 09a3fba8c1
			
		
	
	
	09a3fba8c1
	
	
	
		
			
			With this patch we can compile the qe_lib/usb.c without the UCC support (that is, without UCC_GETH and/or SERIAL_QE). Fixes following link error (CONFIG_SMP should be =y to trigger this): arch/powerpc/sysdev/built-in.o: In function `qe_usb_clock_set': (.text+0x3cae): undefined reference to `cmxgcr_lock' make: *** [.tmp_vmlinux1] Error 1 While at it, also add missing spinlock.h includes. Signed-off-by: Anton Vorontsov <avorontsov@ru.mvista.com> Acked-By: Timur Tabi <timur@freescale.com> Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
		
			
				
	
	
		
			577 lines
		
	
	
	
		
			14 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			577 lines
		
	
	
	
		
			14 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (C) 2006 Freescale Semicondutor, Inc. All rights reserved.
 | |
|  *
 | |
|  * Authors: 	Shlomi Gridish <gridish@freescale.com>
 | |
|  * 		Li Yang <leoli@freescale.com>
 | |
|  * Based on cpm2_common.c from Dan Malek (dmalek@jlc.net)
 | |
|  *
 | |
|  * Description:
 | |
|  * General Purpose functions for the global management of the
 | |
|  * QUICC Engine (QE).
 | |
|  *
 | |
|  * This program is free software; you can redistribute  it and/or modify it
 | |
|  * under  the terms of  the GNU General  Public License as published by the
 | |
|  * Free Software Foundation;  either version 2 of the  License, or (at your
 | |
|  * option) any later version.
 | |
|  */
 | |
| #include <linux/errno.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/param.h>
 | |
| #include <linux/string.h>
 | |
| #include <linux/spinlock.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/bootmem.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/ioport.h>
 | |
| #include <linux/crc32.h>
 | |
| #include <asm/irq.h>
 | |
| #include <asm/page.h>
 | |
| #include <asm/pgtable.h>
 | |
| #include <asm/immap_qe.h>
 | |
| #include <asm/qe.h>
 | |
| #include <asm/prom.h>
 | |
| #include <asm/rheap.h>
 | |
| 
 | |
| static void qe_snums_init(void);
 | |
| static int qe_sdma_init(void);
 | |
| 
 | |
| static DEFINE_SPINLOCK(qe_lock);
 | |
| DEFINE_SPINLOCK(cmxgcr_lock);
 | |
| EXPORT_SYMBOL(cmxgcr_lock);
 | |
| 
 | |
| /* QE snum state */
 | |
| enum qe_snum_state {
 | |
| 	QE_SNUM_STATE_USED,
 | |
| 	QE_SNUM_STATE_FREE
 | |
| };
 | |
| 
 | |
| /* QE snum */
 | |
| struct qe_snum {
 | |
| 	u8 num;
 | |
| 	enum qe_snum_state state;
 | |
| };
 | |
| 
 | |
| /* We allocate this here because it is used almost exclusively for
 | |
|  * the communication processor devices.
 | |
|  */
 | |
| struct qe_immap __iomem *qe_immr;
 | |
| EXPORT_SYMBOL(qe_immr);
 | |
| 
 | |
| static struct qe_snum snums[QE_NUM_OF_SNUM];	/* Dynamically allocated SNUMs */
 | |
| 
 | |
| static phys_addr_t qebase = -1;
 | |
| 
 | |
| phys_addr_t get_qe_base(void)
 | |
| {
 | |
| 	struct device_node *qe;
 | |
| 	int size;
 | |
| 	const u32 *prop;
 | |
| 
 | |
| 	if (qebase != -1)
 | |
| 		return qebase;
 | |
| 
 | |
| 	qe = of_find_compatible_node(NULL, NULL, "fsl,qe");
 | |
| 	if (!qe) {
 | |
| 		qe = of_find_node_by_type(NULL, "qe");
 | |
| 		if (!qe)
 | |
| 			return qebase;
 | |
| 	}
 | |
| 
 | |
