 5d585e5c48
			
		
	
	
	5d585e5c48
	
	
	
		
			
			Use common help functions to free reserved pages. Signed-off-by: Jiang Liu <jiang.liu@huawei.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Anatolij Gustschin <agust@denx.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
		
			
				
	
	
		
			1313 lines
		
	
	
	
		
			35 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1313 lines
		
	
	
	
		
			35 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Firmware Assisted dump: A robust mechanism to get reliable kernel crash
 | |
|  * dump with assistance from firmware. This approach does not use kexec,
 | |
|  * instead firmware assists in booting the kdump kernel while preserving
 | |
|  * memory contents. The most of the code implementation has been adapted
 | |
|  * from phyp assisted dump implementation written by Linas Vepstas and
 | |
|  * Manish Ahuja
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License as published by
 | |
|  * the Free Software Foundation; either version 2 of the License, or
 | |
|  * (at your option) any later version.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, write to the Free Software
 | |
|  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 | |
|  *
 | |
|  * Copyright 2011 IBM Corporation
 | |
|  * Author: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
 | |
|  */
 | |
| 
 | |
| #undef DEBUG
 | |
| #define pr_fmt(fmt) "fadump: " fmt
 | |
| 
 | |
| #include <linux/string.h>
 | |
| #include <linux/memblock.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/debugfs.h>
 | |
| #include <linux/seq_file.h>
 | |
| #include <linux/crash_dump.h>
 | |
| #include <linux/kobject.h>
 | |
| #include <linux/sysfs.h>
 | |
| 
 | |
| #include <asm/page.h>
 | |
| #include <asm/prom.h>
 | |
| #include <asm/rtas.h>
 | |
| #include <asm/fadump.h>
 | |
| #include <asm/debug.h>
 | |
| #include <asm/setup.h>
 | |
| 
 | |
| static struct fw_dump fw_dump;
 | |
| static struct fadump_mem_struct fdm;
 | |
| static const struct fadump_mem_struct *fdm_active;
 | |
| 
 | |
| static DEFINE_MUTEX(fadump_mutex);
 | |
| struct fad_crash_memory_ranges crash_memory_ranges[INIT_CRASHMEM_RANGES];
 | |
| int crash_mem_ranges;
 | |
| 
 | |
| /* Scan the Firmware Assisted dump configuration details. */
 | |
| int __init early_init_dt_scan_fw_dump(unsigned long node,
 | |
| 			const char *uname, int depth, void *data)
 | |
| {
 | |
| 	__be32 *sections;
 | |
| 	int i, num_sections;
 | |
| 	unsigned long size;
 | |
| 	const int *token;
 | |
| 
 | |
| 	if (depth != 1 || strcmp(uname, "rtas") != 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Check if Firmware Assisted dump is supported. if yes, check
 | |
| 	 * if dump has been initiated on last reboot.
 | |
| 	 */
 | |
| 	token = of_get_flat_dt_prop(node, "ibm,configure-kernel-dump", NULL);
 | |
| 	if (!token)
 | |
| 		return 0;
 | |
| 
 | |
| 	fw_dump.fadump_supported = 1;
 | |
| 	fw_dump.ibm_configure_kernel_dump = *token;
 | |
| 
 | |
| 	/*
 | |
| 	 * The 'ibm,kernel-dump' rtas node is present only if there is
 | |
| 	 * dump data waiting for us.
 | |
| 	 */
 | |
| 	fdm_active = of_get_flat_dt_prop(node, "ibm,kernel-dump", NULL);
 | |
| 	if (fdm_active)
 | |
| 		fw_dump.dump_active = 1;
 | |
| 
 | |
| 	/* Get the sizes required to store dump data for the firmware provided
 | |
| 	 * dump sections.
 | |
| 	 * For each dump section type supported, a 32bit cell which defines
 | |
| 	 * the ID of a supported section followed by two 32 bit cells which
 | |
| 	 * gives teh size of the section in bytes.
 | |
| 	 */
 | |
| 	sections = of_get_flat_dt_prop(node, "ibm,configure-kernel-dump-sizes",
 | |
| 					&size);
 | |
| 
 | |
| 	if (!sections)
 | |
| 		return 0;
 | |
| 
 | |
| 	num_sections = size / (3 * sizeof(u32));
 | |
| 
 | |
| 	for (i = 0; i < num_sections; i++, sections += 3) {
 | |
| 		u32 type = (u32)of_read_number(sections, 1);
 | |
| 
 | |
| 		switch (type) {
 | |
| 		case FADUMP_CPU_STATE_DATA:
 | |
| 			fw_dump.cpu_state_data_size =
 | |
| 					of_read_ulong(§ions[1], 2);
 | |
| 			break;
 | |
| 		case FADUMP_HPTE_REGION:
 | |
| 			fw_dump.hpte_region_size =
 | |
| 					of_read_ulong(§ions[1], 2);
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| int is_fadump_active(void)
 | |
| {
 | |
| 	return fw_dump.dump_active;
 | |
| }
 | |
| 
 | |
| /* Print firmware assisted dump configurations for debugging purpose. */
 | |
| static void fadump_show_config(void)
 | |
| {
 | |
| 	pr_debug("Support for firmware-assisted dump (fadump): %s\n",
 | |
| 			(fw_dump.fadump_supported ? "present" : "no support"));
 | |
| 
 | |
| 	if (!fw_dump.fadump_supported)
 | |
| 		return;
 | |
| 
 | |
| 	pr_debug("Fadump enabled    : %s\n",
 | |
| 				(fw_dump.fadump_enabled ? "yes" : "no"));
 | |
| 	pr_debug("Dump Active       : %s\n",
 | |
| 				(fw_dump.dump_active ? "yes" : "no"));
 | |
| 	pr_debug("Dump section sizes:\n");
 | |
| 	pr_debug("    CPU state data size: %lx\n", fw_dump.cpu_state_data_size);
 | |
| 	pr_debug("    HPTE region size   : %lx\n", fw_dump.hpte_region_size);
 | |
| 	pr_debug("Boot memory size  : %lx\n", fw_dump.boot_memory_size);
 | |
| }
 | |
| 
 | |
| static unsigned long init_fadump_mem_struct(struct fadump_mem_struct *fdm,
 | |
| 				unsigned long addr)
 | |
| {
 | |
| 	if (!fdm)
 | |
| 		return 0;
 | |
| 
 | |
| 	memset(fdm, 0, sizeof(struct fadump_mem_struct));
 | |
| 	addr = addr & PAGE_MASK;
 | |
| 
 | |
| 	fdm->header.dump_format_version = 0x00000001;
 | |
| 	fdm->header.dump_num_sections = 3;
 | |
| 	fdm->header.dump_status_flag = 0;
 | |
| 	fdm->header.offset_first_dump_section =
 | |
| 		(u32)offsetof(struct fadump_mem_struct, cpu_state_data);
 | |
| 
 | |
| 	/*
 | |
| 	 * Fields for disk dump option.
 | |
| 	 * We are not using disk dump option, hence set these fields to 0.
