 98d4884ca5
			
		
	
	
	98d4884ca5
	
	
	
		
			
			XLP9XX has 20 cores per node, opposed to 8 on earlier XLP8XX. Update code that calculates node id from cpu id to handle this. Signed-off-by: Jayachandran C <jchandra@broadcom.com> Signed-off-by: John Crispin <blogic@openwrt.org> Patchwork: http://patchwork.linux-mips.org/patch/6283/
		
			
				
	
	
		
			494 lines
		
	
	
	
		
			13 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			494 lines
		
	
	
	
		
			13 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2003-2012 Broadcom Corporation
 | |
|  * All Rights Reserved
 | |
|  *
 | |
|  * This software is available to you under a choice of one of two
 | |
|  * licenses.  You may choose to be licensed under the terms of the GNU
 | |
|  * General Public License (GPL) Version 2, available from the file
 | |
|  * COPYING in the main directory of this source tree, or the Broadcom
 | |
|  * license below:
 | |
|  *
 | |
|  * Redistribution and use in source and binary forms, with or without
 | |
|  * modification, are permitted provided that the following conditions
 | |
|  * are met:
 | |
|  *
 | |
|  * 1. Redistributions of source code must retain the above copyright
 | |
|  *    notice, this list of conditions and the following disclaimer.
 | |
|  * 2. Redistributions in binary form must reproduce the above copyright
 | |
|  *    notice, this list of conditions and the following disclaimer in
 | |
|  *    the documentation and/or other materials provided with the
 | |
|  *    distribution.
 | |
|  *
 | |
|  * THIS SOFTWARE IS PROVIDED BY BROADCOM ``AS IS'' AND ANY EXPRESS OR
 | |
|  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 | |
|  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 | |
|  * ARE DISCLAIMED. IN NO EVENT SHALL BROADCOM OR CONTRIBUTORS BE LIABLE
 | |
|  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 | |
|  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 | |
|  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
 | |
|  * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
 | |
|  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
 | |
|  * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
 | |
|  * IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 | |
|  */
 | |
| 
 | |
| #include <linux/types.h>
 | |
| #include <linux/pci.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/msi.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/irq.h>
 | |
| #include <linux/irqdesc.h>
 | |
| #include <linux/console.h>
 | |
| 
 | |
| #include <asm/io.h>
 | |
| 
 | |
| #include <asm/netlogic/interrupt.h>
 | |
| #include <asm/netlogic/haldefs.h>
 | |
| #include <asm/netlogic/common.h>
 | |
| #include <asm/netlogic/mips-extns.h>
 | |
| 
 | |
| #include <asm/netlogic/xlp-hal/iomap.h>
 | |
| #include <asm/netlogic/xlp-hal/xlp.h>
 | |
| #include <asm/netlogic/xlp-hal/pic.h>
 | |
| #include <asm/netlogic/xlp-hal/pcibus.h>
 | |
| #include <asm/netlogic/xlp-hal/bridge.h>