| 	prop = of_get_property(qe, "reg", &size);
 | |
| 	if (prop && size >= sizeof(*prop))
 | |
| 		qebase = of_translate_address(qe, prop);
 | |
| 	of_node_put(qe);
 | |
| 
 | |
| 	return qebase;
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL(get_qe_base);
 | |
| 
 | |
| void __init qe_reset(void)
 | |
| {
 | |
| 	if (qe_immr == NULL)
 | |
| 		qe_immr = ioremap(get_qe_base(), QE_IMMAP_SIZE);
 | |
| 
 | |
| 	qe_snums_init();
 | |
| 
 | |
| 	qe_issue_cmd(QE_RESET, QE_CR_SUBBLOCK_INVALID,
 | |
| 		     QE_CR_PROTOCOL_UNSPECIFIED, 0);
 | |
| 
 | |
| 	/* Reclaim the MURAM memory for our use. */
 | |
| 	qe_muram_init();
 | |
| 
 | |
| 	if (qe_sdma_init())
 | |
| 		panic("sdma init failed!");
 | |
| }
 | |
| 
 | |
| int qe_issue_cmd(u32 cmd, u32 device, u8 mcn_protocol, u32 cmd_input)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	u8 mcn_shift = 0, dev_shift = 0;
 | |
| 
 | |
| 	spin_lock_irqsave(&qe_lock, flags);
 | |
| 	if (cmd == QE_RESET) {
 | |
| 		out_be32(&qe_immr->cp.cecr, (u32) (cmd | QE_CR_FLG));
 | |
| 	} else {
 | |
| 		if (cmd == QE_ASSIGN_PAGE) {
 | |
| 			/* Here device is the SNUM, not sub-block */
 | |
| 			dev_shift = QE_CR_SNUM_SHIFT;
 | |
| 		} else if (cmd == QE_ASSIGN_RISC) {
 | |
| 			/* Here device is the SNUM, and mcnProtocol is
 | |
| 			 * e_QeCmdRiscAssignment value */
 | |
| 			dev_shift = QE_CR_SNUM_SHIFT;
 | |
| 			mcn_shift = QE_CR_MCN_RISC_ASSIGN_SHIFT;
 | |
| 		} else {
 | |
| 			if (device == QE_CR_SUBBLOCK_USB)
 | |
| 				mcn_shift = QE_CR_MCN_USB_SHIFT;
 | |
| 			else
 | |
| 				mcn_shift = QE_CR_MCN_NORMAL_SHIFT;
 | |
| 		}
 | |
| 
 | |
| 		out_be32(&qe_immr->cp.cecdr, cmd_input);
 | |
| 		out_be32(&qe_immr->cp.cecr,
 | |
| 			 (cmd | QE_CR_FLG | ((u32) device << dev_shift) | (u32)
 | |
| 			  mcn_protocol << mcn_shift));
 | |
| 	}
 | |
| 
 | |
| 	/* wait for the QE_CR_FLG to clear */
 | |
| 	while(in_be32(&qe_immr->cp.cecr) & QE_CR_FLG)
 | |
| 		cpu_relax();
 | |
| 	spin_unlock_irqrestore(&qe_lock, flags);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL(qe_issue_cmd);
 | |
| 
 | |
| /* Set a baud rate generator. This needs lots of work. There are
 | |
|  * 16 BRGs, which can be connected to the QE channels or output
 | |
|  * as clocks. The BRGs are in two different block of internal
 | |
|  * memory mapped space.
 | |
|  * The BRG clock is the QE clock divided by 2.
 | |
|  * It was set up long ago during the initial boot phase and is
 | |
|  * is given to us.
 | |
|  * Baud rate clocks are zero-based in the driver code (as that maps
 | |
|  * to port numbers). Documentation uses 1-based numbering.
 | |
|  */
 | |
| static unsigned int brg_clk = 0;
 | |
| 
 | |
| unsigned int qe_get_brg_clk(void)
 | |
| {
 | |
| 	struct device_node *qe;
 | |
| 	int size;
 | |
| 	const u32 *prop;
 | |
| 
 | |
| 	if (brg_clk)
 | |
| 		return brg_clk;
 | |
| 
 | |
| 	qe = of_find_compatible_node(NULL, NULL, "fsl,qe");
 | |
| 	if (!qe) {
 | |
| 		qe = of_find_node_by_type(NULL, "qe");
 | |
| 		if (!qe)
 | |
| 			return brg_clk;
 | |
| 	}
 | |
| 
 | |
| 	prop = of_get_property(qe, "brg-frequency", &size);
 | |
| 	if (prop && size == sizeof(*prop))
 | |
| 		brg_clk = *prop;
 | |
| 
 | |
| 	of_node_put(qe);
 | |
| 
 | |
