 * Therefore the new displacement will always fit.
 | |
| 	 */
 | |
| 	disp = *(s32 *)&p->ainsn.insn[1];
 | |
| 	addr = (u64)(unsigned long)p->addr;
 | |
| 	new_addr = (u64)(unsigned long)p->ainsn.insn;
 | |
| 	new_disp = ((addr + (disp * 2)) - new_addr) / 2;
 | |
| 	*(s32 *)&p->ainsn.insn[1] = new_disp;
 | |
| }
 | |
| 
 | |
| static inline int is_kernel_addr(void *addr)
 | |
| {
 | |
| 	return addr < (void *)_end;
 | |
| }
 | |
| 
 | |
| static inline int is_module_addr(void *addr)
 | |
| {
 | |
| #ifdef CONFIG_64BIT
 | |
| 	BUILD_BUG_ON(MODULES_LEN > (1UL << 31));
 | |
| 	if (addr < (void *)MODULES_VADDR)
 | |
| 		return 0;
 | |
| 	if (addr > (void *)MODULES_END)
 | |
| 		return 0;
 | |
| #endif
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int __kprobes s390_get_insn_slot(struct kprobe *p)
 | |
| {
 | |
| 	/*
 | |
| 	 * Get an insn slot that is within the same 2GB area like the original
 | |
| 	 * instruction. That way instructions with a 32bit signed displacement
 | |
| 	 * field can be patched and executed within the insn slot.
 | |
| 	 */
 | |
| 	p->ainsn.insn = NULL;
 | |
| 	if (is_kernel_addr(p->addr))
 | |
| 		p->ainsn.insn = get_dmainsn_slot();
 | |
| 	else if (is_module_addr(p->addr))
 | |
| 		p->ainsn.insn = get_insn_slot();
 | |
| 	return p->ainsn.insn ? 0 : -ENOMEM;
 | |
| }
 | |
| 
 | |
| static void __kprobes s390_free_insn_slot(struct kprobe *p)
 | |
| {
 | |
| 	if (!p->ainsn.insn)
 | |
| 		return;
 | |
| 	if (is_kernel_addr(p->addr))
 | |
| 		free_dmainsn_slot(p->ainsn.insn, 0);
 | |
| 	else
 | |
| 		free_insn_slot(p->ainsn.insn, 0);
 | |
| 	p->ainsn.insn = NULL;
 | |
| }
 | |
| 
 | |
| int __kprobes arch_prepare_kprobe(struct kprobe *p)
 | |
| {
 | |
| 	if ((unsigned long) p->addr & 0x01)
 | |
| 		return -EINVAL;
 | |
| 	/* Make sure the probe isn't going on a difficult instruction */
 | |
| 	if (is_prohibited_opcode(p->addr))
 | |
| 		return -EINVAL;
 | |
| 	if (s390_get_insn_slot(p))
 | |
| 		return -ENOMEM;
 | |
| 	p->opcode = *p->addr;
 | |
| 	copy_instruction(p);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| struct ins_replace_args {
 | |
| 	kprobe_opcode_t *ptr;
 | |
| 	kprobe_opcode_t opcode;
 | |
| };
 | |
| 
 | |
| static int __kprobes swap_instruction(void *aref)
 | |
| {
 | |
| 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 | |
| 	unsigned long status = kcb->kprobe_status;
 | |
| 	struct ins_replace_args *args = aref;
 | |
| 
 | |
| 	kcb->kprobe_status = KPROBE_SWAP_INST;
 | |
| 	probe_kernel_write(args->ptr, &args->opcode, sizeof(args->opcode));
 | |
| 	kcb->kprobe_status = status;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void __kprobes arch_arm_kprobe(struct kprobe *p)
 | |
| {
 | |
| 	struct ins_replace_args args;
 | |
| 
 | |
| 	args.ptr = p->addr;
 | |
| 	args.opcode = BREAKPOINT_INSTRUCTION;
 | |
| 	stop_machine(swap_instruction, &args, NULL);
 | |
| }
 | |
| 
 | |
| void __kprobes arch_disarm_kprobe(struct kprobe *p)
 | |
| {
 | |
| 	struct ins_replace_args args;
 | |
| 
 | |
| 	args.ptr = p->addr;
 | |
| 	args.opcode = p->opcode;
 | |
| 	stop_machine(swap_instruction, &args, NULL);
 | |
| }
 | |
| 
 | |
| void __kprobes arch_remove_kprobe(struct kprobe *p)
