 fbc78b07ba
			
		
	
	
	fbc78b07ba
	
	
	
		
			
			Fix _PAGE_CHG_MASK so that pte_modify() does not affect the _PAGE_SPECIAL bit. Signed-off-by: Philippe Gerum <rpm@xenomai.org> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
		
			
				
	
	
		
			835 lines
		
	
	
	
		
			29 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			835 lines
		
	
	
	
		
			29 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| #ifndef _ASM_POWERPC_PGTABLE_PPC32_H
 | |
| #define _ASM_POWERPC_PGTABLE_PPC32_H
 | |
| 
 | |
| #include <asm-generic/pgtable-nopmd.h>
 | |
| 
 | |
| #ifndef __ASSEMBLY__
 | |
| #include <linux/sched.h>
 | |
| #include <linux/threads.h>
 | |
| #include <asm/io.h>			/* For sub-arch specific PPC_PIN_SIZE */
 | |
| 
 | |
| extern unsigned long va_to_phys(unsigned long address);
 | |
| extern pte_t *va_to_pte(unsigned long address);
 | |
| extern unsigned long ioremap_bot, ioremap_base;
 | |
| 
 | |
| #ifdef CONFIG_44x
 | |
| extern int icache_44x_need_flush;
 | |
| #endif
 | |
| 
 | |
| #endif /* __ASSEMBLY__ */
 | |
| 
 | |
| /*
 | |
|  * The PowerPC MMU uses a hash table containing PTEs, together with
 | |
|  * a set of 16 segment registers (on 32-bit implementations), to define
 | |
|  * the virtual to physical address mapping.
 | |
|  *
 | |
|  * We use the hash table as an extended TLB, i.e. a cache of currently
 | |
|  * active mappings.  We maintain a two-level page table tree, much
 | |
|  * like that used by the i386, for the sake of the Linux memory
 | |
|  * management code.  Low-level assembler code in hashtable.S
 | |
|  * (procedure hash_page) is responsible for extracting ptes from the
 | |
|  * tree and putting them into the hash table when necessary, and
 | |
|  * updating the accessed and modified bits in the page table tree.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * The PowerPC MPC8xx uses a TLB with hardware assisted, software tablewalk.
 | |
|  * We also use the two level tables, but we can put the real bits in them
 | |
|  * needed for the TLB and tablewalk.  These definitions require Mx_CTR.PPM = 0,
 | |
|  * Mx_CTR.PPCS = 0, and MD_CTR.TWAM = 1.  The level 2 descriptor has
 | |
|  * additional page protection (when Mx_CTR.PPCS = 1) that allows TLB hit
 | |
|  * based upon user/super access.  The TLB does not have accessed nor write
 | |
|  * protect.  We assume that if the TLB get loaded with an entry it is
 | |
|  * accessed, and overload the changed bit for write protect.  We use
 | |
|  * two bits in the software pte that are supposed to be set to zero in
 | |
|  * the TLB entry (24 and 25) for these indicators.  Although the level 1
 | |
|  * descriptor contains the guarded and writethrough/copyback bits, we can
 | |
|  * set these at the page level since they get copied from the Mx_TWC
 | |
|  * register when the TLB entry is loaded.  We will use bit 27 for guard, since
 | |
|  * that is where it exists in the MD_TWC, and bit 26 for writethrough.
 | |
|  * These will get masked from the level 2 descriptor at TLB load time, and
 | |