| 	return brg_clk;
 | |
| }
 | |
| EXPORT_SYMBOL(qe_get_brg_clk);
 | |
| 
 | |
| /* Program the BRG to the given sampling rate and multiplier
 | |
|  *
 | |
|  * @brg: the BRG, QE_BRG1 - QE_BRG16
 | |
|  * @rate: the desired sampling rate
 | |
|  * @multiplier: corresponds to the value programmed in GUMR_L[RDCR] or
 | |
|  * GUMR_L[TDCR].  E.g., if this BRG is the RX clock, and GUMR_L[RDCR]=01,
 | |
|  * then 'multiplier' should be 8.
 | |
|  */
 | |
| int qe_setbrg(enum qe_clock brg, unsigned int rate, unsigned int multiplier)
 | |
| {
 | |
| 	u32 divisor, tempval;
 | |
| 	u32 div16 = 0;
 | |
| 
 | |
| 	if ((brg < QE_BRG1) || (brg > QE_BRG16))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	divisor = qe_get_brg_clk() / (rate * multiplier);
 | |
| 
 | |
| 	if (divisor > QE_BRGC_DIVISOR_MAX + 1) {
 | |
| 		div16 = QE_BRGC_DIV16;
 | |
| 		divisor /= 16;
 | |
| 	}
 | |
| 
 | |
| 	/* Errata QE_General4, which affects some MPC832x and MPC836x SOCs, says
 | |
| 	   that the BRG divisor must be even if you're not using divide-by-16
 | |
| 	   mode. */
 | |
| 	if (!div16 && (divisor & 1))
 | |
| 		divisor++;
 | |
| 
 | |
| 	tempval = ((divisor - 1) << QE_BRGC_DIVISOR_SHIFT) |
 | |
| 		QE_BRGC_ENABLE | div16;
 | |
| 
 | |
| 	out_be32(&qe_immr->brg.brgc[brg - QE_BRG1], tempval);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL(qe_setbrg);
 | |
| 
 | |
| /* Convert a string to a QE clock source enum
 | |
|  *
 | |
|  * This function takes a string, typically from a property in the device
 | |
|  * tree, and returns the corresponding "enum qe_clock" value.
 | |
| */
 | |
| enum qe_clock qe_clock_source(const char *source)
 | |
| {
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	if (strcasecmp(source, "none") == 0)
 | |
| 		return QE_CLK_NONE;
 | |
| 
 | |
| 	if (strncasecmp(source, "brg", 3) == 0) {
 | |
| 		i = simple_strtoul(source + 3, NULL, 10);
 | |
| 		if ((i >= 1) && (i <= 16))
 | |
| 			return (QE_BRG1 - 1) + i;
 | |
| 		else
 | |
| 			return QE_CLK_DUMMY;
 | |
| 	}
 | |
| 
 | |
| 	if (strncasecmp(source, "clk", 3) == 0) {
 | |
| 		i = simple_strtoul(source + 3, NULL, 10);
 | |
| 		if ((i >= 1) && (i <= 24))
 | |
| 			return (QE_CLK1 - 1) + i;
 | |
| 		else
 | |
| 			return QE_CLK_DUMMY;
 | |
| 	}
 | |
| 
 | |
| 	return QE_CLK_DUMMY;
 | |
| }
 | |
| EXPORT_SYMBOL(qe_clock_source);
 | |
| 
 | |
| /* Initialize SNUMs (thread serial numbers) according to
 | |
|  * QE Module Control chapter, SNUM table
 | |
|  */
 | |
| static void qe_snums_init(void)
 | |
| {
 | |
| 	int i;
 | |
| 	static const u8 snum_init[] = {
 | |
| 		0x04, 0x05, 0x0C, 0x0D, 0x14, 0x15, 0x1C, 0x1D,
 | |
| 		0x24, 0x25, 0x2C, 0x2D, 0x34, 0x35, 0x88, 0x89,
 | |
| 		0x98, 0x99, 0xA8, 0xA9, 0xB8, 0xB9, 0xC8, 0xC9,
 | |
| 		0xD8, 0xD9, 0xE8, 0xE9,
 | |
| 	};
 | |
| 
 | |
| 	for (i = 0; i < QE_NUM_OF_SNUM; i++) {
 | |
| 		snums[i].num = snum_init[i];
 | |
| 		snums[i].state = QE_SNUM_STATE_FREE;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| int qe_get_snum(void)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	int snum = -EBUSY;
 | |
| 	int i;
 | |
| 
 | |
| 	spin_lock_irqsave(&qe_lock, flags);
 | |
| 	for (i = 0; i < QE_NUM_OF_SNUM; i++) {
 | |