 | |
| {
 | |
| 	s390_free_insn_slot(p);
 | |
| }
 | |
| 
 | |
| static void __kprobes enable_singlestep(struct kprobe_ctlblk *kcb,
 | |
| 					struct pt_regs *regs,
 | |
| 					unsigned long ip)
 | |
| {
 | |
| 	struct per_regs per_kprobe;
 | |
| 
 | |
| 	/* Set up the PER control registers %cr9-%cr11 */
 | |
| 	per_kprobe.control = PER_EVENT_IFETCH;
 | |
| 	per_kprobe.start = ip;
 | |
| 	per_kprobe.end = ip;
 | |
| 
 | |
| 	/* Save control regs and psw mask */
 | |
| 	__ctl_store(kcb->kprobe_saved_ctl, 9, 11);
 | |
| 	kcb->kprobe_saved_imask = regs->psw.mask &
 | |
| 		(PSW_MASK_PER | PSW_MASK_IO | PSW_MASK_EXT);
 | |
| 
 | |
| 	/* Set PER control regs, turns on single step for the given address */
 | |
| 	__ctl_load(per_kprobe, 9, 11);
 | |
| 	regs->psw.mask |= PSW_MASK_PER;
 | |
| 	regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT);
 | |
| 	regs->psw.addr = ip | PSW_ADDR_AMODE;
 | |
| }
 | |
| 
 | |
| static void __kprobes disable_singlestep(struct kprobe_ctlblk *kcb,
 | |
| 					 struct pt_regs *regs,
 | |
| 					 unsigned long ip)
 | |
| {
 | |
| 	/* Restore control regs and psw mask, set new psw address */
 | |
| 	__ctl_load(kcb->kprobe_saved_ctl, 9, 11);
 | |
| 	regs->psw.mask &= ~PSW_MASK_PER;
 | |
| 	regs->psw.mask |= kcb->kprobe_saved_imask;
 | |
| 	regs->psw.addr = ip | PSW_ADDR_AMODE;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Activate a kprobe by storing its pointer to current_kprobe. The
 | |
|  * previous kprobe is stored in kcb->prev_kprobe. A stack of up to
 | |
|  * two kprobes can be active, see KPROBE_REENTER.
 | |
|  */
 | |
| static void __kprobes push_kprobe(struct kprobe_ctlblk *kcb, struct kprobe *p)
 | |
| {
 | |
| 	kcb->prev_kprobe.kp = __get_cpu_var(current_kprobe);
 | |
| 	kcb->prev_kprobe.status = kcb->kprobe_status;
 | |
| 	__get_cpu_var(current_kprobe) = p;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Deactivate a kprobe by backing up to the previous state. If the
 | |
|  * current state is KPROBE_REENTER prev_kprobe.kp will be non-NULL,
 | |
|  * for any other state prev_kprobe.kp will be NULL.
 | |
|  */
 | |
| static void __kprobes pop_kprobe(struct kprobe_ctlblk *kcb)
 | |
| {
 | |
| 	__get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
 | |
| 	kcb->kprobe_status = kcb->prev_kprobe.status;
 | |
| }
 | |
| 
 | |
| void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
 | |
| 					struct pt_regs *regs)
 | |
| {
 | |
| 	ri->ret_addr = (kprobe_opcode_t *) regs->gprs[14];
 | |
| 
 | |
| 	/* Replace the return addr with trampoline addr */
 | |
| 	regs->gprs[14] = (unsigned long) &kretprobe_trampoline;
 | |
| }
 | |
| 
 | |
| static void __kprobes kprobe_reenter_check(struct kprobe_ctlblk *kcb,
 | |
| 					   struct kprobe *p)
 | |
| {
 | |
| 	switch (kcb->kprobe_status) {
 | |
| 	case KPROBE_HIT_SSDONE:
 | |
| 	case KPROBE_HIT_ACTIVE:
 | |
| 		kprobes_inc_nmissed_count(p);
 | |
| 		break;
 | |
| 	case KPROBE_HIT_SS:
 | |
| 	case KPROBE_REENTER:
 | |
| 	default:
 | |
| 		/*
 | |
| 		 * A kprobe on the code path to single step an instruction
 | |
| 		 * is a BUG. The code path resides in the .kprobes.text
 | |
| 		 * section and is executed with interrupts disabled.
