 b1a06a4b57
			
		
	
	
	b1a06a4b57
	
	
	
		
			
			Lockdep complains about btrfs's async commit: [ 2372.462171] [ BUG: bad unlock balance detected! ] [ 2372.462191] 3.12.0+ #32 Tainted: G W [ 2372.462209] ------------------------------------- [ 2372.462228] ceph-osd/14048 is trying to release lock (sb_internal) at: [ 2372.462275] [<ffffffffa022cb10>] btrfs_commit_transaction_async+0x1b0/0x2a0 [btrfs] [ 2372.462305] but there are no more locks to release! [ 2372.462324] [ 2372.462324] other info that might help us debug this: [ 2372.462349] no locks held by ceph-osd/14048. [ 2372.462367] [ 2372.462367] stack backtrace: [ 2372.462386] CPU: 2 PID: 14048 Comm: ceph-osd Tainted: G W 3.12.0+ #32 [ 2372.462414] Hardware name: To Be Filled By O.E.M. To Be Filled By O.E.M./To be filled by O.E.M., BIOS 080015 11/09/2011 [ 2372.462455] ffffffffa022cb10 ffff88007490fd28 ffffffff816f094a ffff8800378aa320 [ 2372.462491] ffff88007490fd50 ffffffff810adf4c ffff8800378aa320 ffff88009af97650 [ 2372.462526] ffffffffa022cb10 ffff88007490fd88 ffffffff810b01ee ffff8800898c0000 [ 2372.462562] Call Trace: [ 2372.462584] [<ffffffffa022cb10>] ? btrfs_commit_transaction_async+0x1b0/0x2a0 [btrfs] [ 2372.462619] [<ffffffff816f094a>] dump_stack+0x45/0x56 [ 2372.462642] [<ffffffff810adf4c>] print_unlock_imbalance_bug+0xec/0x100 [ 2372.462677] [<ffffffffa022cb10>] ? btrfs_commit_transaction_async+0x1b0/0x2a0 [btrfs] [ 2372.462710] [<ffffffff810b01ee>] lock_release+0x18e/0x210 [ 2372.462742] [<ffffffffa022cb36>] btrfs_commit_transaction_async+0x1d6/0x2a0 [btrfs] [ 2372.462783] [<ffffffffa025a7ce>] btrfs_ioctl_start_sync+0x3e/0xc0 [btrfs] [ 2372.462822] [<ffffffffa025f1d3>] btrfs_ioctl+0x4c3/0x1f70 [btrfs] [ 2372.462849] [<ffffffff812c0321>] ? avc_has_perm+0x121/0x1b0 [ 2372.462873] [<ffffffff812c0224>] ? avc_has_perm+0x24/0x1b0 [ 2372.462897] [<ffffffff8107ecc8>] ? sched_clock_cpu+0xa8/0x100 [ 2372.462922] [<ffffffff8117b145>] do_vfs_ioctl+0x2e5/0x4e0 [ 2372.462946] [<ffffffff812c19e6>] ? file_has_perm+0x86/0xa0 [ 2372.462969] [<ffffffff8117b3c1>] SyS_ioctl+0x81/0xa0 [ 2372.462991] [<ffffffff817045a4>] tracesys+0xdd/0xe2 ==================================================== It's because that we don't do the right thing when checking if it's ok to tell lockdep that we're trying to release the rwsem. If the trans handle's type is TRANS_ATTACH, we won't acquire the freeze rwsem, but as TRANS_ATTACH fits the check (trans < TRANS_JOIN_NOLOCK), we'll release the freeze rwsem, which makes lockdep complains a lot. Reported-by: Ma Jianpeng <majianpeng@gmail.com> Signed-off-by: Liu Bo <bo.li.liu@oracle.com> Signed-off-by: Miao Xie <miaox@cn.fujitsu.com> Signed-off-by: Josef Bacik <jbacik@fusionio.com> Signed-off-by: Chris Mason <chris.mason@fusionio.com>
		
			
				
	
	
		
			1995 lines
		
	
	
	
		
			54 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1995 lines
		
	
	
	
		
			54 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (C) 2007 Oracle.  All rights reserved.
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU General Public
 | |
|  * License v2 as published by the Free Software Foundation.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public
 | |
|  * License along with this program; if not, write to the
 | |
|  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 | |
|  * Boston, MA 021110-1307, USA.
 | |
|  */
 | |
| 
 | |
| #include <linux/fs.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/writeback.h>
 | |
| #include <linux/pagemap.h>
 | |
| #include <linux/blkdev.h>
 | |
| #include <linux/uuid.h>
 | |
| #include "ctree.h"
 | |
| #include "disk-io.h"
 | |
| #include "transaction.h"
 | |
| #include "locking.h"
 | |
| #include "tree-log.h"
 | |
| #include "inode-map.h"
 | |
| #include "volumes.h"
 | |
| #include "dev-replace.h"
 | |
| 
 | |
| #define BTRFS_ROOT_TRANS_TAG 0
 | |
| 
 | |
| static unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
 | |
| 	[TRANS_STATE_RUNNING]		= 0U,
 | |
| 	[TRANS_STATE_BLOCKED]		= (__TRANS_USERSPACE |
 | |
| 					   __TRANS_START),
 | |
| 	[TRANS_STATE_COMMIT_START]	= (__TRANS_USERSPACE |
 | |
| 					   __TRANS_START |
 | |
| 					   __TRANS_ATTACH),
 | |
| 	[TRANS_STATE_COMMIT_DOING]	= (__TRANS_USERSPACE |
 | |
| 					   __TRANS_START |
 | |
| 					   __TRANS_ATTACH |
 | |
| 					   __TRANS_JOIN),
 | |
| 	[TRANS_STATE_UNBLOCKED]		= (__TRANS_USERSPACE |
 | |
| 					   __TRANS_START |
 | |
| 					   __TRANS_ATTACH |
 | |
| 					   __TRANS_JOIN |
 | |
| 					   __TRANS_JOIN_NOLOCK),
 | |
| 	[TRANS_STATE_COMPLETED]		= (__TRANS_USERSPACE |
 | |
| 					   __TRANS_START |
 | |
| 					   __TRANS_ATTACH |
 | |
| 					   __TRANS_JOIN |
 | |
| 					   __TRANS_JOIN_NOLOCK),
 | |
| };
 | |
| 
 | |
| void btrfs_put_transaction(struct btrfs_transaction *transaction)
 | |
| {
 | |
| 	WARN_ON(atomic_read(&transaction->use_count) == 0);
 | |
| 	if (atomic_dec_and_test(&transaction->use_count)) {
 | |
| 		BUG_ON(!list_empty(&transaction->list));
 | |
| 		WARN_ON(transaction->delayed_refs.root.rb_node);
 | |
| 		while (!list_empty(&transaction->pending_chunks)) {
 | |
| 			struct extent_map *em;
 | |
| 
 | |
| 			em = list_first_entry(&transaction->pending_chunks,
 | |
| 					      struct extent_map, list);
 | |
| 			list_del_init(&em->list);
 | |
| 			free_extent_map(em);
 | |
| 		}
 | |
| 		kmem_cache_free(btrfs_transaction_cachep, transaction);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static noinline void switch_commit_root(struct btrfs_root *root)
 | |
| {
 | |
| 	free_extent_buffer(root->commit_root);
 | |
| 	root->commit_root = btrfs_root_node(root);
 | |
| }
 | |
| 
 | |
| static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
 | |
| 					 unsigned int type)
 | |
| {
 | |
| 	if (type & TRANS_EXTWRITERS)
 | |
| 		atomic_inc(&trans->num_extwriters);
 | |
| }
 | |
| 
 | |
| static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
 | |
| 					 unsigned int type)
 | |
| {
 | |
| 	if (type & TRANS_EXTWRITERS)
 | |
| 		atomic_dec(&trans->num_extwriters);
 | |
| }
 | |
| 
 | |
| static inline void extwriter_counter_init(struct btrfs_transaction *trans,
 | |
| 					  unsigned int type)
 | |
| {
 | |
| 	atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
 | |
| }
 | |
| 
 | |
| static inline int extwriter_counter_read(struct btrfs_transaction *trans)
 | |
| {
 | |
| 	return atomic_read(&trans->num_extwriters);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * either allocate a new transaction or hop into the existing one
 | |
|  */
 | |
| static noinline int join_transaction(struct btrfs_root *root, unsigned int type)
 | |
| {
 | |
| 	struct btrfs_transaction *cur_trans;
 | |
| 	struct btrfs_fs_info *fs_info = root->fs_info;
 | |
| 
 | |
| 	spin_lock(&fs_info->trans_lock);
 | |
| loop:
 | |
| 	/* The file system has been taken offline. No new transactions. */
 | |
| 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
 | |
| 		spin_unlock(&fs_info->trans_lock);
 | |
| 		return -EROFS;
 | |
| 	}
 | |
| 
 | |
| 	cur_trans = fs_info->running_transaction;
 | |
| 	if (cur_trans) {
 | |
| 		if (cur_trans->aborted) {
 | |
| 			spin_unlock(&fs_info->trans_lock);
 | |
| 			return cur_trans->aborted;
 | |
| 		}
 | |
| 		if (btrfs_blocked_trans_types[cur_trans->state] & type) {
 | |
| 			spin_unlock(&fs_info->trans_lock);
 | |
| 			return -EBUSY;
 | |
| 		}
 | |
| 		atomic_inc(&cur_trans->use_count);
 | |
| 		atomic_inc(&cur_trans->num_writers);
 | |
| 		extwriter_counter_inc(cur_trans, type);
 | |
| 		spin_unlock(&fs_info->trans_lock);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	spin_unlock(&fs_info->trans_lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * If we are ATTACH, we just want to catch the current transaction,
 | |
| 	 * and commit it. If there is no transaction, just return ENOENT.
