 7034228792
			
		
	
	
	7034228792
	
	
	
		
			
			Having received another series of whitespace patches I decided to do this once and for all rather than dealing with this kind of patches trickling in forever. Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
		
			
				
	
	
		
			244 lines
		
	
	
	
		
			5.4 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			244 lines
		
	
	
	
		
			5.4 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| #include <linux/kernel.h>
 | |
| #include <linux/mmzone.h>
 | |
| #include <linux/nodemask.h>
 | |
| #include <linux/spinlock.h>
 | |
| #include <linux/smp.h>
 | |
| #include <linux/atomic.h>
 | |
| #include <asm/sn/types.h>
 | |
| #include <asm/sn/addrs.h>
 | |
| #include <asm/sn/nmi.h>
 | |
| #include <asm/sn/arch.h>
 | |
| #include <asm/sn/sn0/hub.h>
 | |
| 
 | |
| #if 0
 | |
| #define NODE_NUM_CPUS(n)	CNODE_NUM_CPUS(n)
 | |
| #else
 | |
| #define NODE_NUM_CPUS(n)	CPUS_PER_NODE
 | |
| #endif
 | |
| 
 | |
| #define CNODEID_NONE (cnodeid_t)-1
 | |
| 
 | |
| typedef unsigned long machreg_t;
 | |
| 
 | |
| static arch_spinlock_t nmi_lock = __ARCH_SPIN_LOCK_UNLOCKED;
 | |
| 
 | |
| /*
 | |
|  * Lets see what else we need to do here. Set up sp, gp?
 | |
|  */
 | |
| void nmi_dump(void)
 | |
| {
 | |
| 	void cont_nmi_dump(void);
 | |
| 
 | |
| 	cont_nmi_dump();
 | |
| }
 | |
| 
 | |
| void install_cpu_nmi_handler(int slice)
 | |
| {
 | |
| 	nmi_t *nmi_addr;
 | |
| 
 | |
| 	nmi_addr = (nmi_t *)NMI_ADDR(get_nasid(), slice);
 | |
| 	if (nmi_addr->call_addr)
 | |
| 		return;
 | |
| 	nmi_addr->magic = NMI_MAGIC;
 | |
| 	nmi_addr->call_addr = (void *)nmi_dump;
 | |
| 	nmi_addr->call_addr_c =
 | |
| 		(void *)(~((unsigned long)(nmi_addr->call_addr)));
 | |
| 	nmi_addr->call_parm = 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Copy the cpu registers which have been saved in the IP27prom format
 | |
|  * into the eframe format for the node under consideration.
 | |
|  */
 | |
| 
 | |
| void nmi_cpu_eframe_save(nasid_t nasid, int slice)
 | |
| {
 | |
| 	struct reg_struct *nr;
 | |
| 	int		i;
 | |
| 
 | |
| 	/* Get the pointer to the current cpu's register set. */
 | |
| 	nr = (struct reg_struct *)
 | |
| 		(TO_UNCAC(TO_NODE(nasid, IP27_NMI_KREGS_OFFSET)) +
 | |
| 		slice * IP27_NMI_KREGS_CPU_SIZE);
 | |
| 
 | |
| 	printk("NMI nasid %d: slice %d\n", nasid, slice);
 | |
| 
 | |
| 	/*
 | |
| 	 * Saved main processor registers
 | |
| 	 */
 | |
| 	for (i = 0; i < 32; ) {
 | |
| 		if ((i % 4) == 0)
 | |
| 			printk("$%2d   :", i);
 | |
| 		printk(" %016lx", nr->gpr[i]);
 | |
| 
 | |
| 		i++;
 | |
| 		if ((i % 4) == 0)