 | |
| 	 */
 | |
| 	fdm->header.dd_block_size = 0;
 | |
| 	fdm->header.dd_block_offset = 0;
 | |
| 	fdm->header.dd_num_blocks = 0;
 | |
| 	fdm->header.dd_offset_disk_path = 0;
 | |
| 
 | |
| 	/* set 0 to disable an automatic dump-reboot. */
 | |
| 	fdm->header.max_time_auto = 0;
 | |
| 
 | |
| 	/* Kernel dump sections */
 | |
| 	/* cpu state data section. */
 | |
| 	fdm->cpu_state_data.request_flag = FADUMP_REQUEST_FLAG;
 | |
| 	fdm->cpu_state_data.source_data_type = FADUMP_CPU_STATE_DATA;
 | |
| 	fdm->cpu_state_data.source_address = 0;
 | |
| 	fdm->cpu_state_data.source_len = fw_dump.cpu_state_data_size;
 | |
| 	fdm->cpu_state_data.destination_address = addr;
 | |
| 	addr += fw_dump.cpu_state_data_size;
 | |
| 
 | |
| 	/* hpte region section */
 | |
| 	fdm->hpte_region.request_flag = FADUMP_REQUEST_FLAG;
 | |
| 	fdm->hpte_region.source_data_type = FADUMP_HPTE_REGION;
 | |
| 	fdm->hpte_region.source_address = 0;
 | |
| 	fdm->hpte_region.source_len = fw_dump.hpte_region_size;
 | |
| 	fdm->hpte_region.destination_address = addr;
 | |
| 	addr += fw_dump.hpte_region_size;
 | |
| 
 | |
| 	/* RMA region section */
 | |
| 	fdm->rmr_region.request_flag = FADUMP_REQUEST_FLAG;
 | |
| 	fdm->rmr_region.source_data_type = FADUMP_REAL_MODE_REGION;
 | |
| 	fdm->rmr_region.source_address = RMA_START;
 | |
| 	fdm->rmr_region.source_len = fw_dump.boot_memory_size;
 | |
| 	fdm->rmr_region.destination_address = addr;
 | |
| 	addr += fw_dump.boot_memory_size;
 | |
| 
 | |
| 	return addr;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * fadump_calculate_reserve_size(): reserve variable boot area 5% of System RAM
 | |
|  *
 | |
|  * Function to find the largest memory size we need to reserve during early
 | |
|  * boot process. This will be the size of the memory that is required for a
 | |
|  * kernel to boot successfully.
 | |
|  *
 | |
|  * This function has been taken from phyp-assisted dump feature implementation.
 | |
|  *
 | |
|  * returns larger of 256MB or 5% rounded down to multiples of 256MB.
 | |
|  *
 | |
|  * TODO: Come up with better approach to find out more accurate memory size
 | |
|  * that is required for a kernel to boot successfully.
 | |
|  *
 | |
|  */
 | |
| static inline unsigned long fadump_calculate_reserve_size(void)
 | |
| {
 | |
| 	unsigned long size;
 | |
| 
 | |
| 	/*
 | |
| 	 * Check if the size is specified through fadump_reserve_mem= cmdline
 | |
| 	 * option. If yes, then use that.
 | |
| 	 */
 | |
| 	if (fw_dump.reserve_bootvar)
 | |
| 		return fw_dump.reserve_bootvar;
 | |
| 
 | |
| 	/* divide by 20 to get 5% of value */
 | |
| 	size = memblock_end_of_DRAM() / 20;
 | |
| 
 | |
| 	/* round it down in multiples of 256 */
 | |
| 	size = size & ~0x0FFFFFFFUL;
 | |
| 
 | |
| 	/* Truncate to memory_limit. We don't want to over reserve the memory.*/
 | |
| 	if (memory_limit && size > memory_limit)
 | |
| 		size = memory_limit;
 | |
| 
 | |
| 	return (size > MIN_BOOT_MEM ? size : MIN_BOOT_MEM);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Calculate the total memory size required to be reserved for
 | |
|  * firmware-assisted dump registration.
 | |
|  */
 | |
| static unsigned long get_fadump_area_size(void)
 | |
| {
 | |
| 	unsigned long size = 0;
 | |
| 
 | |
| 	size += fw_dump.cpu_state_data_size;
 | |
| 	size += fw_dump.hpte_region_size;
 | |
| 	size += fw_dump.boot_memory_size;
 | |
| 	size += sizeof(struct fadump_crash_info_header);
 | |
| 	size += sizeof(struct elfhdr); /* ELF core header.*/
 | |
| 	size += sizeof(struct elf_phdr); /* place holder for cpu notes */
 | |
| 	/* Program headers for crash memory regions. */
 | |
| 	size += sizeof(struct elf_phdr) * (memblock_num_regions(memory) + 2);
 | |
| 
 | |
| 	size = PAGE_ALIGN(size);
 | |
| 	return size;
 | |
| }
 | |
| 
 | |
| int __init fadump_reserve_mem(void)
 | |
| {
 | |
| 	unsigned long base, size, memory_boundary;
 | |
| 
 | |
| 	if (!fw_dump.fadump_enabled)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (!fw_dump.fadump_supported) {
 | |
| 		printk(KERN_INFO "Firmware-assisted dump is not supported on"
 | |
| 				" this hardware\n");
 | |
| 		fw_dump.fadump_enabled = 0;
 | |
| 		return 0;
 | |
| 	}
 | |
| 	/*
 | |
| 	 * Initialize boot memory size
 | |
| 	 * If dump is active then we have already calculated the size during
 | |
| 	 * first kernel.
 | |
| 	 */
 | |
| 	if (fdm_active)
 | |
| 		fw_dump.boot_memory_size = fdm_active->rmr_region.source_len;
 | |
| 	else
 | |
| 		fw_dump.boot_memory_size = fadump_calculate_reserve_size();
 | |
| 
 | |
| 	/*
 | |
| 	 * Calculate the memory boundary.
 | |
| 	 * If memory_limit is less than actual memory boundary then reserve
 | |
| 	 * the memory for fadump beyond the memory_limit and adjust the
 | |
| 	 * memory_limit accordingly, so that the running kernel can run with
 | |
| 	 * specified memory_limit.
 | |
| 	 */
 | |
| 	if (memory_limit && memory_limit < memblock_end_of_DRAM()) {
 | |
| 		size = get_fadump_area_size();
 | |
| 		if ((memory_limit + size) < memblock_end_of_DRAM())
 | |
| 			memory_limit += size;
 | |
| 		else
 | |
| 			memory_limit = memblock_end_of_DRAM();
 | |
| 		printk(KERN_INFO "Adjusted memory_limit for firmware-assisted"
 | |
| 				" dump, now %#016llx\n", memory_limit);
 | |
| 	}
 | |
| 	if (memory_limit)
 | |
| 		memory_boundary = memory_limit;
 | |
| 	else
 | |
| 		memory_boundary = memblock_end_of_DRAM();
 | |
| 
 | |
| 	if (fw_dump.dump_active) {
 | |
| 		printk(KERN_INFO "Firmware-assisted dump is active.\n");
 | |
| 		/*
 | |
| 		 * If last boot has crashed then reserve all the memory
 | |
| 		 * above boot_memory_size so that we don't touch it until
 | |
| 		 * dump is written to disk by userspace tool. This memory
 | |
| 		 * will be released for general use once the dump is saved.
