459 lines
		
	
	
	
		
			14 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			459 lines
		
	
	
	
		
			14 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * OpenRISC Linux
 | |
|  *
 | |
|  * Linux architectural port borrowing liberally from similar works of
 | |
|  * others.  All original copyrights apply as per the original source
 | |
|  * declaration.
 | |
|  *
 | |
|  * OpenRISC implementation:
 | |
|  * Copyright (C) 2003 Matjaz Breskvar <phoenix@bsemi.com>
 | |
|  * Copyright (C) 2010-2011 Jonas Bonn <jonas@southpole.se>
 | |
|  * et al.
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License as published by
 | |
|  * the Free Software Foundation; either version 2 of the License, or
 | |
|  * (at your option) any later version.
 | |
|  */
 | |
| 
 | |
| /* or32 pgtable.h - macros and functions to manipulate page tables
 | |
|  *
 | |
|  * Based on:
 | |
|  * include/asm-cris/pgtable.h
 | |
|  */
 | |
| 
 | |
| #ifndef __ASM_OPENRISC_PGTABLE_H
 | |
| #define __ASM_OPENRISC_PGTABLE_H
 | |
| 
 | |
| #include <asm-generic/pgtable-nopmd.h>
 | |
| 
 | |
| #ifndef __ASSEMBLY__
 | |
| #include <asm/mmu.h>
 | |
| #include <asm/fixmap.h>
 | |
| 
 | |
| /*
 | |
|  * The Linux memory management assumes a three-level page table setup. On
 | |
|  * or32, we use that, but "fold" the mid level into the top-level page
 | |
|  * table. Since the MMU TLB is software loaded through an interrupt, it
 | |
|  * supports any page table structure, so we could have used a three-level
 | |
|  * setup, but for the amounts of memory we normally use, a two-level is
 | |
|  * probably more efficient.
 | |
|  *
 | |
|  * This file contains the functions and defines necessary to modify and use
 | |
|  * the or32 page table tree.
 | |
|  */
 | |
| 
 | |
| extern void paging_init(void);
 | |
| 
 | |
| /* Certain architectures need to do special things when pte's
 | |
|  * within a page table are directly modified.  Thus, the following
 | |
|  * hook is made available.
 | |
|  */
 | |
| #define set_pte(pteptr, pteval) ((*(pteptr)) = (pteval))
 | |
| #define set_pte_at(mm, addr, ptep, pteval) set_pte(ptep, pteval)
 | |
| /*
 | |
|  * (pmds are folded into pgds so this doesn't get actually called,
 | |
|  * but the define is needed for a generic inline function.)
 | |
|  */
 | |
| #define set_pmd(pmdptr, pmdval) (*(pmdptr) = pmdval)
 | |
| 
 | |
| #define PGDIR_SHIFT	(PAGE_SHIFT + (PAGE_SHIFT-2))
 | |
| #define PGDIR_SIZE	(1UL << PGDIR_SHIFT)
 | |
| #define PGDIR_MASK	(~(PGDIR_SIZE-1))
 | |
| 
 | |
| /*
 | |
|  * entries per page directory level: we use a two-level, so
 | |
|  * we don't really have any PMD directory physically.
 | |
|  * pointers are 4 bytes so we can use the page size and
 | |
|  * divide it by 4 (shift by 2).
 | |
|  */
 | |
| #define PTRS_PER_PTE	(1UL << (PAGE_SHIFT-2))
 | |
| 
 | |
| #define PTRS_PER_PGD	(1UL << (PAGE_SHIFT-2))
 | |
| 
 | |
| /* calculate how many PGD entries a user-level program can use
 | |
|  * the first mappable virtual address is 0
 | |
|  * (TASK_SIZE is the maximum virtual address space)
 | |
|  */
 | |
| 
 | |
| #define USER_PTRS_PER_PGD       (TASK_SIZE/PGDIR_SIZE)
 | |
| #define FIRST_USER_ADDRESS      0
 | |
| 
 | |
| /*
 | |
|  * Kernels own virtual memory area.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * The size and location of the vmalloc area are chosen so that modules
 | |
|  * placed in this area aren't more than a 28-bit signed offset from any
 | |
|  * kernel functions that they may need.  This greatly simplifies handling
 | |
|  * of the relocations for l.j and l.jal instructions as we don't need to
 | |
|  * introduce any trampolines for reaching "distant" code.