|  * copied to the MD_TWC before it gets loaded.
 | |
|  * Large page sizes added.  We currently support two sizes, 4K and 8M.
 | |
|  * This also allows a TLB hander optimization because we can directly
 | |
|  * load the PMD into MD_TWC.  The 8M pages are only used for kernel
 | |
|  * mapping of well known areas.  The PMD (PGD) entries contain control
 | |
|  * flags in addition to the address, so care must be taken that the
 | |
|  * software no longer assumes these are only pointers.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * At present, all PowerPC 400-class processors share a similar TLB
 | |
|  * architecture. The instruction and data sides share a unified,
 | |
|  * 64-entry, fully-associative TLB which is maintained totally under
 | |
|  * software control. In addition, the instruction side has a
 | |
|  * hardware-managed, 4-entry, fully-associative TLB which serves as a
 | |
|  * first level to the shared TLB. These two TLBs are known as the UTLB
 | |
|  * and ITLB, respectively (see "mmu.h" for definitions).
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * The normal case is that PTEs are 32-bits and we have a 1-page
 | |
|  * 1024-entry pgdir pointing to 1-page 1024-entry PTE pages.  -- paulus
 | |
|  *
 | |
|  * For any >32-bit physical address platform, we can use the following
 | |
|  * two level page table layout where the pgdir is 8KB and the MS 13 bits
 | |
|  * are an index to the second level table.  The combined pgdir/pmd first
 | |
|  * level has 2048 entries and the second level has 512 64-bit PTE entries.
 | |
|  * -Matt
 | |
|  */
 | |
| /* PGDIR_SHIFT determines what a top-level page table entry can map */
 | |
| #define PGDIR_SHIFT	(PAGE_SHIFT + PTE_SHIFT)
 | |
| #define PGDIR_SIZE	(1UL << PGDIR_SHIFT)
 | |
| #define PGDIR_MASK	(~(PGDIR_SIZE-1))
 | |
| 
 | |
| /*
 | |
|  * entries per page directory level: our page-table tree is two-level, so
 | |
|  * we don't really have any PMD directory.
 | |
|  */
 | |
| #ifndef __ASSEMBLY__
 | |
| #define PTE_TABLE_SIZE	(sizeof(pte_t) << PTE_SHIFT)
 | |
| #define PGD_TABLE_SIZE	(sizeof(pgd_t) << (32 - PGDIR_SHIFT))
 | |
| #endif	/* __ASSEMBLY__ */
 | |
| 
 | |
| #define PTRS_PER_PTE	(1 << PTE_SHIFT)
 | |
| #define PTRS_PER_PMD	1
 | |
| #define PTRS_PER_PGD	(1 << (32 - PGDIR_SHIFT))
 | |
| 
 | |
| #define USER_PTRS_PER_PGD	(TASK_SIZE / PGDIR_SIZE)
 | |
| #define FIRST_USER_ADDRESS	0
 | |
| 
 | |
| #define pte_ERROR(e) \
 | |
| 	printk("%s:%d: bad pte %llx.\n", __FILE__, __LINE__, \
 | |
| 		(unsigned long long)pte_val(e))
 | |
| #define pgd_ERROR(e) \
 | |
| 	printk("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
 | |
| 
 | |
| /*
 | |
|  * Just any arbitrary offset to the start of the vmalloc VM area: the
 | |
|  * current 64MB value just means that there will be a 64MB "hole" after the
 | |
|  * physical memory until the kernel virtual memory starts.  That means that
 | |
|  * any out-of-bounds memory accesses will hopefully be caught.
 | |
|  * The vmalloc() routines leaves a hole of 4kB between each vmalloced
 | |