 | |
| 
 | |
| #define XLP_MSIVEC_PER_LINK	32
 | |
| #define XLP_MSIXVEC_TOTAL	32
 | |
| #define XLP_MSIXVEC_PER_LINK	8
 | |
| 
 | |
| /* 128 MSI irqs per node, mapped starting at NLM_MSI_VEC_BASE */
 | |
| static inline int nlm_link_msiirq(int link, int msivec)
 | |
| {
 | |
| 	return NLM_MSI_VEC_BASE + link * XLP_MSIVEC_PER_LINK + msivec;
 | |
| }
 | |
| 
 | |
| static inline int nlm_irq_msivec(int irq)
 | |
| {
 | |
| 	return irq % XLP_MSIVEC_PER_LINK;
 | |
| }
 | |
| 
 | |
| static inline int nlm_irq_msilink(int irq)
 | |
| {
 | |
| 	return (irq % (XLP_MSIVEC_PER_LINK * PCIE_NLINKS)) /
 | |
| 						XLP_MSIVEC_PER_LINK;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Only 32 MSI-X vectors are possible because there are only 32 PIC
 | |
|  * interrupts for MSI. We split them statically and use 8 MSI-X vectors
 | |
|  * per link - this keeps the allocation and lookup simple.
 | |
|  */
 | |
| static inline int nlm_link_msixirq(int link, int bit)
 | |
| {
 | |
| 	return NLM_MSIX_VEC_BASE + link * XLP_MSIXVEC_PER_LINK + bit;
 | |
| }
 | |
| 
 | |
| static inline int nlm_irq_msixvec(int irq)
 | |
| {
 | |
| 	return irq % XLP_MSIXVEC_TOTAL;  /* works when given xirq */
 | |
| }
 | |
| 
 | |
| static inline int nlm_irq_msixlink(int irq)
 | |
| {
 | |
| 	return nlm_irq_msixvec(irq) / XLP_MSIXVEC_PER_LINK;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Per link MSI and MSI-X information, set as IRQ handler data for
 | |
|  * MSI and MSI-X interrupts.
 | |
|  */
 | |
| struct xlp_msi_data {
 | |
| 	struct nlm_soc_info *node;
 | |
| 	uint64_t	lnkbase;
 | |
| 	uint32_t	msi_enabled_mask;
 | |
| 	uint32_t	msi_alloc_mask;
 | |
| 	uint32_t	msix_alloc_mask;
 | |
| 	spinlock_t	msi_lock;
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * MSI Chip definitions
 | |
|  *
 | |
|  * On XLP, there is a PIC interrupt associated with each PCIe link on the
 | |
|  * chip (which appears as a PCI bridge to us). This gives us 32 MSI irqa
 | |
|  * per link and 128 overall.
 | |
|  *
 | |
|  * When a device connected to the link raises a MSI interrupt, we get a
 | |
|  * link interrupt and we then have to look at PCIE_MSI_STATUS register at
 | |
|  * the bridge to map it to the IRQ
 | |
|  */
 | |
| static void xlp_msi_enable(struct irq_data *d)
 | |
| {
 | |
| 	struct xlp_msi_data *md = irq_data_get_irq_handler_data(d);
 | |
| 	unsigned long flags;
 | |
| 	int vec;
 | |
| 
 | |
| 	vec = nlm_irq_msivec(d->irq);
 | |
| 	spin_lock_irqsave(&md->msi_lock, flags);
 | |
| 	md->msi_enabled_mask |= 1u << vec;
 | |
| 	nlm_write_reg(md->lnkbase, PCIE_MSI_EN, md->msi_enabled_mask);
 | |
| 	spin_unlock_irqrestore(&md->msi_lock, flags);
 | |
| }
 | |
| 
 | |
| static void xlp_msi_disable(struct irq_data *d)
 | |
| {
 | |
| 	struct xlp_msi_data *md = irq_data_get_irq_handler_data(d);
 | |
| 	unsigned long flags;
 | |
| 	int vec;
 | |
| 
 | |
| 	vec = nlm_irq_msivec(d->irq);
 | |
| 	spin_lock_irqsave(&md->msi_lock, flags);