 | |
|  *
 | |
|  * 64 MB of vmalloc area is comparable to what's available on other arches.
 | |
|  */
 | |
| 
 | |
| #define VMALLOC_START	(PAGE_OFFSET-0x04000000)
 | |
| #define VMALLOC_END	(PAGE_OFFSET)
 | |
| #define VMALLOC_VMADDR(x) ((unsigned long)(x))
 | |
| 
 | |
| /* Define some higher level generic page attributes.
 | |
|  *
 | |
|  * If you change _PAGE_CI definition be sure to change it in
 | |
|  * io.h for ioremap_nocache() too.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * An OR32 PTE looks like this:
 | |
|  *
 | |
|  * |  31 ... 10 |  9  |  8 ... 6  |  5  |  4  |  3  |  2  |  1  |  0  |
 | |
|  *  Phys pg.num    L     PP Index    D     A    WOM   WBC   CI    CC
 | |
|  *
 | |
|  *  L  : link
 | |
|  *  PPI: Page protection index
 | |
|  *  D  : Dirty
 | |
|  *  A  : Accessed
 | |
|  *  WOM: Weakly ordered memory
 | |
|  *  WBC: Write-back cache
 | |
|  *  CI : Cache inhibit
 | |
|  *  CC : Cache coherent
 | |
|  *
 | |
|  * The protection bits below should correspond to the layout of the actual
 | |
|  * PTE as per above
 | |
|  */
 | |
| 
 | |
| #define _PAGE_CC       0x001 /* software: pte contains a translation */
 | |
| #define _PAGE_CI       0x002 /* cache inhibit          */
 | |
| #define _PAGE_WBC      0x004 /* write back cache       */
 | |
| #define _PAGE_FILE     0x004 /* set: pagecache, unset: swap (when !PRESENT) */
 | |
| #define _PAGE_WOM      0x008 /* weakly ordered memory  */
 | |
| 
 | |
| #define _PAGE_A        0x010 /* accessed               */
 | |
| #define _PAGE_D        0x020 /* dirty                  */
 | |
| #define _PAGE_URE      0x040 /* user read enable       */
 | |
| #define _PAGE_UWE      0x080 /* user write enable      */
 | |
| 
 | |
| #define _PAGE_SRE      0x100 /* superuser read enable  */
 | |
| #define _PAGE_SWE      0x200 /* superuser write enable */
 | |
| #define _PAGE_EXEC     0x400 /* software: page is executable */
 | |
| #define _PAGE_U_SHARED 0x800 /* software: page is shared in user space */
 | |
| 
 | |
| /* 0x001 is cache coherency bit, which should always be set to
 | |
|  *       1 - for SMP (when we support it)
 | |
|  *       0 - otherwise
 | |
|  *
 | |
|  * we just reuse this bit in software for _PAGE_PRESENT and
 | |
|  * force it to 0 when loading it into TLB.