|  * area for the same reason. ;)
 | |
|  *
 | |
|  * We no longer map larger than phys RAM with the BATs so we don't have
 | |
|  * to worry about the VMALLOC_OFFSET causing problems.  We do have to worry
 | |
|  * about clashes between our early calls to ioremap() that start growing down
 | |
|  * from ioremap_base being run into the VM area allocations (growing upwards
 | |
|  * from VMALLOC_START).  For this reason we have ioremap_bot to check when
 | |
|  * we actually run into our mappings setup in the early boot with the VM
 | |
|  * system.  This really does become a problem for machines with good amounts
 | |
|  * of RAM.  -- Cort
 | |
|  */
 | |
| #define VMALLOC_OFFSET (0x1000000) /* 16M */
 | |
| #ifdef PPC_PIN_SIZE
 | |
| #define VMALLOC_START (((_ALIGN((long)high_memory, PPC_PIN_SIZE) + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1)))
 | |
| #else
 | |
| #define VMALLOC_START ((((long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1)))
 | |
| #endif
 | |
| #define VMALLOC_END	ioremap_bot
 | |
| 
 | |
| /*
 | |
|  * Bits in a linux-style PTE.  These match the bits in the
 | |
|  * (hardware-defined) PowerPC PTE as closely as possible.
 | |
|  */
 | |
| 
 | |
| #if defined(CONFIG_40x)
 | |
| 
 | |
| /* There are several potential gotchas here.  The 40x hardware TLBLO
 | |
|    field looks like this:
 | |
| 
 | |
|    0  1  2  3  4  ... 18 19 20 21 22 23 24 25 26 27 28 29 30 31
 | |
|    RPN.....................  0  0 EX WR ZSEL.......  W  I  M  G
 | |
| 
 | |
|    Where possible we make the Linux PTE bits match up with this
 | |
| 
 | |
|    - bits 20 and 21 must be cleared, because we use 4k pages (40x can
 | |
|      support down to 1k pages), this is done in the TLBMiss exception
 | |
|      handler.
 | |
|    - We use only zones 0 (for kernel pages) and 1 (for user pages)
 | |
|      of the 16 available.  Bit 24-26 of the TLB are cleared in the TLB
 | |
|      miss handler.  Bit 27 is PAGE_USER, thus selecting the correct
 | |
|      zone.
 | |
|    - PRESENT *must* be in the bottom two bits because swap cache
 | |
|      entries use the top 30 bits.  Because 40x doesn't support SMP
 | |
|      anyway, M is irrelevant so we borrow it for PAGE_PRESENT.  Bit 30
 | |
|      is cleared in the TLB miss handler before the TLB entry is loaded.
 | |
|    - All other bits of the PTE are loaded into TLBLO without
 | |
|      modification, leaving us only the bits 20, 21, 24, 25, 26, 30 for
 | |
|      software PTE bits.  We actually use use bits 21, 24, 25, and
 | |
|      30 respectively for the software bits: ACCESSED, DIRTY, RW, and
 | |
|      PRESENT.
 | |
| */
 | |
| 
 | |
| /* Definitions for 40x embedded chips. */
 | |
| #define	_PAGE_GUARDED	0x001	/* G: page is guarded from prefetch */
 | |
| #define _PAGE_FILE	0x001	/* when !present: nonlinear file mapping */
 | |
| #define _PAGE_PRESENT	0x002	/* software: PTE contains a translation */
 | |
| #define	_PAGE_NO_CACHE	0x004	/* I: caching is inhibited */
 | |
| #define	_PAGE_WRITETHRU	0x008	/* W: caching is write-through */
