 6ab3d5624e
			
		
	
	
	6ab3d5624e
	
	
	
		
			
			Signed-off-by: Jörn Engel <joern@wohnheim.fh-wedel.de> Signed-off-by: Adrian Bunk <bunk@stusta.de>
		
			
				
	
	
		
			1454 lines
		
	
	
	
		
			36 KiB
			
		
	
	
	
		
			ArmAsm
		
	
	
	
	
	
			
		
		
	
	
			1454 lines
		
	
	
	
		
			36 KiB
			
		
	
	
	
		
			ArmAsm
		
	
	
	
	
	
| /*
 | |
|  * fp_util.S
 | |
|  *
 | |
|  * Copyright Roman Zippel, 1997.  All rights reserved.
 | |
|  *
 | |
|  * Redistribution and use in source and binary forms, with or without
 | |
|  * modification, are permitted provided that the following conditions
 | |
|  * are met:
 | |
|  * 1. Redistributions of source code must retain the above copyright
 | |
|  *    notice, and the entire permission notice in its entirety,
 | |
|  *    including the disclaimer of warranties.
 | |
|  * 2. Redistributions in binary form must reproduce the above copyright
 | |
|  *    notice, this list of conditions and the following disclaimer in the
 | |
|  *    documentation and/or other materials provided with the distribution.
 | |
|  * 3. The name of the author may not be used to endorse or promote
 | |
|  *    products derived from this software without specific prior
 | |
|  *    written permission.
 | |
|  *
 | |
|  * ALTERNATIVELY, this product may be distributed under the terms of
 | |
|  * the GNU General Public License, in which case the provisions of the GPL are
 | |
|  * required INSTEAD OF the above restrictions.  (This clause is
 | |
|  * necessary due to a potential bad interaction between the GPL and
 | |
|  * the restrictions contained in a BSD-style copyright.)
 | |
|  *
 | |
|  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
 | |
|  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 | |
|  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 | |
|  * DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
 | |
|  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 | |
|  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 | |
|  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 | |
|  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
 | |
|  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 | |
|  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
 | |
|  * OF THE POSSIBILITY OF SUCH DAMAGE.
 | |
|  */
 | |
| 
 | |
| #include "fp_emu.h"
 | |
| 
 | |
| /*
 | |
|  * Here are lots of conversion and normalization functions mainly
 | |
|  * used by fp_scan.S
 | |
|  * Note that these functions are optimized for "normal" numbers,
 | |
|  * these are handled first and exit as fast as possible, this is
 | |
|  * especially important for fp_normalize_ext/fp_conv_ext2ext, as
 | |
|  * it's called very often.
 | |
|  * The register usage is optimized for fp_scan.S and which register
 | |
|  * is currently at that time unused, be careful if you want change
 | |
|  * something here. %d0 and %d1 is always usable, sometimes %d2 (or
 | |
|  * only the lower half) most function have to return the %a0
 | |
|  * unmodified, so that the caller can immediately reuse it.
 | |
|  */
 | |
| 
 | |
| 	.globl	fp_ill, fp_end
 | |
| 
 | |
| 	| exits from fp_scan:
 | |
| 	| illegal instruction
 | |
| fp_ill:
 | |
| 	printf	,"fp_illegal\n"
 | |
| 	rts
 | |
| 	| completed instruction
 | |
| fp_end:
 | |
| 	tst.l	(TASK_MM-8,%a2)
 | |
| 	jmi	1f
 | |
| 	tst.l	(TASK_MM-4,%a2)
 | |
| 	jmi	1f
 | |
| 	tst.l	(TASK_MM,%a2)
 | |
| 	jpl	2f
 | |
| 1:	printf	,"oops:%p,%p,%p\n",3,%a2@(TASK_MM-8),%a2@(TASK_MM-4),%a2@(TASK_MM)
 | |
| 2:	clr.l	%d0
 | |
| 	rts
 | |
| 
 | |
| 	.globl	fp_conv_long2ext, fp_conv_single2ext
 | |
| 	.globl	fp_conv_double2ext, fp_conv_ext2ext
 | |
| 	.globl	fp_normalize_ext, fp_normalize_double
 | |
| 	.globl	fp_normalize_single, fp_normalize_single_fast
 | |
| 	.globl	fp_conv_ext2double, fp_conv_ext2single
 | |
| 	.globl	fp_conv_ext2long, fp_conv_ext2short
 | |
| 	.globl	fp_conv_ext2byte
 | |
| 	.globl	fp_finalrounding_single, fp_finalrounding_single_fast
 | |
| 	.globl	fp_finalrounding_double
 | |
| 	.globl	fp_finalrounding, fp_finaltest, fp_final
 | |
| 
 | |
| /*
 | |
|  * First several conversion functions from a source operand
 | |
|  * into the extended format. Note, that only fp_conv_ext2ext
 | |
|  * normalizes the number and is always called after the other
 | |
|  * conversion functions, which only move the information into
 | |
|  * fp_ext structure.
 | |
|  */
 | |
| 
 | |
| 	| fp_conv_long2ext:
 | |
| 	|
 | |
| 	| args:	%d0 = source (32-bit long)
 | |
| 	|	%a0 = destination (ptr to struct fp_ext)
 | |
| 
 | |
| fp_conv_long2ext:
 | |
| 	printf	PCONV,"l2e: %p -> %p(",2,%d0,%a0
 | |
| 	clr.l	%d1			| sign defaults to zero
 | |
| 	tst.l	%d0
 | |
| 	jeq	fp_l2e_zero		| is source zero?
 | |
| 	jpl	1f			| positive?
 | |
| 	moveq	#1,%d1
 | |
| 	neg.l	%d0
 | |
| 1:	swap	%d1
 | |
| 	move.w	#0x3fff+31,%d1
 | |
| 	move.l	%d1,(%a0)+		| set sign / exp
 | |
| 	move.l	%d0,(%a0)+		| set mantissa
 | |
| 	clr.l	(%a0)
 | |
| 	subq.l	#8,%a0			| restore %a0
 | |
| 	printx	PCONV,%a0@
 | |
| 	printf	PCONV,")\n"
 | |
| 	rts
 | |
| 	| source is zero
 | |
| fp_l2e_zero:
 | |
| 	clr.l	(%a0)+
 | |
| 	clr.l	(%a0)+
 | |
| 	clr.l	(%a0)
 | |
| 	subq.l	#8,%a0
 | |
| 	printx	PCONV,%a0@
 | |
| 	printf	PCONV,")\n"
 | |
| 	rts
 | |
| 
 | |
| 	| fp_conv_single2ext
 | |
| 	| args:	%d0 = source (single-precision fp value)
 | |
| 	|	%a0 = dest (struct fp_ext *)
 | |
| 
 | |
| fp_conv_single2ext:
 | |
| 	printf	PCONV,"s2e: %p -> %p(",2,%d0,%a0
 | |
| 	move.l	%d0,%d1
 | |
| 	lsl.l	#8,%d0			| shift mantissa
 | |
| 	lsr.l	#8,%d1			| exponent / sign
 | |
| 	lsr.l	#7,%d1
 | |
| 	lsr.w	#8,%d1
 | |
| 	jeq	fp_s2e_small		| zero / denormal?
 | |
| 	cmp.w	#0xff,%d1		| NaN / Inf?
 | |
| 	jeq	fp_s2e_large
 | |
| 	bset	#31,%d0			| set explizit bit
 | |
| 	add.w	#0x3fff-0x7f,%d1	| re-bias the exponent.
 | |
| 9:	move.l	%d1,(%a0)+		| fp_ext.sign, fp_ext.exp