 | |
| 		 */
 | |
| 		printk(KERN_EMERG "Invalid kprobe detected at %p.\n", p->addr);
 | |
| 		dump_kprobe(p);
 | |
| 		BUG();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int __kprobes kprobe_handler(struct pt_regs *regs)
 | |
| {
 | |
| 	struct kprobe_ctlblk *kcb;
 | |
| 	struct kprobe *p;
 | |
| 
 | |
| 	/*
 | |
| 	 * We want to disable preemption for the entire duration of kprobe
 | |
| 	 * processing. That includes the calls to the pre/post handlers
 | |
| 	 * and single stepping the kprobe instruction.
 | |
| 	 */
 | |
| 	preempt_disable();
 | |
| 	kcb = get_kprobe_ctlblk();
 | |
| 	p = get_kprobe((void *)((regs->psw.addr & PSW_ADDR_INSN) - 2));
 | |
| 
 | |
| 	if (p) {
 | |
| 		if (kprobe_running()) {
 | |
| 			/*
 | |
| 			 * We have hit a kprobe while another is still
 | |
| 			 * active. This can happen in the pre and post
 | |
| 			 * handler. Single step the instruction of the
 | |
| 			 * new probe but do not call any handler function
 | |
| 			 * of this secondary kprobe.
 | |
| 			 * push_kprobe and pop_kprobe saves and restores
 | |
| 			 * the currently active kprobe.
 | |
| 			 */
 | |
| 			kprobe_reenter_check(kcb, p);
 | |
| 			push_kprobe(kcb, p);
 | |
| 			kcb->kprobe_status = KPROBE_REENTER;
 | |
| 		} else {
 | |
| 			/*
 | |
| 			 * If we have no pre-handler or it returned 0, we
 | |
| 			 * continue with single stepping. If we have a
 | |
| 			 * pre-handler and it returned non-zero, it prepped
 | |
| 			 * for calling the break_handler below on re-entry
 | |
| 			 * for jprobe processing, so get out doing nothing
 | |
| 			 * more here.
 | |
| 			 */
 | |
| 			push_kprobe(kcb, p);
 | |
| 			kcb->kprobe_status = KPROBE_HIT_ACTIVE;
 | |
| 			if (p->pre_handler && p->pre_handler(p, regs))
 | |
| 				return 1;
 | |
| 			kcb->kprobe_status = KPROBE_HIT_SS;
 | |
| 		}
 | |
| 		enable_singlestep(kcb, regs, (unsigned long) p->ainsn.insn);
 | |
| 		return 1;
 | |
| 	} else if (kprobe_running()) {
 | |
| 		p = __get_cpu_var(current_kprobe);
 | |
| 		if (p->break_handler && p->break_handler(p, regs)) {
 | |
| 			/*
 | |
| 			 * Continuation after the jprobe completed and
 | |
| 			 * caused the jprobe_return trap. The jprobe
 | |
| 			 * break_handler "returns" to the original
 | |
| 			 * function that still has the kprobe breakpoint
 | |
| 			 * installed. We continue with single stepping.
 | |
| 			 */
 | |
| 			kcb->kprobe_status = KPROBE_HIT_SS;
 | |
| 			enable_singlestep(kcb, regs,
 | |
| 					  (unsigned long) p->ainsn.insn);
 | |
| 			return 1;
 | |
| 		} /* else:
 | |
| 		   * No kprobe at this address and the current kprobe
 | |
| 		   * has no break handler (no jprobe!). The kernel just
 | |
| 		   * exploded, let the standard trap handler pick up the
 | |
| 		   * pieces.
 | |
| 		   */
 | |
| 	} /* else:
 | |
| 	   * No kprobe at this address and no active kprobe. The trap has
 | |
| 	   * not been caused by a kprobe breakpoint. The race of breakpoint
 | |
| 	   * vs. kprobe remove does not exist because on s390 as we use
 | |
| 	   * stop_machine to arm/disarm the breakpoints.
