438 lines
		
	
	
	
		
			12 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			438 lines
		
	
	
	
		
			12 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Freescale General-purpose Timers Module
 | |
|  *
 | |
|  * Copyright (c) Freescale Semiconductor, Inc. 2006.
 | |
|  *               Shlomi Gridish <gridish@freescale.com>
 | |
|  *               Jerry Huang <Chang-Ming.Huang@freescale.com>
 | |
|  * Copyright (c) MontaVista Software, Inc. 2008.
 | |
|  *               Anton Vorontsov <avorontsov@ru.mvista.com>
 | |
|  *
 | |
|  * This program is free software; you can redistribute  it and/or modify it
 | |
|  * under  the terms of  the GNU General  Public License as published by the
 | |
|  * Free Software Foundation;  either version 2 of the  License, or (at your
 | |
|  * option) any later version.
 | |
|  */
 | |
| 
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/err.h>
 | |
| #include <linux/errno.h>
 | |
| #include <linux/list.h>
 | |
| #include <linux/io.h>
 | |
| #include <linux/of.h>
 | |
| #include <linux/of_address.h>
 | |
| #include <linux/of_irq.h>
 | |
| #include <linux/spinlock.h>
 | |
| #include <linux/bitops.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/export.h>
 | |
| #include <asm/fsl_gtm.h>
 | |
| 
 | |
| #define GTCFR_STP(x)		((x) & 1 ? 1 << 5 : 1 << 1)
 | |
| #define GTCFR_RST(x)		((x) & 1 ? 1 << 4 : 1 << 0)
 | |
| 
 | |
| #define GTMDR_ICLK_MASK		(3 << 1)
 | |
| #define GTMDR_ICLK_ICAS		(0 << 1)
 | |
| #define GTMDR_ICLK_ICLK		(1 << 1)
 | |
| #define GTMDR_ICLK_SLGO		(2 << 1)
 | |
| #define GTMDR_FRR		(1 << 3)
 | |
| #define GTMDR_ORI		(1 << 4)
 | |
| #define GTMDR_SPS(x)		((x) << 8)
 | |
| 
 | |
| struct gtm_timers_regs {
 | |
| 	u8	gtcfr1;		/* Timer 1, Timer 2 global config register */
 | |
| 	u8	res0[0x3];
 | |
| 	u8	gtcfr2;		/* Timer 3, timer 4 global config register */
 | |
| 	u8	res1[0xB];
 | |
| 	__be16	gtmdr1;		/* Timer 1 mode register */
 | |
| 	__be16	gtmdr2;		/* Timer 2 mode register */
 | |
| 	__be16	gtrfr1;		/* Timer 1 reference register */
 | |
| 	__be16	gtrfr2;		/* Timer 2 reference register */
 | |
| 	__be16	gtcpr1;		/* Timer 1 capture register */
 | |
| 	__be16	gtcpr2;		/* Timer 2 capture register */
 | |
| 	__be16	gtcnr1;		/* Timer 1 counter */
 | |
| 	__be16	gtcnr2;		/* Timer 2 counter */
 | |
| 	__be16	gtmdr3;		/* Timer 3 mode register */
 | |
| 	__be16	gtmdr4;		/* Timer 4 mode register */
 | |
| 	__be16	gtrfr3;		/* Timer 3 reference register */
 | |
| 	__be16	gtrfr4;		/* Timer 4 reference register */
 | |
| 	__be16	gtcpr3;		/* Timer 3 capture register */
 | |
| 	__be16	gtcpr4;		/* Timer 4 capture register */
 | |
| 	__be16	gtcnr3;		/* Timer 3 counter */
 | |
| 	__be16	gtcnr4;		/* Timer 4 counter */
 | |
| 	__be16	gtevr1;		/* Timer 1 event register */
 | |
| 	__be16	gtevr2;		/* Timer 2 event register */
 | |
| 	__be16	gtevr3;		/* Timer 3 event register */
 | |
| 	__be16	gtevr4;		/* Timer 4 event register */
 | |
| 	__be16	gtpsr1;		/* Timer 1 prescale register */
 | |
| 	__be16	gtpsr2;		/* Timer 2 prescale register */
 | |
| 	__be16	gtpsr3;		/* Timer 3 prescale register */
 | |
| 	__be16	gtpsr4;		/* Timer 4 prescale register */
 | |
| 	u8 res2[0x40];
 | |
| } __attribute__ ((packed));
 | |
| 
 | |
| struct gtm {
 | |
| 	unsigned int clock;
 | |
| 	struct gtm_timers_regs __iomem *regs;
 | |
| 	struct gtm_timer timers[4];
 | |
| 	spinlock_t lock;
 | |
| 	struct list_head list_node;
 | |
| };
 | |
| 
 | |
| static LIST_HEAD(gtms);
 | |
| 
 | |
| /**
 | |
|  * gtm_get_timer - request GTM timer to use it with the rest of GTM API
 | |
|  * Context:	non-IRQ
 | |
|  *
 | |
|  * This function reserves GTM timer for later use. It returns gtm_timer
 | |
|  * structure to use with the rest of GTM API, you should use timer->irq
 | |
|  * to manage timer interrupt.