 | |
| 	 */
 | |
| 	if (type == TRANS_ATTACH)
 | |
| 		return -ENOENT;
 | |
| 
 | |
| 	/*
 | |
| 	 * JOIN_NOLOCK only happens during the transaction commit, so
 | |
| 	 * it is impossible that ->running_transaction is NULL
 | |
| 	 */
 | |
| 	BUG_ON(type == TRANS_JOIN_NOLOCK);
 | |
| 
 | |
| 	cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
 | |
| 	if (!cur_trans)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	spin_lock(&fs_info->trans_lock);
 | |
| 	if (fs_info->running_transaction) {
 | |
| 		/*
 | |
| 		 * someone started a transaction after we unlocked.  Make sure
 | |
| 		 * to redo the checks above
 | |
| 		 */
 | |
| 		kmem_cache_free(btrfs_transaction_cachep, cur_trans);
 | |
| 		goto loop;
 | |
| 	} else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
 | |
| 		spin_unlock(&fs_info->trans_lock);
 | |
| 		kmem_cache_free(btrfs_transaction_cachep, cur_trans);
 | |
| 		return -EROFS;
 | |
| 	}
 | |
| 
 | |
| 	atomic_set(&cur_trans->num_writers, 1);
 | |
| 	extwriter_counter_init(cur_trans, type);
 | |
| 	init_waitqueue_head(&cur_trans->writer_wait);
 | |
| 	init_waitqueue_head(&cur_trans->commit_wait);
 | |
| 	cur_trans->state = TRANS_STATE_RUNNING;
 | |
| 	/*
 | |
| 	 * One for this trans handle, one so it will live on until we
 | |
| 	 * commit the transaction.
 | |
| 	 */
 | |
| 	atomic_set(&cur_trans->use_count, 2);
 | |
| 	cur_trans->start_time = get_seconds();
 | |
| 
 | |
| 	cur_trans->delayed_refs.root = RB_ROOT;
 | |
| 	cur_trans->delayed_refs.num_entries = 0;
 | |
| 	cur_trans->delayed_refs.num_heads_ready = 0;
 | |
| 	cur_trans->delayed_refs.num_heads = 0;
 | |
| 	cur_trans->delayed_refs.flushing = 0;
 | |
| 	cur_trans->delayed_refs.run_delayed_start = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * although the tree mod log is per file system and not per transaction,
 | |
| 	 * the log must never go across transaction boundaries.
 | |
| 	 */
 | |
| 	smp_mb();
 | |
| 	if (!list_empty(&fs_info->tree_mod_seq_list))
 | |
| 		WARN(1, KERN_ERR "btrfs: tree_mod_seq_list not empty when "
 | |
| 			"creating a fresh transaction\n");
 | |
| 	if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
 | |
| 		WARN(1, KERN_ERR "btrfs: tree_mod_log rb tree not empty when "
 | |
| 			"creating a fresh transaction\n");
 | |
| 	atomic64_set(&fs_info->tree_mod_seq, 0);
 | |
| 
 | |
| 	spin_lock_init(&cur_trans->delayed_refs.lock);
 | |
| 	atomic_set(&cur_trans->delayed_refs.procs_running_refs, 0);
 | |
| 	atomic_set(&cur_trans->delayed_refs.ref_seq, 0);
 | |
| 	init_waitqueue_head(&cur_trans->delayed_refs.wait);
 | |
| 
 | |
| 	INIT_LIST_HEAD(&cur_trans->pending_snapshots);
 | |
| 	INIT_LIST_HEAD(&cur_trans->ordered_operations);
 | |
| 	INIT_LIST_HEAD(&cur_trans->pending_chunks);
 | |
| 	list_add_tail(&cur_trans->list, &fs_info->trans_list);
 | |
| 	extent_io_tree_init(&cur_trans->dirty_pages,
 | |
| 			     fs_info->btree_inode->i_mapping);
 | |
| 	fs_info->generation++;
 | |
| 	cur_trans->transid = fs_info->generation;
 | |
| 	fs_info->running_transaction = cur_trans;
 | |
| 	cur_trans->aborted = 0;
 | |
| 	spin_unlock(&fs_info->trans_lock);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * this does all the record keeping required to make sure that a reference
 | |
|  * counted root is properly recorded in a given transaction.  This is required
 | |
|  * to make sure the old root from before we joined the transaction is deleted
 | |
|  * when the transaction commits
 | |
|  */
 | |
| static int record_root_in_trans(struct btrfs_trans_handle *trans,
 | |
| 			       struct btrfs_root *root)
 | |
| {
 | |
| 	if (root->ref_cows && root->last_trans < trans->transid) {
 | |
| 		WARN_ON(root == root->fs_info->extent_root);
 | |
| 		WARN_ON(root->commit_root != root->node);
 | |
| 
 | |
| 		/*
 | |
| 		 * see below for in_trans_setup usage rules
 | |
| 		 * we have the reloc mutex held now, so there
 | |
| 		 * is only one writer in this function
 | |
| 		 */
 | |
| 		root->in_trans_setup = 1;
 | |
| 
 | |
| 		/* make sure readers find in_trans_setup before
 | |
| 		 * they find our root->last_trans update
 | |
| 		 */
 | |
| 		smp_wmb();
 | |
| 
 | |
| 		spin_lock(&root->fs_info->fs_roots_radix_lock);
 | |
| 		if (root->last_trans == trans->transid) {
 | |
| 			spin_unlock(&root->fs_info->fs_roots_radix_lock);
 | |
| 			return 0;
 | |
| 		}
 | |
| 		radix_tree_tag_set(&root->fs_info->fs_roots_radix,
 | |
| 			   (unsigned long)root->root_key.objectid,
 | |
| 			   BTRFS_ROOT_TRANS_TAG);
 | |
| 		spin_unlock(&root->fs_info->fs_roots_radix_lock);
 | |
| 		root->last_trans = trans->transid;
 | |
| 
 | |
| 		/* this is pretty tricky.  We don't want to
 | |
| 		 * take the relocation lock in btrfs_record_root_in_trans
 | |
| 		 * unless we're really doing the first setup for this root in
 | |
| 		 * this transaction.
 | |
| 		 *
 | |
| 		 * Normally we'd use root->last_trans as a flag to decide
 | |
| 		 * if we want to take the expensive mutex.
 | |
| 		 *
 | |
| 		 * But, we have to set root->last_trans before we
 | |
| 		 * init the relocation root, otherwise, we trip over warnings
 | |
| 		 * in ctree.c.  The solution used here is to flag ourselves
 | |
| 		 * with root->in_trans_setup.  When this is 1, we're still
 | |
| 		 * fixing up the reloc trees and everyone must wait.
 | |
| 		 *
 | |
| 		 * When this is zero, they can trust root->last_trans and fly
 | |
| 		 * through btrfs_record_root_in_trans without having to take the
 | |
| 		 * lock.  smp_wmb() makes sure that all the writes above are
 | |
| 		 * done before we pop in the zero below
 | |
| 		 */
 | |
| 		btrfs_init_reloc_root(trans, root);
 | |
| 		smp_wmb();
 | |
| 		root->in_trans_setup = 0;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
 | |
| 			       struct btrfs_root *root)
 | |
| {
 | |
| 	if (!root->ref_cows)
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * see record_root_in_trans for comments about in_trans_setup usage
 | |
| 	 * and barriers
 | |
| 	 */
 | |
| 	smp_rmb();
 | |
| 	if (root->last_trans == trans->transid &&
 | |
| 	    !root->in_trans_setup)
 | |
| 		return 0;
 | |
| 
 | |
| 	mutex_lock(&root->fs_info->reloc_mutex);
 | |
| 	record_root_in_trans(trans, root);
 | |
| 	mutex_unlock(&root->fs_info->reloc_mutex);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline int is_transaction_blocked(struct btrfs_transaction *trans)
 | |
| {
 | |
| 	return (trans->state >= TRANS_STATE_BLOCKED &&
 | |
| 		trans->state < TRANS_STATE_UNBLOCKED &&
 | |
| 		!trans->aborted);
 | |
| }
 | |
| 
 | |
| /* wait for commit against the current transaction to become unblocked
 | |
|  * when this is done, it is safe to start a new transaction, but the current
 | |
|  * transaction might not be fully on disk.
 | |
|  */
 | |
| static void wait_current_trans(struct btrfs_root *root)
 | |
| {
 | |
| 	struct btrfs_transaction *cur_trans;
 | |
| 
 | |
| 	spin_lock(&root->fs_info->trans_lock);
 | |
| 	cur_trans = root->fs_info->running_transaction;
 | |
| 	if (cur_trans && is_transaction_blocked(cur_trans)) {
 | |
| 		atomic_inc(&cur_trans->use_count);
 | |
| 		spin_unlock(&root->fs_info->trans_lock);
 | |
| 
 | |
| 		wait_event(root->fs_info->transaction_wait,
 | |
| 			   cur_trans->state >= TRANS_STATE_UNBLOCKED ||
 | |
| 			   cur_trans->aborted);
 | |
| 		btrfs_put_transaction(cur_trans);
 | |
| 	} else {
 | |
| 		spin_unlock(&root->fs_info->trans_lock);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int may_wait_transaction(struct btrfs_root *root, int type)
 | |
| {
 | |
| 	if (root->fs_info->log_root_recovering)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (type == TRANS_USERSPACE)
 | |
| 		return 1;
 | |
| 
 | |
| 	if (type == TRANS_START &&
 | |
| 	    !atomic_read(&root->fs_info->open_ioctl_trans))
 | |
| 		return 1;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline bool need_reserve_reloc_root(struct btrfs_root *root)
 | |
| {
 | |
| 	if (!root->fs_info->reloc_ctl ||
 | |
| 	    !root->ref_cows ||
 | |
| 	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
 | |
| 	    root->reloc_root)
 | |
| 		return false;
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static struct btrfs_trans_handle *
 | |
| start_transaction(struct btrfs_root *root, u64 num_items, unsigned int type,
 | |
| 		  enum btrfs_reserve_flush_enum flush)
 | |
| {
 | |
| 	struct btrfs_trans_handle *h;
 | |
| 	struct btrfs_transaction *cur_trans;
 | |
| 	u64 num_bytes = 0;
 | |
| 	u64 qgroup_reserved = 0;
 | |
| 	bool reloc_reserved = false;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
 | |
| 		return ERR_PTR(-EROFS);
 | |
| 
 | |
| 	if (current->journal_info) {
 | |
| 		WARN_ON(type & TRANS_EXTWRITERS);
 | |
| 		h = current->journal_info;
 | |
| 		h->use_count++;
 | |
| 		WARN_ON(h->use_count > 2);
 | |
| 		h->orig_rsv = h->block_rsv;
 | |
| 		h->block_rsv = NULL;
 | |
| 		goto got_it;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Do the reservation before we join the transaction so we can do all
 | |
| 	 * the appropriate flushing if need be.