 | |
| 			printk("\n");
 | |
| 	}
 | |
| 
 | |
| 	printk("Hi    : (value lost)\n");
 | |
| 	printk("Lo    : (value lost)\n");
 | |
| 
 | |
| 	/*
 | |
| 	 * Saved cp0 registers
 | |
| 	 */
 | |
| 	printk("epc   : %016lx %pS\n", nr->epc, (void *) nr->epc);
 | |
| 	printk("%s\n", print_tainted());
 | |
| 	printk("ErrEPC: %016lx %pS\n", nr->error_epc, (void *) nr->error_epc);
 | |
| 	printk("ra    : %016lx %pS\n", nr->gpr[31], (void *) nr->gpr[31]);
 | |
| 	printk("Status: %08lx	      ", nr->sr);
 | |
| 
 | |
| 	if (nr->sr & ST0_KX)
 | |
| 		printk("KX ");
 | |
| 	if (nr->sr & ST0_SX)
 | |
| 		printk("SX	");
 | |
| 	if (nr->sr & ST0_UX)
 | |
| 		printk("UX ");
 | |
| 
 | |
| 	switch (nr->sr & ST0_KSU) {
 | |
| 	case KSU_USER:
 | |
| 		printk("USER ");
 | |
| 		break;
 | |
| 	case KSU_SUPERVISOR:
 | |
| 		printk("SUPERVISOR ");
 | |
| 		break;
 | |
| 	case KSU_KERNEL:
 | |
| 		printk("KERNEL ");
 | |
| 		break;
 | |
| 	default:
 | |
| 		printk("BAD_MODE ");
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	if (nr->sr & ST0_ERL)
 | |
| 		printk("ERL ");
 | |
| 	if (nr->sr & ST0_EXL)
 | |
| 		printk("EXL ");
 | |
| 	if (nr->sr & ST0_IE)
 | |
| 		printk("IE ");
 | |
| 	printk("\n");
 | |
| 
 | |
| 	printk("Cause : %08lx\n", nr->cause);
 | |
| 	printk("PrId  : %08x\n", read_c0_prid());
 | |
| 	printk("BadVA : %016lx\n", nr->badva);
 | |
| 	printk("CErr  : %016lx\n", nr->cache_err);
 | |
| 	printk("NMI_SR: %016lx\n", nr->nmi_sr);
 | |
| 
 | |
| 	printk("\n");
 | |
| }
 | |
| 
 | |
| void nmi_dump_hub_irq(nasid_t nasid, int slice)
 | |
| {
 | |
| 	hubreg_t mask0, mask1, pend0, pend1;
 | |
| 
 | |
| 	if (slice == 0) {				/* Slice A */
 | |
| 		mask0 = REMOTE_HUB_L(nasid, PI_INT_MASK0_A);
 | |
| 		mask1 = REMOTE_HUB_L(nasid, PI_INT_MASK1_A);
 | |
| 	} else {					/* Slice B */
 | |
| 		mask0 = REMOTE_HUB_L(nasid, PI_INT_MASK0_B);
 | |
| 		mask1 = REMOTE_HUB_L(nasid, PI_INT_MASK1_B);
 | |
| 	}
 | |
| 
 | |
| 	pend0 = REMOTE_HUB_L(nasid, PI_INT_PEND0);
 | |
| 	pend1 = REMOTE_HUB_L(nasid, PI_INT_PEND1);
 | |
| 
 | |
| 	printk("PI_INT_MASK0: %16Lx PI_INT_MASK1: %16Lx\n", mask0, mask1);
 | |
| 	printk("PI_INT_PEND0: %16Lx PI_INT_PEND1: %16Lx\n", pend0, pend1);
 | |
| 	printk("\n\n");
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Copy the cpu registers which have been saved in the IP27prom format
 | |
|  * into the eframe format for the node under consideration.
 | |
|  */
 | |
| void nmi_node_eframe_save(cnodeid_t  cnode)
 | |
| {
 | |
| 	nasid_t nasid;
 | |
| 	int slice;
 | |
| 
 | |
| 	/* Make sure that we have a valid node */
 | |
| 	if (cnode == CNODEID_NONE)