 | |
| #define	_PAGE_USER	0x010	/* matches one of the zone permission bits */
 | |
| #define	_PAGE_RW	0x040	/* software: Writes permitted */
 | |
| #define	_PAGE_DIRTY	0x080	/* software: dirty page */
 | |
| #define _PAGE_HWWRITE	0x100	/* hardware: Dirty & RW, set in exception */
 | |
| #define _PAGE_HWEXEC	0x200	/* hardware: EX permission */
 | |
| #define _PAGE_ACCESSED	0x400	/* software: R: page referenced */
 | |
| 
 | |
| #define _PMD_PRESENT	0x400	/* PMD points to page of PTEs */
 | |
| #define _PMD_BAD	0x802
 | |
| #define _PMD_SIZE	0x0e0	/* size field, != 0 for large-page PMD entry */
 | |
| #define _PMD_SIZE_4M	0x0c0
 | |
| #define _PMD_SIZE_16M	0x0e0
 | |
| #define PMD_PAGE_SIZE(pmdval)	(1024 << (((pmdval) & _PMD_SIZE) >> 4))
 | |
| 
 | |
| /* Until my rework is finished, 40x still needs atomic PTE updates */
 | |
| #define PTE_ATOMIC_UPDATES	1
 | |
| 
 | |
| #elif defined(CONFIG_44x)
 | |
| /*
 | |
|  * Definitions for PPC440
 | |
|  *
 | |
|  * Because of the 3 word TLB entries to support 36-bit addressing,
 | |
|  * the attribute are difficult to map in such a fashion that they
 | |
|  * are easily loaded during exception processing.  I decided to
 | |
|  * organize the entry so the ERPN is the only portion in the
 | |
|  * upper word of the PTE and the attribute bits below are packed
 | |
|  * in as sensibly as they can be in the area below a 4KB page size
 | |
|  * oriented RPN.  This at least makes it easy to load the RPN and
 | |
|  * ERPN fields in the TLB. -Matt
 | |
|  *
 | |
|  * Note that these bits preclude future use of a page size
 | |
|  * less than 4KB.
 | |
|  *
 | |
|  *
 | |
|  * PPC 440 core has following TLB attribute fields;
 | |
|  *
 | |
|  *   TLB1:
 | |
|  *   0  1  2  3  4  ... 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
 | |
|  *   RPN.................................  -  -  -  -  -  - ERPN.......
 | |
|  *
 | |
|  *   TLB2:
 | |
|  *   0  1  2  3  4  ... 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
 | |
|  *   -  -  -  -  -    - U0 U1 U2 U3 W  I  M  G  E   - UX UW UR SX SW SR
 | |
|  *
 | |
|  * Newer 440 cores (440x6 as used on AMCC 460EX/460GT) have additional
 | |
|  * TLB2 storage attibute fields. Those are:
 | |
|  *
 | |
|  *   TLB2:
 | |
|  *   0...10    11   12   13   14   15   16...31
 | |
|  *   no change WL1  IL1I IL1D IL2I IL2D no change
 | |
|  *
 | |
|  * There are some constrains and options, to decide mapping software bits
 | |
|  * into TLB entry.
 | |
|  *
 | |
|  *   - PRESENT *must* be in the bottom three bits because swap cache
 | |
|  *     entries use the top 29 bits for TLB2.
 | |
|  *
 | |
|  *   - FILE *must* be in the bottom three bits because swap cache
 | |
|  *     entries use the top 29 bits for TLB2.
 | |
|  *
 | |
|  *   - CACHE COHERENT bit (M) has no effect on original PPC440 cores,
 | |
|  *     because it doesn't support SMP. However, some later 460 variants
 | |
|  *     have -some- form of SMP support and so I keep the bit there for
 | |
|  *     future use
 | |
|  *
 | |