 | |
| 	 */
 | |
| 	if (num_items > 0 && root != root->fs_info->chunk_root) {
 | |
| 		if (root->fs_info->quota_enabled &&
 | |
| 		    is_fstree(root->root_key.objectid)) {
 | |
| 			qgroup_reserved = num_items * root->leafsize;
 | |
| 			ret = btrfs_qgroup_reserve(root, qgroup_reserved);
 | |
| 			if (ret)
 | |
| 				return ERR_PTR(ret);
 | |
| 		}
 | |
| 
 | |
| 		num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
 | |
| 		/*
 | |
| 		 * Do the reservation for the relocation root creation
 | |
| 		 */
 | |
| 		if (unlikely(need_reserve_reloc_root(root))) {
 | |
| 			num_bytes += root->nodesize;
 | |
| 			reloc_reserved = true;
 | |
| 		}
 | |
| 
 | |
| 		ret = btrfs_block_rsv_add(root,
 | |
| 					  &root->fs_info->trans_block_rsv,
 | |
| 					  num_bytes, flush);
 | |
| 		if (ret)
 | |
| 			goto reserve_fail;
 | |
| 	}
 | |
| again:
 | |
| 	h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
 | |
| 	if (!h) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto alloc_fail;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If we are JOIN_NOLOCK we're already committing a transaction and
 | |
| 	 * waiting on this guy, so we don't need to do the sb_start_intwrite
 | |
| 	 * because we're already holding a ref.  We need this because we could
 | |
| 	 * have raced in and did an fsync() on a file which can kick a commit
 | |
| 	 * and then we deadlock with somebody doing a freeze.
 | |
| 	 *
 | |
| 	 * If we are ATTACH, it means we just want to catch the current
 | |
| 	 * transaction and commit it, so we needn't do sb_start_intwrite(). 
 | |
| 	 */
 | |
| 	if (type & __TRANS_FREEZABLE)
 | |
| 		sb_start_intwrite(root->fs_info->sb);
 | |
| 
 | |
| 	if (may_wait_transaction(root, type))
 | |
| 		wait_current_trans(root);
 | |
| 
 | |
| 	do {
 | |
| 		ret = join_transaction(root, type);
 | |
| 		if (ret == -EBUSY) {
 | |
| 			wait_current_trans(root);
 | |
| 			if (unlikely(type == TRANS_ATTACH))
 | |
| 				ret = -ENOENT;
 | |
| 		}
 | |
| 	} while (ret == -EBUSY);
 | |
| 
 | |
| 	if (ret < 0) {
 | |
| 		/* We must get the transaction if we are JOIN_NOLOCK. */
 | |
| 		BUG_ON(type == TRANS_JOIN_NOLOCK);
 | |
| 		goto join_fail;
 | |
| 	}
 | |
| 
 | |
| 	cur_trans = root->fs_info->running_transaction;
 | |
| 
 | |
| 	h->transid = cur_trans->transid;
 | |
| 	h->transaction = cur_trans;
 | |
| 	h->blocks_used = 0;
 | |
| 	h->bytes_reserved = 0;
 | |
| 	h->root = root;
 | |
| 	h->delayed_ref_updates = 0;
 | |
| 	h->use_count = 1;
 | |
| 	h->adding_csums = 0;
 | |
| 	h->block_rsv = NULL;
 | |
| 	h->orig_rsv = NULL;
 | |
| 	h->aborted = 0;
 | |
| 	h->qgroup_reserved = 0;
 | |
| 	h->delayed_ref_elem.seq = 0;
 | |
| 	h->type = type;
 | |
| 	h->allocating_chunk = false;
 | |
| 	h->reloc_reserved = false;
 | |
| 	INIT_LIST_HEAD(&h->qgroup_ref_list);
 | |
| 	INIT_LIST_HEAD(&h->new_bgs);
 | |
| 
 | |
| 	smp_mb();
 | |
| 	if (cur_trans->state >= TRANS_STATE_BLOCKED &&
 | |
| 	    may_wait_transaction(root, type)) {
 | |
| 		btrfs_commit_transaction(h, root);
 | |
| 		goto again;
 | |
| 	}
 | |
| 
 | |
| 	if (num_bytes) {
 | |
| 		trace_btrfs_space_reservation(root->fs_info, "transaction",
 | |
| 					      h->transid, num_bytes, 1);
 | |
| 		h->block_rsv = &root->fs_info->trans_block_rsv;
 | |
| 		h->bytes_reserved = num_bytes;
 | |
| 		h->reloc_reserved = reloc_reserved;
 | |
| 	}
 | |
| 	h->qgroup_reserved = qgroup_reserved;
 | |
| 
 | |
| got_it:
 | |
| 	btrfs_record_root_in_trans(h, root);
 | |
| 
 | |
| 	if (!current->journal_info && type != TRANS_USERSPACE)
 | |
| 		current->journal_info = h;
 | |
| 	return h;
 | |
| 
 | |
| join_fail:
 | |
| 	if (type & __TRANS_FREEZABLE)
 | |
| 		sb_end_intwrite(root->fs_info->sb);
 | |
| 	kmem_cache_free(btrfs_trans_handle_cachep, h);
 | |
| alloc_fail:
 | |
| 	if (num_bytes)
 | |
| 		btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
 | |
| 					num_bytes);
 | |
| reserve_fail:
 | |
| 	if (qgroup_reserved)
 | |
| 		btrfs_qgroup_free(root, qgroup_reserved);
 | |
| 	return ERR_PTR(ret);
 | |
| }
 | |
| 
 | |
| struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
 | |
| 						   int num_items)
 | |
| {
 | |
| 	return start_transaction(root, num_items, TRANS_START,
 | |
| 				 BTRFS_RESERVE_FLUSH_ALL);
 | |
| }
 | |
| 
 | |
| struct btrfs_trans_handle *btrfs_start_transaction_lflush(
 | |
| 					struct btrfs_root *root, int num_items)
 | |
| {
 | |
| 	return start_transaction(root, num_items, TRANS_START,
 | |
| 				 BTRFS_RESERVE_FLUSH_LIMIT);
 | |
| }
 | |
| 
 | |
| struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
 | |
| {
 | |
| 	return start_transaction(root, 0, TRANS_JOIN, 0);
 | |
| }
 | |
| 
 | |
| struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
 | |
| {
 | |
| 	return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 0);
 | |
| }
 | |
| 
 | |
| struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
 | |
| {
 | |
| 	return start_transaction(root, 0, TRANS_USERSPACE, 0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * btrfs_attach_transaction() - catch the running transaction
 | |
|  *
 | |
|  * It is used when we want to commit the current the transaction, but
 | |
|  * don't want to start a new one.
 | |
|  *
 | |
|  * Note: If this function return -ENOENT, it just means there is no
 | |
|  * running transaction. But it is possible that the inactive transaction
 | |
|  * is still in the memory, not fully on disk. If you hope there is no
 | |
|  * inactive transaction in the fs when -ENOENT is returned, you should
 | |
|  * invoke
 | |
|  *     btrfs_attach_transaction_barrier()
 | |
|  */
 | |
| struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
 | |
| {
 | |
| 	return start_transaction(root, 0, TRANS_ATTACH, 0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * btrfs_attach_transaction_barrier() - catch the running transaction
 | |
|  *
 | |
|  * It is similar to the above function, the differentia is this one
 | |
|  * will wait for all the inactive transactions until they fully
 | |
|  * complete.
 | |
|  */
 | |
| struct btrfs_trans_handle *
 | |
| btrfs_attach_transaction_barrier(struct btrfs_root *root)
 | |
| {
 | |
| 	struct btrfs_trans_handle *trans;
 | |
| 
 | |
| 	trans = start_transaction(root, 0, TRANS_ATTACH, 0);
 | |
| 	if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT)
 | |
| 		btrfs_wait_for_commit(root, 0);
 | |
| 
 | |
| 	return trans;
 | |
| }
 | |
| 
 | |
| /* wait for a transaction commit to be fully complete */
 | |
| static noinline void wait_for_commit(struct btrfs_root *root,
 | |
| 				    struct btrfs_transaction *commit)
 | |
| {
 | |
| 	wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
 | |
| }
 | |
| 
 | |
| int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
 | |
| {
 | |
| 	struct btrfs_transaction *cur_trans = NULL, *t;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	if (transid) {
 | |
| 		if (transid <= root->fs_info->last_trans_committed)
 | |
| 			goto out;
 | |
| 
 | |
| 		ret = -EINVAL;
 | |
| 		/* find specified transaction */
 | |
| 		spin_lock(&root->fs_info->trans_lock);
 | |
| 		list_for_each_entry(t, &root->fs_info->trans_list, list) {
 | |
| 			if (t->transid == transid) {
 | |
| 				cur_trans = t;
 | |
| 				atomic_inc(&cur_trans->use_count);
 | |
| 				ret = 0;
 | |
| 				break;
 | |
| 			}
 | |
| 			if (t->transid > transid) {
 | |
| 				ret = 0;
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 		spin_unlock(&root->fs_info->trans_lock);
 | |
| 		/* The specified transaction doesn't exist */
 | |
| 		if (!cur_trans)
 | |
| 			goto out;
 | |
| 	} else {
 | |
| 		/* find newest transaction that is committing | committed */
 | |
| 		spin_lock(&root->fs_info->trans_lock);
 | |
| 		list_for_each_entry_reverse(t, &root->fs_info->trans_list,
 | |
| 					    list) {
 | |
| 			if (t->state >= TRANS_STATE_COMMIT_START) {
 | |
| 				if (t->state == TRANS_STATE_COMPLETED)
 | |
| 					break;
 | |
| 				cur_trans = t;
 | |
| 				atomic_inc(&cur_trans->use_count);
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 		spin_unlock(&root->fs_info->trans_lock);
 | |
| 		if (!cur_trans)
 | |
| 			goto out;  /* nothing committing|committed */
 | |
| 	}
 | |
| 
 | |
| 	wait_for_commit(root, cur_trans);
 | |
| 	btrfs_put_transaction(cur_trans);
 | |
| out:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| void btrfs_throttle(struct btrfs_root *root)
 | |
| {
 | |
| 	if (!atomic_read(&root->fs_info->open_ioctl_trans))
 | |
| 		wait_current_trans(root);
 | |
| }
 | |
| 
 | |
| static int should_end_transaction(struct btrfs_trans_handle *trans,
 | |
| 				  struct btrfs_root *root)
 | |
| {
 | |
| 	if (root->fs_info->global_block_rsv.space_info->full &&
 | |
| 	    btrfs_should_throttle_delayed_refs(trans, root))
 | |
| 		return 1;
 | |
| 
 | |
| 	return !!btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
 | |
| }
 | |
| 
 | |
| int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
 | |
| 				 struct btrfs_root *root)
 | |
| {
 | |
| 	struct btrfs_transaction *cur_trans = trans->transaction;
 | |
| 	int updates;
 | |
| 	int err;
 | |
| 
 | |
| 	smp_mb();
 | |
| 	if (cur_trans->state >= TRANS_STATE_BLOCKED ||
 | |
| 	    cur_trans->delayed_refs.flushing)
 | |
| 		return 1;
 | |
| 
 | |
| 	updates = trans->delayed_ref_updates;
 | |
| 	trans->delayed_ref_updates = 0;
 | |
| 	if (updates) {
 | |
| 		err = btrfs_run_delayed_refs(trans, root, updates);
 | |
| 		if (err) /* Error code will also eval true */
 | |
| 			return err;
 | |
| 	}
 | |
| 
 | |
| 	return should_end_transaction(trans, root);
 | |
| }
 | |
| 
 | |
| static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
 | |
| 			  struct btrfs_root *root, int throttle)
 | |
| {
 | |
| 	struct btrfs_transaction *cur_trans = trans->transaction;
 | |
| 	struct btrfs_fs_info *info = root->fs_info;
 | |
| 	unsigned long cur = trans->delayed_ref_updates;
 | |
| 	int lock = (trans->type != TRANS_JOIN_NOLOCK);
 | |
| 	int err = 0;
 | |
| 
 | |
| 	if (--trans->use_count) {
 | |
| 		trans->block_rsv = trans->orig_rsv;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * do the qgroup accounting as early as possible
 | |
| 	 */
 | |
| 	err = btrfs_delayed_refs_qgroup_accounting(trans, info);
 | |
| 
 | |
| 	btrfs_trans_release_metadata(trans, root);
 | |
| 	trans->block_rsv = NULL;
 | |
| 
 | |
| 	if (trans->qgroup_reserved) {
 | |
| 		/*
 | |
| 		 * the same root has to be passed here between start_transaction
 | |
| 		 * and end_transaction. Subvolume quota depends on this.