 | |
|  */
 | |
| struct gtm_timer *gtm_get_timer16(void)
 | |
| {
 | |
| 	struct gtm *gtm = NULL;
 | |
| 	int i;
 | |
| 
 | |
| 	list_for_each_entry(gtm, >ms, list_node) {
 | |
| 		spin_lock_irq(>m->lock);
 | |
| 
 | |
| 		for (i = 0; i < ARRAY_SIZE(gtm->timers); i++) {
 | |
| 			if (!gtm->timers[i].requested) {
 | |
| 				gtm->timers[i].requested = true;
 | |
| 				spin_unlock_irq(>m->lock);
 | |
| 				return >m->timers[i];
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		spin_unlock_irq(>m->lock);
 | |
| 	}
 | |
| 
 | |
| 	if (gtm)
 | |
| 		return ERR_PTR(-EBUSY);
 | |
| 	return ERR_PTR(-ENODEV);
 | |
| }
 | |
| EXPORT_SYMBOL(gtm_get_timer16);
 | |
| 
 | |
| /**
 | |
|  * gtm_get_specific_timer - request specific GTM timer
 | |
|  * @gtm:	specific GTM, pass here GTM's device_node->data
 | |
|  * @timer:	specific timer number, Timer1 is 0.
 | |
|  * Context:	non-IRQ
 | |
|  *
 | |
|  * This function reserves GTM timer for later use. It returns gtm_timer
 | |
|  * structure to use with the rest of GTM API, you should use timer->irq
 | |
|  * to manage timer interrupt.
 | |
|  */
 | |
| struct gtm_timer *gtm_get_specific_timer16(struct gtm *gtm,
 | |
| 					   unsigned int timer)
 | |
| {
 | |
| 	struct gtm_timer *ret = ERR_PTR(-EBUSY);
 | |
| 
 | |
| 	if (timer > 3)
 | |
| 		return ERR_PTR(-EINVAL);
 | |
| 
 | |
| 	spin_lock_irq(>m->lock);
 | |
| 
 | |
| 	if (gtm->timers[timer].requested)
 | |
| 		goto out;
 | |
| 
 | |
| 	ret = >m->timers[timer];
 | |
| 	ret->requested = true;
 | |
| 
 | |
| out:
 | |
| 	spin_unlock_irq(>m->lock);
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL(gtm_get_specific_timer16);
 | |
| 
 | |
| /**
 | |
|  * gtm_put_timer16 - release 16 bits GTM timer
 | |
|  * @tmr:	pointer to the gtm_timer structure obtained from gtm_get_timer
 | |
|  * Context:	any
 | |
|  *
 | |
|  * This function releases GTM timer so others may request it.
 | |
|  */
 | |
| void gtm_put_timer16(struct gtm_timer *tmr)
 | |
| {
 | |
| 	gtm_stop_timer16(tmr);
 | |
| 
 | |
| 	spin_lock_irq(&tmr->gtm->lock);
 | |
| 	tmr->requested = false;
 | |
| 	spin_unlock_irq(&tmr->gtm->lock);
 | |
| }
 | |
| EXPORT_SYMBOL(gtm_put_timer16);
 | |
| 
 | |
| /*
 | |
|  * This is back-end for the exported functions, it's used to reset single
 | |
|  * timer in reference mode.