| 		if (snums[i].state == QE_SNUM_STATE_FREE) {
 | |
| 			snums[i].state = QE_SNUM_STATE_USED;
 | |
| 			snum = snums[i].num;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	spin_unlock_irqrestore(&qe_lock, flags);
 | |
| 
 | |
| 	return snum;
 | |
| }
 | |
| EXPORT_SYMBOL(qe_get_snum);
 | |
| 
 | |
| void qe_put_snum(u8 snum)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < QE_NUM_OF_SNUM; i++) {
 | |
| 		if (snums[i].num == snum) {
 | |
| 			snums[i].state = QE_SNUM_STATE_FREE;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL(qe_put_snum);
 | |
| 
 | |
| static int qe_sdma_init(void)
 | |
| {
 | |
| 	struct sdma __iomem *sdma = &qe_immr->sdma;
 | |
| 	unsigned long sdma_buf_offset;
 | |
| 
 | |
| 	if (!sdma)
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	/* allocate 2 internal temporary buffers (512 bytes size each) for
 | |
| 	 * the SDMA */
 | |
|  	sdma_buf_offset = qe_muram_alloc(512 * 2, 4096);
 | |
| 	if (IS_ERR_VALUE(sdma_buf_offset))
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	out_be32(&sdma->sdebcr, (u32) sdma_buf_offset & QE_SDEBCR_BA_MASK);
 | |
|  	out_be32(&sdma->sdmr, (QE_SDMR_GLB_1_MSK |
 | |
|  					(0x1 << QE_SDMR_CEN_SHIFT)));
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* The maximum number of RISCs we support */
 | |
| #define MAX_QE_RISC     2
 | |
| 
 | |
| /* Firmware information stored here for qe_get_firmware_info() */
 | |
| static struct qe_firmware_info qe_firmware_info;
 | |
| 
 | |
| /*
 | |
|  * Set to 1 if QE firmware has been uploaded, and therefore
 | |
|  * qe_firmware_info contains valid data.
 | |
|  */
 | |
| static int qe_firmware_uploaded;
 | |
| 
 | |
| /*
 | |
|  * Upload a QE microcode
 | |
|  *
 | |
|  * This function is a worker function for qe_upload_firmware().  It does
 | |
|  * the actual uploading of the microcode.
 | |
|  */
 | |
| static void qe_upload_microcode(const void *base,
 | |
| 	const struct qe_microcode *ucode)
 | |
| {
 | |
| 	const __be32 *code = base + be32_to_cpu(ucode->code_offset);
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	if (ucode->major || ucode->minor || ucode->revision)
 | |
| 		printk(KERN_INFO "qe-firmware: "
 | |
| 			"uploading microcode '%s' version %u.%u.%u\n",
 | |
| 			ucode->id, ucode->major, ucode->minor, ucode->revision);
 | |
| 	else
 | |
| 		printk(KERN_INFO "qe-firmware: "
 | |
| 			"uploading microcode '%s'\n", ucode->id);
 | |
| 
 | |
| 	/* Use auto-increment */
 | |
| 	out_be32(&qe_immr->iram.iadd, be32_to_cpu(ucode->iram_offset) |
 | |
| 		QE_IRAM_IADD_AIE | QE_IRAM_IADD_BADDR);
 | |
| 
 | |
| 	for (i = 0; i < be32_to_cpu(ucode->count); i++)
 | |
| 		out_be32(&qe_immr->iram.idata, be32_to_cpu(code[i]));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Upload a microcode to the I-RAM at a specific address.
 | |
|  *
 | |
|  * See Documentation/powerpc/qe-firmware.txt for information on QE microcode
 | |
|  * uploading.
 | |
|  *
 | |
|  * Currently, only version 1 is supported, so the 'version' field must be
 | |
|  * set to 1.
 | |
|  *
 | |
|  * The SOC model and revision are not validated, they are only displayed for
 | |
|  * informational purposes.
 | |
|  *
 | |