 | |
| 		 */
 | |
| 		btrfs_qgroup_free(trans->root, trans->qgroup_reserved);
 | |
| 		trans->qgroup_reserved = 0;
 | |
| 	}
 | |
| 
 | |
| 	if (!list_empty(&trans->new_bgs))
 | |
| 		btrfs_create_pending_block_groups(trans, root);
 | |
| 
 | |
| 	trans->delayed_ref_updates = 0;
 | |
| 	if (btrfs_should_throttle_delayed_refs(trans, root)) {
 | |
| 		cur = max_t(unsigned long, cur, 1);
 | |
| 		trans->delayed_ref_updates = 0;
 | |
| 		btrfs_run_delayed_refs(trans, root, cur);
 | |
| 	}
 | |
| 
 | |
| 	btrfs_trans_release_metadata(trans, root);
 | |
| 	trans->block_rsv = NULL;
 | |
| 
 | |
| 	if (!list_empty(&trans->new_bgs))
 | |
| 		btrfs_create_pending_block_groups(trans, root);
 | |
| 
 | |
| 	if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
 | |
| 	    should_end_transaction(trans, root) &&
 | |
| 	    ACCESS_ONCE(cur_trans->state) == TRANS_STATE_RUNNING) {
 | |
| 		spin_lock(&info->trans_lock);
 | |
| 		if (cur_trans->state == TRANS_STATE_RUNNING)
 | |
| 			cur_trans->state = TRANS_STATE_BLOCKED;
 | |
| 		spin_unlock(&info->trans_lock);
 | |
| 	}
 | |
| 
 | |
| 	if (lock && ACCESS_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) {
 | |
| 		if (throttle) {
 | |
| 			/*
 | |
| 			 * We may race with somebody else here so end up having
 | |
| 			 * to call end_transaction on ourselves again, so inc
 | |
| 			 * our use_count.
 | |
| 			 */
 | |
| 			trans->use_count++;
 | |
| 			return btrfs_commit_transaction(trans, root);
 | |
| 		} else {
 | |
| 			wake_up_process(info->transaction_kthread);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (trans->type & __TRANS_FREEZABLE)
 | |
| 		sb_end_intwrite(root->fs_info->sb);
 | |
| 
 | |
| 	WARN_ON(cur_trans != info->running_transaction);
 | |
| 	WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
 | |
| 	atomic_dec(&cur_trans->num_writers);
 | |
| 	extwriter_counter_dec(cur_trans, trans->type);
 | |
| 
 | |
| 	smp_mb();
 | |
| 	if (waitqueue_active(&cur_trans->writer_wait))
 | |
| 		wake_up(&cur_trans->writer_wait);
 | |
| 	btrfs_put_transaction(cur_trans);
 | |
| 
 | |
| 	if (current->journal_info == trans)
 | |
| 		current->journal_info = NULL;
 | |
| 
 | |
| 	if (throttle)
 | |
| 		btrfs_run_delayed_iputs(root);
 | |
| 
 | |
| 	if (trans->aborted ||
 | |
| 	    test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
 | |
| 		wake_up_process(info->transaction_kthread);
 | |
| 		err = -EIO;
 | |
| 	}
 | |
| 	assert_qgroups_uptodate(trans);
 | |
| 
 | |
| 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| int btrfs_end_transaction(struct btrfs_trans_handle *trans,
 | |
| 			  struct btrfs_root *root)
 | |
| {
 | |
| 	return __btrfs_end_transaction(trans, root, 0);
 | |
| }
 | |
| 
 | |
| int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
 | |
| 				   struct btrfs_root *root)
 | |
| {
 | |
| 	return __btrfs_end_transaction(trans, root, 1);
 | |
| }
 | |
| 
 | |
| int btrfs_end_transaction_dmeta(struct btrfs_trans_handle *trans,
 | |
| 				struct btrfs_root *root)
 | |
| {
 | |
| 	return __btrfs_end_transaction(trans, root, 1);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * when btree blocks are allocated, they have some corresponding bits set for
 | |
|  * them in one of two extent_io trees.  This is used to make sure all of
 | |
|  * those extents are sent to disk but does not wait on them
 | |
|  */
 | |
| int btrfs_write_marked_extents(struct btrfs_root *root,
 | |
| 			       struct extent_io_tree *dirty_pages, int mark)
 | |
| {
 | |
| 	int err = 0;
 | |
| 	int werr = 0;
 | |
| 	struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
 | |
| 	struct extent_state *cached_state = NULL;
 | |
| 	u64 start = 0;
 | |
| 	u64 end;
 | |
| 
 | |
| 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
 | |
| 				      mark, &cached_state)) {
 | |
| 		convert_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT,
 | |
| 				   mark, &cached_state, GFP_NOFS);
 | |
| 		cached_state = NULL;
 | |
| 		err = filemap_fdatawrite_range(mapping, start, end);
 | |
| 		if (err)
 | |
| 			werr = err;
 | |
| 		cond_resched();
 | |
| 		start = end + 1;
 | |
| 	}
 | |
| 	if (err)
 | |
| 		werr = err;
 | |
| 	return werr;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * when btree blocks are allocated, they have some corresponding bits set for
 | |
|  * them in one of two extent_io trees.  This is used to make sure all of
 | |
|  * those extents are on disk for transaction or log commit.  We wait
 | |
|  * on all the pages and clear them from the dirty pages state tree
 | |
|  */
 | |
| int btrfs_wait_marked_extents(struct btrfs_root *root,
 | |
| 			      struct extent_io_tree *dirty_pages, int mark)
 | |
| {
 | |
| 	int err = 0;
 | |
| 	int werr = 0;
 | |
| 	struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
 | |
| 	struct extent_state *cached_state = NULL;
 | |
| 	u64 start = 0;
 | |
| 	u64 end;
 | |
| 
 | |
| 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
 | |
| 				      EXTENT_NEED_WAIT, &cached_state)) {
 | |
| 		clear_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT,
 | |
| 				 0, 0, &cached_state, GFP_NOFS);
 | |
| 		err = filemap_fdatawait_range(mapping, start, end);
 | |
| 		if (err)
 | |
| 			werr = err;
 | |
| 		cond_resched();
 | |
| 		start = end + 1;
 | |
| 	}
 | |
| 	if (err)
 | |
| 		werr = err;
 | |
| 	return werr;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * when btree blocks are allocated, they have some corresponding bits set for
 | |
|  * them in one of two extent_io trees.  This is used to make sure all of
 | |
|  * those extents are on disk for transaction or log commit
 | |
|  */
 | |
| static int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
 | |
| 				struct extent_io_tree *dirty_pages, int mark)
 | |
| {
 | |
| 	int ret;
 | |
| 	int ret2;
 | |
| 	struct blk_plug plug;
 | |
| 
 | |
| 	blk_start_plug(&plug);
 | |
| 	ret = btrfs_write_marked_extents(root, dirty_pages, mark);
 | |
| 	blk_finish_plug(&plug);
 | |
| 	ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
 | |
| 
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 	if (ret2)
 | |
| 		return ret2;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
 | |
| 				     struct btrfs_root *root)
 | |
| {
 | |
| 	if (!trans || !trans->transaction) {
 | |
| 		struct inode *btree_inode;
 | |
| 		btree_inode = root->fs_info->btree_inode;
 | |
| 		return filemap_write_and_wait(btree_inode->i_mapping);
 | |
| 	}
 | |
| 	return btrfs_write_and_wait_marked_extents(root,
 | |
| 					   &trans->transaction->dirty_pages,
 | |
| 					   EXTENT_DIRTY);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * this is used to update the root pointer in the tree of tree roots.
 | |
|  *
 | |
|  * But, in the case of the extent allocation tree, updating the root
 | |
|  * pointer may allocate blocks which may change the root of the extent
 | |
|  * allocation tree.
 | |
|  *
 | |
|  * So, this loops and repeats and makes sure the cowonly root didn't
 | |
|  * change while the root pointer was being updated in the metadata.
 | |
|  */
 | |
| static int update_cowonly_root(struct btrfs_trans_handle *trans,
 | |
| 			       struct btrfs_root *root)
 | |
| {
 | |
| 	int ret;
 | |
| 	u64 old_root_bytenr;
 | |
| 	u64 old_root_used;
 | |
| 	struct btrfs_root *tree_root = root->fs_info->tree_root;
 | |
| 
 | |
| 	old_root_used = btrfs_root_used(&root->root_item);
 | |
| 	btrfs_write_dirty_block_groups(trans, root);
 | |
| 
 | |
| 	while (1) {
 | |
| 		old_root_bytenr = btrfs_root_bytenr(&root->root_item);
 | |
| 		if (old_root_bytenr == root->node->start &&
 | |
| 		    old_root_used == btrfs_root_used(&root->root_item))
 | |
| 			break;
 | |
| 
 | |
| 		btrfs_set_root_node(&root->root_item, root->node);
 | |
| 		ret = btrfs_update_root(trans, tree_root,
 | |
| 					&root->root_key,
 | |
| 					&root->root_item);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 
 | |
| 		old_root_used = btrfs_root_used(&root->root_item);
 | |
| 		ret = btrfs_write_dirty_block_groups(trans, root);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 	}
 | |
| 
 | |
| 	if (root != root->fs_info->extent_root)
 | |
| 		switch_commit_root(root);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * update all the cowonly tree roots on disk
 | |
|  *
 | |
|  * The error handling in this function may not be obvious. Any of the
 | |
|  * failures will cause the file system to go offline. We still need
 | |
|  * to clean up the delayed refs.