 | |
|  */
 | |
| static int gtm_set_ref_timer16(struct gtm_timer *tmr, int frequency,
 | |
| 			       int reference_value, bool free_run)
 | |
| {
 | |
| 	struct gtm *gtm = tmr->gtm;
 | |
| 	int num = tmr - >m->timers[0];
 | |
| 	unsigned int prescaler;
 | |
| 	u8 iclk = GTMDR_ICLK_ICLK;
 | |
| 	u8 psr;
 | |
| 	u8 sps;
 | |
| 	unsigned long flags;
 | |
| 	int max_prescaler = 256 * 256 * 16;
 | |
| 
 | |
| 	/* CPM2 doesn't have primary prescaler */
 | |
| 	if (!tmr->gtpsr)
 | |
| 		max_prescaler /= 256;
 | |
| 
 | |
| 	prescaler = gtm->clock / frequency;
 | |
| 	/*
 | |
| 	 * We have two 8 bit prescalers -- primary and secondary (psr, sps),
 | |
| 	 * plus "slow go" mode (clk / 16). So, total prescale value is
 | |
| 	 * 16 * (psr + 1) * (sps + 1). Though, for CPM2 GTMs we losing psr.
 | |
| 	 */
 | |
| 	if (prescaler > max_prescaler)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (prescaler > max_prescaler / 16) {
 | |
| 		iclk = GTMDR_ICLK_SLGO;
 | |
| 		prescaler /= 16;
 | |
| 	}
 | |
| 
 | |
| 	if (prescaler <= 256) {
 | |
| 		psr = 0;
 | |
| 		sps = prescaler - 1;
 | |
| 	} else {
 | |
| 		psr = 256 - 1;
 | |
| 		sps = prescaler / 256 - 1;
 | |
| 	}
 | |
| 
 | |
| 	spin_lock_irqsave(>m->lock, flags);
 | |
| 
 | |
| 	/*
 | |
| 	 * Properly reset timers: stop, reset, set up prescalers, reference
 | |
| 	 * value and clear event register.
 | |
| 	 */
 | |
| 	clrsetbits_8(tmr->gtcfr, ~(GTCFR_STP(num) | GTCFR_RST(num)),
 | |
| 				 GTCFR_STP(num) | GTCFR_RST(num));
 | |
| 
 | |
| 	setbits8(tmr->gtcfr, GTCFR_STP(num));
 | |
| 
 | |
| 	if (tmr->gtpsr)
 | |
| 		out_be16(tmr->gtpsr, psr);
 | |
| 	clrsetbits_be16(tmr->gtmdr, 0xFFFF, iclk | GTMDR_SPS(sps) |
 | |
| 			GTMDR_ORI | (free_run ? GTMDR_FRR : 0));
 | |
| 	out_be16(tmr->gtcnr, 0);
 | |
| 	out_be16(tmr->gtrfr, reference_value);
 | |
| 	out_be16(tmr->gtevr, 0xFFFF);
 | |
| 
 | |
| 	/* Let it be. */
 | |
| 	clrbits8(tmr->gtcfr, GTCFR_STP(num));
 | |
| 
 | |
| 	spin_unlock_irqrestore(>m->lock, flags);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * gtm_set_timer16 - (re)set 16 bit timer with arbitrary precision
 | |
|  * @tmr:	pointer to the gtm_timer structure obtained from gtm_get_timer
 | |
|  * @usec:	timer interval in microseconds
 | |
|  * @reload:	if set, the timer will reset upon expiry rather than
 | |
|  *         	continue running free.
 | |
|  * Context:	any
 | |
|  *
 | |
|  * This function (re)sets the GTM timer so that it counts up to the requested
 | |
|  * interval value, and fires the interrupt when the value is reached. This
 | |
|  * function will reduce the precision of the timer as needed in order for the
 | |
|  * requested timeout to fit in a 16-bit register.