 | |
| 		 */
 | |
| 		base = fw_dump.boot_memory_size;
 | |
| 		size = memory_boundary - base;
 | |
| 		memblock_reserve(base, size);
 | |
| 		printk(KERN_INFO "Reserved %ldMB of memory at %ldMB "
 | |
| 				"for saving crash dump\n",
 | |
| 				(unsigned long)(size >> 20),
 | |
| 				(unsigned long)(base >> 20));
 | |
| 
 | |
| 		fw_dump.fadumphdr_addr =
 | |
| 				fdm_active->rmr_region.destination_address +
 | |
| 				fdm_active->rmr_region.source_len;
 | |
| 		pr_debug("fadumphdr_addr = %p\n",
 | |
| 				(void *) fw_dump.fadumphdr_addr);
 | |
| 	} else {
 | |
| 		/* Reserve the memory at the top of memory. */
 | |
| 		size = get_fadump_area_size();
 | |
| 		base = memory_boundary - size;
 | |
| 		memblock_reserve(base, size);
 | |
| 		printk(KERN_INFO "Reserved %ldMB of memory at %ldMB "
 | |
| 				"for firmware-assisted dump\n",
 | |
| 				(unsigned long)(size >> 20),
 | |
| 				(unsigned long)(base >> 20));
 | |
| 	}
 | |
| 	fw_dump.reserve_dump_area_start = base;
 | |
| 	fw_dump.reserve_dump_area_size = size;
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /* Look for fadump= cmdline option. */
 | |
| static int __init early_fadump_param(char *p)
 | |
| {
 | |
| 	if (!p)
 | |
| 		return 1;
 | |
| 
 | |
| 	if (strncmp(p, "on", 2) == 0)
 | |
| 		fw_dump.fadump_enabled = 1;
 | |
| 	else if (strncmp(p, "off", 3) == 0)
 | |
| 		fw_dump.fadump_enabled = 0;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| early_param("fadump", early_fadump_param);
 | |
| 
 | |
| /* Look for fadump_reserve_mem= cmdline option */
 | |
| static int __init early_fadump_reserve_mem(char *p)
 | |
| {
 | |
| 	if (p)
 | |
| 		fw_dump.reserve_bootvar = memparse(p, &p);
 | |
| 	return 0;
 | |
| }
 | |
| early_param("fadump_reserve_mem", early_fadump_reserve_mem);
 | |
| 
 | |
| static void register_fw_dump(struct fadump_mem_struct *fdm)
 | |
| {
 | |
| 	int rc;
 | |
| 	unsigned int wait_time;
 | |
| 
 | |
| 	pr_debug("Registering for firmware-assisted kernel dump...\n");
 | |
| 
 | |
| 	/* TODO: Add upper time limit for the delay */
 | |
| 	do {
 | |
| 		rc = rtas_call(fw_dump.ibm_configure_kernel_dump, 3, 1, NULL,
 | |
| 			FADUMP_REGISTER, fdm,
 | |
| 			sizeof(struct fadump_mem_struct));
 | |
| 
 | |
| 		wait_time = rtas_busy_delay_time(rc);
 | |
| 		if (wait_time)
 | |
| 			mdelay(wait_time);
 | |
| 
 | |
| 	} while (wait_time);
 | |
| 
 | |
| 	switch (rc) {
 | |
| 	case -1:
 | |
| 		printk(KERN_ERR "Failed to register firmware-assisted kernel"
 | |
| 			" dump. Hardware Error(%d).\n", rc);
 | |
| 		break;
 | |
| 	case -3:
 | |
| 		printk(KERN_ERR "Failed to register firmware-assisted kernel"
 | |
| 			" dump. Parameter Error(%d).\n", rc);
 | |
| 		break;
 | |
| 	case -9:
 | |
| 		printk(KERN_ERR "firmware-assisted kernel dump is already "
 | |
| 			" registered.");
 | |
| 		fw_dump.dump_registered = 1;
 | |
| 		break;
 | |
| 	case 0:
 | |
| 		printk(KERN_INFO "firmware-assisted kernel dump registration"
 | |
| 			" is successful\n");
 | |
| 		fw_dump.dump_registered = 1;
 | |
| 		break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void crash_fadump(struct pt_regs *regs, const char *str)
 | |
| {
 | |
| 	struct fadump_crash_info_header *fdh = NULL;
 | |
| 
 | |
| 	if (!fw_dump.dump_registered || !fw_dump.fadumphdr_addr)
 | |
| 		return;
 | |
| 
 | |
| 	fdh = __va(fw_dump.fadumphdr_addr);
 | |
| 	crashing_cpu = smp_processor_id();
 | |
| 	fdh->crashing_cpu = crashing_cpu;
 | |
| 	crash_save_vmcoreinfo();
 | |
| 
 | |
| 	if (regs)
 | |
| 		fdh->regs = *regs;
 | |
| 	else
 | |
| 		ppc_save_regs(&fdh->regs);
 | |
| 
 | |
| 	fdh->cpu_online_mask = *cpu_online_mask;
 | |
| 
 | |
| 	/* Call ibm,os-term rtas call to trigger firmware assisted dump */
 | |
| 	rtas_os_term((char *)str);
 | |
| }
 | |
| 
 | |
| #define GPR_MASK	0xffffff0000000000
 | |
| static inline int fadump_gpr_index(u64 id)
 | |
| {
 | |
| 	int i = -1;
 | |
| 	char str[3];
 | |
| 
 | |
| 	if ((id & GPR_MASK) == REG_ID("GPR")) {
 | |
| 		/* get the digits at the end */
 | |
| 		id &= ~GPR_MASK;
 | |
| 		id >>= 24;
 | |
| 		str[2] = '\0';
 | |
| 		str[1] = id & 0xff;
 | |
| 		str[0] = (id >> 8) & 0xff;
 | |
| 		sscanf(str, "%d", &i);
 | |
| 		if (i > 31)
 | |
| 			i = -1;
 | |
| 	}
 | |
| 	return i;
 | |
| }
 | |
| 
 | |
| static inline void fadump_set_regval(struct pt_regs *regs, u64 reg_id,
 | |
| 								u64 reg_val)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	i = fadump_gpr_index(reg_id);
 | |
| 	if (i >= 0)
 | |
| 		regs->gpr[i] = (unsigned long)reg_val;
 | |
| 	else if (reg_id == REG_ID("NIA"))
 | |
| 		regs->nip = (unsigned long)reg_val;
 | |
| 	else if (reg_id == REG_ID("MSR"))
 | |
| 		regs->msr = (unsigned long)reg_val;
 | |
| 	else if (reg_id == REG_ID("CTR"))
 | |
| 		regs->ctr = (unsigned long)reg_val;
 | |
| 	else if (reg_id == REG_ID("LR"))
 | |
| 		regs->link = (unsigned long)reg_val;
 | |
| 	else if (reg_id == REG_ID("XER"))
 | |
| 		regs->xer = (unsigned long)reg_val;
 | |
| 	else if (reg_id == REG_ID("CR"))
 | |
| 		regs->ccr = (unsigned long)reg_val;
 | |
| 	else if (reg_id == REG_ID("DAR"))
 | |
| 		regs->dar = (unsigned long)reg_val;
 | |
| 	else if (reg_id == REG_ID("DSISR"))
 | |
| 		regs->dsisr = (unsigned long)reg_val;
 | |
| }
 | |
| 
 | |
| static struct fadump_reg_entry*
 | |
| fadump_read_registers(struct fadump_reg_entry *reg_entry, struct pt_regs *regs)
 | |
| {
 | |
| 	memset(regs, 0, sizeof(struct pt_regs));
 | |
| 
 | |
| 	while (reg_entry->reg_id != REG_ID("CPUEND")) {
 | |
| 		fadump_set_regval(regs, reg_entry->reg_id,
 | |
| 					reg_entry->reg_value);
 | |
| 		reg_entry++;
 | |
| 	}
 | |
| 	reg_entry++;
 | |
| 	return reg_entry;
 | |
| }
 | |
| 
 | |
| static u32 *fadump_append_elf_note(u32 *buf, char *name, unsigned type,
 | |
| 						void *data, size_t data_len)
 | |
| {
 | |
| 	struct elf_note note;
 | |
| 
 | |
| 	note.n_namesz = strlen(name) + 1;
 | |
| 	note.n_descsz = data_len;
 | |
| 	note.n_type   = type;
 | |
| 	memcpy(buf, ¬e, sizeof(note));
 | |
| 	buf += (sizeof(note) + 3)/4;
 | |
| 	memcpy(buf, name, note.n_namesz);
 | |
| 	buf += (note.n_namesz + 3)/4;
 | |
| 	memcpy(buf, data, note.n_descsz);
 | |
| 	buf += (note.n_descsz + 3)/4;
 | |
| 
 | |
| 	return buf;
 | |
| }
 | |
| 
 | |
| static void fadump_final_note(u32 *buf)
 | |
| {
 | |
| 	struct elf_note note;
 | |
| 
 | |
| 	note.n_namesz = 0;
 | |
| 	note.n_descsz = 0;
 | |
| 	note.n_type   = 0;
 | |
| 	memcpy(buf, ¬e, sizeof(note));
 | |
| }
 | |
| 
 | |
| static u32 *fadump_regs_to_elf_notes(u32 *buf, struct pt_regs *regs)
 | |
| {
 | |
| 	struct elf_prstatus prstatus;
 | |
| 
 | |
| 	memset(&prstatus, 0, sizeof(prstatus));
 | |
| 	/*
 | |
| 	 * FIXME: How do i get PID? Do I really need it?