 | |
| 	md->msi_enabled_mask &= ~(1u << vec);
 | |
| 	nlm_write_reg(md->lnkbase, PCIE_MSI_EN, md->msi_enabled_mask);
 | |
| 	spin_unlock_irqrestore(&md->msi_lock, flags);
 | |
| }
 | |
| 
 | |
| static void xlp_msi_mask_ack(struct irq_data *d)
 | |
| {
 | |
| 	struct xlp_msi_data *md = irq_data_get_irq_handler_data(d);
 | |
| 	int link, vec;
 | |
| 
 | |
| 	link = nlm_irq_msilink(d->irq);
 | |
| 	vec = nlm_irq_msivec(d->irq);
 | |
| 	xlp_msi_disable(d);
 | |
| 
 | |
| 	/* Ack MSI on bridge */
 | |
| 	nlm_write_reg(md->lnkbase, PCIE_MSI_STATUS, 1u << vec);
 | |
| 
 | |
| 	/* Ack at eirr and PIC */
 | |
| 	ack_c0_eirr(PIC_PCIE_LINK_MSI_IRQ(link));
 | |
| 	nlm_pic_ack(md->node->picbase, PIC_IRT_PCIE_LINK_INDEX(link));
 | |
| }
 | |
| 
 | |
| static struct irq_chip xlp_msi_chip = {
 | |
| 	.name		= "XLP-MSI",
 | |
| 	.irq_enable	= xlp_msi_enable,
 | |
| 	.irq_disable	= xlp_msi_disable,
 | |
| 	.irq_mask_ack	= xlp_msi_mask_ack,
 | |
| 	.irq_unmask	= xlp_msi_enable,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * The MSI-X interrupt handling is different from MSI, there are 32
 | |
|  * MSI-X interrupts generated by the PIC and each of these correspond
 | |
|  * to a MSI-X vector (0-31) that can be assigned.
 | |
|  *
 | |
|  * We divide the MSI-X vectors to 8 per link and do a per-link
 | |
|  * allocation
 | |
|  *
 | |
|  * Enable and disable done using standard MSI functions.
 | |
|  */
 | |
| static void xlp_msix_mask_ack(struct irq_data *d)
 | |
| {
 | |
| 	struct xlp_msi_data *md = irq_data_get_irq_handler_data(d);
 | |
| 	int link, msixvec;
 | |
| 
 | |
| 	msixvec = nlm_irq_msixvec(d->irq);
 | |
| 	link = nlm_irq_msixlink(d->irq);
 | |
| 	mask_msi_irq(d);
 | |
| 
 | |
| 	/* Ack MSI on bridge */
 | |
| 	nlm_write_reg(md->lnkbase, PCIE_MSIX_STATUS, 1u << msixvec);
 | |
| 
 | |
| 	/* Ack at eirr and PIC */
 | |
| 	ack_c0_eirr(PIC_PCIE_MSIX_IRQ(link));
 | |
| 	nlm_pic_ack(md->node->picbase, PIC_IRT_PCIE_MSIX_INDEX(msixvec));
 | |
| }
 | |
| 
 | |
| static struct irq_chip xlp_msix_chip = {
 | |
| 	.name		= "XLP-MSIX",
 | |
| 	.irq_enable	= unmask_msi_irq,
 | |
| 	.irq_disable	= mask_msi_irq,
 | |
| 	.irq_mask_ack	= xlp_msix_mask_ack,
 | |
| 	.irq_unmask	= unmask_msi_irq,
 | |
| };
 | |
| 
 | |
| void destroy_irq(unsigned int irq)
 | |
| {
 | |
| 	    /* nothing to do yet */
 | |
| }
 | |
| 
 | |
| void arch_teardown_msi_irq(unsigned int irq)
 | |
| {
 | |
| 	destroy_irq(irq);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Setup a PCIe link for MSI.  By default, the links are in
 | |
|  * legacy interrupt mode.  We will switch them to MSI mode
 | |
|  * at the first MSI request.
 | |
|  */
 | |
| static void xlp_config_link_msi(uint64_t lnkbase, int lirq, uint64_t msiaddr)
 | |
| {
 | |
| 	u32 val;
 | |
| 
 | |
| 	val = nlm_read_reg(lnkbase, PCIE_INT_EN0);
 | |
| 	if ((val & 0x200) == 0) {
 | |
| 		val |= 0x200;		/* MSI Interrupt enable */
 | |
| 		nlm_write_reg(lnkbase, PCIE_INT_EN0, val);