 | |
| 	move.l	%d0,(%a0)+		| high lword of fp_ext.mant
 | |
| 	clr.l	(%a0)			| low lword = 0
 | |
| 	subq.l	#8,%a0
 | |
| 	printx	PCONV,%a0@
 | |
| 	printf	PCONV,")\n"
 | |
| 	rts
 | |
| 	| zeros and denormalized
 | |
| fp_s2e_small:
 | |
| 	| exponent is zero, so explizit bit is already zero too
 | |
| 	tst.l	%d0
 | |
| 	jeq	9b
 | |
| 	move.w	#0x4000-0x7f,%d1
 | |
| 	jra	9b
 | |
| 	| infinities and NAN
 | |
| fp_s2e_large:
 | |
| 	bclr	#31,%d0			| clear explizit bit
 | |
| 	move.w	#0x7fff,%d1
 | |
| 	jra	9b
 | |
| 
 | |
| fp_conv_double2ext:
 | |
| #ifdef FPU_EMU_DEBUG
 | |
| 	getuser.l %a1@(0),%d0,fp_err_ua2,%a1
 | |
| 	getuser.l %a1@(4),%d1,fp_err_ua2,%a1
 | |
| 	printf	PCONV,"d2e: %p%p -> %p(",3,%d0,%d1,%a0
 | |
| #endif
 | |
| 	getuser.l (%a1)+,%d0,fp_err_ua2,%a1
 | |
| 	move.l	%d0,%d1
 | |
| 	lsl.l	#8,%d0			| shift high mantissa
 | |
| 	lsl.l	#3,%d0
 | |
| 	lsr.l	#8,%d1			| exponent / sign
 | |
| 	lsr.l	#7,%d1
 | |
| 	lsr.w	#5,%d1
 | |
| 	jeq	fp_d2e_small		| zero / denormal?
 | |
| 	cmp.w	#0x7ff,%d1		| NaN / Inf?
 | |
| 	jeq	fp_d2e_large
 | |
| 	bset	#31,%d0			| set explizit bit
 | |
| 	add.w	#0x3fff-0x3ff,%d1	| re-bias the exponent.
 | |
| 9:	move.l	%d1,(%a0)+		| fp_ext.sign, fp_ext.exp
 | |
| 	move.l	%d0,(%a0)+
 | |
| 	getuser.l (%a1)+,%d0,fp_err_ua2,%a1
 | |
| 	move.l	%d0,%d1
 | |
| 	lsl.l	#8,%d0
 | |
| 	lsl.l	#3,%d0
 | |
| 	move.l	%d0,(%a0)
 | |
| 	moveq	#21,%d0
 | |
| 	lsr.l	%d0,%d1
 | |
| 	or.l	%d1,-(%a0)
 | |
| 	subq.l	#4,%a0
 | |
| 	printx	PCONV,%a0@
 | |
| 	printf	PCONV,")\n"
 | |
| 	rts
 | |
| 	| zeros and denormalized
 | |
| fp_d2e_small:
 | |
| 	| exponent is zero, so explizit bit is already zero too
 | |
| 	tst.l	%d0
 | |
| 	jeq	9b
 | |
| 	move.w	#0x4000-0x3ff,%d1
 | |
| 	jra	9b
 | |
| 	| infinities and NAN
 | |
| fp_d2e_large:
 | |
| 	bclr	#31,%d0			| clear explizit bit
 | |
| 	move.w	#0x7fff,%d1
 | |
| 	jra	9b
 | |
| 
 | |
| 	| fp_conv_ext2ext:
 | |
| 	| originally used to get longdouble from userspace, now it's
 | |
| 	| called before arithmetic operations to make sure the number
 | |
| 	| is normalized [maybe rename it?].
 | |
| 	| args:	%a0 = dest (struct fp_ext *)
 | |
| 	| returns 0 in %d0 for a NaN, otherwise 1
 | |
| 
 | |
| fp_conv_ext2ext:
 | |
| 	printf	PCONV,"e2e: %p(",1,%a0
 | |
| 	printx	PCONV,%a0@
 | |
| 	printf	PCONV,"), "
 | |
| 	move.l	(%a0)+,%d0
 | |
| 	cmp.w	#0x7fff,%d0		| Inf / NaN?
 | |
| 	jeq	fp_e2e_large
 | |
| 	move.l	(%a0),%d0
 | |
| 	jpl	fp_e2e_small		| zero / denorm?
 | |
| 	| The high bit is set, so normalization is irrelevant.
 | |
| fp_e2e_checkround:
 | |
| 	subq.l	#4,%a0
 | |
| #ifdef CONFIG_M68KFPU_EMU_EXTRAPREC
 | |
| 	move.b	(%a0),%d0
 | |
| 	jne	fp_e2e_round
 | |
| #endif
 | |
| 	printf	PCONV,"%p(",1,%a0
 | |
| 	printx	PCONV,%a0@
 | |
| 	printf	PCONV,")\n"
 | |
| 	moveq	#1,%d0
 | |
| 	rts
 | |
| #ifdef CONFIG_M68KFPU_EMU_EXTRAPREC
 | |
| fp_e2e_round:
 | |
| 	fp_set_sr FPSR_EXC_INEX2
 | |
| 	clr.b	(%a0)
 | |
| 	move.w	(FPD_RND,FPDATA),%d2
 | |
| 	jne	fp_e2e_roundother	| %d2 == 0, round to nearest
 | |
| 	tst.b	%d0			| test guard bit
 | |
| 	jpl	9f			| zero is closer
 | |
| 	btst	#0,(11,%a0)		| test lsb bit
 | |
| 	jne	fp_e2e_doroundup	| round to infinity
 | |
| 	lsl.b	#1,%d0			| check low bits
 | |
| 	jeq	9f			| round to zero
 | |
| fp_e2e_doroundup:
 | |
| 	addq.l	#1,(8,%a0)
 | |
| 	jcc	9f
 | |
| 	addq.l	#1,(4,%a0)
 | |
| 	jcc	9f
 | |
| 	move.w	#0x8000,(4,%a0)
 | |
| 	addq.w	#1,(2,%a0)
 | |
| 9:	printf	PNORM,"%p(",1,%a0
 | |
| 	printx	PNORM,%a0@
 | |
| 	printf	PNORM,")\n"
 | |
| 	rts
 | |
| fp_e2e_roundother:
 | |
| 	subq.w	#2,%d2
 | |
| 	jcs	9b			| %d2 < 2, round to zero
 | |
| 	jhi	1f			| %d2 > 2, round to +infinity
 | |
| 	tst.b	(1,%a0)			| to -inf
 | |
| 	jne	fp_e2e_doroundup	| negative, round to infinity
 | |
| 	jra	9b			| positive, round to zero
 | |
| 1:	tst.b	(1,%a0)			| to +inf
 | |
| 	jeq	fp_e2e_doroundup	| positive, round to infinity
 | |
| 	jra	9b			| negative, round to zero
 | |
| #endif
 | |
| 	| zeros and subnormals:
 | |
| 	| try to normalize these anyway.
 | |
| fp_e2e_small:
 | |
| 	jne	fp_e2e_small1		| high lword zero?
 | |
| 	move.l	(4,%a0),%d0
 | |
| 	jne	fp_e2e_small2
 | |
| #ifdef CONFIG_M68KFPU_EMU_EXTRAPREC
 | |
| 	clr.l	%d0
 | |
| 	move.b	(-4,%a0),%d0
 | |
| 	jne	fp_e2e_small3
 | |
| #endif
 | |
| 	| Genuine zero.
 | |
| 	clr.w	-(%a0)
 | |
| 	subq.l	#2,%a0
 | |
| 	printf	PNORM,"%p(",1,%a0
 | |
| 	printx	PNORM,%a0@
 | |
| 	printf	PNORM,")\n"
 | |
| 	moveq	#1,%d0
 | |
| 	rts
 | |
| 	| definitely subnormal, need to shift all 64 bits
 | |
| fp_e2e_small1:
 | |
| 	bfffo	%d0{#0,#32},%d1
 | |
| 	move.w	-(%a0),%d2
 | |
| 	sub.w	%d1,%d2
 | |
| 	jcc	1f
 | |
| 	| Pathologically small, denormalize.
 | |
| 	add.w	%d2,%d1
 | |
| 	clr.w	%d2
 | |
| 1:	move.w	%d2,(%a0)+
 | |
| 	move.w	%d1,%d2
 | |
| 	jeq	fp_e2e_checkround
 | |
| 	| fancy 64-bit double-shift begins here
 | |
| 	lsl.l	%d2,%d0
 | |
| 	move.l	%d0,(%a0)+
 | |
| 	move.l	(%a0),%d0
 | |
| 	move.l	%d0,%d1
 | |
| 	lsl.l	%d2,%d0
 | |
| 	move.l	%d0,(%a0)
 | |
| 	neg.w	%d2
 | |
| 	and.w	#0x1f,%d2
 | |
| 	lsr.l	%d2,%d1
 | |
| 	or.l	%d1,-(%a0)
 | |
| #ifdef CONFIG_M68KFPU_EMU_EXTRAPREC
 | |
| fp_e2e_extra1:
 | |
| 	clr.l	%d0
 | |
| 	move.b	(-4,%a0),%d0
 | |
| 	neg.w	%d2
 | |
| 	add.w	#24,%d2
 | |
| 	jcc	1f
 | |
| 	clr.b	(-4,%a0)
 | |
| 	lsl.l	%d2,%d0
 | |
| 	or.l	%d0,(4,%a0)
 | |
| 	jra	fp_e2e_checkround
 | |
| 1:	addq.w	#8,%d2
 | |
| 	lsl.l	%d2,%d0
 | |
| 	move.b	%d0,(-4,%a0)
 | |
| 	lsr.l	#8,%d0
 | |
| 	or.l	%d0,(4,%a0)
 | |
| #endif
 | |
| 	jra	fp_e2e_checkround
 | |
| 	| pathologically small subnormal
 | |
| fp_e2e_small2:
 | |
| 	bfffo	%d0{#0,#32},%d1
 | |
| 	add.w	#32,%d1
 | |
| 	move.w	-(%a0),%d2
 | |
| 	sub.w	%d1,%d2
 | |
| 	jcc	1f
 | |
| 	| Beyond pathologically small, denormalize.
 | |
| 	add.w	%d2,%d1
 | |
| 	clr.w	%d2
 | |
| 1:	move.w	%d2,(%a0)+
 | |
| 	ext.l	%d1
 | |
| 	jeq	fp_e2e_checkround
