 2ade4de871
			
		
	
	
	2ade4de871
	
	
	
		
			
			We can't see the relationship with memcg from the parameters, so the name with memcg_idx would be more reasonable. Signed-off-by: Qiang Huang <h.huangqiang@huawei.com> Reviewed-by: Pekka Enberg <penberg@kernel.org> Acked-by: David Rientjes <rientjes@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Glauber Costa <glommer@parallels.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
		
			
				
	
	
		
			660 lines
		
	
	
	
		
			15 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			660 lines
		
	
	
	
		
			15 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Slab allocator functions that are independent of the allocator strategy
 | |
|  *
 | |
|  * (C) 2012 Christoph Lameter <cl@linux.com>
 | |
|  */
 | |
| #include <linux/slab.h>
 | |
| 
 | |
| #include <linux/mm.h>
 | |
| #include <linux/poison.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/memory.h>
 | |
| #include <linux/compiler.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/cpu.h>
 | |
| #include <linux/uaccess.h>
 | |
| #include <linux/seq_file.h>
 | |
| #include <linux/proc_fs.h>
 | |
| #include <asm/cacheflush.h>
 | |
| #include <asm/tlbflush.h>
 | |
| #include <asm/page.h>
 | |
| #include <linux/memcontrol.h>
 | |
| #include <trace/events/kmem.h>
 | |
| 
 | |
| #include "slab.h"
 | |
| 
 | |
| enum slab_state slab_state;
 | |
| LIST_HEAD(slab_caches);
 | |
| DEFINE_MUTEX(slab_mutex);
 | |
| struct kmem_cache *kmem_cache;
 | |
| 
 | |
| #ifdef CONFIG_DEBUG_VM
 | |
| static int kmem_cache_sanity_check(struct mem_cgroup *memcg, const char *name,
 | |
| 				   size_t size)
 | |
| {
 | |
| 	struct kmem_cache *s = NULL;
 | |
| 
 | |
| 	if (!name || in_interrupt() || size < sizeof(void *) ||
 | |
| 		size > KMALLOC_MAX_SIZE) {
 | |
| 		pr_err("kmem_cache_create(%s) integrity check failed\n", name);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	list_for_each_entry(s, &slab_caches, list) {
 | |
| 		char tmp;
 | |
| 		int res;
 | |
| 
 | |
| 		/*
 | |
| 		 * This happens when the module gets unloaded and doesn't
 | |
| 		 * destroy its slab cache and no-one else reuses the vmalloc
 | |
| 		 * area of the module.  Print a warning.
 | |
| 		 */
 | |
| 		res = probe_kernel_address(s->name, tmp);
 | |
| 		if (res) {
 | |
| 			pr_err("Slab cache with size %d has lost its name\n",
 | |
| 			       s->object_size);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| #if !defined(CONFIG_SLUB) || !defined(CONFIG_SLUB_DEBUG_ON)
 | |
| 		/*
 | |
| 		 * For simplicity, we won't check this in the list of memcg
 | |
| 		 * caches. We have control over memcg naming, and if there
 | |
| 		 * aren't duplicates in the global list, there won't be any
 | |
| 		 * duplicates in the memcg lists as well.
 | |
| 		 */
 | |
| 		if (!memcg && !strcmp(s->name, name)) {
 | |
| 			pr_err("%s (%s): Cache name already exists.\n",
 | |
| 			       __func__, name);
 | |
| 			dump_stack();
 | |
| 			s = NULL;
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| #endif
 | |
| 	}
 | |
| 
 | |
| 	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
 | |
| 	return 0;
 | |
| }
 | |
| #else
 | |
| static inline int kmem_cache_sanity_check(struct mem_cgroup *memcg,
 | |
| 					  const char *name, size_t size)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_MEMCG_KMEM
 | |
| int memcg_update_all_caches(int num_memcgs)
 | |
| {
 | |
| 	struct kmem_cache *s;
 | |
| 	int ret = 0;
 | |
| 	mutex_lock(&slab_mutex);
 | |
| 
 | |