 | |
|  */
 | |
| #define _PAGE_PRESENT  _PAGE_CC
 | |
| #define _PAGE_USER     _PAGE_URE
 | |
| #define _PAGE_WRITE    (_PAGE_UWE | _PAGE_SWE)
 | |
| #define _PAGE_DIRTY    _PAGE_D
 | |
| #define _PAGE_ACCESSED _PAGE_A
 | |
| #define _PAGE_NO_CACHE _PAGE_CI
 | |
| #define _PAGE_SHARED   _PAGE_U_SHARED
 | |
| #define _PAGE_READ     (_PAGE_URE | _PAGE_SRE)
 | |
| 
 | |
| #define _PAGE_CHG_MASK	(PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
 | |
| #define _PAGE_BASE     (_PAGE_PRESENT | _PAGE_ACCESSED)
 | |
| #define _PAGE_ALL      (_PAGE_PRESENT | _PAGE_ACCESSED)
 | |
| #define _KERNPG_TABLE \
 | |
| 	(_PAGE_BASE | _PAGE_SRE | _PAGE_SWE | _PAGE_ACCESSED | _PAGE_DIRTY)
 | |
| 
 | |
| #define PAGE_NONE       __pgprot(_PAGE_ALL)
 | |
| #define PAGE_READONLY   __pgprot(_PAGE_ALL | _PAGE_URE | _PAGE_SRE)
 | |
| #define PAGE_READONLY_X __pgprot(_PAGE_ALL | _PAGE_URE | _PAGE_SRE | _PAGE_EXEC)
 | |
| #define PAGE_SHARED \
 | |
| 	__pgprot(_PAGE_ALL | _PAGE_URE | _PAGE_SRE | _PAGE_UWE | _PAGE_SWE \
 | |
| 		 | _PAGE_SHARED)
 | |
| #define PAGE_SHARED_X \
 | |
| 	__pgprot(_PAGE_ALL | _PAGE_URE | _PAGE_SRE | _PAGE_UWE | _PAGE_SWE \
 | |
| 		 | _PAGE_SHARED | _PAGE_EXEC)
 | |
| #define PAGE_COPY       __pgprot(_PAGE_ALL | _PAGE_URE | _PAGE_SRE)
 | |
| #define PAGE_COPY_X     __pgprot(_PAGE_ALL | _PAGE_URE | _PAGE_SRE | _PAGE_EXEC)
 | |
| 
 | |
| #define PAGE_KERNEL \
 | |
| 	__pgprot(_PAGE_ALL | _PAGE_SRE | _PAGE_SWE \
 | |
| 		 | _PAGE_SHARED | _PAGE_DIRTY | _PAGE_EXEC)
 | |
| #define PAGE_KERNEL_RO \
 | |
| 	__pgprot(_PAGE_ALL | _PAGE_SRE \
 | |
| 		 | _PAGE_SHARED | _PAGE_DIRTY | _PAGE_EXEC)
 | |
| #define PAGE_KERNEL_NOCACHE \
 | |
| 	__pgprot(_PAGE_ALL | _PAGE_SRE | _PAGE_SWE \
 | |
| 		 | _PAGE_SHARED | _PAGE_DIRTY | _PAGE_EXEC | _PAGE_CI)
 | |
| 
 | |
| #define __P000	PAGE_NONE
 | |
| #define __P001	PAGE_READONLY_X
 | |
| #define __P010	PAGE_COPY
 | |
| #define __P011	PAGE_COPY_X
 | |
| #define __P100	PAGE_READONLY
 | |
| #define __P101	PAGE_READONLY_X
 | |
| #define __P110	PAGE_COPY
 | |
| #define __P111	PAGE_COPY_X
 | |
| 
 | |
| #define __S000	PAGE_NONE
 | |
| #define __S001	PAGE_READONLY_X
 | |
| #define __S010	PAGE_SHARED
 | |
| #define __S011	PAGE_SHARED_X
 | |
| #define __S100	PAGE_READONLY
 | |
| #define __S101	PAGE_READONLY_X
 | |
| #define __S110	PAGE_SHARED
 | |
| #define __S111	PAGE_SHARED_X
 | |
| 
 | |
| /* zero page used for uninitialized stuff */
 | |
| extern unsigned long empty_zero_page[2048];
 | |
| #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
 | |
| 
 | |
| /* number of bits that fit into a memory pointer */
 | |
| #define BITS_PER_PTR			(8*sizeof(unsigned long))
 | |
| 
 | |
| /* to align the pointer to a pointer address */
 | |
| #define PTR_MASK			(~(sizeof(void *)-1))
 | |
| 
 | |
| /* sizeof(void*)==1<<SIZEOF_PTR_LOG2 */
 | |
| /* 64-bit machines, beware!  SRB. */
 | |
| #define SIZEOF_PTR_LOG2			2
 | |
| 
 | |