 | |
| 	clr.l	(4,%a0)
 | |
| 	sub.w	#32,%d2
 | |
| 	jcs	1f
 | |
| 	lsl.l	%d1,%d0			| lower lword needs only to be shifted
 | |
| 	move.l	%d0,(%a0)		| into the higher lword
 | |
| #ifdef CONFIG_M68KFPU_EMU_EXTRAPREC
 | |
| 	clr.l	%d0
 | |
| 	move.b	(-4,%a0),%d0
 | |
| 	clr.b	(-4,%a0)
 | |
| 	neg.w	%d1
 | |
| 	add.w	#32,%d1
 | |
| 	bfins	%d0,(%a0){%d1,#8}
 | |
| #endif
 | |
| 	jra	fp_e2e_checkround
 | |
| 1:	neg.w	%d1			| lower lword is splitted between
 | |
| 	bfins	%d0,(%a0){%d1,#32}	| higher and lower lword
 | |
| #ifndef CONFIG_M68KFPU_EMU_EXTRAPREC
 | |
| 	jra	fp_e2e_checkround
 | |
| #else
 | |
| 	move.w	%d1,%d2
 | |
| 	jra	fp_e2e_extra1
 | |
| 	| These are extremely small numbers, that will mostly end up as zero
 | |
| 	| anyway, so this is only important for correct rounding.
 | |
| fp_e2e_small3:
 | |
| 	bfffo	%d0{#24,#8},%d1
 | |
| 	add.w	#40,%d1
 | |
| 	move.w	-(%a0),%d2
 | |
| 	sub.w	%d1,%d2
 | |
| 	jcc	1f
 | |
| 	| Pathologically small, denormalize.
 | |
| 	add.w	%d2,%d1
 | |
| 	clr.w	%d2
 | |
| 1:	move.w	%d2,(%a0)+
 | |
| 	ext.l	%d1
 | |
| 	jeq	fp_e2e_checkround
 | |
| 	cmp.w	#8,%d1
 | |
| 	jcs	2f
 | |
| 1:	clr.b	(-4,%a0)
 | |
| 	sub.w	#64,%d1
 | |
| 	jcs	1f
 | |
| 	add.w	#24,%d1
 | |
| 	lsl.l	%d1,%d0
 | |
| 	move.l	%d0,(%a0)
 | |
| 	jra	fp_e2e_checkround
 | |
| 1:	neg.w	%d1
 | |
| 	bfins	%d0,(%a0){%d1,#8}
 | |
| 	jra	fp_e2e_checkround
 | |
| 2:	lsl.l	%d1,%d0
 | |
| 	move.b	%d0,(-4,%a0)
 | |
| 	lsr.l	#8,%d0
 | |
| 	move.b	%d0,(7,%a0)
 | |
| 	jra	fp_e2e_checkround
 | |
| #endif
 | |
| 1:	move.l	%d0,%d1			| lower lword is splitted between
 | |
| 	lsl.l	%d2,%d0			| higher and lower lword
 | |
| 	move.l	%d0,(%a0)
 | |
| 	move.l	%d1,%d0
 | |
| 	neg.w	%d2
 | |
| 	add.w	#32,%d2
 | |
| 	lsr.l	%d2,%d0
 | |
| 	move.l	%d0,-(%a0)
 | |
| 	jra	fp_e2e_checkround
 | |
| 	| Infinities and NaNs
 | |
| fp_e2e_large:
 | |
| 	move.l	(%a0)+,%d0
 | |
| 	jne	3f
 | |
| 1:	tst.l	(%a0)
 | |
| 	jne	4f
 | |
| 	moveq	#1,%d0
 | |
| 2:	subq.l	#8,%a0
 | |
| 	printf	PCONV,"%p(",1,%a0
 | |
| 	printx	PCONV,%a0@
 | |
| 	printf	PCONV,")\n"
 | |
| 	rts
 | |
| 	| we have maybe a NaN, shift off the highest bit
 | |
| 3:	lsl.l	#1,%d0
 | |
| 	jeq	1b
 | |
| 	| we have a NaN, clear the return value
 | |
| 4:	clrl	%d0
 | |
| 	jra	2b
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Normalization functions.  Call these on the output of general
 | |
|  * FP operators, and before any conversion into the destination
 | |
|  * formats. fp_normalize_ext has always to be called first, the
 | |
|  * following conversion functions expect an already normalized
 | |
|  * number.
 | |
|  */
 | |
| 
 | |
| 	| fp_normalize_ext:
 | |
| 	| normalize an extended in extended (unpacked) format, basically
 | |
| 	| it does the same as fp_conv_ext2ext, additionally it also does
 | |
| 	| the necessary postprocessing checks.
 | |
| 	| args:	%a0 (struct fp_ext *)
 | |
| 	| NOTE: it does _not_ modify %a0/%a1 and the upper word of %d2
 | |
| 
 | |
| fp_normalize_ext:
 | |
| 	printf	PNORM,"ne: %p(",1,%a0
 | |
| 	printx	PNORM,%a0@
 | |
| 	printf	PNORM,"), "
 | |
| 	move.l	(%a0)+,%d0
 | |
| 	cmp.w	#0x7fff,%d0		| Inf / NaN?
 | |
| 	jeq	fp_ne_large
 | |
| 	move.l	(%a0),%d0
 | |
| 	jpl	fp_ne_small		| zero / denorm?
 | |
| 	| The high bit is set, so normalization is irrelevant.
 | |
| fp_ne_checkround:
 | |
| 	subq.l	#4,%a0
 | |
| #ifdef CONFIG_M68KFPU_EMU_EXTRAPREC
 | |
| 	move.b	(%a0),%d0
 | |
| 	jne	fp_ne_round
 | |
| #endif
 | |
| 	printf	PNORM,"%p(",1,%a0
 | |
| 	printx	PNORM,%a0@
 | |
| 	printf	PNORM,")\n"
 | |
| 	rts
 | |
| #ifdef CONFIG_M68KFPU_EMU_EXTRAPREC
 | |
| fp_ne_round:
 | |
| 	fp_set_sr FPSR_EXC_INEX2
 | |
| 	clr.b	(%a0)
 | |
| 	move.w	(FPD_RND,FPDATA),%d2
 | |
| 	jne	fp_ne_roundother	| %d2 == 0, round to nearest
 | |
| 	tst.b	%d0			| test guard bit
 | |
| 	jpl	9f			| zero is closer
 | |
| 	btst	#0,(11,%a0)		| test lsb bit
 | |
| 	jne	fp_ne_doroundup		| round to infinity
 | |
| 	lsl.b	#1,%d0			| check low bits
 | |
| 	jeq	9f			| round to zero
 | |
| fp_ne_doroundup:
 | |
| 	addq.l	#1,(8,%a0)
 | |
| 	jcc	9f
 | |
| 	addq.l	#1,(4,%a0)
 | |
| 	jcc	9f
 | |
| 	addq.w	#1,(2,%a0)
 | |
| 	move.w	#0x8000,(4,%a0)
 | |
| 9:	printf	PNORM,"%p(",1,%a0
 | |
| 	printx	PNORM,%a0@
 | |
| 	printf	PNORM,")\n"
 | |
| 	rts
 | |
| fp_ne_roundother:
 | |
| 	subq.w	#2,%d2
 | |
| 	jcs	9b			| %d2 < 2, round to zero
 | |
| 	jhi	1f			| %d2 > 2, round to +infinity
 | |
| 	tst.b	(1,%a0)			| to -inf
 | |
| 	jne	fp_ne_doroundup		| negative, round to infinity
 | |
| 	jra	9b			| positive, round to zero
 | |
| 1:	tst.b	(1,%a0)			| to +inf
 | |
| 	jeq	fp_ne_doroundup		| positive, round to infinity
 | |
| 	jra	9b			| negative, round to zero
 | |
| #endif
 | |
| 	| Zeros and subnormal numbers
 | |
| 	| These are probably merely subnormal, rather than "denormalized"
 | |
| 	|  numbers, so we will try to make them normal again.
 | |
| fp_ne_small:
 | |
| 	jne	fp_ne_small1		| high lword zero?
 | |
| 	move.l	(4,%a0),%d0
 | |
| 	jne	fp_ne_small2
 | |
| #ifdef CONFIG_M68KFPU_EMU_EXTRAPREC
 | |
| 	clr.l	%d0
 | |
| 	move.b	(-4,%a0),%d0
 | |
| 	jne	fp_ne_small3
 | |
| #endif
 | |
| 	| Genuine zero.
 | |
| 	clr.w	-(%a0)
 | |
| 	subq.l	#2,%a0
 | |
| 	printf	PNORM,"%p(",1,%a0
 | |
| 	printx	PNORM,%a0@
 | |
| 	printf	PNORM,")\n"
 | |
| 	rts
 | |
| 	| Subnormal.
 | |
| fp_ne_small1:
 | |
| 	bfffo	%d0{#0,#32},%d1
 | |
| 	move.w	-(%a0),%d2
 | |
| 	sub.w	%d1,%d2
 | |
| 	jcc	1f
 | |
| 	| Pathologically small, denormalize.
 | |
| 	add.w	%d2,%d1
 | |
| 	clr.w	%d2
 | |
| 	fp_set_sr FPSR_EXC_UNFL
 | |
| 1:	move.w	%d2,(%a0)+
 | |
| 	move.w	%d1,%d2
 | |
| 	jeq	fp_ne_checkround
 | |
| 	| This is exactly the same 64-bit double shift as seen above.
 | |
| 	lsl.l	%d2,%d0
 | |
| 	move.l	%d0,(%a0)+
 | |
| 	move.l	(%a0),%d0
 | |
| 	move.l	%d0,%d1
 | |
| 	lsl.l	%d2,%d0
 | |
| 	move.l	%d0,(%a0)
 | |
| 	neg.w	%d2
 | |
| 	and.w	#0x1f,%d2
 | |