 | |
| 	   */
 | |
| 	preempt_enable_no_resched();
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Function return probe trampoline:
 | |
|  *	- init_kprobes() establishes a probepoint here
 | |
|  *	- When the probed function returns, this probe
 | |
|  *		causes the handlers to fire
 | |
|  */
 | |
| static void __used kretprobe_trampoline_holder(void)
 | |
| {
 | |
| 	asm volatile(".global kretprobe_trampoline\n"
 | |
| 		     "kretprobe_trampoline: bcr 0,0\n");
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Called when the probe at kretprobe trampoline is hit
 | |
|  */
 | |
| static int __kprobes trampoline_probe_handler(struct kprobe *p,
 | |
| 					      struct pt_regs *regs)
 | |
| {
 | |
| 	struct kretprobe_instance *ri;
 | |
| 	struct hlist_head *head, empty_rp;
 | |
| 	struct hlist_node *tmp;
 | |
| 	unsigned long flags, orig_ret_address;
 | |
| 	unsigned long trampoline_address;
 | |
| 	kprobe_opcode_t *correct_ret_addr;
 | |
| 
 | |
| 	INIT_HLIST_HEAD(&empty_rp);
 | |
| 	kretprobe_hash_lock(current, &head, &flags);
 | |
| 
 | |
| 	/*
 | |
| 	 * It is possible to have multiple instances associated with a given
 | |
| 	 * task either because an multiple functions in the call path
 | |
| 	 * have a return probe installed on them, and/or more than one return
 | |
| 	 * return probe was registered for a target function.
 | |
| 	 *
 | |
| 	 * We can handle this because:
 | |
| 	 *     - instances are always inserted at the head of the list
 | |
| 	 *     - when multiple return probes are registered for the same
 | |
| 	 *	 function, the first instance's ret_addr will point to the
 | |
| 	 *	 real return address, and all the rest will point to
 | |
| 	 *	 kretprobe_trampoline
 | |
| 	 */
 | |
| 	ri = NULL;
 | |
| 	orig_ret_address = 0;
 | |
| 	correct_ret_addr = NULL;
 | |
| 	trampoline_address = (unsigned long) &kretprobe_trampoline;
 | |
| 	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
 | |
| 		if (ri->task != current)
 | |
| 			/* another task is sharing our hash bucket */
 | |
| 			continue;
 | |
| 
 | |
| 		orig_ret_address = (unsigned long) ri->ret_addr;
 | |
| 
 | |
| 		if (orig_ret_address != trampoline_address)
 | |
| 			/*
 | |
| 			 * This is the real return address. Any other
 | |
| 			 * instances associated with this task are for
 | |
| 			 * other calls deeper on the call stack
 | |
| 			 */
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	kretprobe_assert(ri, orig_ret_address, trampoline_address);
 | |
| 
 | |
| 	correct_ret_addr = ri->ret_addr;
 | |
| 	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
 | |
| 		if (ri->task != current)
 | |
| 			/* another task is sharing our hash bucket */
 | |
| 			continue;
 | |
| 
 | |
| 		orig_ret_address = (unsigned long) ri->ret_addr;
 | |
| 
 | |
| 		if (ri->rp && ri->rp->handler) {
 | |
| 			ri->ret_addr = correct_ret_addr;
 | |
| 			ri->rp->handler(ri, regs);
 | |
| 		}
 | |
| 
 | |
| 		recycle_rp_inst(ri, &empty_rp);
 | |
| 
 | |
| 		if (orig_ret_address != trampoline_address)
 | |
| 			/*
 | |
| 			 * This is the real return address. Any other
 | |
| 			 * instances associated with this task are for
 | |
| 			 * other calls deeper on the call stack
 | |
| 			 */
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	regs->psw.addr = orig_ret_address | PSW_ADDR_AMODE;
 | |
| 
 | |
| 	pop_kprobe(get_kprobe_ctlblk());
 | |
| 	kretprobe_hash_unlock(current, &flags);
 | |
| 	preempt_enable_no_resched();
 | |
| 
 | |
| 	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
 | |
| 		hlist_del(&ri->hlist);
 | |
| 		kfree(ri);
 | |
| 	}
 | |
| 	/*
 | |
| 	 * By returning a non-zero value, we are telling
 | |
| 	 * kprobe_handler() that we don't want the post_handler
 | |
| 	 * to run (and have re-enabled preemption)
 | |
| 	 */
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Called after single-stepping.  p->addr is the address of the
 | |
|  * instruction whose first byte has been replaced by the "breakpoint"
 | |
|  * instruction.  To avoid the SMP problems that can occur when we
 | |
|  * temporarily put back the original opcode to single-step, we
 | |
|  * single-stepped a copy of the instruction.  The address of this
 | |
|  * copy is p->ainsn.insn.