 | |
| 	}
 | |
| 
 | |
| 	val = nlm_read_reg(lnkbase, 0x1);	/* CMD */
 | |
| 	if ((val & 0x0400) == 0) {
 | |
| 		val |= 0x0400;
 | |
| 		nlm_write_reg(lnkbase, 0x1, val);
 | |
| 	}
 | |
| 
 | |
| 	/* Update IRQ in the PCI irq reg */
 | |
| 	val = nlm_read_pci_reg(lnkbase, 0xf);
 | |
| 	val &= ~0x1fu;
 | |
| 	val |= (1 << 8) | lirq;
 | |
| 	nlm_write_pci_reg(lnkbase, 0xf, val);
 | |
| 
 | |
| 	/* MSI addr */
 | |
| 	nlm_write_reg(lnkbase, PCIE_BRIDGE_MSI_ADDRH, msiaddr >> 32);
 | |
| 	nlm_write_reg(lnkbase, PCIE_BRIDGE_MSI_ADDRL, msiaddr & 0xffffffff);
 | |
| 
 | |
| 	/* MSI cap for bridge */
 | |
| 	val = nlm_read_reg(lnkbase, PCIE_BRIDGE_MSI_CAP);
 | |
| 	if ((val & (1 << 16)) == 0) {
 | |
| 		val |= 0xb << 16;		/* mmc32, msi enable */
 | |
| 		nlm_write_reg(lnkbase, PCIE_BRIDGE_MSI_CAP, val);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Allocate a MSI vector on a link
 | |
|  */
 | |
| static int xlp_setup_msi(uint64_t lnkbase, int node, int link,
 | |
| 	struct msi_desc *desc)
 | |
| {
 | |
| 	struct xlp_msi_data *md;
 | |
| 	struct msi_msg msg;
 | |
| 	unsigned long flags;
 | |
| 	int msivec, irt, lirq, xirq, ret;
 | |
| 	uint64_t msiaddr;
 | |
| 
 | |
| 	/* Get MSI data for the link */
 | |
| 	lirq = PIC_PCIE_LINK_MSI_IRQ(link);
 | |
| 	xirq = nlm_irq_to_xirq(node, nlm_link_msiirq(link, 0));
 | |
| 	md = irq_get_handler_data(xirq);
 | |
| 	msiaddr = MSI_LINK_ADDR(node, link);
 | |
| 
 | |
| 	spin_lock_irqsave(&md->msi_lock, flags);
 | |
| 	if (md->msi_alloc_mask == 0) {
 | |
| 		/* switch the link IRQ to MSI range */
 | |
| 		xlp_config_link_msi(lnkbase, lirq, msiaddr);
 | |
| 		irt = PIC_IRT_PCIE_LINK_INDEX(link);
 | |
| 		nlm_setup_pic_irq(node, lirq, lirq, irt);
 | |
| 		nlm_pic_init_irt(nlm_get_node(node)->picbase, irt, lirq,
 | |
| 				 node * nlm_threads_per_node(), 1 /*en */);
 | |
| 	}
 | |
| 
 | |
| 	/* allocate a MSI vec, and tell the bridge about it */
 | |
| 	msivec = fls(md->msi_alloc_mask);
 | |
| 	if (msivec == XLP_MSIVEC_PER_LINK) {
 | |
| 		spin_unlock_irqrestore(&md->msi_lock, flags);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 	md->msi_alloc_mask |= (1u << msivec);
 | |
| 	spin_unlock_irqrestore(&md->msi_lock, flags);
 | |
| 
 | |
| 	msg.address_hi = msiaddr >> 32;
 | |
| 	msg.address_lo = msiaddr & 0xffffffff;
 | |
| 	msg.data = 0xc00 | msivec;
 | |
| 
 | |
| 	xirq = xirq + msivec;		/* msi mapped to global irq space */
 | |
| 	ret = irq_set_msi_desc(xirq, desc);
 | |
| 	if (ret < 0) {
 | |
| 		destroy_irq(xirq);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	write_msi_msg(xirq, &msg);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Switch a link to MSI-X mode
 | |
|  */
 | |
| static void xlp_config_link_msix(uint64_t lnkbase, int lirq, uint64_t msixaddr)
 | |
| {
 | |
| 	u32 val;
 | |
| 
 | |
| 	val = nlm_read_reg(lnkbase, 0x2C);
 | |
| 	if ((val & 0x80000000U) == 0) {
 | |
| 		val |= 0x80000000U;
 | |
| 		nlm_write_reg(lnkbase, 0x2C, val);