| /* to find an entry in a page-table */
 | |
| #define PAGE_PTR(address) \
 | |
| ((unsigned long)(address)>>(PAGE_SHIFT-SIZEOF_PTR_LOG2)&PTR_MASK&~PAGE_MASK)
 | |
| 
 | |
| /* to set the page-dir */
 | |
| #define SET_PAGE_DIR(tsk, pgdir)
 | |
| 
 | |
| #define pte_none(x)	(!pte_val(x))
 | |
| #define pte_present(x)	(pte_val(x) & _PAGE_PRESENT)
 | |
| #define pte_clear(mm, addr, xp)	do { pte_val(*(xp)) = 0; } while (0)
 | |
| 
 | |
| #define pmd_none(x)	(!pmd_val(x))
 | |
| #define	pmd_bad(x)	((pmd_val(x) & (~PAGE_MASK)) != _KERNPG_TABLE)
 | |
| #define pmd_present(x)	(pmd_val(x) & _PAGE_PRESENT)
 | |
| #define pmd_clear(xp)	do { pmd_val(*(xp)) = 0; } while (0)
 | |
| 
 | |
| /*
 | |
|  * The following only work if pte_present() is true.
 | |
|  * Undefined behaviour if not..
 | |
|  */
 | |
| 
 | |
| static inline int pte_read(pte_t pte)  { return pte_val(pte) & _PAGE_READ; }
 | |
| static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_WRITE; }
 | |
| static inline int pte_exec(pte_t pte)  { return pte_val(pte) & _PAGE_EXEC; }
 | |
| static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; }
 | |
| static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; }
 | |
| static inline int pte_file(pte_t pte)  { return pte_val(pte) & _PAGE_FILE; }
 | |
| static inline int pte_special(pte_t pte) { return 0; }
 | |
| static inline pte_t pte_mkspecial(pte_t pte) { return pte; }
 | |
| 
 | |
| static inline pte_t pte_wrprotect(pte_t pte)
 | |
| {
 | |
| 	pte_val(pte) &= ~(_PAGE_WRITE);
 | |
| 	return pte;
 | |
| }
 | |
| 
 | |
| static inline pte_t pte_rdprotect(pte_t pte)
 | |
| {
 | |
| 	pte_val(pte) &= ~(_PAGE_READ);
 | |
| 	return pte;
 | |
| }
 | |
| 
 | |
| static inline pte_t pte_exprotect(pte_t pte)
 | |
| {
 | |
| 	pte_val(pte) &= ~(_PAGE_EXEC);
 | |
| 	return pte;
 | |
| }
 | |
| 
 | |
| static inline pte_t pte_mkclean(pte_t pte)
 | |
| {
 | |
| 	pte_val(pte) &= ~(_PAGE_DIRTY);
 | |
| 	return pte;
 | |
| }
 | |
| 
 | |
| static inline pte_t pte_mkold(pte_t pte)
 | |
| {
 | |
| 	pte_val(pte) &= ~(_PAGE_ACCESSED);
 | |
| 	return pte;
 | |
| }
 | |
| 
 | |
| static inline pte_t pte_mkwrite(pte_t pte)
 | |
| {
 | |
| 	pte_val(pte) |= _PAGE_WRITE;
 | |
| 	return pte;
 | |
| }
 | |
| 
 | |
| static inline pte_t pte_mkread(pte_t pte)
 | |
| {
 | |
| 	pte_val(pte) |= _PAGE_READ;
 | |
| 	return pte;
 | |
| }
 | |
| 
 | |
| static inline pte_t pte_mkexec(pte_t pte)
 | |
| {
 | |
| 	pte_val(pte) |= _PAGE_EXEC;
 | |
| 	return pte;
 | |
| }
 | |
| 
 | |
| static inline pte_t pte_mkdirty(pte_t pte)
 | |
| {
 | |
| 	pte_val(pte) |= _PAGE_DIRTY;
 | |
| 	return pte;
 | |
| }
 | |
| 
 | |
| static inline pte_t pte_mkyoung(pte_t pte)
 | |
| {
 | |
| 	pte_val(pte) |= _PAGE_ACCESSED;
 | |
| 	return pte;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Conversion functions: convert a page and protection to a page entry,
 | |
|  * and a page entry and page directory to the page they refer to.