 | |
| 	 * prstatus.pr_pid = ????
 | |
| 	 */
 | |
| 	elf_core_copy_kernel_regs(&prstatus.pr_reg, regs);
 | |
| 	buf = fadump_append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS,
 | |
| 				&prstatus, sizeof(prstatus));
 | |
| 	return buf;
 | |
| }
 | |
| 
 | |
| static void fadump_update_elfcore_header(char *bufp)
 | |
| {
 | |
| 	struct elfhdr *elf;
 | |
| 	struct elf_phdr *phdr;
 | |
| 
 | |
| 	elf = (struct elfhdr *)bufp;
 | |
| 	bufp += sizeof(struct elfhdr);
 | |
| 
 | |
| 	/* First note is a place holder for cpu notes info. */
 | |
| 	phdr = (struct elf_phdr *)bufp;
 | |
| 
 | |
| 	if (phdr->p_type == PT_NOTE) {
 | |
| 		phdr->p_paddr = fw_dump.cpu_notes_buf;
 | |
| 		phdr->p_offset	= phdr->p_paddr;
 | |
| 		phdr->p_filesz	= fw_dump.cpu_notes_buf_size;
 | |
| 		phdr->p_memsz = fw_dump.cpu_notes_buf_size;
 | |
| 	}
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| static void *fadump_cpu_notes_buf_alloc(unsigned long size)
 | |
| {
 | |
| 	void *vaddr;
 | |
| 	struct page *page;
 | |
| 	unsigned long order, count, i;
 | |
| 
 | |
| 	order = get_order(size);
 | |
| 	vaddr = (void *)__get_free_pages(GFP_KERNEL|__GFP_ZERO, order);
 | |
| 	if (!vaddr)
 | |
| 		return NULL;
 | |
| 
 | |
| 	count = 1 << order;
 | |
| 	page = virt_to_page(vaddr);
 | |
| 	for (i = 0; i < count; i++)
 | |
| 		SetPageReserved(page + i);
 | |
| 	return vaddr;
 | |
| }
 | |
| 
 | |
| static void fadump_cpu_notes_buf_free(unsigned long vaddr, unsigned long size)
 | |
| {
 | |
| 	struct page *page;
 | |
| 	unsigned long order, count, i;
 | |
| 
 | |
| 	order = get_order(size);
 | |
| 	count = 1 << order;
 | |
| 	page = virt_to_page(vaddr);
 | |
| 	for (i = 0; i < count; i++)
 | |
| 		ClearPageReserved(page + i);
 | |
| 	__free_pages(page, order);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Read CPU state dump data and convert it into ELF notes.
 | |
|  * The CPU dump starts with magic number "REGSAVE". NumCpusOffset should be
 | |
|  * used to access the data to allow for additional fields to be added without
 | |
|  * affecting compatibility. Each list of registers for a CPU starts with
 | |
|  * "CPUSTRT" and ends with "CPUEND". Each register entry is of 16 bytes,
 | |
|  * 8 Byte ASCII identifier and 8 Byte register value. The register entry
 | |
|  * with identifier "CPUSTRT" and "CPUEND" contains 4 byte cpu id as part
 | |
|  * of register value. For more details refer to PAPR document.
 | |
|  *
 | |
|  * Only for the crashing cpu we ignore the CPU dump data and get exact
 | |
|  * state from fadump crash info structure populated by first kernel at the
 | |
|  * time of crash.
 | |
|  */
 | |
| static int __init fadump_build_cpu_notes(const struct fadump_mem_struct *fdm)
 | |
| {
 | |
| 	struct fadump_reg_save_area_header *reg_header;
 | |
| 	struct fadump_reg_entry *reg_entry;
 | |
| 	struct fadump_crash_info_header *fdh = NULL;
 | |
| 	void *vaddr;
 | |
| 	unsigned long addr;
 | |
| 	u32 num_cpus, *note_buf;
 | |
| 	struct pt_regs regs;
 | |
| 	int i, rc = 0, cpu = 0;
 | |
| 
 | |
| 	if (!fdm->cpu_state_data.bytes_dumped)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	addr = fdm->cpu_state_data.destination_address;
 | |
| 	vaddr = __va(addr);
 | |
| 
 | |
| 	reg_header = vaddr;
 | |
| 	if (reg_header->magic_number != REGSAVE_AREA_MAGIC) {
 | |
| 		printk(KERN_ERR "Unable to read register save area.\n");
 | |
| 		return -ENOENT;
 | |
| 	}
 | |
| 	pr_debug("--------CPU State Data------------\n");
 | |
| 	pr_debug("Magic Number: %llx\n", reg_header->magic_number);
 | |
| 	pr_debug("NumCpuOffset: %x\n", reg_header->num_cpu_offset);
 | |
| 
 | |
| 	vaddr += reg_header->num_cpu_offset;
 | |
| 	num_cpus = *((u32 *)(vaddr));
 | |
| 	pr_debug("NumCpus     : %u\n", num_cpus);
 | |
| 	vaddr += sizeof(u32);
 | |
| 	reg_entry = (struct fadump_reg_entry *)vaddr;
 | |
| 
 | |
| 	/* Allocate buffer to hold cpu crash notes. */
 | |
| 	fw_dump.cpu_notes_buf_size = num_cpus * sizeof(note_buf_t);
 | |
| 	fw_dump.cpu_notes_buf_size = PAGE_ALIGN(fw_dump.cpu_notes_buf_size);
 | |
| 	note_buf = fadump_cpu_notes_buf_alloc(fw_dump.cpu_notes_buf_size);
 | |
| 	if (!note_buf) {
 | |
| 		printk(KERN_ERR "Failed to allocate 0x%lx bytes for "
 | |
| 			"cpu notes buffer\n", fw_dump.cpu_notes_buf_size);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 	fw_dump.cpu_notes_buf = __pa(note_buf);
 | |
| 
 | |
| 	pr_debug("Allocated buffer for cpu notes of size %ld at %p\n",
 | |
| 			(num_cpus * sizeof(note_buf_t)), note_buf);
 | |
| 
 | |
| 	if (fw_dump.fadumphdr_addr)
 | |
| 		fdh = __va(fw_dump.fadumphdr_addr);
 | |
| 
 | |
| 	for (i = 0; i < num_cpus; i++) {
 | |
| 		if (reg_entry->reg_id != REG_ID("CPUSTRT")) {
 | |
| 			printk(KERN_ERR "Unable to read CPU state data\n");
 | |
| 			rc = -ENOENT;
 | |
| 			goto error_out;
 | |
| 		}
 | |
| 		/* Lower 4 bytes of reg_value contains logical cpu id */
 | |
| 		cpu = reg_entry->reg_value & FADUMP_CPU_ID_MASK;
 | |
| 		if (!cpumask_test_cpu(cpu, &fdh->cpu_online_mask)) {
 | |
| 			SKIP_TO_NEXT_CPU(reg_entry);
 | |
| 			continue;
 | |
| 		}
 | |
| 		pr_debug("Reading register data for cpu %d...\n", cpu);
 | |
| 		if (fdh && fdh->crashing_cpu == cpu) {
 | |
| 			regs = fdh->regs;
 | |
| 			note_buf = fadump_regs_to_elf_notes(note_buf, ®s);
 | |
| 			SKIP_TO_NEXT_CPU(reg_entry);
 | |
| 		} else {
 | |
| 			reg_entry++;
 | |
| 			reg_entry = fadump_read_registers(reg_entry, ®s);
 | |
| 			note_buf = fadump_regs_to_elf_notes(note_buf, ®s);
 | |
| 		}
 | |
| 	}
 | |
| 	fadump_final_note(note_buf);
 | |
| 
 | |
| 	pr_debug("Updating elfcore header (%llx) with cpu notes\n",
 | |
| 							fdh->elfcorehdr_addr);
 | |
| 	fadump_update_elfcore_header((char *)__va(fdh->elfcorehdr_addr));
 | |
| 	return 0;
 | |
| 
 | |
| error_out:
 | |
| 	fadump_cpu_notes_buf_free((unsigned long)__va(fw_dump.cpu_notes_buf),
 | |
| 					fw_dump.cpu_notes_buf_size);
 | |
| 	fw_dump.cpu_notes_buf = 0;
 | |
| 	fw_dump.cpu_notes_buf_size = 0;
 | |
| 	return rc;
 | |
| 
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Validate and process the dump data stored by firmware before exporting
 | |
|  * it through '/proc/vmcore'.