 | |
|  */
 | |
| static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
 | |
| 					 struct btrfs_root *root)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = root->fs_info;
 | |
| 	struct list_head *next;
 | |
| 	struct extent_buffer *eb;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	eb = btrfs_lock_root_node(fs_info->tree_root);
 | |
| 	ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
 | |
| 			      0, &eb);
 | |
| 	btrfs_tree_unlock(eb);
 | |
| 	free_extent_buffer(eb);
 | |
| 
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	ret = btrfs_run_dev_stats(trans, root->fs_info);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 	ret = btrfs_run_dev_replace(trans, root->fs_info);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 	ret = btrfs_run_qgroups(trans, root->fs_info);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	/* run_qgroups might have added some more refs */
 | |
| 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	while (!list_empty(&fs_info->dirty_cowonly_roots)) {
 | |
| 		next = fs_info->dirty_cowonly_roots.next;
 | |
| 		list_del_init(next);
 | |
| 		root = list_entry(next, struct btrfs_root, dirty_list);
 | |
| 
 | |
| 		ret = update_cowonly_root(trans, root);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 	}
 | |
| 
 | |
| 	down_write(&fs_info->extent_commit_sem);
 | |
| 	switch_commit_root(fs_info->extent_root);
 | |
| 	up_write(&fs_info->extent_commit_sem);
 | |
| 
 | |
| 	btrfs_after_dev_replace_commit(fs_info);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * dead roots are old snapshots that need to be deleted.  This allocates
 | |
|  * a dirty root struct and adds it into the list of dead roots that need to
 | |
|  * be deleted
 | |
|  */
 | |
| void btrfs_add_dead_root(struct btrfs_root *root)
 | |
| {
 | |
| 	spin_lock(&root->fs_info->trans_lock);
 | |
| 	if (list_empty(&root->root_list))
 | |
| 		list_add_tail(&root->root_list, &root->fs_info->dead_roots);
 | |
| 	spin_unlock(&root->fs_info->trans_lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * update all the cowonly tree roots on disk
 | |
|  */
 | |
| static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
 | |
| 				    struct btrfs_root *root)
 | |
| {
 | |
| 	struct btrfs_root *gang[8];
 | |
| 	struct btrfs_fs_info *fs_info = root->fs_info;
 | |
| 	int i;
 | |
| 	int ret;
 | |
| 	int err = 0;
 | |
| 
 | |
| 	spin_lock(&fs_info->fs_roots_radix_lock);
 | |
| 	while (1) {
 | |
| 		ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
 | |
| 						 (void **)gang, 0,
 | |
| 						 ARRAY_SIZE(gang),
 | |
| 						 BTRFS_ROOT_TRANS_TAG);
 | |
| 		if (ret == 0)
 | |
| 			break;
 | |
| 		for (i = 0; i < ret; i++) {
 | |
| 			root = gang[i];
 | |
| 			radix_tree_tag_clear(&fs_info->fs_roots_radix,
 | |
| 					(unsigned long)root->root_key.objectid,
 | |
| 					BTRFS_ROOT_TRANS_TAG);
 | |
| 			spin_unlock(&fs_info->fs_roots_radix_lock);
 | |
| 
 | |
| 			btrfs_free_log(trans, root);
 | |
| 			btrfs_update_reloc_root(trans, root);
 | |
| 			btrfs_orphan_commit_root(trans, root);
 | |
| 
 | |
| 			btrfs_save_ino_cache(root, trans);
 | |
| 
 | |
| 			/* see comments in should_cow_block() */
 | |
| 			root->force_cow = 0;
 | |
| 			smp_wmb();
 | |
| 
 | |
| 			if (root->commit_root != root->node) {
 | |
| 				mutex_lock(&root->fs_commit_mutex);
 | |
| 				switch_commit_root(root);
 | |
| 				btrfs_unpin_free_ino(root);
 | |
| 				mutex_unlock(&root->fs_commit_mutex);
 | |
| 
 | |
| 				btrfs_set_root_node(&root->root_item,
 | |
| 						    root->node);
 | |
| 			}
 | |
| 
 | |
| 			err = btrfs_update_root(trans, fs_info->tree_root,
 | |
| 						&root->root_key,
 | |
| 						&root->root_item);
 | |
| 			spin_lock(&fs_info->fs_roots_radix_lock);
 | |
| 			if (err)
 | |
| 				break;
 | |
| 		}
 | |
| 	}
 | |
| 	spin_unlock(&fs_info->fs_roots_radix_lock);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * defrag a given btree.
 | |
|  * Every leaf in the btree is read and defragged.
 | |
|  */
 | |
| int btrfs_defrag_root(struct btrfs_root *root)
 | |
| {
 | |
| 	struct btrfs_fs_info *info = root->fs_info;
 | |
| 	struct btrfs_trans_handle *trans;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (xchg(&root->defrag_running, 1))
 | |
| 		return 0;
 | |
| 
 | |
| 	while (1) {
 | |
| 		trans = btrfs_start_transaction(root, 0);
 | |
| 		if (IS_ERR(trans))
 | |
| 			return PTR_ERR(trans);
 | |
| 
 | |
| 		ret = btrfs_defrag_leaves(trans, root);
 | |
| 
 | |
| 		btrfs_end_transaction(trans, root);
 | |
| 		btrfs_btree_balance_dirty(info->tree_root);
 | |
| 		cond_resched();
 | |
| 
 | |
| 		if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
 | |
| 			break;
 | |
| 
 | |
| 		if (btrfs_defrag_cancelled(root->fs_info)) {
 | |
| 			printk(KERN_DEBUG "btrfs: defrag_root cancelled\n");
 | |
| 			ret = -EAGAIN;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	root->defrag_running = 0;
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * new snapshots need to be created at a very specific time in the
 | |
|  * transaction commit.  This does the actual creation.
 | |
|  *
 | |
|  * Note:
 | |
|  * If the error which may affect the commitment of the current transaction
 | |
|  * happens, we should return the error number. If the error which just affect
 | |
|  * the creation of the pending snapshots, just return 0.
 | |
|  */
 | |
| static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
 | |
| 				   struct btrfs_fs_info *fs_info,
 | |
| 				   struct btrfs_pending_snapshot *pending)
 | |
| {
 | |
| 	struct btrfs_key key;
 | |
| 	struct btrfs_root_item *new_root_item;
 | |
| 	struct btrfs_root *tree_root = fs_info->tree_root;
 | |
| 	struct btrfs_root *root = pending->root;
 | |
| 	struct btrfs_root *parent_root;
 | |
| 	struct btrfs_block_rsv *rsv;
 | |
| 	struct inode *parent_inode;
 | |
| 	struct btrfs_path *path;
 | |
| 	struct btrfs_dir_item *dir_item;
 | |
| 	struct dentry *dentry;
 | |
| 	struct extent_buffer *tmp;
 | |
| 	struct extent_buffer *old;
 | |
| 	struct timespec cur_time = CURRENT_TIME;
 | |
| 	int ret = 0;
 | |
| 	u64 to_reserve = 0;
 | |
| 	u64 index = 0;
 | |
| 	u64 objectid;
 | |
| 	u64 root_flags;
 | |
| 	uuid_le new_uuid;
 | |
| 
 | |
| 	path = btrfs_alloc_path();
 | |
| 	if (!path) {
 | |
| 		pending->error = -ENOMEM;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
 | |
| 	if (!new_root_item) {
 | |
| 		pending->error = -ENOMEM;
 | |
| 		goto root_item_alloc_fail;
 | |
| 	}
 | |
| 
 | |
| 	pending->error = btrfs_find_free_objectid(tree_root, &objectid);
 | |
| 	if (pending->error)
 | |
| 		goto no_free_objectid;
 | |
| 
 | |
| 	btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
 | |
| 
 | |
| 	if (to_reserve > 0) {
 | |
| 		pending->error = btrfs_block_rsv_add(root,
 | |
| 						     &pending->block_rsv,
 | |
| 						     to_reserve,
 | |
| 						     BTRFS_RESERVE_NO_FLUSH);
 | |
| 		if (pending->error)
 | |
| 			goto no_free_objectid;
 | |
| 	}
 | |
| 
 | |
| 	pending->error = btrfs_qgroup_inherit(trans, fs_info,
 | |
| 					      root->root_key.objectid,
 | |
| 					      objectid, pending->inherit);
 | |
| 	if (pending->error)
 | |
| 		goto no_free_objectid;
 | |
| 
 | |
| 	key.objectid = objectid;
 | |
| 	key.offset = (u64)-1;
 | |
| 	key.type = BTRFS_ROOT_ITEM_KEY;
 | |
| 
 | |
| 	rsv = trans->block_rsv;
 | |
| 	trans->block_rsv = &pending->block_rsv;
 | |
| 	trans->bytes_reserved = trans->block_rsv->reserved;
 | |
| 
 | |
| 	dentry = pending->dentry;
 | |
| 	parent_inode = pending->dir;
 | |
| 	parent_root = BTRFS_I(parent_inode)->root;
 | |
| 	record_root_in_trans(trans, parent_root);
 | |
| 
 | |
| 	/*
 | |
| 	 * insert the directory item
 | |
| 	 */
 | |
| 	ret = btrfs_set_inode_index(parent_inode, &index);
 | |
| 	BUG_ON(ret); /* -ENOMEM */
 | |
| 
 | |
| 	/* check if there is a file/dir which has the same name. */
 | |
| 	dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
 | |
| 					 btrfs_ino(parent_inode),
 | |
| 					 dentry->d_name.name,
 | |
| 					 dentry->d_name.len, 0);
 | |
| 	if (dir_item != NULL && !IS_ERR(dir_item)) {
 | |
| 		pending->error = -EEXIST;
 | |
| 		goto dir_item_existed;
 | |
| 	} else if (IS_ERR(dir_item)) {
 | |
| 		ret = PTR_ERR(dir_item);
 | |
| 		btrfs_abort_transaction(trans, root, ret);
 | |
| 		goto fail;
 | |
| 	}
 | |
| 	btrfs_release_path(path);
 | |
| 
 | |
| 	/*
 | |
| 	 * pull in the delayed directory update
 | |
| 	 * and the delayed inode item
 | |
| 	 * otherwise we corrupt the FS during
 | |
| 	 * snapshot
 | |
| 	 */
 | |
| 	ret = btrfs_run_delayed_items(trans, root);
 | |
| 	if (ret) {	/* Transaction aborted */
 | |
| 		btrfs_abort_transaction(trans, root, ret);
 | |
| 		goto fail;
 | |
| 	}
 | |
| 
 | |
| 	record_root_in_trans(trans, root);
 | |
| 	btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
 | |