 | |
|  */
 | |
| 
 | |
| /* What actually goes as arguments to the various functions is less than
 | |
|  * obvious, but a rule of thumb is that struct page's goes as struct page *,
 | |
|  * really physical DRAM addresses are unsigned long's, and DRAM "virtual"
 | |
|  * addresses (the 0xc0xxxxxx's) goes as void *'s.
 | |
|  */
 | |
| 
 | |
| static inline pte_t __mk_pte(void *page, pgprot_t pgprot)
 | |
| {
 | |
| 	pte_t pte;
 | |
| 	/* the PTE needs a physical address */
 | |
| 	pte_val(pte) = __pa(page) | pgprot_val(pgprot);
 | |
| 	return pte;
 | |
| }
 | |
| 
 | |
| #define mk_pte(page, pgprot) __mk_pte(page_address(page), (pgprot))
 | |
| 
 | |
| #define mk_pte_phys(physpage, pgprot) \
 | |
| ({                                                                      \
 | |
| 	pte_t __pte;                                                    \
 | |
| 									\
 | |
| 	pte_val(__pte) = (physpage) + pgprot_val(pgprot);               \
 | |
| 	__pte;                                                          \
 | |
| })
 | |
| 
 | |
| static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
 | |
| {
 | |
| 	pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot);
 | |
| 	return pte;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * pte_val refers to a page in the 0x0xxxxxxx physical DRAM interval
 | |
|  * __pte_page(pte_val) refers to the "virtual" DRAM interval
 | |
|  * pte_pagenr refers to the page-number counted starting from the virtual
 | |
|  * DRAM start
 | |
|  */
 | |
| 
 | |
| static inline unsigned long __pte_page(pte_t pte)
 | |
| {
 | |
| 	/* the PTE contains a physical address */
 | |
| 	return (unsigned long)__va(pte_val(pte) & PAGE_MASK);
 | |
| }
 | |
| 
 | |
| #define pte_pagenr(pte)         ((__pte_page(pte) - PAGE_OFFSET) >> PAGE_SHIFT)
 | |
| 
 | |
| /* permanent address of a page */
 | |
| 
 | |
| #define __page_address(page) (PAGE_OFFSET + (((page) - mem_map) << PAGE_SHIFT))
 | |
| #define pte_page(pte)		(mem_map+pte_pagenr(pte))
 | |
| 
 | |
| /*
 | |
|  * only the pte's themselves need to point to physical DRAM (see above)
 | |
|  * the pagetable links are purely handled within the kernel SW and thus
 | |
|  * don't need the __pa and __va transformations.