| 	list_for_each_entry(s, &slab_caches, list) {
 | |
| 		if (!is_root_cache(s))
 | |
| 			continue;
 | |
| 
 | |
| 		ret = memcg_update_cache_size(s, num_memcgs);
 | |
| 		/*
 | |
| 		 * See comment in memcontrol.c, memcg_update_cache_size:
 | |
| 		 * Instead of freeing the memory, we'll just leave the caches
 | |
| 		 * up to this point in an updated state.
 | |
| 		 */
 | |
| 		if (ret)
 | |
| 			goto out;
 | |
| 	}
 | |
| 
 | |
| 	memcg_update_array_size(num_memcgs);
 | |
| out:
 | |
| 	mutex_unlock(&slab_mutex);
 | |
| 	return ret;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Figure out what the alignment of the objects will be given a set of
 | |
|  * flags, a user specified alignment and the size of the objects.
 | |
|  */
 | |
| unsigned long calculate_alignment(unsigned long flags,
 | |
| 		unsigned long align, unsigned long size)
 | |
| {
 | |
| 	/*
 | |
| 	 * If the user wants hardware cache aligned objects then follow that
 | |
| 	 * suggestion if the object is sufficiently large.
 | |
| 	 *
 | |
| 	 * The hardware cache alignment cannot override the specified
 | |
| 	 * alignment though. If that is greater then use it.
 | |
| 	 */
 | |
| 	if (flags & SLAB_HWCACHE_ALIGN) {
 | |
| 		unsigned long ralign = cache_line_size();
 | |
| 		while (size <= ralign / 2)
 | |
| 			ralign /= 2;
 | |
| 		align = max(align, ralign);
 | |
| 	}
 | |
| 
 | |
| 	if (align < ARCH_SLAB_MINALIGN)
 | |
| 		align = ARCH_SLAB_MINALIGN;
 | |
| 
 | |
| 	return ALIGN(align, sizeof(void *));
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * kmem_cache_create - Create a cache.
 | |
|  * @name: A string which is used in /proc/slabinfo to identify this cache.
 | |
|  * @size: The size of objects to be created in this cache.
 | |
|  * @align: The required alignment for the objects.
 | |
|  * @flags: SLAB flags
 | |
|  * @ctor: A constructor for the objects.
 | |
|  *
 | |
|  * Returns a ptr to the cache on success, NULL on failure.
 | |
|  * Cannot be called within a interrupt, but can be interrupted.
 | |
|  * The @ctor is run when new pages are allocated by the cache.
 | |
|  *
 | |
|  * The flags are
 | |
|  *
 | |
|  * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 | |
|  * to catch references to uninitialised memory.
 | |
|  *
 | |
|  * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
 | |
|  * for buffer overruns.
 | |
|  *
 | |
|  * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 | |
|  * cacheline.  This can be beneficial if you're counting cycles as closely
 | |
|  * as davem.
 | |
|  */
 | |
| 
 | |
| struct kmem_cache *
 | |
| kmem_cache_create_memcg(struct mem_cgroup *memcg, const char *name, size_t size,
 | |
| 			size_t align, unsigned long flags, void (*ctor)(void *),
 | |
| 			struct kmem_cache *parent_cache)
 | |
| {
 | |
| 	struct kmem_cache *s = NULL;
 | |
| 	int err = 0;
 | |
| 
 | |
| 	get_online_cpus();
 | |
| 	mutex_lock(&slab_mutex);
 | |
| 
 | |
| 	if (!kmem_cache_sanity_check(memcg, name, size) == 0)
 | |
| 		goto out_locked;
 | |
| 
 | |
| 	/*
 | |
| 	 * Some allocators will constraint the set of valid flags to a subset
 | |
| 	 * of all flags. We expect them to define CACHE_CREATE_MASK in this
 | |
| 	 * case, and we'll just provide them with a sanitized version of the
 | |
| 	 * passed flags.
 | |
| 	 */
 | |
| 	flags &= CACHE_CREATE_MASK;
 | |
| 
 | |
| 	s = __kmem_cache_alias(memcg, name, size, align, flags, ctor);
 | |
| 	if (s)
 | |
| 		goto out_locked;
 | |
| 
 | |
| 	s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