 | |
|  */
 | |
| static void __kprobes resume_execution(struct kprobe *p, struct pt_regs *regs)
 | |
| {
 | |
| 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 | |
| 	unsigned long ip = regs->psw.addr & PSW_ADDR_INSN;
 | |
| 	int fixup = get_fixup_type(p->ainsn.insn);
 | |
| 
 | |
| 	if (fixup & FIXUP_PSW_NORMAL)
 | |
| 		ip += (unsigned long) p->addr - (unsigned long) p->ainsn.insn;
 | |
| 
 | |
| 	if (fixup & FIXUP_BRANCH_NOT_TAKEN) {
 | |
| 		int ilen = insn_length(p->ainsn.insn[0] >> 8);
 | |
| 		if (ip - (unsigned long) p->ainsn.insn == ilen)
 | |
| 			ip = (unsigned long) p->addr + ilen;
 | |
| 	}
 | |
| 
 | |
| 	if (fixup & FIXUP_RETURN_REGISTER) {
 | |
| 		int reg = (p->ainsn.insn[0] & 0xf0) >> 4;
 | |
| 		regs->gprs[reg] += (unsigned long) p->addr -
 | |
| 				   (unsigned long) p->ainsn.insn;
 | |
| 	}
 | |
| 
 | |
| 	disable_singlestep(kcb, regs, ip);
 | |
| }
 | |
| 
 | |
| static int __kprobes post_kprobe_handler(struct pt_regs *regs)
 | |
| {
 | |
| 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 | |
| 	struct kprobe *p = kprobe_running();
 | |
| 
 | |
| 	if (!p)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (kcb->kprobe_status != KPROBE_REENTER && p->post_handler) {
 | |
| 		kcb->kprobe_status = KPROBE_HIT_SSDONE;
 | |
| 		p->post_handler(p, regs, 0);
 | |
| 	}
 | |
| 
 | |
| 	resume_execution(p, regs);
 | |
| 	pop_kprobe(kcb);
 | |
| 	preempt_enable_no_resched();
 | |
| 
 | |
| 	/*
 | |
| 	 * if somebody else is singlestepping across a probe point, psw mask
 | |
| 	 * will have PER set, in which case, continue the remaining processing
 | |
| 	 * of do_single_step, as if this is not a probe hit.
 | |
| 	 */
 | |
| 	if (regs->psw.mask & PSW_MASK_PER)
 | |
| 		return 0;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int __kprobes kprobe_trap_handler(struct pt_regs *regs, int trapnr)
 | |
| {
 | |
| 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 | |
| 	struct kprobe *p = kprobe_running();
 | |
| 	const struct exception_table_entry *entry;
 | |
| 
 | |
| 	switch(kcb->kprobe_status) {
 | |
| 	case KPROBE_SWAP_INST:
 | |
| 		/* We are here because the instruction replacement failed */
 | |
| 		return 0;
 | |
| 	case KPROBE_HIT_SS:
 | |
| 	case KPROBE_REENTER:
 | |
| 		/*
 | |
| 		 * We are here because the instruction being single
 | |
| 		 * stepped caused a page fault. We reset the current
 | |
| 		 * kprobe and the nip points back to the probe address
 | |
| 		 * and allow the page fault handler to continue as a
 | |
| 		 * normal page fault.
 | |
| 		 */
 | |
| 		disable_singlestep(kcb, regs, (unsigned long) p->addr);
 | |
| 		pop_kprobe(kcb);
 | |
| 		preempt_enable_no_resched();
 | |
| 		break;
 | |
| 	case KPROBE_HIT_ACTIVE:
 | |
| 	case KPROBE_HIT_SSDONE:
 | |
| 		/*
 | |
| 		 * We increment the nmissed count for accounting,
 | |
| 		 * we can also use npre/npostfault count for accounting
 | |
| 		 * these specific fault cases.
 | |
| 		 */
 | |
| 		kprobes_inc_nmissed_count(p);
 | |
| 
 | |
| 		/*
 | |
| 		 * We come here because instructions in the pre/post
 | |
| 		 * handler caused the page_fault, this could happen
 | |
| 		 * if handler tries to access user space by
 | |
| 		 * copy_from_user(), get_user() etc. Let the
 | |
| 		 * user-specified handler try to fix it first.