| 	lsr.l	%d2,%d1
 | |
| 	or.l	%d1,-(%a0)
 | |
| #ifdef CONFIG_M68KFPU_EMU_EXTRAPREC
 | |
| fp_ne_extra1:
 | |
| 	clr.l	%d0
 | |
| 	move.b	(-4,%a0),%d0
 | |
| 	neg.w	%d2
 | |
| 	add.w	#24,%d2
 | |
| 	jcc	1f
 | |
| 	clr.b	(-4,%a0)
 | |
| 	lsl.l	%d2,%d0
 | |
| 	or.l	%d0,(4,%a0)
 | |
| 	jra	fp_ne_checkround
 | |
| 1:	addq.w	#8,%d2
 | |
| 	lsl.l	%d2,%d0
 | |
| 	move.b	%d0,(-4,%a0)
 | |
| 	lsr.l	#8,%d0
 | |
| 	or.l	%d0,(4,%a0)
 | |
| #endif
 | |
| 	jra	fp_ne_checkround
 | |
| 	| May or may not be subnormal, if so, only 32 bits to shift.
 | |
| fp_ne_small2:
 | |
| 	bfffo	%d0{#0,#32},%d1
 | |
| 	add.w	#32,%d1
 | |
| 	move.w	-(%a0),%d2
 | |
| 	sub.w	%d1,%d2
 | |
| 	jcc	1f
 | |
| 	| Beyond pathologically small, denormalize.
 | |
| 	add.w	%d2,%d1
 | |
| 	clr.w	%d2
 | |
| 	fp_set_sr FPSR_EXC_UNFL
 | |
| 1:	move.w	%d2,(%a0)+
 | |
| 	ext.l	%d1
 | |
| 	jeq	fp_ne_checkround
 | |
| 	clr.l	(4,%a0)
 | |
| 	sub.w	#32,%d1
 | |
| 	jcs	1f
 | |
| 	lsl.l	%d1,%d0			| lower lword needs only to be shifted
 | |
| 	move.l	%d0,(%a0)		| into the higher lword
 | |
| #ifdef CONFIG_M68KFPU_EMU_EXTRAPREC
 | |
| 	clr.l	%d0
 | |
| 	move.b	(-4,%a0),%d0
 | |
| 	clr.b	(-4,%a0)
 | |
| 	neg.w	%d1
 | |
| 	add.w	#32,%d1
 | |
| 	bfins	%d0,(%a0){%d1,#8}
 | |
| #endif
 | |
| 	jra	fp_ne_checkround
 | |
| 1:	neg.w	%d1			| lower lword is splitted between
 | |
| 	bfins	%d0,(%a0){%d1,#32}	| higher and lower lword
 | |
| #ifndef CONFIG_M68KFPU_EMU_EXTRAPREC
 | |
| 	jra	fp_ne_checkround
 | |
| #else
 | |
| 	move.w	%d1,%d2
 | |
| 	jra	fp_ne_extra1
 | |
| 	| These are extremely small numbers, that will mostly end up as zero
 | |
| 	| anyway, so this is only important for correct rounding.
 | |
| fp_ne_small3:
 | |
| 	bfffo	%d0{#24,#8},%d1
 | |
| 	add.w	#40,%d1
 | |
| 	move.w	-(%a0),%d2
 | |
| 	sub.w	%d1,%d2
 | |
| 	jcc	1f
 | |
| 	| Pathologically small, denormalize.
 | |
| 	add.w	%d2,%d1
 | |
| 	clr.w	%d2
 | |
| 1:	move.w	%d2,(%a0)+
 | |
| 	ext.l	%d1
 | |
| 	jeq	fp_ne_checkround
 | |
| 	cmp.w	#8,%d1
 | |
| 	jcs	2f
 | |
| 1:	clr.b	(-4,%a0)
 | |
| 	sub.w	#64,%d1
 | |
| 	jcs	1f
 | |
| 	add.w	#24,%d1
 | |
| 	lsl.l	%d1,%d0
 | |
| 	move.l	%d0,(%a0)
 | |
| 	jra	fp_ne_checkround
 | |
| 1:	neg.w	%d1
 | |
| 	bfins	%d0,(%a0){%d1,#8}
 | |
| 	jra	fp_ne_checkround
 | |
| 2:	lsl.l	%d1,%d0
 | |
| 	move.b	%d0,(-4,%a0)
 | |
| 	lsr.l	#8,%d0
 | |
| 	move.b	%d0,(7,%a0)
 | |
| 	jra	fp_ne_checkround
 | |
| #endif
 | |
| 	| Infinities and NaNs, again, same as above.
 | |
| fp_ne_large:
 | |
| 	move.l	(%a0)+,%d0
 | |
| 	jne	3f
 | |
| 1:	tst.l	(%a0)
 | |
| 	jne	4f
 | |
| 2:	subq.l	#8,%a0
 | |
| 	printf	PNORM,"%p(",1,%a0
 | |
| 	printx	PNORM,%a0@
 | |
| 	printf	PNORM,")\n"
 | |
| 	rts
 | |
| 	| we have maybe a NaN, shift off the highest bit
 | |
| 3:	move.l	%d0,%d1
 | |
| 	lsl.l	#1,%d1
 | |
| 	jne	4f
 | |
| 	clr.l	(-4,%a0)
 | |
| 	jra	1b
 | |
| 	| we have a NaN, test if it is signaling
 | |
| 4:	bset	#30,%d0
 | |
| 	jne	2b
 | |
| 	fp_set_sr FPSR_EXC_SNAN
 | |
| 	move.l	%d0,(-4,%a0)
 | |
| 	jra	2b
 | |
| 
 | |
| 	| these next two do rounding as per the IEEE standard.
 | |
| 	| values for the rounding modes appear to be:
 | |
| 	| 0:	Round to nearest
 | |
| 	| 1:	Round to zero
 | |
| 	| 2:	Round to -Infinity
 | |
| 	| 3:	Round to +Infinity
 | |
| 	| both functions expect that fp_normalize was already
 | |
| 	| called (and extended argument is already normalized
 | |
| 	| as far as possible), these are used if there is different
 | |
| 	| rounding precision is selected and before converting
 | |
| 	| into single/double
 | |
| 
 | |
| 	| fp_normalize_double:
 | |
| 	| normalize an extended with double (52-bit) precision
 | |
| 	| args:	 %a0 (struct fp_ext *)
 | |
| 
 | |
| fp_normalize_double:
 | |
| 	printf	PNORM,"nd: %p(",1,%a0
 | |
| 	printx	PNORM,%a0@
 | |
| 	printf	PNORM,"), "
 | |
| 	move.l	(%a0)+,%d2
 | |
| 	tst.w	%d2
 | |
| 	jeq	fp_nd_zero		| zero / denormalized
 | |
| 	cmp.w	#0x7fff,%d2
 | |
| 	jeq	fp_nd_huge		| NaN / infinitive.
 | |
| 	sub.w	#0x4000-0x3ff,%d2	| will the exponent fit?
 | |
| 	jcs	fp_nd_small		| too small.
 | |
| 	cmp.w	#0x7fe,%d2
 | |
| 	jcc	fp_nd_large		| too big.
 | |
| 	addq.l	#4,%a0
 | |
| 	move.l	(%a0),%d0		| low lword of mantissa
 | |
| 	| now, round off the low 11 bits.
 | |
| fp_nd_round:
 | |
| 	moveq	#21,%d1
 | |
| 	lsl.l	%d1,%d0			| keep 11 low bits.
 | |
| 	jne	fp_nd_checkround	| Are they non-zero?
 | |
| 	| nothing to do here
 | |
| 9:	subq.l	#8,%a0
 | |
| 	printf	PNORM,"%p(",1,%a0
 | |
| 	printx	PNORM,%a0@
 | |
| 	printf	PNORM,")\n"
 | |
| 	rts
 | |
| 	| Be careful with the X bit! It contains the lsb
 | |
| 	| from the shift above, it is needed for round to nearest.
 | |
| fp_nd_checkround:
 | |
| 	fp_set_sr FPSR_EXC_INEX2	| INEX2 bit
 | |
| 	and.w	#0xf800,(2,%a0)		| clear bits 0-10
 | |
| 	move.w	(FPD_RND,FPDATA),%d2	| rounding mode
 | |
| 	jne	2f			| %d2 == 0, round to nearest
 | |
| 	tst.l	%d0			| test guard bit
 | |
| 	jpl	9b			| zero is closer
 | |
| 	| here we test the X bit by adding it to %d2
 | |
| 	clr.w	%d2			| first set z bit, addx only clears it
 | |
| 	addx.w	%d2,%d2			| test lsb bit
 | |
| 	| IEEE754-specified "round to even" behaviour.  If the guard
 | |
| 	| bit is set, then the number is odd, so rounding works like
 | |
| 	| in grade-school arithmetic (i.e. 1.5 rounds to 2.0)
 | |
| 	| Otherwise, an equal distance rounds towards zero, so as not
 | |
| 	| to produce an odd number.  This is strange, but it is what
 | |
| 	| the standard says.
 | |
| 	jne	fp_nd_doroundup		| round to infinity
 | |
| 	lsl.l	#1,%d0			| check low bits
 | |
| 	jeq	9b			| round to zero
 | |
| fp_nd_doroundup:
 | |
| 	| round (the mantissa, that is) towards infinity
 | |
| 	add.l	#0x800,(%a0)
 | |
| 	jcc	9b			| no overflow, good.
 | |
| 	addq.l	#1,-(%a0)		| extend to high lword
 | |
| 	jcc	1f			| no overflow, good.
 | |
| 	| Yow! we have managed to overflow the mantissa.  Since this
 | |