 | |
|  */
 | |
| int gtm_set_timer16(struct gtm_timer *tmr, unsigned long usec, bool reload)
 | |
| {
 | |
| 	/* quite obvious, frequency which is enough for µSec precision */
 | |
| 	int freq = 1000000;
 | |
| 	unsigned int bit;
 | |
| 
 | |
| 	bit = fls_long(usec);
 | |
| 	if (bit > 15) {
 | |
| 		freq >>= bit - 15;
 | |
| 		usec >>= bit - 15;
 | |
| 	}
 | |
| 
 | |
| 	if (!freq)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	return gtm_set_ref_timer16(tmr, freq, usec, reload);
 | |
| }
 | |
| EXPORT_SYMBOL(gtm_set_timer16);
 | |
| 
 | |
| /**
 | |
|  * gtm_set_exact_utimer16 - (re)set 16 bits timer
 | |
|  * @tmr:	pointer to the gtm_timer structure obtained from gtm_get_timer
 | |
|  * @usec:	timer interval in microseconds
 | |
|  * @reload:	if set, the timer will reset upon expiry rather than
 | |
|  *         	continue running free.
 | |
|  * Context:	any
 | |
|  *
 | |
|  * This function (re)sets GTM timer so that it counts up to the requested
 | |
|  * interval value, and fires the interrupt when the value is reached. If reload
 | |
|  * flag was set, timer will also reset itself upon reference value, otherwise
 | |
|  * it continues to increment.
 | |
|  *
 | |
|  * The _exact_ bit in the function name states that this function will not
 | |
|  * crop precision of the "usec" argument, thus usec is limited to 16 bits
 | |
|  * (single timer width).
 | |
|  */
 | |
| int gtm_set_exact_timer16(struct gtm_timer *tmr, u16 usec, bool reload)
 | |
| {
 | |
| 	/* quite obvious, frequency which is enough for µSec precision */
 | |
| 	const int freq = 1000000;
 | |
| 
 | |
| 	/*
 | |
| 	 * We can lower the frequency (and probably power consumption) by
 | |
| 	 * dividing both frequency and usec by 2 until there is no remainder.
 | |
| 	 * But we won't bother with this unless savings are measured, so just
 | |
| 	 * run the timer as is.
 | |
| 	 */
 | |
| 
 | |
| 	return gtm_set_ref_timer16(tmr, freq, usec, reload);
 | |
| }
 | |
| EXPORT_SYMBOL(gtm_set_exact_timer16);
 | |
| 
 | |
| /**
 | |
|  * gtm_stop_timer16 - stop single timer
 | |
|  * @tmr:	pointer to the gtm_timer structure obtained from gtm_get_timer
 | |
|  * Context:	any
 | |
|  *
 | |
|  * This function simply stops the GTM timer.
 | |
|  */
 | |
| void gtm_stop_timer16(struct gtm_timer *tmr)
 | |
| {
 | |
| 	struct gtm *gtm = tmr->gtm;
 | |
| 	int num = tmr - >m->timers[0];
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(>m->lock, flags);
 | |
| 
 | |
| 	setbits8(tmr->gtcfr, GTCFR_STP(num));
 | |
| 	out_be16(tmr->gtevr, 0xFFFF);
 | |
| 
 | |
| 	spin_unlock_irqrestore(>m->lock, flags);
 | |
| }
 | |
| EXPORT_SYMBOL(gtm_stop_timer16);
 | |
| 
 | |
| /**
 | |
|  * gtm_ack_timer16 - acknowledge timer event (free-run timers only)
 | |
|  * @tmr:	pointer to the gtm_timer structure obtained from gtm_get_timer
 | |
|  * @events:	events mask to ack
 | |
|  * Context:	any
 | |
|  *
 | |
|  * Thus function used to acknowledge timer interrupt event, use it inside the
 | |
|  * interrupt handler.
 | |
|  */
 | |
| void gtm_ack_timer16(struct gtm_timer *tmr, u16 events)
 | |
| {
 | |
| 	out_be16(tmr->gtevr, events);
 | |
| }
 | |
| EXPORT_SYMBOL(gtm_ack_timer16);
 | |
| 
 | |
| static void __init gtm_set_shortcuts(struct device_node *np,
 | |
| 				     struct gtm_timer *timers,
 | |
| 				     struct gtm_timers_regs __iomem *regs)
 | |
| {
 | |
| 	/*
 | |
| 	 * Yeah, I don't like this either, but timers' registers a bit messed,
 | |
| 	 * so we have to provide shortcuts to write timer independent code.
 | |
| 	 * Alternative option is to create gt*() accessors, but that will be
 | |
| 	 * even uglier and cryptic.