 | |
| 	}
 | |
| 	val = nlm_read_reg(lnkbase, PCIE_INT_EN0);
 | |
| 	if ((val & 0x200) == 0) {
 | |
| 		val |= 0x200;		/* MSI Interrupt enable */
 | |
| 		nlm_write_reg(lnkbase, PCIE_INT_EN0, val);
 | |
| 	}
 | |
| 
 | |
| 	val = nlm_read_reg(lnkbase, 0x1);	/* CMD */
 | |
| 	if ((val & 0x0400) == 0) {
 | |
| 		val |= 0x0400;
 | |
| 		nlm_write_reg(lnkbase, 0x1, val);
 | |
| 	}
 | |
| 
 | |
| 	/* Update IRQ in the PCI irq reg */
 | |
| 	val = nlm_read_pci_reg(lnkbase, 0xf);
 | |
| 	val &= ~0x1fu;
 | |
| 	val |= (1 << 8) | lirq;
 | |
| 	nlm_write_pci_reg(lnkbase, 0xf, val);
 | |
| 
 | |
| 	/* MSI-X addresses */
 | |
| 	nlm_write_reg(lnkbase, PCIE_BRIDGE_MSIX_ADDR_BASE, msixaddr >> 8);
 | |
| 	nlm_write_reg(lnkbase, PCIE_BRIDGE_MSIX_ADDR_LIMIT,
 | |
| 					(msixaddr + MSI_ADDR_SZ) >> 8);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  Allocate a MSI-X vector
 | |
|  */
 | |
| static int xlp_setup_msix(uint64_t lnkbase, int node, int link,
 | |
| 	struct msi_desc *desc)
 | |
| {
 | |
| 	struct xlp_msi_data *md;
 | |
| 	struct msi_msg msg;
 | |
| 	unsigned long flags;
 | |
| 	int t, msixvec, lirq, xirq, ret;
 | |
| 	uint64_t msixaddr;
 | |
| 
 | |
| 	/* Get MSI data for the link */
 | |
| 	lirq = PIC_PCIE_MSIX_IRQ(link);
 | |
| 	xirq = nlm_irq_to_xirq(node, nlm_link_msixirq(link, 0));
 | |
| 	md = irq_get_handler_data(xirq);
 | |
| 	msixaddr = MSIX_LINK_ADDR(node, link);
 | |
| 
 | |
| 	spin_lock_irqsave(&md->msi_lock, flags);
 | |
| 	/* switch the PCIe link to MSI-X mode at the first alloc */
 | |
| 	if (md->msix_alloc_mask == 0)
 | |
| 		xlp_config_link_msix(lnkbase, lirq, msixaddr);
 | |
| 
 | |
| 	/* allocate a MSI-X vec, and tell the bridge about it */
 | |
| 	t = fls(md->msix_alloc_mask);
 | |
| 	if (t == XLP_MSIXVEC_PER_LINK) {
 | |
| 		spin_unlock_irqrestore(&md->msi_lock, flags);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 	md->msix_alloc_mask |= (1u << t);
 | |
| 	spin_unlock_irqrestore(&md->msi_lock, flags);
 | |
| 
 | |
| 	xirq += t;
 | |
| 	msixvec = nlm_irq_msixvec(xirq);
 | |
| 	msg.address_hi = msixaddr >> 32;
 | |
| 	msg.address_lo = msixaddr & 0xffffffff;
 | |
| 	msg.data = 0xc00 | msixvec;
 | |
| 
 | |
| 	ret = irq_set_msi_desc(xirq, desc);
 | |
| 	if (ret < 0) {
 | |
| 		destroy_irq(xirq);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	write_msi_msg(xirq, &msg);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int arch_setup_msi_irq(struct pci_dev *dev, struct msi_desc *desc)
 | |
| {
 | |
| 	struct pci_dev *lnkdev;
 | |
| 	uint64_t lnkbase;
 | |
| 	int node, link, slot;
 | |
| 
 | |
| 	lnkdev = xlp_get_pcie_link(dev);
 | |
| 	if (lnkdev == NULL) {
 | |
| 		dev_err(&dev->dev, "Could not find bridge\n");
 | |
| 		return 1;
 | |
| 	}
 | |
| 	slot = PCI_SLOT(lnkdev->devfn);
 | |
| 	link = PCI_FUNC(lnkdev->devfn);
 | |
| 	node = slot / 8;
 | |
| 	lnkbase = nlm_get_pcie_base(node, link);
 | |
| 
 | |
| 	if (desc->msi_attrib.is_msix)
 | |