| 	| only happens when %d1 was 0xfffff800, it is now zero, so
 | |
| 	| reset the high bit, and increment the exponent.
 | |
| 	move.w	#0x8000,(%a0)
 | |
| 	addq.w	#1,-(%a0)
 | |
| 	cmp.w	#0x43ff,(%a0)+		| exponent now overflown?
 | |
| 	jeq	fp_nd_large		| yes, so make it infinity.
 | |
| 1:	subq.l	#4,%a0
 | |
| 	printf	PNORM,"%p(",1,%a0
 | |
| 	printx	PNORM,%a0@
 | |
| 	printf	PNORM,")\n"
 | |
| 	rts
 | |
| 2:	subq.w	#2,%d2
 | |
| 	jcs	9b			| %d2 < 2, round to zero
 | |
| 	jhi	3f			| %d2 > 2, round to +infinity
 | |
| 	| Round to +Inf or -Inf.  High word of %d2 contains the
 | |
| 	| sign of the number, by the way.
 | |
| 	swap	%d2			| to -inf
 | |
| 	tst.b	%d2
 | |
| 	jne	fp_nd_doroundup		| negative, round to infinity
 | |
| 	jra	9b			| positive, round to zero
 | |
| 3:	swap	%d2			| to +inf
 | |
| 	tst.b	%d2
 | |
| 	jeq	fp_nd_doroundup		| positive, round to infinity
 | |
| 	jra	9b			| negative, round to zero
 | |
| 	| Exponent underflow.  Try to make a denormal, and set it to
 | |
| 	| the smallest possible fraction if this fails.
 | |
| fp_nd_small:
 | |
| 	fp_set_sr FPSR_EXC_UNFL		| set UNFL bit
 | |
| 	move.w	#0x3c01,(-2,%a0)	| 2**-1022
 | |
| 	neg.w	%d2			| degree of underflow
 | |
| 	cmp.w	#32,%d2			| single or double shift?
 | |
| 	jcc	1f
 | |
| 	| Again, another 64-bit double shift.
 | |
| 	move.l	(%a0),%d0
 | |
| 	move.l	%d0,%d1
 | |
| 	lsr.l	%d2,%d0
 | |
| 	move.l	%d0,(%a0)+
 | |
| 	move.l	(%a0),%d0
 | |
| 	lsr.l	%d2,%d0
 | |
| 	neg.w	%d2
 | |
| 	add.w	#32,%d2
 | |
| 	lsl.l	%d2,%d1
 | |
| 	or.l	%d1,%d0
 | |
| 	move.l	(%a0),%d1
 | |
| 	move.l	%d0,(%a0)
 | |
| 	| Check to see if we shifted off any significant bits
 | |
| 	lsl.l	%d2,%d1
 | |
| 	jeq	fp_nd_round		| Nope, round.
 | |
| 	bset	#0,%d0			| Yes, so set the "sticky bit".
 | |
| 	jra	fp_nd_round		| Now, round.
 | |
| 	| Another 64-bit single shift and store
 | |
| 1:	sub.w	#32,%d2
 | |
| 	cmp.w	#32,%d2			| Do we really need to shift?
 | |
| 	jcc	2f			| No, the number is too small.
 | |
| 	move.l	(%a0),%d0
 | |
| 	clr.l	(%a0)+
 | |
| 	move.l	%d0,%d1
 | |
| 	lsr.l	%d2,%d0
 | |
| 	neg.w	%d2
 | |
| 	add.w	#32,%d2
 | |
| 	| Again, check to see if we shifted off any significant bits.
 | |
| 	tst.l	(%a0)
 | |
| 	jeq	1f
 | |
| 	bset	#0,%d0			| Sticky bit.
 | |
| 1:	move.l	%d0,(%a0)
 | |
| 	lsl.l	%d2,%d1
 | |
| 	jeq	fp_nd_round
 | |
| 	bset	#0,%d0
 | |
| 	jra	fp_nd_round
 | |
| 	| Sorry, the number is just too small.
 | |
| 2:	clr.l	(%a0)+
 | |
| 	clr.l	(%a0)
 | |
| 	moveq	#1,%d0			| Smallest possible fraction,
 | |
| 	jra	fp_nd_round		| round as desired.
 | |
| 	| zero and denormalized
 | |
| fp_nd_zero:
 | |
| 	tst.l	(%a0)+
 | |
| 	jne	1f
 | |
| 	tst.l	(%a0)
 | |
| 	jne	1f
 | |
| 	subq.l	#8,%a0
 | |
| 	printf	PNORM,"%p(",1,%a0
 | |
| 	printx	PNORM,%a0@
 | |
| 	printf	PNORM,")\n"
 | |
| 	rts				| zero.  nothing to do.
 | |
| 	| These are not merely subnormal numbers, but true denormals,
 | |
| 	| i.e. pathologically small (exponent is 2**-16383) numbers.
 | |
| 	| It is clearly impossible for even a normal extended number
 | |
| 	| with that exponent to fit into double precision, so just
 | |
| 	| write these ones off as "too darn small".
 | |
| 1:	fp_set_sr FPSR_EXC_UNFL		| Set UNFL bit
 | |
| 	clr.l	(%a0)
 | |
| 	clr.l	-(%a0)
 | |
| 	move.w	#0x3c01,-(%a0)		| i.e. 2**-1022
 | |
| 	addq.l	#6,%a0
 | |
| 	moveq	#1,%d0
 | |
| 	jra	fp_nd_round		| round.
 | |
| 	| Exponent overflow.  Just call it infinity.
 | |
| fp_nd_large:
 | |
| 	move.w	#0x7ff,%d0
 | |
| 	and.w	(6,%a0),%d0
 | |
| 	jeq	1f
 | |
| 	fp_set_sr FPSR_EXC_INEX2
 | |
| 1:	fp_set_sr FPSR_EXC_OVFL
 | |
| 	move.w	(FPD_RND,FPDATA),%d2
 | |
| 	jne	3f			| %d2 = 0 round to nearest
 | |
| 1:	move.w	#0x7fff,(-2,%a0)
 | |
| 	clr.l	(%a0)+
 | |
| 	clr.l	(%a0)
 | |
| 2:	subq.l	#8,%a0
 | |
| 	printf	PNORM,"%p(",1,%a0
 | |
| 	printx	PNORM,%a0@
 | |
| 	printf	PNORM,")\n"
 | |
| 	rts
 | |
| 3:	subq.w	#2,%d2
 | |
| 	jcs	5f			| %d2 < 2, round to zero
 | |
| 	jhi	4f			| %d2 > 2, round to +infinity
 | |
| 	tst.b	(-3,%a0)		| to -inf
 | |
| 	jne	1b
 | |
| 	jra	5f
 | |
| 4:	tst.b	(-3,%a0)		| to +inf
 | |
| 	jeq	1b
 | |
| 5:	move.w	#0x43fe,(-2,%a0)
 | |
| 	moveq	#-1,%d0
 | |
| 	move.l	%d0,(%a0)+
 | |
| 	move.w	#0xf800,%d0
 | |
| 	move.l	%d0,(%a0)
 | |
| 	jra	2b
 | |
| 	| Infinities or NaNs
 | |
| fp_nd_huge:
 | |
| 	subq.l	#4,%a0
 | |
| 	printf	PNORM,"%p(",1,%a0
 | |
| 	printx	PNORM,%a0@
 | |
| 	printf	PNORM,")\n"
 | |
| 	rts
 | |
| 
 | |
| 	| fp_normalize_single:
 | |
| 	| normalize an extended with single (23-bit) precision
 | |
| 	| args:	 %a0 (struct fp_ext *)
 | |
| 
 | |
| fp_normalize_single:
 | |
| 	printf	PNORM,"ns: %p(",1,%a0
 | |
| 	printx	PNORM,%a0@
 | |
| 	printf	PNORM,") "
 | |
| 	addq.l	#2,%a0
 | |
| 	move.w	(%a0)+,%d2
 | |
| 	jeq	fp_ns_zero		| zero / denormalized
 | |
| 	cmp.w	#0x7fff,%d2
 | |
| 	jeq	fp_ns_huge		| NaN / infinitive.
 | |
| 	sub.w	#0x4000-0x7f,%d2	| will the exponent fit?
 | |
| 	jcs	fp_ns_small		| too small.
 | |
| 	cmp.w	#0xfe,%d2
 | |
| 	jcc	fp_ns_large		| too big.
 | |
| 	move.l	(%a0)+,%d0		| get high lword of mantissa
 | |
| fp_ns_round:
 | |
| 	tst.l	(%a0)			| check the low lword
 | |
| 	jeq	1f
 | |
| 	| Set a sticky bit if it is non-zero.  This should only
 | |
| 	| affect the rounding in what would otherwise be equal-
 | |
| 	| distance situations, which is what we want it to do.
 | |
| 	bset	#0,%d0
 | |
| 1:	clr.l	(%a0)			| zap it from memory.
 | |
| 	| now, round off the low 8 bits of the hi lword.
 | |
| 	tst.b	%d0			| 8 low bits.
 | |
| 	jne	fp_ns_checkround	| Are they non-zero?
 | |
| 	| nothing to do here
 | |
| 	subq.l	#8,%a0
 | |
| 	printf	PNORM,"%p(",1,%a0
 | |
| 	printx	PNORM,%a0@
 | |
| 	printf	PNORM,")\n"
 | |
| 	rts
 | |
| fp_ns_checkround:
 | |
| 	fp_set_sr FPSR_EXC_INEX2	| INEX2 bit
 | |
| 	clr.b	-(%a0)			| clear low byte of high lword
 | |
| 	subq.l	#3,%a0
 | |
| 	move.w	(FPD_RND,FPDATA),%d2	| rounding mode