 | |
| 	if (s) {
 | |
| 		s->object_size = s->size = size;
 | |
| 		s->align = calculate_alignment(flags, align, size);
 | |
| 		s->ctor = ctor;
 | |
| 
 | |
| 		if (memcg_register_cache(memcg, s, parent_cache)) {
 | |
| 			kmem_cache_free(kmem_cache, s);
 | |
| 			err = -ENOMEM;
 | |
| 			goto out_locked;
 | |
| 		}
 | |
| 
 | |
| 		s->name = kstrdup(name, GFP_KERNEL);
 | |
| 		if (!s->name) {
 | |
| 			kmem_cache_free(kmem_cache, s);
 | |
| 			err = -ENOMEM;
 | |
| 			goto out_locked;
 | |
| 		}
 | |
| 
 | |
| 		err = __kmem_cache_create(s, flags);
 | |
| 		if (!err) {
 | |
| 			s->refcount = 1;
 | |
| 			list_add(&s->list, &slab_caches);
 | |
| 			memcg_cache_list_add(memcg, s);
 | |
| 		} else {
 | |
| 			kfree(s->name);
 | |
| 			kmem_cache_free(kmem_cache, s);
 | |
| 		}
 | |
| 	} else
 | |
| 		err = -ENOMEM;
 | |
| 
 | |
| out_locked:
 | |
| 	mutex_unlock(&slab_mutex);
 | |
| 	put_online_cpus();
 | |
| 
 | |
| 	if (err) {
 | |
| 
 | |
| 		if (flags & SLAB_PANIC)
 | |
| 			panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
 | |
| 				name, err);
 | |
| 		else {
 | |
| 			printk(KERN_WARNING "kmem_cache_create(%s) failed with error %d",
 | |
| 				name, err);
 | |
| 			dump_stack();
 | |
| 		}
 | |
| 
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	return s;
 | |
| }
 | |
| 
 | |
| struct kmem_cache *
 | |
| kmem_cache_create(const char *name, size_t size, size_t align,
 | |
| 		  unsigned long flags, void (*ctor)(void *))
 | |
| {
 | |
| 	return kmem_cache_create_memcg(NULL, name, size, align, flags, ctor, NULL);
 | |
| }
 | |
| EXPORT_SYMBOL(kmem_cache_create);
 | |
| 
 | |
| void kmem_cache_destroy(struct kmem_cache *s)
 | |
| {
 | |
| 	/* Destroy all the children caches if we aren't a memcg cache */
 | |
| 	kmem_cache_destroy_memcg_children(s);
 | |
| 
 | |
| 	get_online_cpus();
 | |
| 	mutex_lock(&slab_mutex);
 | |
| 	s->refcount--;
 | |
| 	if (!s->refcount) {
 | |
| 		list_del(&s->list);
 | |
| 
 | |
| 		if (!__kmem_cache_shutdown(s)) {
 | |
| 			mutex_unlock(&slab_mutex);
 | |
| 			if (s->flags & SLAB_DESTROY_BY_RCU)
 | |
| 				rcu_barrier();
 | |
| 
 | |
| 			memcg_release_cache(s);
 | |
| 			kfree(s->name);
 | |
| 			kmem_cache_free(kmem_cache, s);
 | |
| 		} else {
 | |
| 			list_add(&s->list, &slab_caches);
 | |
| 			mutex_unlock(&slab_mutex);
 | |
| 			printk(KERN_ERR "kmem_cache_destroy %s: Slab cache still has objects\n",
 | |
| 				s->name);
 | |
| 			dump_stack();
 | |
| 		}
 | |
| 	} else {
 | |
| 		mutex_unlock(&slab_mutex);
 | |
| 	}
 | |
| 	put_online_cpus();
 | |
| }
 | |
| EXPORT_SYMBOL(kmem_cache_destroy);
 | |
| 
 | |
| int slab_is_available(void)
 | |
| {
 | |
| 	return slab_state >= UP;
 | |
| }
 | |
| 
 | |
| #ifndef CONFIG_SLOB
 | |
| /* Create a cache during boot when no slab services are available yet */
 | |
| void __init create_boot_cache(struct kmem_cache *s, const char *name, size_t size,
 | |
| 		unsigned long flags)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	s->name = name;
 | |
| 	s->size = s->object_size = size;
 | |
| 	s->align = calculate_alignment(flags, ARCH_KMALLOC_MINALIGN, size);
 | |
| 	err = __kmem_cache_create(s, flags);
 | |
| 
 | |
| 	if (err)
 | |
| 		panic("Creation of kmalloc slab %s size=%zu failed. Reason %d\n",
 | |
| 					name, size, err);
 | |
| 
 | |
| 	s->refcount = -1;	/* Exempt from merging for now */
 | |
| }
 | |
| 
 | |
| struct kmem_cache *__init create_kmalloc_cache(const char *name, size_t size,
 | |
| 				unsigned long flags)
 | |
