 050ded1bba
			
		
	
	
	050ded1bba
	
	
	
		
			
			Taken straight from a tglx email ;) Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
		
			
				
	
	
		
			402 lines
		
	
	
	
		
			9.8 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			402 lines
		
	
	
	
		
			9.8 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * linux/kernel/time/tick-common.c
 | |
|  *
 | |
|  * This file contains the base functions to manage periodic tick
 | |
|  * related events.
 | |
|  *
 | |
|  * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
 | |
|  * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
 | |
|  * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
 | |
|  *
 | |
|  * This code is licenced under the GPL version 2. For details see
 | |
|  * kernel-base/COPYING.
 | |
|  */
 | |
| #include <linux/cpu.h>
 | |
| #include <linux/err.h>
 | |
| #include <linux/hrtimer.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/percpu.h>
 | |
| #include <linux/profile.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/module.h>
 | |
| 
 | |
| #include <asm/irq_regs.h>
 | |
| 
 | |
| #include "tick-internal.h"
 | |
| 
 | |
| /*
 | |
|  * Tick devices
 | |
|  */
 | |
| DEFINE_PER_CPU(struct tick_device, tick_cpu_device);
 | |
| /*
 | |
|  * Tick next event: keeps track of the tick time
 | |
|  */
 | |
| ktime_t tick_next_period;
 | |
| ktime_t tick_period;
 | |
| 
 | |
| /*
 | |
|  * tick_do_timer_cpu is a timer core internal variable which holds the CPU NR
 | |
|  * which is responsible for calling do_timer(), i.e. the timekeeping stuff. This
 | |
|  * variable has two functions:
 | |
|  *
 | |
|  * 1) Prevent a thundering herd issue of a gazillion of CPUs trying to grab the
 | |
|  *    timekeeping lock all at once. Only the CPU which is assigned to do the
 | |
|  *    update is handling it.
 | |
|  *
 | |
|  * 2) Hand off the duty in the NOHZ idle case by setting the value to
 | |
|  *    TICK_DO_TIMER_NONE, i.e. a non existing CPU. So the next cpu which looks
 | |
|  *    at it will take over and keep the time keeping alive.  The handover
 | |
|  *    procedure also covers cpu hotplug.
 | |
|  */
 | |
| int tick_do_timer_cpu __read_mostly = TICK_DO_TIMER_BOOT;
 | |
| 
 | |
| /*
 | |
|  * Debugging: see timer_list.c
 | |
|  */
 | |
| struct tick_device *tick_get_device(int cpu)
 | |
| {
 | |
| 	return &per_cpu(tick_cpu_device, cpu);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * tick_is_oneshot_available - check for a oneshot capable event device
 | |
|  */
 | |
| int tick_is_oneshot_available(void)
 | |
| {
 | |
| 	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
 | |
| 
 | |
| 	if (!dev || !(dev->features & CLOCK_EVT_FEAT_ONESHOT))
 | |
| 		return 0;
 | |
| 	if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
 | |
| 		return 1;
 | |
| 	return tick_broadcast_oneshot_available();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Periodic tick
 | |
|  */
 | |
| static void tick_periodic(int cpu)
 | |
| {
 | |
| 	if (tick_do_timer_cpu == cpu) {
 | |
| 		write_seqlock(&jiffies_lock);
 | |
| 
 | |
| 		/* Keep track of the next tick event */
 | |
| 		tick_next_period = ktime_add(tick_next_period, tick_period);
 | |
| 
 | |
| 		do_timer(1);
 | |
| 		write_sequnlock(&jiffies_lock);
 | |
| 	}
 | |
| 
 | |
| 	update_process_times(user_mode(get_irq_regs()));
 | |