|  * 'calc_size' is the calculated size, in bytes, of the firmware structure and
 | |
|  * all of the microcode structures, minus the CRC.
 | |
|  *
 | |
|  * 'length' is the size that the structure says it is, including the CRC.
 | |
|  */
 | |
| int qe_upload_firmware(const struct qe_firmware *firmware)
 | |
| {
 | |
| 	unsigned int i;
 | |
| 	unsigned int j;
 | |
| 	u32 crc;
 | |
| 	size_t calc_size = sizeof(struct qe_firmware);
 | |
| 	size_t length;
 | |
| 	const struct qe_header *hdr;
 | |
| 
 | |
| 	if (!firmware) {
 | |
| 		printk(KERN_ERR "qe-firmware: invalid pointer\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	hdr = &firmware->header;
 | |
| 	length = be32_to_cpu(hdr->length);
 | |
| 
 | |
| 	/* Check the magic */
 | |
| 	if ((hdr->magic[0] != 'Q') || (hdr->magic[1] != 'E') ||
 | |
| 	    (hdr->magic[2] != 'F')) {
 | |
| 		printk(KERN_ERR "qe-firmware: not a microcode\n");
 | |
| 		return -EPERM;
 | |
| 	}
 | |
| 
 | |
| 	/* Check the version */
 | |
| 	if (hdr->version != 1) {
 | |
| 		printk(KERN_ERR "qe-firmware: unsupported version\n");
 | |
| 		return -EPERM;
 | |
| 	}
 | |
| 
 | |
| 	/* Validate some of the fields */
 | |
| 	if ((firmware->count < 1) || (firmware->count > MAX_QE_RISC)) {
 | |
| 		printk(KERN_ERR "qe-firmware: invalid data\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/* Validate the length and check if there's a CRC */
 | |
| 	calc_size += (firmware->count - 1) * sizeof(struct qe_microcode);
 | |
| 
 | |
| 	for (i = 0; i < firmware->count; i++)
 | |
| 		/*
 | |
| 		 * For situations where the second RISC uses the same microcode
 | |
| 		 * as the first, the 'code_offset' and 'count' fields will be
 | |
| 		 * zero, so it's okay to add those.
 | |
| 		 */
 | |
| 		calc_size += sizeof(__be32) *
 | |
| 			be32_to_cpu(firmware->microcode[i].count);
 | |
| 
 | |
| 	/* Validate the length */
 | |
| 	if (length != calc_size + sizeof(__be32)) {
 | |
| 		printk(KERN_ERR "qe-firmware: invalid length\n");
 | |
| 		return -EPERM;
 | |
| 	}
 | |
| 
 | |
| 	/* Validate the CRC */
 | |
| 	crc = be32_to_cpu(*(__be32 *)((void *)firmware + calc_size));
 | |
| 	if (crc != crc32(0, firmware, calc_size)) {
 | |
| 		printk(KERN_ERR "qe-firmware: firmware CRC is invalid\n");
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If the microcode calls for it, split the I-RAM.
 | |
| 	 */
 | |
| 	if (!firmware->split)
 | |
| 		setbits16(&qe_immr->cp.cercr, QE_CP_CERCR_CIR);
 | |
| 
 | |
| 	if (firmware->soc.model)
 | |
| 		printk(KERN_INFO
 | |
| 			"qe-firmware: firmware '%s' for %u V%u.%u\n",
 | |
| 			firmware->id, be16_to_cpu(firmware->soc.model),
 | |
| 			firmware->soc.major, firmware->soc.minor);
 | |
| 	else
 | |
| 		printk(KERN_INFO "qe-firmware: firmware '%s'\n",
 | |
| 			firmware->id);
 | |
| 
 | |
| 	/*
 | |
| 	 * The QE only supports one microcode per RISC, so clear out all the
 | |
| 	 * saved microcode information and put in the new.
 | |
| 	 */
 | |
| 	memset(&qe_firmware_info, 0, sizeof(qe_firmware_info));
 | |
| 	strcpy(qe_firmware_info.id, firmware->id);
 | |
| 	qe_firmware_info.extended_modes = firmware->extended_modes;
 | |
| 	memcpy(qe_firmware_info.vtraps, firmware->vtraps,
 | |
| 		sizeof(firmware->vtraps));