| 	memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
 | |
| 	btrfs_check_and_init_root_item(new_root_item);
 | |
| 
 | |
| 	root_flags = btrfs_root_flags(new_root_item);
 | |
| 	if (pending->readonly)
 | |
| 		root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
 | |
| 	else
 | |
| 		root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
 | |
| 	btrfs_set_root_flags(new_root_item, root_flags);
 | |
| 
 | |
| 	btrfs_set_root_generation_v2(new_root_item,
 | |
| 			trans->transid);
 | |
| 	uuid_le_gen(&new_uuid);
 | |
| 	memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
 | |
| 	memcpy(new_root_item->parent_uuid, root->root_item.uuid,
 | |
| 			BTRFS_UUID_SIZE);
 | |
| 	if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
 | |
| 		memset(new_root_item->received_uuid, 0,
 | |
| 		       sizeof(new_root_item->received_uuid));
 | |
| 		memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
 | |
| 		memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
 | |
| 		btrfs_set_root_stransid(new_root_item, 0);
 | |
| 		btrfs_set_root_rtransid(new_root_item, 0);
 | |
| 	}
 | |
| 	btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
 | |
| 	btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
 | |
| 	btrfs_set_root_otransid(new_root_item, trans->transid);
 | |
| 
 | |
| 	old = btrfs_lock_root_node(root);
 | |
| 	ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
 | |
| 	if (ret) {
 | |
| 		btrfs_tree_unlock(old);
 | |
| 		free_extent_buffer(old);
 | |
| 		btrfs_abort_transaction(trans, root, ret);
 | |
| 		goto fail;
 | |
| 	}
 | |
| 
 | |
| 	btrfs_set_lock_blocking(old);
 | |
| 
 | |
| 	ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
 | |
| 	/* clean up in any case */
 | |
| 	btrfs_tree_unlock(old);
 | |
| 	free_extent_buffer(old);
 | |
| 	if (ret) {
 | |
| 		btrfs_abort_transaction(trans, root, ret);
 | |
| 		goto fail;
 | |
| 	}
 | |
| 
 | |
| 	/* see comments in should_cow_block() */
 | |
| 	root->force_cow = 1;
 | |
| 	smp_wmb();
 | |
| 
 | |
| 	btrfs_set_root_node(new_root_item, tmp);
 | |
| 	/* record when the snapshot was created in key.offset */
 | |
| 	key.offset = trans->transid;
 | |
| 	ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
 | |
| 	btrfs_tree_unlock(tmp);
 | |
| 	free_extent_buffer(tmp);
 | |
| 	if (ret) {
 | |
| 		btrfs_abort_transaction(trans, root, ret);
 | |
| 		goto fail;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * insert root back/forward references
 | |
| 	 */
 | |
| 	ret = btrfs_add_root_ref(trans, tree_root, objectid,
 | |
| 				 parent_root->root_key.objectid,
 | |
| 				 btrfs_ino(parent_inode), index,
 | |
| 				 dentry->d_name.name, dentry->d_name.len);
 | |
| 	if (ret) {
 | |
| 		btrfs_abort_transaction(trans, root, ret);
 | |
| 		goto fail;
 | |
| 	}
 | |
| 
 | |
| 	key.offset = (u64)-1;
 | |
| 	pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
 | |
| 	if (IS_ERR(pending->snap)) {
 | |
| 		ret = PTR_ERR(pending->snap);
 | |
| 		btrfs_abort_transaction(trans, root, ret);
 | |
| 		goto fail;
 | |
| 	}
 | |
| 
 | |
| 	ret = btrfs_reloc_post_snapshot(trans, pending);
 | |
| 	if (ret) {
 | |
| 		btrfs_abort_transaction(trans, root, ret);
 | |
| 		goto fail;
 | |
| 	}
 | |
| 
 | |
| 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
 | |
| 	if (ret) {
 | |
| 		btrfs_abort_transaction(trans, root, ret);
 | |
| 		goto fail;
 | |
| 	}
 | |
| 
 | |
| 	ret = btrfs_insert_dir_item(trans, parent_root,
 | |
| 				    dentry->d_name.name, dentry->d_name.len,
 | |
| 				    parent_inode, &key,
 | |
| 				    BTRFS_FT_DIR, index);
 | |
| 	/* We have check then name at the beginning, so it is impossible. */
 | |
| 	BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
 | |
| 	if (ret) {
 | |
| 		btrfs_abort_transaction(trans, root, ret);
 | |
| 		goto fail;
 | |
| 	}
 | |
| 
 | |
| 	btrfs_i_size_write(parent_inode, parent_inode->i_size +
 | |
| 					 dentry->d_name.len * 2);
 | |
| 	parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
 | |
| 	ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
 | |
| 	if (ret) {
 | |
| 		btrfs_abort_transaction(trans, root, ret);
 | |
| 		goto fail;
 | |
| 	}
 | |
| 	ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, new_uuid.b,
 | |
| 				  BTRFS_UUID_KEY_SUBVOL, objectid);
 | |
| 	if (ret) {
 | |
| 		btrfs_abort_transaction(trans, root, ret);
 | |
| 		goto fail;
 | |
| 	}
 | |
| 	if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
 | |
| 		ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
 | |
| 					  new_root_item->received_uuid,
 | |
| 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
 | |
| 					  objectid);
 | |
| 		if (ret && ret != -EEXIST) {
 | |
| 			btrfs_abort_transaction(trans, root, ret);
 | |
| 			goto fail;
 | |
| 		}
 | |
| 	}
 | |
| fail:
 | |
| 	pending->error = ret;
 | |
| dir_item_existed:
 | |
| 	trans->block_rsv = rsv;
 | |
| 	trans->bytes_reserved = 0;
 | |
| no_free_objectid:
 | |
| 	kfree(new_root_item);
 | |
| root_item_alloc_fail:
 | |
| 	btrfs_free_path(path);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * create all the snapshots we've scheduled for creation
 | |
|  */
 | |
| static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
 | |
| 					     struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	struct btrfs_pending_snapshot *pending, *next;
 | |
| 	struct list_head *head = &trans->transaction->pending_snapshots;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	list_for_each_entry_safe(pending, next, head, list) {
 | |
| 		list_del(&pending->list);
 | |
| 		ret = create_pending_snapshot(trans, fs_info, pending);
 | |
| 		if (ret)
 | |
| 			break;
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void update_super_roots(struct btrfs_root *root)
 | |
| {
 | |
| 	struct btrfs_root_item *root_item;
 | |
| 	struct btrfs_super_block *super;
 | |
| 
 | |
| 	super = root->fs_info->super_copy;
 | |
| 
 | |
| 	root_item = &root->fs_info->chunk_root->root_item;
 | |
| 	super->chunk_root = root_item->bytenr;
 | |
| 	super->chunk_root_generation = root_item->generation;
 | |
| 	super->chunk_root_level = root_item->level;
 | |
| 
 | |
| 	root_item = &root->fs_info->tree_root->root_item;
 | |
| 	super->root = root_item->bytenr;
 | |
| 	super->generation = root_item->generation;
 | |
| 	super->root_level = root_item->level;
 | |
| 	if (btrfs_test_opt(root, SPACE_CACHE))
 | |
| 		super->cache_generation = root_item->generation;
 | |
| 	if (root->fs_info->update_uuid_tree_gen)
 | |
| 		super->uuid_tree_generation = root_item->generation;
 | |
| }
 | |
| 
 | |
| int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
 | |
| {
 | |
| 	struct btrfs_transaction *trans;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	spin_lock(&info->trans_lock);
 | |
| 	trans = info->running_transaction;
 | |
| 	if (trans)
 | |
| 		ret = (trans->state >= TRANS_STATE_COMMIT_START);
 | |
| 	spin_unlock(&info->trans_lock);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int btrfs_transaction_blocked(struct btrfs_fs_info *info)
 | |
| {
 | |
| 	struct btrfs_transaction *trans;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	spin_lock(&info->trans_lock);
 | |
| 	trans = info->running_transaction;
 | |
| 	if (trans)
 | |
| 		ret = is_transaction_blocked(trans);
 | |
| 	spin_unlock(&info->trans_lock);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * wait for the current transaction commit to start and block subsequent
 | |
|  * transaction joins
 | |
|  */
 | |
| static void wait_current_trans_commit_start(struct btrfs_root *root,
 | |
| 					    struct btrfs_transaction *trans)
 | |
| {
 | |
| 	wait_event(root->fs_info->transaction_blocked_wait,
 | |
| 		   trans->state >= TRANS_STATE_COMMIT_START ||
 | |
| 		   trans->aborted);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * wait for the current transaction to start and then become unblocked.
 | |
|  * caller holds ref.
 | |
|  */
 | |
| static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
 | |
| 					 struct btrfs_transaction *trans)
 | |
| {
 | |
| 	wait_event(root->fs_info->transaction_wait,
 | |
| 		   trans->state >= TRANS_STATE_UNBLOCKED ||
 | |
| 		   trans->aborted);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * commit transactions asynchronously. once btrfs_commit_transaction_async
 | |
|  * returns, any subsequent transaction will not be allowed to join.
 | |
|  */
 | |
| struct btrfs_async_commit {
 | |
| 	struct btrfs_trans_handle *newtrans;
 | |
| 	struct btrfs_root *root;
 | |
| 	struct work_struct work;
 | |
| };
 | |
| 
 | |
| static void do_async_commit(struct work_struct *work)
 | |
| {
 | |
| 	struct btrfs_async_commit *ac =
 | |
| 		container_of(work, struct btrfs_async_commit, work);
 | |
| 
 | |
| 	/*
 | |
| 	 * We've got freeze protection passed with the transaction.
 | |
| 	 * Tell lockdep about it.