 | |
| 	jne	2f			| %d2 == 0, round to nearest
 | |
| 	tst.b	%d0			| test guard bit
 | |
| 	jpl	9f			| zero is closer
 | |
| 	btst	#8,%d0			| test lsb bit
 | |
| 	| round to even behaviour, see above.
 | |
| 	jne	fp_ns_doroundup		| round to infinity
 | |
| 	lsl.b	#1,%d0			| check low bits
 | |
| 	jeq	9f			| round to zero
 | |
| fp_ns_doroundup:
 | |
| 	| round (the mantissa, that is) towards infinity
 | |
| 	add.l	#0x100,(%a0)
 | |
| 	jcc	9f			| no overflow, good.
 | |
| 	| Overflow.  This means that the %d1 was 0xffffff00, so it
 | |
| 	| is now zero.  We will set the mantissa to reflect this, and
 | |
| 	| increment the exponent (checking for overflow there too)
 | |
| 	move.w	#0x8000,(%a0)
 | |
| 	addq.w	#1,-(%a0)
 | |
| 	cmp.w	#0x407f,(%a0)+		| exponent now overflown?
 | |
| 	jeq	fp_ns_large		| yes, so make it infinity.
 | |
| 9:	subq.l	#4,%a0
 | |
| 	printf	PNORM,"%p(",1,%a0
 | |
| 	printx	PNORM,%a0@
 | |
| 	printf	PNORM,")\n"
 | |
| 	rts
 | |
| 	| check nondefault rounding modes
 | |
| 2:	subq.w	#2,%d2
 | |
| 	jcs	9b			| %d2 < 2, round to zero
 | |
| 	jhi	3f			| %d2 > 2, round to +infinity
 | |
| 	tst.b	(-3,%a0)		| to -inf
 | |
| 	jne	fp_ns_doroundup		| negative, round to infinity
 | |
| 	jra	9b			| positive, round to zero
 | |
| 3:	tst.b	(-3,%a0)		| to +inf
 | |
| 	jeq	fp_ns_doroundup		| positive, round to infinity
 | |
| 	jra	9b			| negative, round to zero
 | |
| 	| Exponent underflow.  Try to make a denormal, and set it to
 | |
| 	| the smallest possible fraction if this fails.
 | |
| fp_ns_small:
 | |
| 	fp_set_sr FPSR_EXC_UNFL		| set UNFL bit
 | |
| 	move.w	#0x3f81,(-2,%a0)	| 2**-126
 | |
| 	neg.w	%d2			| degree of underflow
 | |
| 	cmp.w	#32,%d2			| single or double shift?
 | |
| 	jcc	2f
 | |
| 	| a 32-bit shift.
 | |
| 	move.l	(%a0),%d0
 | |
| 	move.l	%d0,%d1
 | |
| 	lsr.l	%d2,%d0
 | |
| 	move.l	%d0,(%a0)+
 | |
| 	| Check to see if we shifted off any significant bits.
 | |
| 	neg.w	%d2
 | |
| 	add.w	#32,%d2
 | |
| 	lsl.l	%d2,%d1
 | |
| 	jeq	1f
 | |
| 	bset	#0,%d0			| Sticky bit.
 | |
| 	| Check the lower lword
 | |
| 1:	tst.l	(%a0)
 | |
| 	jeq	fp_ns_round
 | |
| 	clr	(%a0)
 | |
| 	bset	#0,%d0			| Sticky bit.
 | |
| 	jra	fp_ns_round
 | |
| 	| Sorry, the number is just too small.
 | |
| 2:	clr.l	(%a0)+
 | |
| 	clr.l	(%a0)
 | |
| 	moveq	#1,%d0			| Smallest possible fraction,
 | |
| 	jra	fp_ns_round		| round as desired.
 | |
| 	| Exponent overflow.  Just call it infinity.
 | |
| fp_ns_large:
 | |
| 	tst.b	(3,%a0)
 | |
| 	jeq	1f
 | |
| 	fp_set_sr FPSR_EXC_INEX2
 | |
| 1:	fp_set_sr FPSR_EXC_OVFL
 | |
| 	move.w	(FPD_RND,FPDATA),%d2
 | |
| 	jne	3f			| %d2 = 0 round to nearest
 | |
| 1:	move.w	#0x7fff,(-2,%a0)
 | |
| 	clr.l	(%a0)+
 | |
| 	clr.l	(%a0)
 | |
| 2:	subq.l	#8,%a0
 | |
| 	printf	PNORM,"%p(",1,%a0
 | |
| 	printx	PNORM,%a0@
 | |
| 	printf	PNORM,")\n"
 | |
| 	rts
 | |
| 3:	subq.w	#2,%d2
 | |
| 	jcs	5f			| %d2 < 2, round to zero
 | |
| 	jhi	4f			| %d2 > 2, round to +infinity
 | |
| 	tst.b	(-3,%a0)		| to -inf
 | |
| 	jne	1b
 | |
| 	jra	5f
 | |
| 4:	tst.b	(-3,%a0)		| to +inf
 | |
| 	jeq	1b
 | |
| 5:	move.w	#0x407e,(-2,%a0)
 | |
| 	move.l	#0xffffff00,(%a0)+
 | |
| 	clr.l	(%a0)
 | |
| 	jra	2b
 | |
| 	| zero and denormalized
 | |
| fp_ns_zero:
 | |
| 	tst.l	(%a0)+
 | |
| 	jne	1f
 | |
| 	tst.l	(%a0)
 | |
| 	jne	1f
 | |
| 	subq.l	#8,%a0
 | |
| 	printf	PNORM,"%p(",1,%a0
 | |
| 	printx	PNORM,%a0@
 | |
| 	printf	PNORM,")\n"
 | |
| 	rts				| zero.  nothing to do.
 | |
| 	| These are not merely subnormal numbers, but true denormals,
 | |
| 	| i.e. pathologically small (exponent is 2**-16383) numbers.
 | |
| 	| It is clearly impossible for even a normal extended number
 | |
| 	| with that exponent to fit into single precision, so just
 | |
| 	| write these ones off as "too darn small".
 | |
| 1:	fp_set_sr FPSR_EXC_UNFL		| Set UNFL bit
 | |
| 	clr.l	(%a0)
 | |
| 	clr.l	-(%a0)
 | |
| 	move.w	#0x3f81,-(%a0)		| i.e. 2**-126
 | |
| 	addq.l	#6,%a0
 | |
| 	moveq	#1,%d0
 | |
| 	jra	fp_ns_round		| round.
 | |
| 	| Infinities or NaNs
 | |
| fp_ns_huge:
 | |
| 	subq.l	#4,%a0
 | |
| 	printf	PNORM,"%p(",1,%a0
 | |
| 	printx	PNORM,%a0@
 | |
| 	printf	PNORM,")\n"
 | |
| 	rts
 | |
| 
 | |
| 	| fp_normalize_single_fast:
 | |
| 	| normalize an extended with single (23-bit) precision
 | |
| 	| this is only used by fsgldiv/fsgdlmul, where the
 | |
| 	| operand is not completly normalized.
 | |
| 	| args:	 %a0 (struct fp_ext *)
 | |
| 
 | |
| fp_normalize_single_fast:
 | |
| 	printf	PNORM,"nsf: %p(",1,%a0
 | |
| 	printx	PNORM,%a0@
 | |
| 	printf	PNORM,") "
 | |
| 	addq.l	#2,%a0
 | |
| 	move.w	(%a0)+,%d2
 | |
| 	cmp.w	#0x7fff,%d2
 | |
| 	jeq	fp_nsf_huge		| NaN / infinitive.
 | |
| 	move.l	(%a0)+,%d0		| get high lword of mantissa
 | |
| fp_nsf_round:
 | |
| 	tst.l	(%a0)			| check the low lword
 | |
| 	jeq	1f
 | |
| 	| Set a sticky bit if it is non-zero.  This should only
 | |
| 	| affect the rounding in what would otherwise be equal-
 | |
| 	| distance situations, which is what we want it to do.
 | |
| 	bset	#0,%d0
 | |
| 1:	clr.l	(%a0)			| zap it from memory.
 | |
| 	| now, round off the low 8 bits of the hi lword.
 | |
| 	tst.b	%d0			| 8 low bits.
 | |
| 	jne	fp_nsf_checkround	| Are they non-zero?
 | |
| 	| nothing to do here
 | |
| 	subq.l	#8,%a0
 | |
| 	printf	PNORM,"%p(",1,%a0
 | |
| 	printx	PNORM,%a0@
 | |
| 	printf	PNORM,")\n"
 | |
| 	rts
 | |
| fp_nsf_checkround:
 | |
| 	fp_set_sr FPSR_EXC_INEX2	| INEX2 bit
 | |
| 	clr.b	-(%a0)			| clear low byte of high lword
 | |
| 	subq.l	#3,%a0
 | |
| 	move.w	(FPD_RND,FPDATA),%d2	| rounding mode
 | |
| 	jne	2f			| %d2 == 0, round to nearest
 | |
| 	tst.b	%d0			| test guard bit
 | |
| 	jpl	9f			| zero is closer
 | |
| 	btst	#8,%d0			| test lsb bit
 | |
| 	| round to even behaviour, see above.
 | |
| 	jne	fp_nsf_doroundup		| round to infinity
 | |
| 	lsl.b	#1,%d0			| check low bits
 | |