| 	profile_tick(CPU_PROFILING);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Event handler for periodic ticks
 | |
|  */
 | |
| void tick_handle_periodic(struct clock_event_device *dev)
 | |
| {
 | |
| 	int cpu = smp_processor_id();
 | |
| 	ktime_t next;
 | |
| 
 | |
| 	tick_periodic(cpu);
 | |
| 
 | |
| 	if (dev->mode != CLOCK_EVT_MODE_ONESHOT)
 | |
| 		return;
 | |
| 	/*
 | |
| 	 * Setup the next period for devices, which do not have
 | |
| 	 * periodic mode:
 | |
| 	 */
 | |
| 	next = ktime_add(dev->next_event, tick_period);
 | |
| 	for (;;) {
 | |
| 		if (!clockevents_program_event(dev, next, false))
 | |
| 			return;
 | |
| 		/*
 | |
| 		 * Have to be careful here. If we're in oneshot mode,
 | |
| 		 * before we call tick_periodic() in a loop, we need
 | |
| 		 * to be sure we're using a real hardware clocksource.
 | |
| 		 * Otherwise we could get trapped in an infinite
 | |
| 		 * loop, as the tick_periodic() increments jiffies,
 | |
| 		 * when then will increment time, posibly causing
 | |
| 		 * the loop to trigger again and again.
 | |
| 		 */
 | |
| 		if (timekeeping_valid_for_hres())
 | |
| 			tick_periodic(cpu);
 | |
| 		next = ktime_add(next, tick_period);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Setup the device for a periodic tick
 | |
|  */
 | |
| void tick_setup_periodic(struct clock_event_device *dev, int broadcast)
 | |
| {
 | |
| 	tick_set_periodic_handler(dev, broadcast);
 | |
| 
 | |
| 	/* Broadcast setup ? */
 | |
| 	if (!tick_device_is_functional(dev))
 | |
| 		return;
 | |
| 
 | |
| 	if ((dev->features & CLOCK_EVT_FEAT_PERIODIC) &&
 | |
| 	    !tick_broadcast_oneshot_active()) {
 | |
| 		clockevents_set_mode(dev, CLOCK_EVT_MODE_PERIODIC);
 | |
| 	} else {
 | |
| 		unsigned long seq;
 | |
| 		ktime_t next;
 | |
| 
 | |
| 		do {
 | |
| 			seq = read_seqbegin(&jiffies_lock);
 | |
| 			next = tick_next_period;
 | |
| 		} while (read_seqretry(&jiffies_lock, seq));
 | |
| 
 | |
| 		clockevents_set_mode(dev, CLOCK_EVT_MODE_ONESHOT);
 | |
| 
 | |
| 		for (;;) {
 | |
| 			if (!clockevents_program_event(dev, next, false))
 | |
| 				return;
 | |
| 			next = ktime_add(next, tick_period);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Setup the tick device
 | |
|  */
 | |
| static void tick_setup_device(struct tick_device *td,
 | |
| 			      struct clock_event_device *newdev, int cpu,
 | |
| 			      const struct cpumask *cpumask)
 | |
| {
 | |
| 	ktime_t next_event;
 | |
| 	void (*handler)(struct clock_event_device *) = NULL;
 | |
| 
 | |
| 	/*
 | |
| 	 * First device setup ?
 | |
| 	 */
 | |
| 	if (!td->evtdev) {
 | |
| 		/*
 | |
| 		 * If no cpu took the do_timer update, assign it to
 | |
| 		 * this cpu:
 | |
| 		 */
 | |
| 		if (tick_do_timer_cpu == TICK_DO_TIMER_BOOT) {
 | |
| 			if (!tick_nohz_full_cpu(cpu))
 | |
| 				tick_do_timer_cpu = cpu;
 | |
| 			else
 | |
| 				tick_do_timer_cpu = TICK_DO_TIMER_NONE;
 | |
| 			tick_next_period = ktime_get();
 | |
| 			tick_period = ktime_set(0, NSEC_PER_SEC / HZ);
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Startup in periodic mode first.
 | |
| 		 */
 | |
| 		td->mode = TICKDEV_MODE_PERIODIC;
 | |
| 	} else {
 | |
| 		handler = td->evtdev->event_handler;
 | |
| 		next_event = td->evtdev->next_event;
 | |
| 		td->evtdev->event_handler = clockevents_handle_noop;
 | |
| 	}
 | |