| 		return xlp_setup_msix(lnkbase, node, link, desc);
 | |
| 	else
 | |
| 		return xlp_setup_msi(lnkbase, node, link, desc);
 | |
| }
 | |
| 
 | |
| void __init xlp_init_node_msi_irqs(int node, int link)
 | |
| {
 | |
| 	struct nlm_soc_info *nodep;
 | |
| 	struct xlp_msi_data *md;
 | |
| 	int irq, i, irt, msixvec;
 | |
| 
 | |
| 	pr_info("[%d %d] Init node PCI IRT\n", node, link);
 | |
| 	nodep = nlm_get_node(node);
 | |
| 
 | |
| 	/* Alloc an MSI block for the link */
 | |
| 	md = kzalloc(sizeof(*md), GFP_KERNEL);
 | |
| 	spin_lock_init(&md->msi_lock);
 | |
| 	md->msi_enabled_mask = 0;
 | |
| 	md->msi_alloc_mask = 0;
 | |
| 	md->msix_alloc_mask = 0;
 | |
| 	md->node = nodep;
 | |
| 	md->lnkbase = nlm_get_pcie_base(node, link);
 | |
| 
 | |
| 	/* extended space for MSI interrupts */
 | |
| 	irq = nlm_irq_to_xirq(node, nlm_link_msiirq(link, 0));
 | |
| 	for (i = irq; i < irq + XLP_MSIVEC_PER_LINK; i++) {
 | |
| 		irq_set_chip_and_handler(i, &xlp_msi_chip, handle_level_irq);
 | |
| 		irq_set_handler_data(i, md);
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < XLP_MSIXVEC_PER_LINK; i++) {
 | |
| 		/* Initialize MSI-X irts to generate one interrupt per link */
 | |
| 		msixvec = link * XLP_MSIXVEC_PER_LINK + i;
 | |
| 		irt = PIC_IRT_PCIE_MSIX_INDEX(msixvec);
 | |
| 		nlm_pic_init_irt(nodep->picbase, irt, PIC_PCIE_MSIX_IRQ(link),
 | |
| 			node * nlm_threads_per_node(), 1 /* enable */);
 | |
| 
 | |
| 		/* Initialize MSI-X extended irq space for the link  */
 | |
| 		irq = nlm_irq_to_xirq(node, nlm_link_msixirq(link, i));
 | |
| 		irq_set_chip_and_handler(irq, &xlp_msix_chip, handle_level_irq);
 | |
| 		irq_set_handler_data(irq, md);
 | |
| 	}
 | |
| 
 | |
| }
 | |
| 
 | |
| void nlm_dispatch_msi(int node, int lirq)
 | |
| {
 | |
| 	struct xlp_msi_data *md;
 | |
| 	int link, i, irqbase;
 | |
| 	u32 status;
 | |
| 
 | |
| 	link = lirq - PIC_PCIE_LINK_MSI_IRQ_BASE;
 | |
| 	irqbase = nlm_irq_to_xirq(node, nlm_link_msiirq(link, 0));
 | |
| 	md = irq_get_handler_data(irqbase);
 | |
| 	status = nlm_read_reg(md->lnkbase, PCIE_MSI_STATUS) &
 | |
| 						md->msi_enabled_mask;
 | |
| 	while (status) {
 | |
| 		i = __ffs(status);
 | |
| 		do_IRQ(irqbase + i);
 | |
| 		status &= status - 1;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void nlm_dispatch_msix(int node, int lirq)
 | |
| {
 | |
| 	struct xlp_msi_data *md;
 | |
| 	int link, i, irqbase;
 | |
| 	u32 status;
 | |
| 
 | |
| 	link = lirq - PIC_PCIE_MSIX_IRQ_BASE;
 | |
| 	irqbase = nlm_irq_to_xirq(node, nlm_link_msixirq(link, 0));
 | |
| 	md = irq_get_handler_data(irqbase);
 | |
| 	status = nlm_read_reg(md->lnkbase, PCIE_MSIX_STATUS);
 | |
| 
 | |
| 	/* narrow it down to the MSI-x vectors for our link */
 | |
| 	status = (status >> (link * XLP_MSIXVEC_PER_LINK)) &
 | |
| 			((1 << XLP_MSIXVEC_PER_LINK) - 1);
 | |
| 
 | |
| 	while (status) {
 | |
| 		i = __ffs(status);
 | |
| 		do_IRQ(irqbase + i);
 | |
| 		status &= status - 1;
 | |
| 	}
 | |
| }
 |