| 	jeq	9f			| round to zero
 | |
| fp_nsf_doroundup:
 | |
| 	| round (the mantissa, that is) towards infinity
 | |
| 	add.l	#0x100,(%a0)
 | |
| 	jcc	9f			| no overflow, good.
 | |
| 	| Overflow.  This means that the %d1 was 0xffffff00, so it
 | |
| 	| is now zero.  We will set the mantissa to reflect this, and
 | |
| 	| increment the exponent (checking for overflow there too)
 | |
| 	move.w	#0x8000,(%a0)
 | |
| 	addq.w	#1,-(%a0)
 | |
| 	cmp.w	#0x407f,(%a0)+		| exponent now overflown?
 | |
| 	jeq	fp_nsf_large		| yes, so make it infinity.
 | |
| 9:	subq.l	#4,%a0
 | |
| 	printf	PNORM,"%p(",1,%a0
 | |
| 	printx	PNORM,%a0@
 | |
| 	printf	PNORM,")\n"
 | |
| 	rts
 | |
| 	| check nondefault rounding modes
 | |
| 2:	subq.w	#2,%d2
 | |
| 	jcs	9b			| %d2 < 2, round to zero
 | |
| 	jhi	3f			| %d2 > 2, round to +infinity
 | |
| 	tst.b	(-3,%a0)		| to -inf
 | |
| 	jne	fp_nsf_doroundup	| negative, round to infinity
 | |
| 	jra	9b			| positive, round to zero
 | |
| 3:	tst.b	(-3,%a0)		| to +inf
 | |
| 	jeq	fp_nsf_doroundup		| positive, round to infinity
 | |
| 	jra	9b			| negative, round to zero
 | |
| 	| Exponent overflow.  Just call it infinity.
 | |
| fp_nsf_large:
 | |
| 	tst.b	(3,%a0)
 | |
| 	jeq	1f
 | |
| 	fp_set_sr FPSR_EXC_INEX2
 | |
| 1:	fp_set_sr FPSR_EXC_OVFL
 | |
| 	move.w	(FPD_RND,FPDATA),%d2
 | |
| 	jne	3f			| %d2 = 0 round to nearest
 | |
| 1:	move.w	#0x7fff,(-2,%a0)
 | |
| 	clr.l	(%a0)+
 | |
| 	clr.l	(%a0)
 | |
| 2:	subq.l	#8,%a0
 | |
| 	printf	PNORM,"%p(",1,%a0
 | |
| 	printx	PNORM,%a0@
 | |
| 	printf	PNORM,")\n"
 | |
| 	rts
 | |
| 3:	subq.w	#2,%d2
 | |
| 	jcs	5f			| %d2 < 2, round to zero
 | |
| 	jhi	4f			| %d2 > 2, round to +infinity
 | |
| 	tst.b	(-3,%a0)		| to -inf
 | |
| 	jne	1b
 | |
| 	jra	5f
 | |
| 4:	tst.b	(-3,%a0)		| to +inf
 | |
| 	jeq	1b
 | |
| 5:	move.w	#0x407e,(-2,%a0)
 | |
| 	move.l	#0xffffff00,(%a0)+
 | |
| 	clr.l	(%a0)
 | |
| 	jra	2b
 | |
| 	| Infinities or NaNs
 | |
| fp_nsf_huge:
 | |
| 	subq.l	#4,%a0
 | |
| 	printf	PNORM,"%p(",1,%a0
 | |
| 	printx	PNORM,%a0@
 | |
| 	printf	PNORM,")\n"
 | |
| 	rts
 | |
| 
 | |
| 	| conv_ext2int (macro):
 | |
| 	| Generates a subroutine that converts an extended value to an
 | |
| 	| integer of a given size, again, with the appropriate type of
 | |
| 	| rounding.
 | |
| 
 | |
| 	| Macro arguments:
 | |
| 	| s:	size, as given in an assembly instruction.
 | |
| 	| b:	number of bits in that size.
 | |
| 
 | |
| 	| Subroutine arguments:
 | |
| 	| %a0:	source (struct fp_ext *)
 | |
| 
 | |
| 	| Returns the integer in %d0 (like it should)
 | |
| 
 | |
| .macro conv_ext2int s,b
 | |
| 	.set	inf,(1<<(\b-1))-1	| i.e. MAXINT
 | |
| 	printf	PCONV,"e2i%d: %p(",2,#\b,%a0
 | |
| 	printx	PCONV,%a0@
 | |
| 	printf	PCONV,") "
 | |
| 	addq.l	#2,%a0
 | |
| 	move.w	(%a0)+,%d2		| exponent
 | |
| 	jeq	fp_e2i_zero\b		| zero / denorm (== 0, here)
 | |
| 	cmp.w	#0x7fff,%d2
 | |
| 	jeq	fp_e2i_huge\b		| Inf / NaN
 | |
| 	sub.w	#0x3ffe,%d2
 | |
| 	jcs	fp_e2i_small\b
 | |
| 	cmp.w	#\b,%d2
 | |
| 	jhi	fp_e2i_large\b
 | |
| 	move.l	(%a0),%d0
 | |
| 	move.l	%d0,%d1
 | |
| 	lsl.l	%d2,%d1
 | |
| 	jne	fp_e2i_round\b
 | |
| 	tst.l	(4,%a0)
 | |
| 	jne	fp_e2i_round\b
 | |
| 	neg.w	%d2
 | |
| 	add.w	#32,%d2
 | |
| 	lsr.l	%d2,%d0
 | |
| 9:	tst.w	(-4,%a0)
 | |
| 	jne	1f
 | |
| 	tst.\s	%d0
 | |
| 	jmi	fp_e2i_large\b
 | |
| 	printf	PCONV,"-> %p\n",1,%d0
 | |
| 	rts
 | |
| 1:	neg.\s	%d0
 | |
| 	jeq	1f
 | |
| 	jpl	fp_e2i_large\b
 | |
| 1:	printf	PCONV,"-> %p\n",1,%d0
 | |
| 	rts
 | |
| fp_e2i_round\b:
 | |
| 	fp_set_sr FPSR_EXC_INEX2	| INEX2 bit
 | |
| 	neg.w	%d2
 | |
| 	add.w	#32,%d2
 | |
| 	.if	\b>16
 | |
| 	jeq	5f
 | |
| 	.endif
 | |
| 	lsr.l	%d2,%d0
 | |
| 	move.w	(FPD_RND,FPDATA),%d2	| rounding mode
 | |
| 	jne	2f			| %d2 == 0, round to nearest
 | |
| 	tst.l	%d1			| test guard bit
 | |
| 	jpl	9b			| zero is closer
 | |
| 	btst	%d2,%d0			| test lsb bit (%d2 still 0)
 | |
| 	jne	fp_e2i_doroundup\b
 | |
| 	lsl.l	#1,%d1			| check low bits
 | |
| 	jne	fp_e2i_doroundup\b
 | |
| 	tst.l	(4,%a0)
 | |
| 	jeq	9b
 | |
| fp_e2i_doroundup\b:
 | |
| 	addq.l	#1,%d0
 | |
| 	jra	9b
 | |
| 	| check nondefault rounding modes
 | |
| 2:	subq.w	#2,%d2
 | |
| 	jcs	9b			| %d2 < 2, round to zero
 | |
| 	jhi	3f			| %d2 > 2, round to +infinity
 | |
| 	tst.w	(-4,%a0)		| to -inf
 | |
| 	jne	fp_e2i_doroundup\b	| negative, round to infinity
 | |
| 	jra	9b			| positive, round to zero
 | |
| 3:	tst.w	(-4,%a0)		| to +inf
 | |
| 	jeq	fp_e2i_doroundup\b	| positive, round to infinity
 | |
| 	jra	9b	| negative, round to zero
 | |
| 	| we are only want -2**127 get correctly rounded here,
 | |
| 	| since the guard bit is in the lower lword.
 | |
| 	| everything else ends up anyway as overflow.
 | |
| 	.if	\b>16
 | |
| 5:	move.w	(FPD_RND,FPDATA),%d2	| rounding mode
 | |
| 	jne	2b			| %d2 == 0, round to nearest
 | |
| 	move.l	(4,%a0),%d1		| test guard bit
 | |
| 	jpl	9b			| zero is closer
 | |
| 	lsl.l	#1,%d1			| check low bits
 | |
| 	jne	fp_e2i_doroundup\b
 | |
| 	jra	9b
 | |
| 	.endif
 | |
| fp_e2i_zero\b:
 | |
| 	clr.l	%d0
 | |
| 	tst.l	(%a0)+
 | |
| 	jne	1f
 | |
| 	tst.l	(%a0)
 | |
| 	jeq	3f
 | |
| 1:	subq.l	#4,%a0
 | |
| 	fp_clr_sr FPSR_EXC_UNFL		| fp_normalize_ext has set this bit
 | |
| fp_e2i_small\b:
 | |
| 	fp_set_sr FPSR_EXC_INEX2
 | |
| 	clr.l	%d0
 | |
| 	move.w	(FPD_RND,FPDATA),%d2	| rounding mode
 | |
| 	subq.w	#2,%d2
 | |
| 	jcs	3f			| %d2 < 2, round to nearest/zero
 | |
| 	jhi	2f			| %d2 > 2, round to +infinity
 | |
| 	tst.w	(-4,%a0)		| to -inf
 | |
| 	jeq	3f
 | |
| 	subq.\s	#1,%d0
 | |
| 	jra	3f
 | |
| 2:	tst.w	(-4,%a0)		| to +inf
 | |
| 	jne	3f
 | |
| 	addq.\s	#1,%d0
 | |
| 3:	printf	PCONV,"-> %p\n",1,%d0
 | |
| 	rts
 | |
| fp_e2i_large\b:
 | |
| 	fp_set_sr FPSR_EXC_OPERR
 | |
| 	move.\s	#inf,%d0
 | |
| 	tst.w	(-4,%a0)
 | |
| 	jeq	1f
 | |
| 	addq.\s	#1,%d0
 | |
| 1:	printf	PCONV,"-> %p\n",1,%d0
 | |
| 	rts
 | |
| fp_e2i_huge\b:
 | |
| 	move.\s	(%a0),%d0