| {
 | |
| 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
 | |
| 
 | |
| 	if (!s)
 | |
| 		panic("Out of memory when creating slab %s\n", name);
 | |
| 
 | |
| 	create_boot_cache(s, name, size, flags);
 | |
| 	list_add(&s->list, &slab_caches);
 | |
| 	s->refcount = 1;
 | |
| 	return s;
 | |
| }
 | |
| 
 | |
| struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1];
 | |
| EXPORT_SYMBOL(kmalloc_caches);
 | |
| 
 | |
| #ifdef CONFIG_ZONE_DMA
 | |
| struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1];
 | |
| EXPORT_SYMBOL(kmalloc_dma_caches);
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Conversion table for small slabs sizes / 8 to the index in the
 | |
|  * kmalloc array. This is necessary for slabs < 192 since we have non power
 | |
|  * of two cache sizes there. The size of larger slabs can be determined using
 | |
|  * fls.
 | |
|  */
 | |
| static s8 size_index[24] = {
 | |
| 	3,	/* 8 */
 | |
| 	4,	/* 16 */
 | |
| 	5,	/* 24 */
 | |
| 	5,	/* 32 */
 | |
| 	6,	/* 40 */
 | |
| 	6,	/* 48 */
 | |
| 	6,	/* 56 */
 | |
| 	6,	/* 64 */
 | |
| 	1,	/* 72 */
 | |
| 	1,	/* 80 */
 | |
| 	1,	/* 88 */
 | |
| 	1,	/* 96 */
 | |
| 	7,	/* 104 */
 | |
| 	7,	/* 112 */
 | |
| 	7,	/* 120 */
 | |
| 	7,	/* 128 */
 | |
| 	2,	/* 136 */
 | |
| 	2,	/* 144 */
 | |
| 	2,	/* 152 */
 | |
| 	2,	/* 160 */
 | |
| 	2,	/* 168 */
 | |
| 	2,	/* 176 */
 | |
| 	2,	/* 184 */
 | |
| 	2	/* 192 */
 | |
| };
 | |
| 
 | |
| static inline int size_index_elem(size_t bytes)
 | |
| {
 | |
| 	return (bytes - 1) / 8;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Find the kmem_cache structure that serves a given size of
 | |
|  * allocation
 | |
|  */
 | |
| struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
 | |
| {
 | |
| 	int index;
 | |
| 
 | |
| 	if (unlikely(size > KMALLOC_MAX_SIZE)) {
 | |
| 		WARN_ON_ONCE(!(flags & __GFP_NOWARN));
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (size <= 192) {
 | |
| 		if (!size)
 | |
| 			return ZERO_SIZE_PTR;
 | |
| 
 | |
| 		index = size_index[size_index_elem(size)];
 | |
| 	} else
 | |
| 		index = fls(size - 1);
 | |
| 
 | |
| #ifdef CONFIG_ZONE_DMA
 | |
| 	if (unlikely((flags & GFP_DMA)))
 | |
| 		return kmalloc_dma_caches[index];
 | |
| 
 | |
| #endif
 | |
| 	return kmalloc_caches[index];
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Create the kmalloc array. Some of the regular kmalloc arrays
 | |
|  * may already have been created because they were needed to
 | |
|  * enable allocations for slab creation.
 | |
|  */
 | |
| void __init create_kmalloc_caches(unsigned long flags)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	/*
 | |
| 	 * Patch up the size_index table if we have strange large alignment
 | |
| 	 * requirements for the kmalloc array. This is only the case for
 | |
| 	 * MIPS it seems. The standard arches will not generate any code here.
 | |
| 	 *
 | |
| 	 * Largest permitted alignment is 256 bytes due to the way we
 | |
| 	 * handle the index determination for the smaller caches.
 | |
| 	 *
 | |
| 	 * Make sure that nothing crazy happens if someone starts tinkering
 | |
| 	 * around with ARCH_KMALLOC_MINALIGN
 | |
| 	 */
 | |
| 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
 | |
| 		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
 | |
| 
 | |
| 	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
 | |
| 		int elem = size_index_elem(i);
 | |
| 
 | |
| 		if (elem >= ARRAY_SIZE(size_index))
 | |
| 			break;
 | |
| 		size_index[elem] = KMALLOC_SHIFT_LOW;
 | |
| 	}