|  * With the PPC 44x Linux implementation, the 0-11th LSBs of the PTE are used
 | |
|  * for memory protection related functions (see PTE structure in
 | |
|  * include/asm-ppc/mmu.h).  The _PAGE_XXX definitions in this file map to the
 | |
|  * above bits.  Note that the bit values are CPU specific, not architecture
 | |
|  * specific.
 | |
|  *
 | |
|  * The kernel PTE entry holds an arch-dependent swp_entry structure under
 | |
|  * certain situations. In other words, in such situations some portion of
 | |
|  * the PTE bits are used as a swp_entry. In the PPC implementation, the
 | |
|  * 3-24th LSB are shared with swp_entry, however the 0-2nd three LSB still
 | |
|  * hold protection values. That means the three protection bits are
 | |
|  * reserved for both PTE and SWAP entry at the most significant three
 | |
|  * LSBs.
 | |
|  *
 | |
|  * There are three protection bits available for SWAP entry:
 | |
|  *	_PAGE_PRESENT
 | |
|  *	_PAGE_FILE
 | |
|  *	_PAGE_HASHPTE (if HW has)
 | |
|  *
 | |
|  * So those three bits have to be inside of 0-2nd LSB of PTE.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #define _PAGE_PRESENT	0x00000001		/* S: PTE valid */
 | |
| #define _PAGE_RW	0x00000002		/* S: Write permission */
 | |
| #define _PAGE_FILE	0x00000004		/* S: nonlinear file mapping */
 | |
| #define _PAGE_HWEXEC	0x00000004		/* H: Execute permission */
 | |
| #define _PAGE_ACCESSED	0x00000008		/* S: Page referenced */
 | |
| #define _PAGE_DIRTY	0x00000010		/* S: Page dirty */
 | |
| #define _PAGE_SPECIAL	0x00000020		/* S: Special page */
 | |
| #define _PAGE_USER	0x00000040		/* S: User page */
 | |
| #define _PAGE_ENDIAN	0x00000080		/* H: E bit */
 | |
| #define _PAGE_GUARDED	0x00000100		/* H: G bit */
 | |
| #define _PAGE_COHERENT	0x00000200		/* H: M bit */
 | |
| #define _PAGE_NO_CACHE	0x00000400		/* H: I bit */
 | |
| #define _PAGE_WRITETHRU	0x00000800		/* H: W bit */
 | |
| 
 | |
| /* TODO: Add large page lowmem mapping support */
 | |
| #define _PMD_PRESENT	0
 | |
| #define _PMD_PRESENT_MASK (PAGE_MASK)
 | |
| #define _PMD_BAD	(~PAGE_MASK)
 | |
| 
 | |
| /* ERPN in a PTE never gets cleared, ignore it */
 | |
| #define _PTE_NONE_MASK	0xffffffff00000000ULL
 | |
| 
 | |
| #define __HAVE_ARCH_PTE_SPECIAL
 | |
| 
 | |
| #elif defined(CONFIG_FSL_BOOKE)
 | |
| /*
 | |
|    MMU Assist Register 3:
 | |
| 
 | |
|    32 33 34 35 36  ... 50 51 52 53 54 55 56 57 58 59 60 61 62 63
 | |
|    RPN......................  0  0 U0 U1 U2 U3 UX SX UW SW UR SR
 | |
| 
 | |
|    - PRESENT *must* be in the bottom three bits because swap cache
 | |
|      entries use the top 29 bits.
 | |
| 
 | |
|    - FILE *must* be in the bottom three bits because swap cache
 | |
|      entries use the top 29 bits.
 | |
| */
 | |
| 
 | |
| /* Definitions for FSL Book-E Cores */
 | |
| #define _PAGE_PRESENT	0x00001	/* S: PTE contains a translation */
 | |
| #define _PAGE_USER	0x00002	/* S: User page (maps to UR) */
 | |
| #define _PAGE_FILE	0x00002	/* S: when !present: nonlinear file mapping */
 | |
| #define _PAGE_RW	0x00004	/* S: Write permission (SW) */