 | |
| 	 */
 | |
| 	if (ac->newtrans->type & __TRANS_FREEZABLE)
 | |
| 		rwsem_acquire_read(
 | |
| 		     &ac->root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
 | |
| 		     0, 1, _THIS_IP_);
 | |
| 
 | |
| 	current->journal_info = ac->newtrans;
 | |
| 
 | |
| 	btrfs_commit_transaction(ac->newtrans, ac->root);
 | |
| 	kfree(ac);
 | |
| }
 | |
| 
 | |
| int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
 | |
| 				   struct btrfs_root *root,
 | |
| 				   int wait_for_unblock)
 | |
| {
 | |
| 	struct btrfs_async_commit *ac;
 | |
| 	struct btrfs_transaction *cur_trans;
 | |
| 
 | |
| 	ac = kmalloc(sizeof(*ac), GFP_NOFS);
 | |
| 	if (!ac)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	INIT_WORK(&ac->work, do_async_commit);
 | |
| 	ac->root = root;
 | |
| 	ac->newtrans = btrfs_join_transaction(root);
 | |
| 	if (IS_ERR(ac->newtrans)) {
 | |
| 		int err = PTR_ERR(ac->newtrans);
 | |
| 		kfree(ac);
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	/* take transaction reference */
 | |
| 	cur_trans = trans->transaction;
 | |
| 	atomic_inc(&cur_trans->use_count);
 | |
| 
 | |
| 	btrfs_end_transaction(trans, root);
 | |
| 
 | |
| 	/*
 | |
| 	 * Tell lockdep we've released the freeze rwsem, since the
 | |
| 	 * async commit thread will be the one to unlock it.
 | |
| 	 */
 | |
| 	if (ac->newtrans->type & __TRANS_FREEZABLE)
 | |
| 		rwsem_release(
 | |
| 			&root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
 | |
| 			1, _THIS_IP_);
 | |
| 
 | |
| 	schedule_work(&ac->work);
 | |
| 
 | |
| 	/* wait for transaction to start and unblock */
 | |
| 	if (wait_for_unblock)
 | |
| 		wait_current_trans_commit_start_and_unblock(root, cur_trans);
 | |
| 	else
 | |
| 		wait_current_trans_commit_start(root, cur_trans);
 | |
| 
 | |
| 	if (current->journal_info == trans)
 | |
| 		current->journal_info = NULL;
 | |
| 
 | |
| 	btrfs_put_transaction(cur_trans);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| static void cleanup_transaction(struct btrfs_trans_handle *trans,
 | |
| 				struct btrfs_root *root, int err)
 | |
| {
 | |
| 	struct btrfs_transaction *cur_trans = trans->transaction;
 | |
| 	DEFINE_WAIT(wait);
 | |
| 
 | |
| 	WARN_ON(trans->use_count > 1);
 | |
| 
 | |
| 	btrfs_abort_transaction(trans, root, err);
 | |
| 
 | |
| 	spin_lock(&root->fs_info->trans_lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * If the transaction is removed from the list, it means this
 | |
| 	 * transaction has been committed successfully, so it is impossible
 | |
| 	 * to call the cleanup function.
 | |
| 	 */
 | |
| 	BUG_ON(list_empty(&cur_trans->list));
 | |
| 
 | |
| 	list_del_init(&cur_trans->list);
 | |
| 	if (cur_trans == root->fs_info->running_transaction) {
 | |
| 		cur_trans->state = TRANS_STATE_COMMIT_DOING;
 | |
| 		spin_unlock(&root->fs_info->trans_lock);
 | |
| 		wait_event(cur_trans->writer_wait,
 | |
| 			   atomic_read(&cur_trans->num_writers) == 1);
 | |
| 
 | |
| 		spin_lock(&root->fs_info->trans_lock);
 | |
| 	}
 | |
| 	spin_unlock(&root->fs_info->trans_lock);
 | |
| 
 | |
| 	btrfs_cleanup_one_transaction(trans->transaction, root);
 | |
| 
 | |
| 	spin_lock(&root->fs_info->trans_lock);
 | |
| 	if (cur_trans == root->fs_info->running_transaction)
 | |
| 		root->fs_info->running_transaction = NULL;
 | |
| 	spin_unlock(&root->fs_info->trans_lock);
 | |
| 
 | |
| 	if (trans->type & __TRANS_FREEZABLE)
 | |
| 		sb_end_intwrite(root->fs_info->sb);
 | |
| 	btrfs_put_transaction(cur_trans);
 | |
| 	btrfs_put_transaction(cur_trans);
 | |
| 
 | |
| 	trace_btrfs_transaction_commit(root);
 | |
| 
 | |
| 	btrfs_scrub_continue(root);
 | |
| 
 | |
| 	if (current->journal_info == trans)
 | |
| 		current->journal_info = NULL;
 | |
| 
 | |
| 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
 | |
| }
 | |
| 
 | |
| static int btrfs_flush_all_pending_stuffs(struct btrfs_trans_handle *trans,
 | |
| 					  struct btrfs_root *root)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = btrfs_run_delayed_items(trans, root);
 | |
| 	/*
 | |
| 	 * running the delayed items may have added new refs. account
 | |
| 	 * them now so that they hinder processing of more delayed refs
 | |
| 	 * as little as possible.
 | |
| 	 */
 | |
| 	if (ret) {
 | |
| 		btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	ret = btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * rename don't use btrfs_join_transaction, so, once we
 | |
| 	 * set the transaction to blocked above, we aren't going
 | |
| 	 * to get any new ordered operations.  We can safely run
 | |
| 	 * it here and no for sure that nothing new will be added
 | |
| 	 * to the list
 | |
| 	 */
 | |
| 	ret = btrfs_run_ordered_operations(trans, root, 1);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
 | |
| 		return btrfs_start_delalloc_roots(fs_info, 1);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
 | |
| 		btrfs_wait_ordered_roots(fs_info, -1);
 | |
| }
 | |
| 
 | |
| int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
 | |
| 			     struct btrfs_root *root)
 | |
| {
 | |
| 	struct btrfs_transaction *cur_trans = trans->transaction;
 | |
| 	struct btrfs_transaction *prev_trans = NULL;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = btrfs_run_ordered_operations(trans, root, 0);
 | |
| 	if (ret) {
 | |
| 		btrfs_abort_transaction(trans, root, ret);
 | |
| 		btrfs_end_transaction(trans, root);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	/* Stop the commit early if ->aborted is set */
 | |
| 	if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
 | |
| 		ret = cur_trans->aborted;
 | |
| 		btrfs_end_transaction(trans, root);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	/* make a pass through all the delayed refs we have so far
 | |
| 	 * any runnings procs may add more while we are here
 | |
| 	 */
 | |
| 	ret = btrfs_run_delayed_refs(trans, root, 0);
 | |
| 	if (ret) {
 | |
| 		btrfs_end_transaction(trans, root);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	btrfs_trans_release_metadata(trans, root);
 | |
| 	trans->block_rsv = NULL;
 | |
| 	if (trans->qgroup_reserved) {
 | |
| 		btrfs_qgroup_free(root, trans->qgroup_reserved);
 | |
| 		trans->qgroup_reserved = 0;
 | |
| 	}
 | |
| 
 | |
| 	cur_trans = trans->transaction;
 | |
| 
 | |
| 	/*
 | |
| 	 * set the flushing flag so procs in this transaction have to
 | |
| 	 * start sending their work down.
 | |
| 	 */
 | |
| 	cur_trans->delayed_refs.flushing = 1;
 | |
| 	smp_wmb();
 | |
| 
 | |
| 	if (!list_empty(&trans->new_bgs))
 | |
| 		btrfs_create_pending_block_groups(trans, root);
 | |
| 
 | |
| 	ret = btrfs_run_delayed_refs(trans, root, 0);
 | |
| 	if (ret) {
 | |
| 		btrfs_end_transaction(trans, root);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	spin_lock(&root->fs_info->trans_lock);
 | |
| 	if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
 | |
| 		spin_unlock(&root->fs_info->trans_lock);
 | |
| 		atomic_inc(&cur_trans->use_count);
 | |
| 		ret = btrfs_end_transaction(trans, root);
 | |
| 
 | |
| 		wait_for_commit(root, cur_trans);
 | |
| 
 | |
| 		btrfs_put_transaction(cur_trans);
 | |
| 
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	cur_trans->state = TRANS_STATE_COMMIT_START;
 | |
| 	wake_up(&root->fs_info->transaction_blocked_wait);
 | |
| 
 | |
| 	if (cur_trans->list.prev != &root->fs_info->trans_list) {
 | |
| 		prev_trans = list_entry(cur_trans->list.prev,
 | |
| 					struct btrfs_transaction, list);
 | |
| 		if (prev_trans->state != TRANS_STATE_COMPLETED) {
 | |
| 			atomic_inc(&prev_trans->use_count);
 | |
| 			spin_unlock(&root->fs_info->trans_lock);
 | |
| 
 | |
| 			wait_for_commit(root, prev_trans);
 | |
| 
 | |
| 			btrfs_put_transaction(prev_trans);
 | |
| 		} else {
 | |
| 			spin_unlock(&root->fs_info->trans_lock);
 | |
| 		}
 | |
| 	} else {
 | |
| 		spin_unlock(&root->fs_info->trans_lock);
 | |
| 	}
 | |
| 
 | |
| 	extwriter_counter_dec(cur_trans, trans->type);
 | |
| 
 | |
| 	ret = btrfs_start_delalloc_flush(root->fs_info);
 | |
| 	if (ret)
 | |
| 		goto cleanup_transaction;
 | |
| 
 | |
| 	ret = btrfs_flush_all_pending_stuffs(trans, root);
 | |
| 	if (ret)
 | |
| 		goto cleanup_transaction;
 | |
| 
 | |
| 	wait_event(cur_trans->writer_wait,
 | |
| 		   extwriter_counter_read(cur_trans) == 0);
 | |
| 
 | |
| 	/* some pending stuffs might be added after the previous flush. */
 | |
| 	ret = btrfs_flush_all_pending_stuffs(trans, root);
 | |
| 	if (ret)
 | |
| 		goto cleanup_transaction;
 | |
| 
 | |
| 	btrfs_wait_delalloc_flush(root->fs_info);
 | |
| 	/*
 | |
| 	 * Ok now we need to make sure to block out any other joins while we
 | |
| 	 * commit the transaction.  We could have started a join before setting
 | |
| 	 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
 | |
| 	 */
 | |
| 	spin_lock(&root->fs_info->trans_lock);
 | |
| 	cur_trans->state = TRANS_STATE_COMMIT_DOING;
 | |
| 	spin_unlock(&root->fs_info->trans_lock);
 | |
| 	wait_event(cur_trans->writer_wait,
 | |
| 		   atomic_read(&cur_trans->num_writers) == 1);
 | |
| 
 | |
| 	/* ->aborted might be set after the previous check, so check it */
 | |
| 	if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
 | |
| 		ret = cur_trans->aborted;
 | |
| 		goto cleanup_transaction;
 | |
| 	}
 | |
| 	/*
 | |
| 	 * the reloc mutex makes sure that we stop
 | |
| 	 * the balancing code from coming in and moving
 | |
| 	 * extents around in the middle of the commit
 | |
| 	 */
 | |
| 	mutex_lock(&root->fs_info->reloc_mutex);
 | |
| 
 | |
| 	/*
 | |
| 	 * We needn't worry about the delayed items because we will
 | |
| 	 * deal with them in create_pending_snapshot(), which is the
 | |
| 	 * core function of the snapshot creation.