 | |
| 
 | |
| 	if (KMALLOC_MIN_SIZE >= 64) {
 | |
| 		/*
 | |
| 		 * The 96 byte size cache is not used if the alignment
 | |
| 		 * is 64 byte.
 | |
| 		 */
 | |
| 		for (i = 64 + 8; i <= 96; i += 8)
 | |
| 			size_index[size_index_elem(i)] = 7;
 | |
| 
 | |
| 	}
 | |
| 
 | |
| 	if (KMALLOC_MIN_SIZE >= 128) {
 | |
| 		/*
 | |
| 		 * The 192 byte sized cache is not used if the alignment
 | |
| 		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
 | |
| 		 * instead.
 | |
| 		 */
 | |
| 		for (i = 128 + 8; i <= 192; i += 8)
 | |
| 			size_index[size_index_elem(i)] = 8;
 | |
| 	}
 | |
| 	for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
 | |
| 		if (!kmalloc_caches[i]) {
 | |
| 			kmalloc_caches[i] = create_kmalloc_cache(NULL,
 | |
| 							1 << i, flags);
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Caches that are not of the two-to-the-power-of size.
 | |
| 		 * These have to be created immediately after the
 | |
| 		 * earlier power of two caches
 | |
| 		 */
 | |
| 		if (KMALLOC_MIN_SIZE <= 32 && !kmalloc_caches[1] && i == 6)
 | |
| 			kmalloc_caches[1] = create_kmalloc_cache(NULL, 96, flags);
 | |
| 
 | |
| 		if (KMALLOC_MIN_SIZE <= 64 && !kmalloc_caches[2] && i == 7)
 | |
| 			kmalloc_caches[2] = create_kmalloc_cache(NULL, 192, flags);
 | |
| 	}
 | |
| 
 | |
| 	/* Kmalloc array is now usable */
 | |
| 	slab_state = UP;
 | |
| 
 | |
| 	for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
 | |
| 		struct kmem_cache *s = kmalloc_caches[i];
 | |
| 		char *n;
 | |
| 
 | |
| 		if (s) {
 | |
| 			n = kasprintf(GFP_NOWAIT, "kmalloc-%d", kmalloc_size(i));
 | |
| 
 | |
| 			BUG_ON(!n);
 | |
| 			s->name = n;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| #ifdef CONFIG_ZONE_DMA
 | |
| 	for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
 | |
| 		struct kmem_cache *s = kmalloc_caches[i];
 | |
| 
 | |
| 		if (s) {
 | |
| 			int size = kmalloc_size(i);
 | |
| 			char *n = kasprintf(GFP_NOWAIT,
 | |
| 				 "dma-kmalloc-%d", size);
 | |
| 
 | |
| 			BUG_ON(!n);
 | |
| 			kmalloc_dma_caches[i] = create_kmalloc_cache(n,
 | |
| 				size, SLAB_CACHE_DMA | flags);
 | |
| 		}
 | |
| 	}
 | |
| #endif
 | |
| }
 | |
| #endif /* !CONFIG_SLOB */
 | |
| 
 | |
| #ifdef CONFIG_TRACING
 | |
| void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
 | |
| {
 | |
| 	void *ret = kmalloc_order(size, flags, order);
 | |
| 	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL(kmalloc_order_trace);
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_SLABINFO
 | |
| 
 | |
| #ifdef CONFIG_SLAB
 | |
| #define SLABINFO_RIGHTS (S_IWUSR | S_IRUSR)
 | |
| #else
 | |
| #define SLABINFO_RIGHTS S_IRUSR
 | |
| #endif
 | |
| 
 | |
| void print_slabinfo_header(struct seq_file *m)
 | |
| {
 | |
| 	/*
 | |
| 	 * Output format version, so at least we can change it
 | |
| 	 * without _too_ many complaints.
 | |
| 	 */
 | |
| #ifdef CONFIG_DEBUG_SLAB
 | |
| 	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
 | |
| #else
 | |
| 	seq_puts(m, "slabinfo - version: 2.1\n");
 | |
| #endif
 | |
| 	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
 | |
| 		 "<objperslab> <pagesperslab>");
 | |
| 	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
 | |
| 	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
 | |
| #ifdef CONFIG_DEBUG_SLAB
 | |
| 	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
 | |
| 		 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
 | |
| 	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
 | |
| #endif
 | |