 | |
| 
 | |
| 	/* Loop through each microcode. */
 | |
| 	for (i = 0; i < firmware->count; i++) {
 | |
| 		const struct qe_microcode *ucode = &firmware->microcode[i];
 | |
| 
 | |
| 		/* Upload a microcode if it's present */
 | |
| 		if (ucode->code_offset)
 | |
| 			qe_upload_microcode(firmware, ucode);
 | |
| 
 | |
| 		/* Program the traps for this processor */
 | |
| 		for (j = 0; j < 16; j++) {
 | |
| 			u32 trap = be32_to_cpu(ucode->traps[j]);
 | |
| 
 | |
| 			if (trap)
 | |
| 				out_be32(&qe_immr->rsp[i].tibcr[j], trap);
 | |
| 		}
 | |
| 
 | |
| 		/* Enable traps */
 | |
| 		out_be32(&qe_immr->rsp[i].eccr, be32_to_cpu(ucode->eccr));
 | |
| 	}
 | |
| 
 | |
| 	qe_firmware_uploaded = 1;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL(qe_upload_firmware);
 | |
| 
 | |
| /*
 | |
|  * Get info on the currently-loaded firmware
 | |
|  *
 | |
|  * This function also checks the device tree to see if the boot loader has
 | |
|  * uploaded a firmware already.
 | |
|  */
 | |
| struct qe_firmware_info *qe_get_firmware_info(void)
 | |
| {
 | |
| 	static int initialized;
 | |
| 	struct property *prop;
 | |
| 	struct device_node *qe;
 | |
| 	struct device_node *fw = NULL;
 | |
| 	const char *sprop;
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	/*
 | |
| 	 * If we haven't checked yet, and a driver hasn't uploaded a firmware
 | |
| 	 * yet, then check the device tree for information.
 | |
| 	 */
 | |
| 	if (qe_firmware_uploaded)
 | |
| 		return &qe_firmware_info;
 | |
| 
 | |
| 	if (initialized)
 | |
| 		return NULL;
 | |
| 
 | |
| 	initialized = 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * Newer device trees have an "fsl,qe" compatible property for the QE
 | |
| 	 * node, but we still need to support older device trees.
 | |
| 	*/
 | |
| 	qe = of_find_compatible_node(NULL, NULL, "fsl,qe");
 | |
| 	if (!qe) {
 | |
| 		qe = of_find_node_by_type(NULL, "qe");
 | |
| 		if (!qe)
 | |
| 			return NULL;
 | |
| 	}
 | |
| 
 | |
| 	/* Find the 'firmware' child node */
 | |
| 	for_each_child_of_node(qe, fw) {
 | |
| 		if (strcmp(fw->name, "firmware") == 0)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	of_node_put(qe);
 | |
| 
 | |
| 	/* Did we find the 'firmware' node? */
 | |
| 	if (!fw)
 | |
| 		return NULL;
 | |
| 
 | |
| 	qe_firmware_uploaded = 1;
 | |
| 
 | |
| 	/* Copy the data into qe_firmware_info*/
 | |
| 	sprop = of_get_property(fw, "id", NULL);
 | |
| 	if (sprop)
 | |
| 		strncpy(qe_firmware_info.id, sprop,
 | |
| 			sizeof(qe_firmware_info.id) - 1);
 | |
| 
 | |
| 	prop = of_find_property(fw, "extended-modes", NULL);
 | |
| 	if (prop && (prop->length == sizeof(u64))) {
 | |
| 		const u64 *iprop = prop->value;
 | |
| 
 | |
| 		qe_firmware_info.extended_modes = *iprop;
 | |
| 	}
 | |
| 
 | |
| 	prop = of_find_property(fw, "virtual-traps", NULL);
 | |
| 	if (prop && (prop->length == 32)) {
 | |
| 		const u32 *iprop = prop->value;
 | |
| 
 | |
| 		for (i = 0; i < ARRAY_SIZE(qe_firmware_info.vtraps); i++)
 | |
| 			qe_firmware_info.vtraps[i] = iprop[i];
 | |
| 	}
 | |
| 
 | |
| 	of_node_put(fw);
 | |
| 
 | |
| 	return &qe_firmware_info;
 | |
| }
 | |
| EXPORT_SYMBOL(qe_get_firmware_info);
 | |
| 
 |