 | |
| 	 */
 | |
| 	timers[0].gtcfr = ®s->gtcfr1;
 | |
| 	timers[0].gtmdr = ®s->gtmdr1;
 | |
| 	timers[0].gtcnr = ®s->gtcnr1;
 | |
| 	timers[0].gtrfr = ®s->gtrfr1;
 | |
| 	timers[0].gtevr = ®s->gtevr1;
 | |
| 
 | |
| 	timers[1].gtcfr = ®s->gtcfr1;
 | |
| 	timers[1].gtmdr = ®s->gtmdr2;
 | |
| 	timers[1].gtcnr = ®s->gtcnr2;
 | |
| 	timers[1].gtrfr = ®s->gtrfr2;
 | |
| 	timers[1].gtevr = ®s->gtevr2;
 | |
| 
 | |
| 	timers[2].gtcfr = ®s->gtcfr2;
 | |
| 	timers[2].gtmdr = ®s->gtmdr3;
 | |
| 	timers[2].gtcnr = ®s->gtcnr3;
 | |
| 	timers[2].gtrfr = ®s->gtrfr3;
 | |
| 	timers[2].gtevr = ®s->gtevr3;
 | |
| 
 | |
| 	timers[3].gtcfr = ®s->gtcfr2;
 | |
| 	timers[3].gtmdr = ®s->gtmdr4;
 | |
| 	timers[3].gtcnr = ®s->gtcnr4;
 | |
| 	timers[3].gtrfr = ®s->gtrfr4;
 | |
| 	timers[3].gtevr = ®s->gtevr4;
 | |
| 
 | |
| 	/* CPM2 doesn't have primary prescaler */
 | |
| 	if (!of_device_is_compatible(np, "fsl,cpm2-gtm")) {
 | |
| 		timers[0].gtpsr = ®s->gtpsr1;
 | |
| 		timers[1].gtpsr = ®s->gtpsr2;
 | |
| 		timers[2].gtpsr = ®s->gtpsr3;
 | |
| 		timers[3].gtpsr = ®s->gtpsr4;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int __init fsl_gtm_init(void)
 | |
| {
 | |
| 	struct device_node *np;
 | |
| 
 | |
| 	for_each_compatible_node(np, NULL, "fsl,gtm") {
 | |
| 		int i;
 | |
| 		struct gtm *gtm;
 | |
| 		const u32 *clock;
 | |
| 		int size;
 | |
| 
 | |
| 		gtm = kzalloc(sizeof(*gtm), GFP_KERNEL);
 | |
| 		if (!gtm) {
 | |
| 			pr_err("%s: unable to allocate memory\n",
 | |
| 				np->full_name);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		spin_lock_init(>m->lock);
 | |
| 
 | |
| 		clock = of_get_property(np, "clock-frequency", &size);
 | |
| 		if (!clock || size != sizeof(*clock)) {
 | |
| 			pr_err("%s: no clock-frequency\n", np->full_name);
 | |
| 			goto err;
 | |
| 		}
 | |
| 		gtm->clock = *clock;
 | |
| 
 | |
| 		for (i = 0; i < ARRAY_SIZE(gtm->timers); i++) {
 | |
| 			unsigned int irq;
 | |
| 
 | |
| 			irq = irq_of_parse_and_map(np, i);
 | |
| 			if (irq == NO_IRQ) {
 | |
| 				pr_err("%s: not enough interrupts specified\n",
 | |
| 				       np->full_name);
 | |
| 				goto err;
 | |
| 			}
 | |
| 			gtm->timers[i].irq = irq;
 | |
| 			gtm->timers[i].gtm = gtm;
 | |
| 		}
 | |
| 
 | |
| 		gtm->regs = of_iomap(np, 0);
 | |
| 		if (!gtm->regs) {
 | |
| 			pr_err("%s: unable to iomap registers\n",
 | |
| 			       np->full_name);
 | |
| 			goto err;
 | |
| 		}
 | |
| 
 | |
| 		gtm_set_shortcuts(np, gtm->timers, gtm->regs);
 | |
| 		list_add(>m->list_node, >ms);
 | |
| 
 | |
| 		/* We don't want to lose the node and its ->data */
 | |
| 		np->data = gtm;
 | |
| 		of_node_get(np);
 | |
| 
 | |
| 		continue;
 | |
| err:
 | |
| 		kfree(gtm);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| arch_initcall(fsl_gtm_init);
 | 