 | |
| 		 */
 | |
| 		if (p->fault_handler && p->fault_handler(p, regs, trapnr))
 | |
| 			return 1;
 | |
| 
 | |
| 		/*
 | |
| 		 * In case the user-specified fault handler returned
 | |
| 		 * zero, try to fix up.
 | |
| 		 */
 | |
| 		entry = search_exception_tables(regs->psw.addr & PSW_ADDR_INSN);
 | |
| 		if (entry) {
 | |
| 			regs->psw.addr = extable_fixup(entry) | PSW_ADDR_AMODE;
 | |
| 			return 1;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * fixup_exception() could not handle it,
 | |
| 		 * Let do_page_fault() fix it.
 | |
| 		 */
 | |
| 		break;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
 | |
| 		local_irq_disable();
 | |
| 	ret = kprobe_trap_handler(regs, trapnr);
 | |
| 	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
 | |
| 		local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Wrapper routine to for handling exceptions.
 | |
|  */
 | |
| int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
 | |
| 				       unsigned long val, void *data)
 | |
| {
 | |
| 	struct die_args *args = (struct die_args *) data;
 | |
| 	struct pt_regs *regs = args->regs;
 | |
| 	int ret = NOTIFY_DONE;
 | |
| 
 | |
| 	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
 | |
| 		local_irq_disable();
 | |
| 
 | |
| 	switch (val) {
 | |
| 	case DIE_BPT:
 | |
| 		if (kprobe_handler(regs))
 | |
| 			ret = NOTIFY_STOP;
 | |
| 		break;
 | |
| 	case DIE_SSTEP:
 | |
| 		if (post_kprobe_handler(regs))
 | |
| 			ret = NOTIFY_STOP;
 | |
| 		break;
 | |
| 	case DIE_TRAP:
 | |
| 		if (!preemptible() && kprobe_running() &&
 | |
| 		    kprobe_trap_handler(regs, args->trapnr))
 | |
| 			ret = NOTIFY_STOP;
 | |
| 		break;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
 | |
| 		local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
 | |
| {
 | |
| 	struct jprobe *jp = container_of(p, struct jprobe, kp);
 | |
| 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 | |
| 	unsigned long stack;
 | |
| 
 | |
| 	memcpy(&kcb->jprobe_saved_regs, regs, sizeof(struct pt_regs));
 | |
| 
 | |
| 	/* setup return addr to the jprobe handler routine */
 | |
| 	regs->psw.addr = (unsigned long) jp->entry | PSW_ADDR_AMODE;
 | |
| 	regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT);
 | |
| 
 | |
| 	/* r15 is the stack pointer */
 | |
| 	stack = (unsigned long) regs->gprs[15];
 | |
| 
 | |
| 	memcpy(kcb->jprobes_stack, (void *) stack, MIN_STACK_SIZE(stack));
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| void __kprobes jprobe_return(void)
 | |
| {
 | |
| 	asm volatile(".word 0x0002");
 | |
| }
 | |
| 
 | |
| static void __used __kprobes jprobe_return_end(void)
 | |
| {
 | |
| 	asm volatile("bcr 0,0");
 | |
| }
 | |
| 
 | |
| int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
 | |
| {
 | |
| 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 | |
| 	unsigned long stack;
 | |
| 
 | |
| 	stack = (unsigned long) kcb->jprobe_saved_regs.gprs[15];
 | |
| 
 | |
| 	/* Put the regs back */
 | |
| 	memcpy(regs, &kcb->jprobe_saved_regs, sizeof(struct pt_regs));
 | |
| 	/* put the stack back */
 | |
| 	memcpy((void *) stack, kcb->jprobes_stack, MIN_STACK_SIZE(stack));
 | |
| 	preempt_enable_no_resched();
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static struct kprobe trampoline = {
 | |
| 	.addr = (kprobe_opcode_t *) &kretprobe_trampoline,
 | |
| 	.pre_handler = trampoline_probe_handler
 | |
| };
 | |
| 
 | |
| int __init arch_init_kprobes(void)
 | |
| {
 | |
| 	return register_kprobe(&trampoline);
 | |
| }
 | |
| 
 | |
| int __kprobes arch_trampoline_kprobe(struct kprobe *p)
 | |
| {
 | |
| 	return p->addr == (kprobe_opcode_t *) &kretprobe_trampoline;
 | |
| }
 |