| 
 | |
| 	td->evtdev = newdev;
 | |
| 
 | |
| 	/*
 | |
| 	 * When the device is not per cpu, pin the interrupt to the
 | |
| 	 * current cpu:
 | |
| 	 */
 | |
| 	if (!cpumask_equal(newdev->cpumask, cpumask))
 | |
| 		irq_set_affinity(newdev->irq, cpumask);
 | |
| 
 | |
| 	/*
 | |
| 	 * When global broadcasting is active, check if the current
 | |
| 	 * device is registered as a placeholder for broadcast mode.
 | |
| 	 * This allows us to handle this x86 misfeature in a generic
 | |
| 	 * way. This function also returns !=0 when we keep the
 | |
| 	 * current active broadcast state for this CPU.
 | |
| 	 */
 | |
| 	if (tick_device_uses_broadcast(newdev, cpu))
 | |
| 		return;
 | |
| 
 | |
| 	if (td->mode == TICKDEV_MODE_PERIODIC)
 | |
| 		tick_setup_periodic(newdev, 0);
 | |
| 	else
 | |
| 		tick_setup_oneshot(newdev, handler, next_event);
 | |
| }
 | |
| 
 | |
| void tick_install_replacement(struct clock_event_device *newdev)
 | |
| {
 | |
| 	struct tick_device *td = &__get_cpu_var(tick_cpu_device);
 | |
| 	int cpu = smp_processor_id();
 | |
| 
 | |
| 	clockevents_exchange_device(td->evtdev, newdev);
 | |
| 	tick_setup_device(td, newdev, cpu, cpumask_of(cpu));
 | |
| 	if (newdev->features & CLOCK_EVT_FEAT_ONESHOT)
 | |
| 		tick_oneshot_notify();
 | |
| }
 | |
| 
 | |
| static bool tick_check_percpu(struct clock_event_device *curdev,
 | |
| 			      struct clock_event_device *newdev, int cpu)
 | |
| {
 | |
| 	if (!cpumask_test_cpu(cpu, newdev->cpumask))
 | |
| 		return false;
 | |
| 	if (cpumask_equal(newdev->cpumask, cpumask_of(cpu)))
 | |
| 		return true;
 | |
| 	/* Check if irq affinity can be set */
 | |
| 	if (newdev->irq >= 0 && !irq_can_set_affinity(newdev->irq))
 | |
| 		return false;
 | |
| 	/* Prefer an existing cpu local device */
 | |
| 	if (curdev && cpumask_equal(curdev->cpumask, cpumask_of(cpu)))
 | |
| 		return false;
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static bool tick_check_preferred(struct clock_event_device *curdev,
 | |
| 				 struct clock_event_device *newdev)
 | |
| {
 | |
| 	/* Prefer oneshot capable device */
 | |
| 	if (!(newdev->features & CLOCK_EVT_FEAT_ONESHOT)) {
 | |
| 		if (curdev && (curdev->features & CLOCK_EVT_FEAT_ONESHOT))
 | |
| 			return false;
 | |
| 		if (tick_oneshot_mode_active())
 | |
| 			return false;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Use the higher rated one, but prefer a CPU local device with a lower
 | |
| 	 * rating than a non-CPU local device
 | |
| 	 */
 | |
| 	return !curdev ||
 | |
| 		newdev->rating > curdev->rating ||
 | |
| 	       !cpumask_equal(curdev->cpumask, newdev->cpumask);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check whether the new device is a better fit than curdev. curdev
 | |
|  * can be NULL !
 | |
|  */
 | |
| bool tick_check_replacement(struct clock_event_device *curdev,
 | |
| 			    struct clock_event_device *newdev)
 | |
| {
 | |
| 	if (tick_check_percpu(curdev, newdev, smp_processor_id()))
 | |
| 		return false;
 | |
| 
 | |
| 	return tick_check_preferred(curdev, newdev);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check, if the new registered device should be used. Called with
 | |
|  * clockevents_lock held and interrupts disabled.
 | |
|  */
 | |
| void tick_check_new_device(struct clock_event_device *newdev)
 | |
| {
 | |