 | |
| 	tst.l	(%a0)
 | |
| 	jne	1f
 | |
| 	tst.l	(%a0)
 | |
| 	jeq	fp_e2i_large\b
 | |
| 	| fp_normalize_ext has set this bit already
 | |
| 	| and made the number nonsignaling
 | |
| 1:	fp_tst_sr FPSR_EXC_SNAN
 | |
| 	jne	1f
 | |
| 	fp_set_sr FPSR_EXC_OPERR
 | |
| 1:	printf	PCONV,"-> %p\n",1,%d0
 | |
| 	rts
 | |
| .endm
 | |
| 
 | |
| fp_conv_ext2long:
 | |
| 	conv_ext2int l,32
 | |
| 
 | |
| fp_conv_ext2short:
 | |
| 	conv_ext2int w,16
 | |
| 
 | |
| fp_conv_ext2byte:
 | |
| 	conv_ext2int b,8
 | |
| 
 | |
| fp_conv_ext2double:
 | |
| 	jsr	fp_normalize_double
 | |
| 	printf	PCONV,"e2d: %p(",1,%a0
 | |
| 	printx	PCONV,%a0@
 | |
| 	printf	PCONV,"), "
 | |
| 	move.l	(%a0)+,%d2
 | |
| 	cmp.w	#0x7fff,%d2
 | |
| 	jne	1f
 | |
| 	move.w	#0x7ff,%d2
 | |
| 	move.l	(%a0)+,%d0
 | |
| 	jra	2f
 | |
| 1:	sub.w	#0x3fff-0x3ff,%d2
 | |
| 	move.l	(%a0)+,%d0
 | |
| 	jmi	2f
 | |
| 	clr.w	%d2
 | |
| 2:	lsl.w	#5,%d2
 | |
| 	lsl.l	#7,%d2
 | |
| 	lsl.l	#8,%d2
 | |
| 	move.l	%d0,%d1
 | |
| 	lsl.l	#1,%d0
 | |
| 	lsr.l	#4,%d0
 | |
| 	lsr.l	#8,%d0
 | |
| 	or.l	%d2,%d0
 | |
| 	putuser.l %d0,(%a1)+,fp_err_ua2,%a1
 | |
| 	moveq	#21,%d0
 | |
| 	lsl.l	%d0,%d1
 | |
| 	move.l	(%a0),%d0
 | |
| 	lsr.l	#4,%d0
 | |
| 	lsr.l	#7,%d0
 | |
| 	or.l	%d1,%d0
 | |
| 	putuser.l %d0,(%a1),fp_err_ua2,%a1
 | |
| #ifdef FPU_EMU_DEBUG
 | |
| 	getuser.l %a1@(-4),%d0,fp_err_ua2,%a1
 | |
| 	getuser.l %a1@(0),%d1,fp_err_ua2,%a1
 | |
| 	printf	PCONV,"%p(%08x%08x)\n",3,%a1,%d0,%d1
 | |
| #endif
 | |
| 	rts
 | |
| 
 | |
| fp_conv_ext2single:
 | |
| 	jsr	fp_normalize_single
 | |
| 	printf	PCONV,"e2s: %p(",1,%a0
 | |
| 	printx	PCONV,%a0@
 | |
| 	printf	PCONV,"), "
 | |
| 	move.l	(%a0)+,%d1
 | |
| 	cmp.w	#0x7fff,%d1
 | |
| 	jne	1f
 | |
| 	move.w	#0xff,%d1
 | |
| 	move.l	(%a0)+,%d0
 | |
| 	jra	2f
 | |
| 1:	sub.w	#0x3fff-0x7f,%d1
 | |
| 	move.l	(%a0)+,%d0
 | |
| 	jmi	2f
 | |
| 	clr.w	%d1
 | |
| 2:	lsl.w	#8,%d1
 | |
| 	lsl.l	#7,%d1
 | |
| 	lsl.l	#8,%d1
 | |
| 	bclr	#31,%d0
 | |
| 	lsr.l	#8,%d0
 | |
| 	or.l	%d1,%d0
 | |
| 	printf	PCONV,"%08x\n",1,%d0
 | |
| 	rts
 | |
| 
 | |
| 	| special return addresses for instr that
 | |
| 	| encode the rounding precision in the opcode
 | |
| 	| (e.g. fsmove,fdmove)
 | |
| 
 | |
| fp_finalrounding_single:
 | |
| 	addq.l	#8,%sp
 | |
| 	jsr	fp_normalize_ext
 | |
| 	jsr	fp_normalize_single
 | |
| 	jra	fp_finaltest
 | |
| 
 | |
| fp_finalrounding_single_fast:
 | |
| 	addq.l	#8,%sp
 | |
| 	jsr	fp_normalize_ext
 | |
| 	jsr	fp_normalize_single_fast
 | |
| 	jra	fp_finaltest
 | |
| 
 | |
| fp_finalrounding_double:
 | |
| 	addq.l	#8,%sp
 | |
| 	jsr	fp_normalize_ext
 | |
| 	jsr	fp_normalize_double
 | |
| 	jra	fp_finaltest
 | |
| 
 | |
| 	| fp_finaltest:
 | |
| 	| set the emulated status register based on the outcome of an
 | |
| 	| emulated instruction.
 | |
| 
 | |
| fp_finalrounding:
 | |
| 	addq.l	#8,%sp
 | |
| |	printf	,"f: %p\n",1,%a0
 | |
| 	jsr	fp_normalize_ext
 | |
| 	move.w	(FPD_PREC,FPDATA),%d0
 | |
| 	subq.w	#1,%d0
 | |
| 	jcs	fp_finaltest
 | |
| 	jne	1f
 | |
| 	jsr	fp_normalize_single
 | |
| 	jra	2f
 | |
| 1:	jsr	fp_normalize_double
 | |
| 2:|	printf	,"f: %p\n",1,%a0
 | |
| fp_finaltest:
 | |
| 	| First, we do some of the obvious tests for the exception
 | |
| 	| status byte and condition code bytes of fp_sr here, so that
 | |
| 	| they do not have to be handled individually by every
 | |
| 	| emulated instruction.
 | |
| 	clr.l	%d0
 | |
| 	addq.l	#1,%a0
 | |
| 	tst.b	(%a0)+			| sign
 | |
| 	jeq	1f
 | |
| 	bset	#FPSR_CC_NEG-24,%d0	| N bit
 | |
| 1:	cmp.w	#0x7fff,(%a0)+		| exponent
 | |
| 	jeq	2f
 | |
| 	| test for zero
 | |
| 	moveq	#FPSR_CC_Z-24,%d1
 | |
| 	tst.l	(%a0)+
 | |
| 	jne	9f
 | |
| 	tst.l	(%a0)
 | |
| 	jne	9f
 | |
| 	jra	8f
 | |
| 	| infinitiv and NAN
 | |
| 2:	moveq	#FPSR_CC_NAN-24,%d1
 | |
| 	move.l	(%a0)+,%d2
 | |
| 	lsl.l	#1,%d2			| ignore high bit
 | |
| 	jne	8f
 | |
| 	tst.l	(%a0)
 | |
| 	jne	8f
 | |
| 	moveq	#FPSR_CC_INF-24,%d1
 | |
| 8:	bset	%d1,%d0
 | |
| 9:	move.b	%d0,(FPD_FPSR+0,FPDATA)	| set condition test result
 | |
| 	| move instructions enter here
 | |
| 	| Here, we test things in the exception status byte, and set
 | |
| 	| other things in the accrued exception byte accordingly.
 | |
| 	| Emulated instructions can set various things in the former,
 | |
| 	| as defined in fp_emu.h.
 | |
| fp_final:
 | |
| 	move.l	(FPD_FPSR,FPDATA),%d0
 | |
| #if 0
 | |
| 	btst	#FPSR_EXC_SNAN,%d0	| EXC_SNAN
 | |
| 	jne	1f
 | |
| 	btst	#FPSR_EXC_OPERR,%d0	| EXC_OPERR
 | |
| 	jeq	2f
 | |
| 1:	bset	#FPSR_AEXC_IOP,%d0	| set IOP bit
 | |
| 2:	btst	#FPSR_EXC_OVFL,%d0	| EXC_OVFL
 | |
| 	jeq	1f
 | |
| 	bset	#FPSR_AEXC_OVFL,%d0	| set OVFL bit
 | |
| 1:	btst	#FPSR_EXC_UNFL,%d0	| EXC_UNFL
 | |
| 	jeq	1f
 | |
| 	btst	#FPSR_EXC_INEX2,%d0	| EXC_INEX2
 | |
| 	jeq	1f
 | |
| 	bset	#FPSR_AEXC_UNFL,%d0	| set UNFL bit
 | |
| 1:	btst	#FPSR_EXC_DZ,%d0	| EXC_INEX1
 | |
| 	jeq	1f
 | |
| 	bset	#FPSR_AEXC_DZ,%d0	| set DZ bit
 | |
| 1:	btst	#FPSR_EXC_OVFL,%d0	| EXC_OVFL
 | |
| 	jne	1f
 | |
| 	btst	#FPSR_EXC_INEX2,%d0	| EXC_INEX2
 | |
| 	jne	1f
 | |
| 	btst	#FPSR_EXC_INEX1,%d0	| EXC_INEX1
 | |
| 	jeq	2f
 | |
| 1:	bset	#FPSR_AEXC_INEX,%d0	| set INEX bit
 | |
| 2:	move.l	%d0,(FPD_FPSR,FPDATA)
 | |
| #else
 | |
| 	| same as above, greatly optimized, but untested (yet)
 | |
| 	move.l	%d0,%d2
 | |
| 	lsr.l	#5,%d0
 | |
| 	move.l	%d0,%d1
 | |
| 	lsr.l	#4,%d1
 | |
| 	or.l	%d0,%d1
 | |
| 	and.b	#0x08,%d1
 | |
| 	move.l	%d2,%d0
 | |
| 	lsr.l	#6,%d0
 | |
| 	or.l	%d1,%d0
 | |
| 	move.l	%d2,%d1
 | |
| 	lsr.l	#4,%d1
 | |
| 	or.b	#0xdf,%d1
 | |
| 	and.b	%d1,%d0
 | |
| 	move.l	%d2,%d1
 | |
| 	lsr.l	#7,%d1
 | |
| 	and.b	#0x80,%d1
 | |
| 	or.b	%d1,%d0
 | |
| 	and.b	#0xf8,%d0
 | |
| 	or.b	%d0,%d2
 | |
| 	move.l	%d2,(FPD_FPSR,FPDATA)
 | |
| #endif
 | |
| 	move.b	(FPD_FPSR+2,FPDATA),%d0
 | |
| 	and.b	(FPD_FPCR+2,FPDATA),%d0
 | |
| 	jeq	1f
 | |
| 	printf	,"send signal!!!\n"
 | |
| 1:	jra	fp_end
 |