 | |
|  */
 | |
| static int __init process_fadump(const struct fadump_mem_struct *fdm_active)
 | |
| {
 | |
| 	struct fadump_crash_info_header *fdh;
 | |
| 	int rc = 0;
 | |
| 
 | |
| 	if (!fdm_active || !fw_dump.fadumphdr_addr)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/* Check if the dump data is valid. */
 | |
| 	if ((fdm_active->header.dump_status_flag == FADUMP_ERROR_FLAG) ||
 | |
| 			(fdm_active->cpu_state_data.error_flags != 0) ||
 | |
| 			(fdm_active->rmr_region.error_flags != 0)) {
 | |
| 		printk(KERN_ERR "Dump taken by platform is not valid\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 	if ((fdm_active->rmr_region.bytes_dumped !=
 | |
| 			fdm_active->rmr_region.source_len) ||
 | |
| 			!fdm_active->cpu_state_data.bytes_dumped) {
 | |
| 		printk(KERN_ERR "Dump taken by platform is incomplete\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/* Validate the fadump crash info header */
 | |
| 	fdh = __va(fw_dump.fadumphdr_addr);
 | |
| 	if (fdh->magic_number != FADUMP_CRASH_INFO_MAGIC) {
 | |
| 		printk(KERN_ERR "Crash info header is not valid.\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	rc = fadump_build_cpu_notes(fdm_active);
 | |
| 	if (rc)
 | |
| 		return rc;
 | |
| 
 | |
| 	/*
 | |
| 	 * We are done validating dump info and elfcore header is now ready
 | |
| 	 * to be exported. set elfcorehdr_addr so that vmcore module will
 | |
| 	 * export the elfcore header through '/proc/vmcore'.
 | |
| 	 */
 | |
| 	elfcorehdr_addr = fdh->elfcorehdr_addr;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline void fadump_add_crash_memory(unsigned long long base,
 | |
| 					unsigned long long end)
 | |
| {
 | |
| 	if (base == end)
 | |
| 		return;
 | |
| 
 | |
| 	pr_debug("crash_memory_range[%d] [%#016llx-%#016llx], %#llx bytes\n",
 | |
| 		crash_mem_ranges, base, end - 1, (end - base));
 | |
| 	crash_memory_ranges[crash_mem_ranges].base = base;
 | |
| 	crash_memory_ranges[crash_mem_ranges].size = end - base;
 | |
| 	crash_mem_ranges++;
 | |
| }
 | |
| 
 | |
| static void fadump_exclude_reserved_area(unsigned long long start,
 | |
| 					unsigned long long end)
 | |
| {
 | |
| 	unsigned long long ra_start, ra_end;
 | |
| 
 | |
| 	ra_start = fw_dump.reserve_dump_area_start;
 | |
| 	ra_end = ra_start + fw_dump.reserve_dump_area_size;
 | |
| 
 | |
| 	if ((ra_start < end) && (ra_end > start)) {
 | |
| 		if ((start < ra_start) && (end > ra_end)) {
 | |
| 			fadump_add_crash_memory(start, ra_start);
 | |
| 			fadump_add_crash_memory(ra_end, end);
 | |
| 		} else if (start < ra_start) {
 | |
| 			fadump_add_crash_memory(start, ra_start);
 | |
| 		} else if (ra_end < end) {
 | |
| 			fadump_add_crash_memory(ra_end, end);
 | |
| 		}
 | |
| 	} else
 | |
| 		fadump_add_crash_memory(start, end);
 | |
| }
 | |
| 
 | |
| static int fadump_init_elfcore_header(char *bufp)
 | |
| {
 | |
| 	struct elfhdr *elf;
 | |
| 
 | |
| 	elf = (struct elfhdr *) bufp;
 | |
| 	bufp += sizeof(struct elfhdr);
 | |
| 	memcpy(elf->e_ident, ELFMAG, SELFMAG);
 | |
| 	elf->e_ident[EI_CLASS] = ELF_CLASS;
 | |
| 	elf->e_ident[EI_DATA] = ELF_DATA;
 | |
| 	elf->e_ident[EI_VERSION] = EV_CURRENT;
 | |
| 	elf->e_ident[EI_OSABI] = ELF_OSABI;
 | |
| 	memset(elf->e_ident+EI_PAD, 0, EI_NIDENT-EI_PAD);
 | |
| 	elf->e_type = ET_CORE;
 | |
| 	elf->e_machine = ELF_ARCH;
 | |
| 	elf->e_version = EV_CURRENT;
 | |
| 	elf->e_entry = 0;
 | |
| 	elf->e_phoff = sizeof(struct elfhdr);
 | |
| 	elf->e_shoff = 0;
 | |
| 	elf->e_flags = ELF_CORE_EFLAGS;
 | |
| 	elf->e_ehsize = sizeof(struct elfhdr);
 | |
| 	elf->e_phentsize = sizeof(struct elf_phdr);
 | |
| 	elf->e_phnum = 0;
 | |
| 	elf->e_shentsize = 0;
 | |
| 	elf->e_shnum = 0;
 | |
| 	elf->e_shstrndx = 0;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Traverse through memblock structure and setup crash memory ranges. These
 | |
|  * ranges will be used create PT_LOAD program headers in elfcore header.
 | |
|  */
 | |
| static void fadump_setup_crash_memory_ranges(void)
 | |
| {
 | |
| 	struct memblock_region *reg;
 | |
| 	unsigned long long start, end;
 | |
| 
 | |
| 	pr_debug("Setup crash memory ranges.\n");
 | |
| 	crash_mem_ranges = 0;
 | |
| 	/*
 | |
| 	 * add the first memory chunk (RMA_START through boot_memory_size) as
 | |
| 	 * a separate memory chunk. The reason is, at the time crash firmware
 | |
| 	 * will move the content of this memory chunk to different location
 | |
| 	 * specified during fadump registration. We need to create a separate
 | |
| 	 * program header for this chunk with the correct offset.