 | |
| #define _PAGE_DIRTY	0x00008	/* S: Page dirty */
 | |
| #define _PAGE_HWEXEC	0x00010	/* H: SX permission */
 | |
| #define _PAGE_ACCESSED	0x00020	/* S: Page referenced */
 | |
| 
 | |
| #define _PAGE_ENDIAN	0x00040	/* H: E bit */
 | |
| #define _PAGE_GUARDED	0x00080	/* H: G bit */
 | |
| #define _PAGE_COHERENT	0x00100	/* H: M bit */
 | |
| #define _PAGE_NO_CACHE	0x00200	/* H: I bit */
 | |
| #define _PAGE_WRITETHRU	0x00400	/* H: W bit */
 | |
| #define _PAGE_SPECIAL	0x00800 /* S: Special page */
 | |
| 
 | |
| #ifdef CONFIG_PTE_64BIT
 | |
| /* ERPN in a PTE never gets cleared, ignore it */
 | |
| #define _PTE_NONE_MASK	0xffffffffffff0000ULL
 | |
| #endif
 | |
| 
 | |
| #define _PMD_PRESENT	0
 | |
| #define _PMD_PRESENT_MASK (PAGE_MASK)
 | |
| #define _PMD_BAD	(~PAGE_MASK)
 | |
| 
 | |
| #define __HAVE_ARCH_PTE_SPECIAL
 | |
| 
 | |
| #elif defined(CONFIG_8xx)
 | |
| /* Definitions for 8xx embedded chips. */
 | |
| #define _PAGE_PRESENT	0x0001	/* Page is valid */
 | |
| #define _PAGE_FILE	0x0002	/* when !present: nonlinear file mapping */
 | |
| #define _PAGE_NO_CACHE	0x0002	/* I: cache inhibit */
 | |
| #define _PAGE_SHARED	0x0004	/* No ASID (context) compare */
 | |
| 
 | |
| /* These five software bits must be masked out when the entry is loaded
 | |
|  * into the TLB.
 | |
|  */
 | |
| #define _PAGE_EXEC	0x0008	/* software: i-cache coherency required */
 | |
| #define _PAGE_GUARDED	0x0010	/* software: guarded access */
 | |
| #define _PAGE_DIRTY	0x0020	/* software: page changed */
 | |
| #define _PAGE_RW	0x0040	/* software: user write access allowed */
 | |
| #define _PAGE_ACCESSED	0x0080	/* software: page referenced */
 | |
| 
 | |
| /* Setting any bits in the nibble with the follow two controls will
 | |
|  * require a TLB exception handler change.  It is assumed unused bits
 | |
|  * are always zero.
 | |
|  */
 | |
| #define _PAGE_HWWRITE	0x0100	/* h/w write enable: never set in Linux PTE */
 | |
| #define _PAGE_USER	0x0800	/* One of the PP bits, the other is USER&~RW */
 | |
| 
 | |
| #define _PMD_PRESENT	0x0001
 | |
| #define _PMD_BAD	0x0ff0
 | |
| #define _PMD_PAGE_MASK	0x000c
 | |
| #define _PMD_PAGE_8M	0x000c
 | |
| 
 | |
| #define _PTE_NONE_MASK _PAGE_ACCESSED
 | |
| 
 | |
| /* Until my rework is finished, 8xx still needs atomic PTE updates */
 | |
| #define PTE_ATOMIC_UPDATES	1
 | |
| 
 | |
| #else /* CONFIG_6xx */
 | |
| /* Definitions for 60x, 740/750, etc. */
 | |
| #define _PAGE_PRESENT	0x001	/* software: pte contains a translation */
 | |
| #define _PAGE_HASHPTE	0x002	/* hash_page has made an HPTE for this pte */
 | |
| #define _PAGE_FILE	0x004	/* when !present: nonlinear file mapping */
 | |
| #define _PAGE_USER	0x004	/* usermode access allowed */
 | |
| #define _PAGE_GUARDED	0x008	/* G: prohibit speculative access */
 | |
| #define _PAGE_COHERENT	0x010	/* M: enforce memory coherence (SMP systems) */
 | |
| #define _PAGE_NO_CACHE	0x020	/* I: cache inhibit */
 | |
| #define _PAGE_WRITETHRU	0x040	/* W: cache write-through */
 | |
| #define _PAGE_DIRTY	0x080	/* C: page changed */