| 	struct clock_event_device *curdev;
 | |
| 	struct tick_device *td;
 | |
| 	int cpu;
 | |
| 
 | |
| 	cpu = smp_processor_id();
 | |
| 	if (!cpumask_test_cpu(cpu, newdev->cpumask))
 | |
| 		goto out_bc;
 | |
| 
 | |
| 	td = &per_cpu(tick_cpu_device, cpu);
 | |
| 	curdev = td->evtdev;
 | |
| 
 | |
| 	/* cpu local device ? */
 | |
| 	if (!tick_check_percpu(curdev, newdev, cpu))
 | |
| 		goto out_bc;
 | |
| 
 | |
| 	/* Preference decision */
 | |
| 	if (!tick_check_preferred(curdev, newdev))
 | |
| 		goto out_bc;
 | |
| 
 | |
| 	if (!try_module_get(newdev->owner))
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * Replace the eventually existing device by the new
 | |
| 	 * device. If the current device is the broadcast device, do
 | |
| 	 * not give it back to the clockevents layer !
 | |
| 	 */
 | |
| 	if (tick_is_broadcast_device(curdev)) {
 | |
| 		clockevents_shutdown(curdev);
 | |
| 		curdev = NULL;
 | |
| 	}
 | |
| 	clockevents_exchange_device(curdev, newdev);
 | |
| 	tick_setup_device(td, newdev, cpu, cpumask_of(cpu));
 | |
| 	if (newdev->features & CLOCK_EVT_FEAT_ONESHOT)
 | |
| 		tick_oneshot_notify();
 | |
| 	return;
 | |
| 
 | |
| out_bc:
 | |
| 	/*
 | |
| 	 * Can the new device be used as a broadcast device ?
 | |
| 	 */
 | |
| 	tick_install_broadcast_device(newdev);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Transfer the do_timer job away from a dying cpu.
 | |
|  *
 | |
|  * Called with interrupts disabled.
 | |
|  */
 | |
| void tick_handover_do_timer(int *cpup)
 | |
| {
 | |
| 	if (*cpup == tick_do_timer_cpu) {
 | |
| 		int cpu = cpumask_first(cpu_online_mask);
 | |
| 
 | |
| 		tick_do_timer_cpu = (cpu < nr_cpu_ids) ? cpu :
 | |
| 			TICK_DO_TIMER_NONE;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Shutdown an event device on a given cpu:
 | |
|  *
 | |
|  * This is called on a life CPU, when a CPU is dead. So we cannot
 | |
|  * access the hardware device itself.
 | |
|  * We just set the mode and remove it from the lists.
 | |
|  */
 | |
| void tick_shutdown(unsigned int *cpup)
 | |
| {
 | |
| 	struct tick_device *td = &per_cpu(tick_cpu_device, *cpup);
 | |
| 	struct clock_event_device *dev = td->evtdev;
 | |
| 
 | |
| 	td->mode = TICKDEV_MODE_PERIODIC;
 | |
| 	if (dev) {
 | |
| 		/*
 | |
| 		 * Prevent that the clock events layer tries to call
 | |
| 		 * the set mode function!
 | |
| 		 */
 | |
| 		dev->mode = CLOCK_EVT_MODE_UNUSED;
 | |
| 		clockevents_exchange_device(dev, NULL);
 | |
| 		dev->event_handler = clockevents_handle_noop;
 | |
| 		td->evtdev = NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void tick_suspend(void)
 | |
| {
 | |
| 	struct tick_device *td = &__get_cpu_var(tick_cpu_device);
 | |
| 
 | |
| 	clockevents_shutdown(td->evtdev);
 | |
| }
 | |
| 
 | |
| void tick_resume(void)
 | |
| {
 | |
| 	struct tick_device *td = &__get_cpu_var(tick_cpu_device);
 | |
| 	int broadcast = tick_resume_broadcast();
 | |
| 
 | |
| 	clockevents_set_mode(td->evtdev, CLOCK_EVT_MODE_RESUME);
 | |
| 
 | |
| 	if (!broadcast) {
 | |
| 		if (td->mode == TICKDEV_MODE_PERIODIC)
 | |
| 			tick_setup_periodic(td->evtdev, 0);
 | |
| 		else
 | |
| 			tick_resume_oneshot();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * tick_init - initialize the tick control
 | |
|  */
 | |
| void __init tick_init(void)
 | |
| {
 | |
| 	tick_broadcast_init();
 | |
| }
 |