 | |
| 		return;
 | |
| 
 | |
| 	nasid = COMPACT_TO_NASID_NODEID(cnode);
 | |
| 	if (nasid == INVALID_NASID)
 | |
| 		return;
 | |
| 
 | |
| 	/* Save the registers into eframe for each cpu */
 | |
| 	for (slice = 0; slice < NODE_NUM_CPUS(slice); slice++) {
 | |
| 		nmi_cpu_eframe_save(nasid, slice);
 | |
| 		nmi_dump_hub_irq(nasid, slice);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Save the nmi cpu registers for all cpus in the system.
 | |
|  */
 | |
| void
 | |
| nmi_eframes_save(void)
 | |
| {
 | |
| 	cnodeid_t	cnode;
 | |
| 
 | |
| 	for_each_online_node(cnode)
 | |
| 		nmi_node_eframe_save(cnode);
 | |
| }
 | |
| 
 | |
| void
 | |
| cont_nmi_dump(void)
 | |
| {
 | |
| #ifndef REAL_NMI_SIGNAL
 | |
| 	static atomic_t nmied_cpus = ATOMIC_INIT(0);
 | |
| 
 | |
| 	atomic_inc(&nmied_cpus);
 | |
| #endif
 | |
| 	/*
 | |
| 	 * Only allow 1 cpu to proceed
 | |
| 	 */
 | |
| 	arch_spin_lock(&nmi_lock);
 | |
| 
 | |
| #ifdef REAL_NMI_SIGNAL
 | |
| 	/*
 | |
| 	 * Wait up to 15 seconds for the other cpus to respond to the NMI.
 | |
| 	 * If a cpu has not responded after 10 sec, send it 1 additional NMI.
 | |
| 	 * This is for 2 reasons:
 | |
| 	 *	- sometimes a MMSC fail to NMI all cpus.
 | |
| 	 *	- on 512p SN0 system, the MMSC will only send NMIs to
 | |
| 	 *	  half the cpus. Unfortunately, we don't know which cpus may be
 | |
| 	 *	  NMIed - it depends on how the site chooses to configure.
 | |
| 	 *
 | |
| 	 * Note: it has been measure that it takes the MMSC up to 2.3 secs to
 | |
| 	 * send NMIs to all cpus on a 256p system.
 | |
| 	 */
 | |
| 	for (i=0; i < 1500; i++) {
 | |
| 		for_each_online_node(node)
 | |
| 			if (NODEPDA(node)->dump_count == 0)
 | |
| 				break;
 | |
| 		if (node == MAX_NUMNODES)
 | |
| 			break;
 | |
| 		if (i == 1000) {
 | |
| 			for_each_online_node(node)
 | |
| 				if (NODEPDA(node)->dump_count == 0) {
 | |
| 					cpu = cpumask_first(cpumask_of_node(node));
 | |
| 					for (n=0; n < CNODE_NUM_CPUS(node); cpu++, n++) {
 | |
| 						CPUMASK_SETB(nmied_cpus, cpu);
 | |
| 						/*
 | |
| 						 * cputonasid, cputoslice
 | |
| 						 * needs kernel cpuid
 | |
| 						 */
 | |
| 						SEND_NMI((cputonasid(cpu)), (cputoslice(cpu)));
 | |
| 					}
 | |
| 				}
 | |
| 
 | |
| 		}
 | |
| 		udelay(10000);
 | |
| 	}
 | |
| #else
 | |
| 	while (atomic_read(&nmied_cpus) != num_online_cpus());
 | |
| #endif
 | |
| 
 | |
| 	/*
 | |
| 	 * Save the nmi cpu registers for all cpu in the eframe format.
 | |
| 	 */
 | |
| 	nmi_eframes_save();
 | |
| 	LOCAL_HUB_S(NI_PORT_RESET, NPR_PORTRESET | NPR_LOCALRESET);
 | |
| }
 |