 | |
| 	 */
 | |
| 	ret = create_pending_snapshots(trans, root->fs_info);
 | |
| 	if (ret) {
 | |
| 		mutex_unlock(&root->fs_info->reloc_mutex);
 | |
| 		goto cleanup_transaction;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We insert the dir indexes of the snapshots and update the inode
 | |
| 	 * of the snapshots' parents after the snapshot creation, so there
 | |
| 	 * are some delayed items which are not dealt with. Now deal with
 | |
| 	 * them.
 | |
| 	 *
 | |
| 	 * We needn't worry that this operation will corrupt the snapshots,
 | |
| 	 * because all the tree which are snapshoted will be forced to COW
 | |
| 	 * the nodes and leaves.
 | |
| 	 */
 | |
| 	ret = btrfs_run_delayed_items(trans, root);
 | |
| 	if (ret) {
 | |
| 		mutex_unlock(&root->fs_info->reloc_mutex);
 | |
| 		goto cleanup_transaction;
 | |
| 	}
 | |
| 
 | |
| 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
 | |
| 	if (ret) {
 | |
| 		mutex_unlock(&root->fs_info->reloc_mutex);
 | |
| 		goto cleanup_transaction;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * make sure none of the code above managed to slip in a
 | |
| 	 * delayed item
 | |
| 	 */
 | |
| 	btrfs_assert_delayed_root_empty(root);
 | |
| 
 | |
| 	WARN_ON(cur_trans != trans->transaction);
 | |
| 
 | |
| 	btrfs_scrub_pause(root);
 | |
| 	/* btrfs_commit_tree_roots is responsible for getting the
 | |
| 	 * various roots consistent with each other.  Every pointer
 | |
| 	 * in the tree of tree roots has to point to the most up to date
 | |
| 	 * root for every subvolume and other tree.  So, we have to keep
 | |
| 	 * the tree logging code from jumping in and changing any
 | |
| 	 * of the trees.
 | |
| 	 *
 | |
| 	 * At this point in the commit, there can't be any tree-log
 | |
| 	 * writers, but a little lower down we drop the trans mutex
 | |
| 	 * and let new people in.  By holding the tree_log_mutex
 | |
| 	 * from now until after the super is written, we avoid races
 | |
| 	 * with the tree-log code.
 | |
| 	 */
 | |
| 	mutex_lock(&root->fs_info->tree_log_mutex);
 | |
| 
 | |
| 	ret = commit_fs_roots(trans, root);
 | |
| 	if (ret) {
 | |
| 		mutex_unlock(&root->fs_info->tree_log_mutex);
 | |
| 		mutex_unlock(&root->fs_info->reloc_mutex);
 | |
| 		goto cleanup_transaction;
 | |
| 	}
 | |
| 
 | |
| 	/* commit_fs_roots gets rid of all the tree log roots, it is now
 | |
| 	 * safe to free the root of tree log roots
 | |
| 	 */
 | |
| 	btrfs_free_log_root_tree(trans, root->fs_info);
 | |
| 
 | |
| 	ret = commit_cowonly_roots(trans, root);
 | |
| 	if (ret) {
 | |
| 		mutex_unlock(&root->fs_info->tree_log_mutex);
 | |
| 		mutex_unlock(&root->fs_info->reloc_mutex);
 | |
| 		goto cleanup_transaction;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * The tasks which save the space cache and inode cache may also
 | |
| 	 * update ->aborted, check it.
 | |
| 	 */
 | |
| 	if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
 | |
| 		ret = cur_trans->aborted;
 | |
| 		mutex_unlock(&root->fs_info->tree_log_mutex);
 | |
| 		mutex_unlock(&root->fs_info->reloc_mutex);
 | |
| 		goto cleanup_transaction;
 | |
| 	}
 | |
| 
 | |
| 	btrfs_prepare_extent_commit(trans, root);
 | |
| 
 | |
| 	cur_trans = root->fs_info->running_transaction;
 | |
| 
 | |
| 	btrfs_set_root_node(&root->fs_info->tree_root->root_item,
 | |
| 			    root->fs_info->tree_root->node);
 | |
| 	switch_commit_root(root->fs_info->tree_root);
 | |
| 
 | |
| 	btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
 | |
| 			    root->fs_info->chunk_root->node);
 | |
| 	switch_commit_root(root->fs_info->chunk_root);
 | |
| 
 | |
| 	assert_qgroups_uptodate(trans);
 | |
| 	update_super_roots(root);
 | |
| 
 | |
| 	btrfs_set_super_log_root(root->fs_info->super_copy, 0);
 | |
| 	btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
 | |
| 	memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
 | |
| 	       sizeof(*root->fs_info->super_copy));
 | |
| 
 | |
| 	spin_lock(&root->fs_info->trans_lock);
 | |
| 	cur_trans->state = TRANS_STATE_UNBLOCKED;
 | |
| 	root->fs_info->running_transaction = NULL;
 | |
| 	spin_unlock(&root->fs_info->trans_lock);
 | |
| 	mutex_unlock(&root->fs_info->reloc_mutex);
 | |
| 
 | |
| 	wake_up(&root->fs_info->transaction_wait);
 | |
| 
 | |
| 	ret = btrfs_write_and_wait_transaction(trans, root);
 | |
| 	if (ret) {
 | |
| 		btrfs_error(root->fs_info, ret,
 | |
| 			    "Error while writing out transaction");
 | |
| 		mutex_unlock(&root->fs_info->tree_log_mutex);
 | |
| 		goto cleanup_transaction;
 | |
| 	}
 | |
| 
 | |
| 	ret = write_ctree_super(trans, root, 0);
 | |
| 	if (ret) {
 | |
| 		mutex_unlock(&root->fs_info->tree_log_mutex);
 | |
| 		goto cleanup_transaction;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * the super is written, we can safely allow the tree-loggers
 | |
| 	 * to go about their business
 | |
| 	 */
 | |
| 	mutex_unlock(&root->fs_info->tree_log_mutex);
 | |
| 
 | |
| 	btrfs_finish_extent_commit(trans, root);
 | |
| 
 | |
| 	root->fs_info->last_trans_committed = cur_trans->transid;
 | |
| 	/*
 | |
| 	 * We needn't acquire the lock here because there is no other task
 | |
| 	 * which can change it.
 | |
| 	 */
 | |
| 	cur_trans->state = TRANS_STATE_COMPLETED;
 | |
| 	wake_up(&cur_trans->commit_wait);
 | |
| 
 | |
| 	spin_lock(&root->fs_info->trans_lock);
 | |
| 	list_del_init(&cur_trans->list);
 | |
| 	spin_unlock(&root->fs_info->trans_lock);
 | |
| 
 | |
| 	btrfs_put_transaction(cur_trans);
 | |
| 	btrfs_put_transaction(cur_trans);
 | |
| 
 | |
| 	if (trans->type & __TRANS_FREEZABLE)
 | |
| 		sb_end_intwrite(root->fs_info->sb);
 | |
| 
 | |
| 	trace_btrfs_transaction_commit(root);
 | |
| 
 | |
| 	btrfs_scrub_continue(root);
 | |
| 
 | |
| 	if (current->journal_info == trans)
 | |
| 		current->journal_info = NULL;
 | |
| 
 | |
| 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
 | |
| 
 | |
| 	if (current != root->fs_info->transaction_kthread)
 | |
| 		btrfs_run_delayed_iputs(root);
 | |
| 
 | |
| 	return ret;
 | |
| 
 | |
| cleanup_transaction:
 | |
| 	btrfs_trans_release_metadata(trans, root);
 | |
| 	trans->block_rsv = NULL;
 | |
| 	if (trans->qgroup_reserved) {
 | |
| 		btrfs_qgroup_free(root, trans->qgroup_reserved);
 | |
| 		trans->qgroup_reserved = 0;
 | |
| 	}
 | |
| 	btrfs_warn(root->fs_info, "Skipping commit of aborted transaction.");
 | |
| 	if (current->journal_info == trans)
 | |
| 		current->journal_info = NULL;
 | |
| 	cleanup_transaction(trans, root, ret);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * return < 0 if error
 | |
|  * 0 if there are no more dead_roots at the time of call
 | |
|  * 1 there are more to be processed, call me again
 | |
|  *
 | |
|  * The return value indicates there are certainly more snapshots to delete, but
 | |
|  * if there comes a new one during processing, it may return 0. We don't mind,
 | |
|  * because btrfs_commit_super will poke cleaner thread and it will process it a
 | |
|  * few seconds later.
 | |
|  */
 | |
| int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
 | |
| {
 | |
| 	int ret;
 | |
| 	struct btrfs_fs_info *fs_info = root->fs_info;
 | |
| 
 | |
| 	spin_lock(&fs_info->trans_lock);
 | |
| 	if (list_empty(&fs_info->dead_roots)) {
 | |
| 		spin_unlock(&fs_info->trans_lock);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	root = list_first_entry(&fs_info->dead_roots,
 | |
| 			struct btrfs_root, root_list);
 | |
| 	list_del_init(&root->root_list);
 | |
| 	spin_unlock(&fs_info->trans_lock);
 | |
| 
 | |
| 	pr_debug("btrfs: cleaner removing %llu\n", root->objectid);
 | |
| 
 | |
| 	btrfs_kill_all_delayed_nodes(root);
 | |
| 
 | |
| 	if (btrfs_header_backref_rev(root->node) <
 | |
| 			BTRFS_MIXED_BACKREF_REV)
 | |
| 		ret = btrfs_drop_snapshot(root, NULL, 0, 0);
 | |
| 	else
 | |
| 		ret = btrfs_drop_snapshot(root, NULL, 1, 0);
 | |
| 	/*
 | |
| 	 * If we encounter a transaction abort during snapshot cleaning, we
 | |
| 	 * don't want to crash here
 | |
| 	 */
 | |
| 	return (ret < 0) ? 0 : 1;
 | |
| }
 |