 | |
| 	 */
 | |
| 	fadump_add_crash_memory(RMA_START, fw_dump.boot_memory_size);
 | |
| 
 | |
| 	for_each_memblock(memory, reg) {
 | |
| 		start = (unsigned long long)reg->base;
 | |
| 		end = start + (unsigned long long)reg->size;
 | |
| 		if (start == RMA_START && end >= fw_dump.boot_memory_size)
 | |
| 			start = fw_dump.boot_memory_size;
 | |
| 
 | |
| 		/* add this range excluding the reserved dump area. */
 | |
| 		fadump_exclude_reserved_area(start, end);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * If the given physical address falls within the boot memory region then
 | |
|  * return the relocated address that points to the dump region reserved
 | |
|  * for saving initial boot memory contents.
 | |
|  */
 | |
| static inline unsigned long fadump_relocate(unsigned long paddr)
 | |
| {
 | |
| 	if (paddr > RMA_START && paddr < fw_dump.boot_memory_size)
 | |
| 		return fdm.rmr_region.destination_address + paddr;
 | |
| 	else
 | |
| 		return paddr;
 | |
| }
 | |
| 
 | |
| static int fadump_create_elfcore_headers(char *bufp)
 | |
| {
 | |
| 	struct elfhdr *elf;
 | |
| 	struct elf_phdr *phdr;
 | |
| 	int i;
 | |
| 
 | |
| 	fadump_init_elfcore_header(bufp);
 | |
| 	elf = (struct elfhdr *)bufp;
 | |
| 	bufp += sizeof(struct elfhdr);
 | |
| 
 | |
| 	/*
 | |
| 	 * setup ELF PT_NOTE, place holder for cpu notes info. The notes info
 | |
| 	 * will be populated during second kernel boot after crash. Hence
 | |
| 	 * this PT_NOTE will always be the first elf note.
 | |
| 	 *
 | |
| 	 * NOTE: Any new ELF note addition should be placed after this note.
 | |
| 	 */
 | |
| 	phdr = (struct elf_phdr *)bufp;
 | |
| 	bufp += sizeof(struct elf_phdr);
 | |
| 	phdr->p_type = PT_NOTE;
 | |
| 	phdr->p_flags = 0;
 | |
| 	phdr->p_vaddr = 0;
 | |
| 	phdr->p_align = 0;
 | |
| 
 | |
| 	phdr->p_offset = 0;
 | |
| 	phdr->p_paddr = 0;
 | |
| 	phdr->p_filesz = 0;
 | |
| 	phdr->p_memsz = 0;
 | |
| 
 | |
| 	(elf->e_phnum)++;
 | |
| 
 | |
| 	/* setup ELF PT_NOTE for vmcoreinfo */
 | |
| 	phdr = (struct elf_phdr *)bufp;
 | |
| 	bufp += sizeof(struct elf_phdr);
 | |
| 	phdr->p_type	= PT_NOTE;
 | |
| 	phdr->p_flags	= 0;
 | |
| 	phdr->p_vaddr	= 0;
 | |
| 	phdr->p_align	= 0;
 | |
| 
 | |
| 	phdr->p_paddr	= fadump_relocate(paddr_vmcoreinfo_note());
 | |
| 	phdr->p_offset	= phdr->p_paddr;
 | |
| 	phdr->p_memsz	= vmcoreinfo_max_size;
 | |
| 	phdr->p_filesz	= vmcoreinfo_max_size;
 | |
| 
 | |
| 	/* Increment number of program headers. */
 | |
| 	(elf->e_phnum)++;
 | |
| 
 | |
| 	/* setup PT_LOAD sections. */
 | |
| 
 | |
| 	for (i = 0; i < crash_mem_ranges; i++) {
 | |
| 		unsigned long long mbase, msize;
 | |
| 		mbase = crash_memory_ranges[i].base;
 | |
| 		msize = crash_memory_ranges[i].size;
 | |
| 
 | |
| 		if (!msize)
 | |
| 			continue;
 | |
| 
 | |
| 		phdr = (struct elf_phdr *)bufp;
 | |
| 		bufp += sizeof(struct elf_phdr);
 | |
| 		phdr->p_type	= PT_LOAD;
 | |
| 		phdr->p_flags	= PF_R|PF_W|PF_X;
 | |
| 		phdr->p_offset	= mbase;
 | |
| 
 | |
| 		if (mbase == RMA_START) {
 | |
| 			/*
 | |
| 			 * The entire RMA region will be moved by firmware
 | |
| 			 * to the specified destination_address. Hence set
 | |
| 			 * the correct offset.
 | |
| 			 */
 | |
| 			phdr->p_offset = fdm.rmr_region.destination_address;
 | |
| 		}
 | |
| 
 | |
| 		phdr->p_paddr = mbase;
 | |
| 		phdr->p_vaddr = (unsigned long)__va(mbase);
 | |
| 		phdr->p_filesz = msize;
 | |
| 		phdr->p_memsz = msize;
 | |
| 		phdr->p_align = 0;
 | |
| 
 | |
| 		/* Increment number of program headers. */
 | |
| 		(elf->e_phnum)++;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static unsigned long init_fadump_header(unsigned long addr)
 | |
| {
 | |
| 	struct fadump_crash_info_header *fdh;
 | |
| 
 | |
| 	if (!addr)
 | |
| 		return 0;
 | |
| 
 | |
| 	fw_dump.fadumphdr_addr = addr;
 | |
| 	fdh = __va(addr);
 | |
| 	addr += sizeof(struct fadump_crash_info_header);
 | |
| 
 | |
| 	memset(fdh, 0, sizeof(struct fadump_crash_info_header));
 | |
| 	fdh->magic_number = FADUMP_CRASH_INFO_MAGIC;
 | |
| 	fdh->elfcorehdr_addr = addr;
 | |
| 	/* We will set the crashing cpu id in crash_fadump() during crash. */
 | |
| 	fdh->crashing_cpu = CPU_UNKNOWN;
 | |
| 
 | |
| 	return addr;
 | |
| }
 | |
| 
 | |
| static void register_fadump(void)
 | |
| {
 | |
| 	unsigned long addr;
 | |
| 	void *vaddr;
 | |
| 
 | |
| 	/*
 | |
| 	 * If no memory is reserved then we can not register for firmware-
 | |
| 	 * assisted dump.
 | |
| 	 */
 | |
| 	if (!fw_dump.reserve_dump_area_size)
 | |
| 		return;
 | |
| 
 | |
| 	fadump_setup_crash_memory_ranges();
 | |
| 
 | |
| 	addr = fdm.rmr_region.destination_address + fdm.rmr_region.source_len;
 | |
| 	/* Initialize fadump crash info header. */
 | |
| 	addr = init_fadump_header(addr);
 | |
| 	vaddr = __va(addr);
 | |
| 
 | |
| 	pr_debug("Creating ELF core headers at %#016lx\n", addr);
 | |
| 	fadump_create_elfcore_headers(vaddr);
 | |
| 
 | |
| 	/* register the future kernel dump with firmware. */
 | |
| 	register_fw_dump(&fdm);
 | |
| }
 | |
| 
 | |
| static int fadump_unregister_dump(struct fadump_mem_struct *fdm)
 | |
| {
 | |
| 	int rc = 0;
 | |
| 	unsigned int wait_time;
 | |
| 
 | |
| 	pr_debug("Un-register firmware-assisted dump\n");
 | |
| 
 | |
| 	/* TODO: Add upper time limit for the delay */
 | |
| 	do {
 | |
| 		rc = rtas_call(fw_dump.ibm_configure_kernel_dump, 3, 1, NULL,
 | |
| 			FADUMP_UNREGISTER, fdm,
 | |
| 			sizeof(struct fadump_mem_struct));
 | |
| 
 | |
| 		wait_time = rtas_busy_delay_time(rc);
 | |
| 		if (wait_time)
 | |
| 			mdelay(wait_time);
 | |
| 	} while (wait_time);
 | |
| 
 | |
| 	if (rc) {
 | |
| 		printk(KERN_ERR "Failed to un-register firmware-assisted dump."