| 	seq_putc(m, '\n');
 | |
| }
 | |
| 
 | |
| static void *s_start(struct seq_file *m, loff_t *pos)
 | |
| {
 | |
| 	loff_t n = *pos;
 | |
| 
 | |
| 	mutex_lock(&slab_mutex);
 | |
| 	if (!n)
 | |
| 		print_slabinfo_header(m);
 | |
| 
 | |
| 	return seq_list_start(&slab_caches, *pos);
 | |
| }
 | |
| 
 | |
| void *slab_next(struct seq_file *m, void *p, loff_t *pos)
 | |
| {
 | |
| 	return seq_list_next(p, &slab_caches, pos);
 | |
| }
 | |
| 
 | |
| void slab_stop(struct seq_file *m, void *p)
 | |
| {
 | |
| 	mutex_unlock(&slab_mutex);
 | |
| }
 | |
| 
 | |
| static void
 | |
| memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info)
 | |
| {
 | |
| 	struct kmem_cache *c;
 | |
| 	struct slabinfo sinfo;
 | |
| 	int i;
 | |
| 
 | |
| 	if (!is_root_cache(s))
 | |
| 		return;
 | |
| 
 | |
| 	for_each_memcg_cache_index(i) {
 | |
| 		c = cache_from_memcg_idx(s, i);
 | |
| 		if (!c)
 | |
| 			continue;
 | |
| 
 | |
| 		memset(&sinfo, 0, sizeof(sinfo));
 | |
| 		get_slabinfo(c, &sinfo);
 | |
| 
 | |
| 		info->active_slabs += sinfo.active_slabs;
 | |
| 		info->num_slabs += sinfo.num_slabs;
 | |
| 		info->shared_avail += sinfo.shared_avail;
 | |
| 		info->active_objs += sinfo.active_objs;
 | |
| 		info->num_objs += sinfo.num_objs;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| int cache_show(struct kmem_cache *s, struct seq_file *m)
 | |
| {
 | |
| 	struct slabinfo sinfo;
 | |
| 
 | |
| 	memset(&sinfo, 0, sizeof(sinfo));
 | |
| 	get_slabinfo(s, &sinfo);
 | |
| 
 | |
| 	memcg_accumulate_slabinfo(s, &sinfo);
 | |
| 
 | |
| 	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
 | |
| 		   cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size,
 | |
| 		   sinfo.objects_per_slab, (1 << sinfo.cache_order));
 | |
| 
 | |
| 	seq_printf(m, " : tunables %4u %4u %4u",
 | |
| 		   sinfo.limit, sinfo.batchcount, sinfo.shared);
 | |
| 	seq_printf(m, " : slabdata %6lu %6lu %6lu",
 | |
| 		   sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
 | |
| 	slabinfo_show_stats(m, s);
 | |
| 	seq_putc(m, '\n');
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int s_show(struct seq_file *m, void *p)
 | |
| {
 | |
| 	struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
 | |
| 
 | |
| 	if (!is_root_cache(s))
 | |
| 		return 0;
 | |
| 	return cache_show(s, m);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * slabinfo_op - iterator that generates /proc/slabinfo
 | |
|  *
 | |
|  * Output layout:
 | |
|  * cache-name
 | |
|  * num-active-objs
 | |
|  * total-objs
 | |
|  * object size
 | |
|  * num-active-slabs
 | |
|  * total-slabs
 | |
|  * num-pages-per-slab
 | |
|  * + further values on SMP and with statistics enabled
 | |
|  */
 | |
| static const struct seq_operations slabinfo_op = {
 | |
| 	.start = s_start,
 | |
| 	.next = slab_next,
 | |
| 	.stop = slab_stop,
 | |
| 	.show = s_show,
 | |
| };
 | |
| 
 | |
| static int slabinfo_open(struct inode *inode, struct file *file)
 | |
| {
 | |
| 	return seq_open(file, &slabinfo_op);
 | |
| }
 | |
| 
 | |
| static const struct file_operations proc_slabinfo_operations = {
 | |
| 	.open		= slabinfo_open,
 | |
| 	.read		= seq_read,
 | |
| 	.write          = slabinfo_write,
 | |
| 	.llseek		= seq_lseek,
 | |
| 	.release	= seq_release,
 | |
| };
 | |
| 
 | |
| static int __init slab_proc_init(void)
 | |
| {
 | |
| 	proc_create("slabinfo", SLABINFO_RIGHTS, NULL,
 | |
| 						&proc_slabinfo_operations);
 | |
| 	return 0;
 | |
| }
 | |
| module_init(slab_proc_init);
 | |
| #endif /* CONFIG_SLABINFO */
 |