 | |
|  */
 | |
| static inline void pmd_set(pmd_t *pmdp, pte_t *ptep)
 | |
| {
 | |
| 	pmd_val(*pmdp) = _KERNPG_TABLE | (unsigned long) ptep;
 | |
| }
 | |
| 
 | |
| #define pmd_page(pmd)		(pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT))
 | |
| #define pmd_page_kernel(pmd)    ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))
 | |
| 
 | |
| /* to find an entry in a page-table-directory. */
 | |
| #define pgd_index(address)      ((address >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
 | |
| 
 | |
| #define __pgd_offset(address)   pgd_index(address)
 | |
| 
 | |
| #define pgd_offset(mm, address) ((mm)->pgd+pgd_index(address))
 | |
| 
 | |
| /* to find an entry in a kernel page-table-directory */
 | |
| #define pgd_offset_k(address) pgd_offset(&init_mm, address)
 | |
| 
 | |
| #define __pmd_offset(address) \
 | |
| 	(((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
 | |
| 
 | |
| /*
 | |
|  * the pte page can be thought of an array like this: pte_t[PTRS_PER_PTE]
 | |
|  *
 | |
|  * this macro returns the index of the entry in the pte page which would
 | |
|  * control the given virtual address
 | |
|  */
 | |
| #define __pte_offset(address)                   \
 | |
| 	(((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
 | |
| #define pte_offset_kernel(dir, address)         \
 | |
| 	((pte_t *) pmd_page_kernel(*(dir)) +  __pte_offset(address))
 | |
| #define pte_offset_map(dir, address)	        \
 | |
| 	((pte_t *)page_address(pmd_page(*(dir))) + __pte_offset(address))
 | |
| #define pte_offset_map_nested(dir, address)     \
 | |
| 	pte_offset_map(dir, address)
 | |
| 
 | |
| #define pte_unmap(pte)          do { } while (0)
 | |
| #define pte_unmap_nested(pte)   do { } while (0)
 | |
| #define pte_pfn(x)		((unsigned long)(((x).pte)) >> PAGE_SHIFT)
 | |
| #define pfn_pte(pfn, prot)  __pte((((pfn) << PAGE_SHIFT)) | pgprot_val(prot))
 | |
| 
 | |
| #define pte_ERROR(e) \
 | |
| 	printk(KERN_ERR "%s:%d: bad pte %p(%08lx).\n", \
 | |
| 	       __FILE__, __LINE__, &(e), pte_val(e))
 | |
| #define pgd_ERROR(e) \
 | |
| 	printk(KERN_ERR "%s:%d: bad pgd %p(%08lx).\n", \
 | |
| 	       __FILE__, __LINE__, &(e), pgd_val(e))
 | |
| 
 | |
| extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; /* defined in head.S */
 | |
| 
 | |
| /*
 | |
|  * or32 doesn't have any external MMU info: the kernel page
 | |
|  * tables contain all the necessary information.
 | |
|  *
 | |
|  * Actually I am not sure on what this could be used for.
 | |
|  */
 | |
| static inline void update_mmu_cache(struct vm_area_struct *vma,
 | |
| 	unsigned long address, pte_t *pte)
 | |
| {
 | |
| }
 | |
| 
 | |
| /* __PHX__ FIXME, SWAP, this probably doesn't work */
 | |
| 
 | |
| /* Encode and de-code a swap entry (must be !pte_none(e) && !pte_present(e)) */
 | |
| /* Since the PAGE_PRESENT bit is bit 4, we can use the bits above */
 | |
| 
 | |
| #define __swp_type(x)			(((x).val >> 5) & 0x7f)
 | |
| #define __swp_offset(x)			((x).val >> 12)
 | |
| #define __swp_entry(type, offset) \
 | |
| 	((swp_entry_t) { ((type) << 5) | ((offset) << 12) })
 | |
| #define __pte_to_swp_entry(pte)		((swp_entry_t) { pte_val(pte) })
 | |
| #define __swp_entry_to_pte(x)		((pte_t) { (x).val })
 | |
| 
 | |
| /* Encode and decode a nonlinear file mapping entry */
 | |
| 
 | |
| #define PTE_FILE_MAX_BITS               26
 | |
| #define pte_to_pgoff(x)	                (pte_val(x) >> 6)
 | |
| #define pgoff_to_pte(x)	                __pte(((x) << 6) | _PAGE_FILE)
 | |
| 
 | |
| #define kern_addr_valid(addr)           (1)
 | |
| 
 | |
| #include <asm-generic/pgtable.h>
 | |
| 
 | |
| /*
 | |
|  * No page table caches to initialise
 | |
|  */
 | |
| #define pgtable_cache_init()		do { } while (0)
 | |
| 
 | |
| typedef pte_t *pte_addr_t;
 | |
| 
 | |
| #endif /* __ASSEMBLY__ */
 | |
| #endif /* __ASM_OPENRISC_PGTABLE_H */
 | 