 | |
| 			" unexpected error(%d).\n", rc);
 | |
| 		return rc;
 | |
| 	}
 | |
| 	fw_dump.dump_registered = 0;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int fadump_invalidate_dump(struct fadump_mem_struct *fdm)
 | |
| {
 | |
| 	int rc = 0;
 | |
| 	unsigned int wait_time;
 | |
| 
 | |
| 	pr_debug("Invalidating firmware-assisted dump registration\n");
 | |
| 
 | |
| 	/* TODO: Add upper time limit for the delay */
 | |
| 	do {
 | |
| 		rc = rtas_call(fw_dump.ibm_configure_kernel_dump, 3, 1, NULL,
 | |
| 			FADUMP_INVALIDATE, fdm,
 | |
| 			sizeof(struct fadump_mem_struct));
 | |
| 
 | |
| 		wait_time = rtas_busy_delay_time(rc);
 | |
| 		if (wait_time)
 | |
| 			mdelay(wait_time);
 | |
| 	} while (wait_time);
 | |
| 
 | |
| 	if (rc) {
 | |
| 		printk(KERN_ERR "Failed to invalidate firmware-assisted dump "
 | |
| 			"rgistration. unexpected error(%d).\n", rc);
 | |
| 		return rc;
 | |
| 	}
 | |
| 	fw_dump.dump_active = 0;
 | |
| 	fdm_active = NULL;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void fadump_cleanup(void)
 | |
| {
 | |
| 	/* Invalidate the registration only if dump is active. */
 | |
| 	if (fw_dump.dump_active) {
 | |
| 		init_fadump_mem_struct(&fdm,
 | |
| 			fdm_active->cpu_state_data.destination_address);
 | |
| 		fadump_invalidate_dump(&fdm);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Release the memory that was reserved in early boot to preserve the memory
 | |
|  * contents. The released memory will be available for general use.
 | |
|  */
 | |
| static void fadump_release_memory(unsigned long begin, unsigned long end)
 | |
| {
 | |
| 	unsigned long addr;
 | |
| 	unsigned long ra_start, ra_end;
 | |
| 
 | |
| 	ra_start = fw_dump.reserve_dump_area_start;
 | |
| 	ra_end = ra_start + fw_dump.reserve_dump_area_size;
 | |
| 
 | |
| 	for (addr = begin; addr < end; addr += PAGE_SIZE) {
 | |
| 		/*
 | |
| 		 * exclude the dump reserve area. Will reuse it for next
 | |
| 		 * fadump registration.
 | |
| 		 */
 | |
| 		if (addr <= ra_end && ((addr + PAGE_SIZE) > ra_start))
 | |
| 			continue;
 | |
| 
 | |
| 		free_reserved_page(pfn_to_page(addr >> PAGE_SHIFT));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void fadump_invalidate_release_mem(void)
 | |
| {
 | |
| 	unsigned long reserved_area_start, reserved_area_end;
 | |
| 	unsigned long destination_address;
 | |
| 
 | |
| 	mutex_lock(&fadump_mutex);
 | |
| 	if (!fw_dump.dump_active) {
 | |
| 		mutex_unlock(&fadump_mutex);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	destination_address = fdm_active->cpu_state_data.destination_address;
 | |
| 	fadump_cleanup();
 | |
| 	mutex_unlock(&fadump_mutex);
 | |
| 
 | |
| 	/*
 | |
| 	 * Save the current reserved memory bounds we will require them
 | |
| 	 * later for releasing the memory for general use.
 | |
| 	 */
 | |
| 	reserved_area_start = fw_dump.reserve_dump_area_start;
 | |
| 	reserved_area_end = reserved_area_start +
 | |
| 			fw_dump.reserve_dump_area_size;
 | |
| 	/*
 | |
| 	 * Setup reserve_dump_area_start and its size so that we can
 | |
| 	 * reuse this reserved memory for Re-registration.
 | |
| 	 */
 | |
| 	fw_dump.reserve_dump_area_start = destination_address;
 | |
| 	fw_dump.reserve_dump_area_size = get_fadump_area_size();
 | |
| 
 | |
| 	fadump_release_memory(reserved_area_start, reserved_area_end);
 | |
| 	if (fw_dump.cpu_notes_buf) {
 | |
| 		fadump_cpu_notes_buf_free(
 | |
| 				(unsigned long)__va(fw_dump.cpu_notes_buf),
 | |
| 				fw_dump.cpu_notes_buf_size);
 | |
| 		fw_dump.cpu_notes_buf = 0;
 | |
| 		fw_dump.cpu_notes_buf_size = 0;
 | |
| 	}
 | |
| 	/* Initialize the kernel dump memory structure for FAD registration. */
 | |
| 	init_fadump_mem_struct(&fdm, fw_dump.reserve_dump_area_start);
 | |
| }
 | |
| 
 | |
| static ssize_t fadump_release_memory_store(struct kobject *kobj,
 | |
| 					struct kobj_attribute *attr,
 | |
| 					const char *buf, size_t count)
 | |
| {
 | |
| 	if (!fw_dump.dump_active)
 | |
| 		return -EPERM;
 | |
| 
 | |
| 	if (buf[0] == '1') {
 | |
| 		/*
 | |
| 		 * Take away the '/proc/vmcore'. We are releasing the dump
 | |
| 		 * memory, hence it will not be valid anymore.
 | |
| 		 */
 | |
| 		vmcore_cleanup();
 | |
| 		fadump_invalidate_release_mem();
 | |
| 
 | |
| 	} else
 | |
| 		return -EINVAL;
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| static ssize_t fadump_enabled_show(struct kobject *kobj,
 | |
| 					struct kobj_attribute *attr,
 | |
| 					char *buf)
 | |
| {
 | |
| 	return sprintf(buf, "%d\n", fw_dump.fadump_enabled);
 | |
| }
 | |
| 
 | |
| static ssize_t fadump_register_show(struct kobject *kobj,
 | |
| 					struct kobj_attribute *attr,
 | |
| 					char *buf)
 | |
| {
 | |
| 	return sprintf(buf, "%d\n", fw_dump.dump_registered);
 | |
| }
 | |
| 
 | |
| static ssize_t fadump_register_store(struct kobject *kobj,
 | |
| 					struct kobj_attribute *attr,
 | |
| 					const char *buf, size_t count)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	if (!fw_dump.fadump_enabled || fdm_active)
 | |
| 		return -EPERM;
 | |
| 
 | |
| 	mutex_lock(&fadump_mutex);
 | |
| 
 | |
| 	switch (buf[0]) {
 | |
| 	case '0':
 | |
| 		if (fw_dump.dump_registered == 0) {
 | |
| 			ret = -EINVAL;
 | |
| 			goto unlock_out;
 | |
| 		}
 | |
| 		/* Un-register Firmware-assisted dump */
 | |
| 		fadump_unregister_dump(&fdm);
 | |
| 		break;
 | |
| 	case '1':
 | |
| 		if (fw_dump.dump_registered == 1) {
 | |
| 			ret = -EINVAL;
 | |
| 			goto unlock_out;
 | |
| 		}
 | |
| 		/* Register Firmware-assisted dump */
 | |
| 		register_fadump();
 | |
| 		break;
 | |
| 	default:
 | |
| 		ret = -EINVAL;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| unlock_out:
 | |
| 	mutex_unlock(&fadump_mutex);
 | |
| 	return ret < 0 ? ret : count;
 | |
| }
 | |
| 
 | |
| static int fadump_region_show(struct seq_file *m, void *private)
 | |
| {
 | |
| 	const struct fadump_mem_struct *fdm_ptr;
 | |
| 
 | |
| 	if (!fw_dump.fadump_enabled)
 | |
| 		return 0;
 | |
| 
 | |
| 	mutex_lock(&fadump_mutex);
 | |
| 	if (fdm_active)
 | |
| 		fdm_ptr = fdm_active;
 | |
| 	else {
 | |
| 		mutex_unlock(&fadump_mutex);
 | |
| 		fdm_ptr = &fdm;
 | |
| 	}
 | |
| 
 | |
| 	seq_printf(m,
 | |
| 			"CPU : [%#016llx-%#016llx] %#llx bytes, "
 | |
| 			"Dumped: %#llx\n",
 | |
| 			fdm_ptr->cpu_state_data.destination_address,
 | |
| 			fdm_ptr->cpu_state_data.destination_address +
 | |
| 			fdm_ptr->cpu_state_data.source_len - 1,
 | |
| 			fdm_ptr->cpu_state_data.source_len,
 | |
| 			fdm_ptr->cpu_state_data.bytes_dumped);
 | |
| 	seq_printf(m,
 | |
| 			"HPTE: [%#016llx-%#016llx] %#llx bytes, "
 | |
| 			"Dumped: %#llx\n",
 | |
| 			fdm_ptr->hpte_region.destination_address,
 | |
| 			fdm_ptr->hpte_region.destination_address +
 | |
| 			fdm_ptr->hpte_region.source_len - 1,
 | |
| 			fdm_ptr->hpte_region.source_len,
 | |
| 			fdm_ptr->hpte_region.bytes_dumped);
 | |
| 	seq_printf(m,
 | |
| 			"DUMP: [%#016llx-%#016llx] %#llx bytes, "
 | |
| 			"Dumped: %#llx\n",
 | |
| 			fdm_ptr->rmr_region.destination_address,
 | |
| 			fdm_ptr->rmr_region.destination_address +
 | |
| 			fdm_ptr->rmr_region.source_len - 1,
 | |
| 			fdm_ptr->rmr_region.source_len,
 | |
| 			fdm_ptr->rmr_region.bytes_dumped);
 | |
| 
 | |
| 	if (!fdm_active ||
 | |
| 		(fw_dump.reserve_dump_area_start ==
 | |
| 		fdm_ptr->cpu_state_data.destination_address))
 | |
| 		goto out;
 | |
| 
 | |
| 	/* Dump is active. Show reserved memory region. */
 | |
| 	seq_printf(m,
 | |
| 			"    : [%#016llx-%#016llx] %#llx bytes, "
 | |
| 			"Dumped: %#llx\n",
 | |
| 			(unsigned long long)fw_dump.reserve_dump_area_start,
 | |
| 			fdm_ptr->cpu_state_data.destination_address - 1,
 | |
| 			fdm_ptr->cpu_state_data.destination_address -
 | |
| 			fw_dump.reserve_dump_area_start,
 | |
| 			fdm_ptr->cpu_state_data.destination_address -
 | |
| 			fw_dump.reserve_dump_area_start);
 | |
| out:
 | |
| 	if (fdm_active)
 | |
| 		mutex_unlock(&fadump_mutex);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static struct kobj_attribute fadump_release_attr = __ATTR(fadump_release_mem,
 | |
| 						0200, NULL,
 | |
| 						fadump_release_memory_store);
 | |
| static struct kobj_attribute fadump_attr = __ATTR(fadump_enabled,
 | |
| 						0444, fadump_enabled_show,
 | |
| 						NULL);
 | |
| static struct kobj_attribute fadump_register_attr = __ATTR(fadump_registered,
 | |
| 						0644, fadump_register_show,
 | |
| 						fadump_register_store);
 | |
| 
 | |
| static int fadump_region_open(struct inode *inode, struct file *file)
 | |
| {
 | |
| 	return single_open(file, fadump_region_show, inode->i_private);
 | |
| }
 | |
| 
 | |
| static const struct file_operations fadump_region_fops = {
 | |
| 	.open    = fadump_region_open,
 | |
| 	.read    = seq_read,
 | |
| 	.llseek  = seq_lseek,
 | |
| 	.release = single_release,
 | |
| };
 | |
| 
 | |
| static void fadump_init_files(void)
 | |
| {
 | |
| 	struct dentry *debugfs_file;
 | |
| 	int rc = 0;
 | |
| 
 | |
| 	rc = sysfs_create_file(kernel_kobj, &fadump_attr.attr);
 | |
| 	if (rc)
 | |
| 		printk(KERN_ERR "fadump: unable to create sysfs file"
 | |
| 			" fadump_enabled (%d)\n", rc);
 | |
| 
 | |
| 	rc = sysfs_create_file(kernel_kobj, &fadump_register_attr.attr);
 | |
| 	if (rc)
 | |
| 		printk(KERN_ERR "fadump: unable to create sysfs file"
 | |
| 			" fadump_registered (%d)\n", rc);
 | |
| 
 | |
| 	debugfs_file = debugfs_create_file("fadump_region", 0444,
 | |
| 					powerpc_debugfs_root, NULL,
 | |
| 					&fadump_region_fops);
 | |
| 	if (!debugfs_file)
 | |
| 		printk(KERN_ERR "fadump: unable to create debugfs file"
 | |
| 				" fadump_region\n");
 | |
| 
 | |
| 	if (fw_dump.dump_active) {
 | |
| 		rc = sysfs_create_file(kernel_kobj, &fadump_release_attr.attr);
 | |
| 		if (rc)
 | |
| 			printk(KERN_ERR "fadump: unable to create sysfs file"
 | |
| 				" fadump_release_mem (%d)\n", rc);
 | |
| 	}
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Prepare for firmware-assisted dump.
 | |
|  */
 | |
| int __init setup_fadump(void)
 | |
| {
 | |
| 	if (!fw_dump.fadump_enabled)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (!fw_dump.fadump_supported) {
 | |
| 		printk(KERN_ERR "Firmware-assisted dump is not supported on"
 | |
| 			" this hardware\n");
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	fadump_show_config();
 | |
| 	/*
 | |
| 	 * If dump data is available then see if it is valid and prepare for
 | |
| 	 * saving it to the disk.
 | |
| 	 */
 | |
| 	if (fw_dump.dump_active) {
 | |
| 		/*
 | |
| 		 * if dump process fails then invalidate the registration
 | |
| 		 * and release memory before proceeding for re-registration.
 | |
| 		 */
 | |
| 		if (process_fadump(fdm_active) < 0)
 | |
| 			fadump_invalidate_release_mem();
 | |
| 	}
 | |
| 	/* Initialize the kernel dump memory structure for FAD registration. */
 | |
| 	else if (fw_dump.reserve_dump_area_size)
 | |
| 		init_fadump_mem_struct(&fdm, fw_dump.reserve_dump_area_start);
 | |
| 	fadump_init_files();
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| subsys_initcall(setup_fadump);
 |