 | |
| #define _PAGE_ACCESSED	0x100	/* R: page referenced */
 | |
| #define _PAGE_EXEC	0x200	/* software: i-cache coherency required */
 | |
| #define _PAGE_RW	0x400	/* software: user write access allowed */
 | |
| #define _PAGE_SPECIAL	0x800	/* software: Special page */
 | |
| 
 | |
| #ifdef CONFIG_PTE_64BIT
 | |
| /* We never clear the high word of the pte */
 | |
| #define _PTE_NONE_MASK	(0xffffffff00000000ULL | _PAGE_HASHPTE)
 | |
| #else
 | |
| #define _PTE_NONE_MASK	_PAGE_HASHPTE
 | |
| #endif
 | |
| 
 | |
| #define _PMD_PRESENT	0
 | |
| #define _PMD_PRESENT_MASK (PAGE_MASK)
 | |
| #define _PMD_BAD	(~PAGE_MASK)
 | |
| 
 | |
| /* Hash table based platforms need atomic updates of the linux PTE */
 | |
| #define PTE_ATOMIC_UPDATES	1
 | |
| 
 | |
| #define __HAVE_ARCH_PTE_SPECIAL
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Some bits are only used on some cpu families...
 | |
|  */
 | |
| #ifndef _PAGE_HASHPTE
 | |
| #define _PAGE_HASHPTE	0
 | |
| #endif
 | |
| #ifndef _PTE_NONE_MASK
 | |
| #define _PTE_NONE_MASK 0
 | |
| #endif
 | |
| #ifndef _PAGE_SHARED
 | |
| #define _PAGE_SHARED	0
 | |
| #endif
 | |
| #ifndef _PAGE_HWWRITE
 | |
| #define _PAGE_HWWRITE	0
 | |
| #endif
 | |
| #ifndef _PAGE_HWEXEC
 | |
| #define _PAGE_HWEXEC	0
 | |
| #endif
 | |
| #ifndef _PAGE_EXEC
 | |
| #define _PAGE_EXEC	0
 | |
| #endif
 | |
| #ifndef _PAGE_ENDIAN
 | |
| #define _PAGE_ENDIAN	0
 | |
| #endif
 | |
| #ifndef _PAGE_COHERENT
 | |
| #define _PAGE_COHERENT	0
 | |
| #endif
 | |
| #ifndef _PAGE_WRITETHRU
 | |
| #define _PAGE_WRITETHRU	0
 | |
| #endif
 | |
| #ifndef _PAGE_SPECIAL
 | |
| #define _PAGE_SPECIAL	0
 | |
| #endif
 | |
| #ifndef _PMD_PRESENT_MASK
 | |
| #define _PMD_PRESENT_MASK	_PMD_PRESENT
 | |
| #endif
 | |
| #ifndef _PMD_SIZE
 | |
| #define _PMD_SIZE	0
 | |
| #define PMD_PAGE_SIZE(pmd)	bad_call_to_PMD_PAGE_SIZE()
 | |
| #endif
 | |
| 
 | |
| #define _PAGE_CHG_MASK	(PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY | \
 | |
| 			 _PAGE_SPECIAL)
 | |
| 
 | |
| 
 | |
| #define PAGE_PROT_BITS	(_PAGE_GUARDED | _PAGE_COHERENT | _PAGE_NO_CACHE | \
 | |
| 			 _PAGE_WRITETHRU | _PAGE_ENDIAN | \
 | |
| 			 _PAGE_USER | _PAGE_ACCESSED | \
 | |
| 			 _PAGE_RW | _PAGE_HWWRITE | _PAGE_DIRTY | \
 | |
| 			 _PAGE_EXEC | _PAGE_HWEXEC)
 | |
| 
 | |
| /*
 | |
|  * We define 2 sets of base prot bits, one for basic pages (ie,
 | |
|  * cacheable kernel and user pages) and one for non cacheable
 | |
|  * pages. We always set _PAGE_COHERENT when SMP is enabled or
 | |
|  * the processor might need it for DMA coherency.
 | |
|  */
 | |
| #if defined(CONFIG_SMP) || defined(CONFIG_PPC_STD_MMU)
 | |
| #define _PAGE_BASE	(_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_COHERENT)
 | |
| #else
 | |
| #define _PAGE_BASE	(_PAGE_PRESENT | _PAGE_ACCESSED)
 | |
| #endif
 | |
| #define _PAGE_BASE_NC	(_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_NO_CACHE)
 | |
| 
 | |
| #define _PAGE_WRENABLE	(_PAGE_RW | _PAGE_DIRTY | _PAGE_HWWRITE)
 | |
| #define _PAGE_KERNEL	(_PAGE_BASE | _PAGE_SHARED | _PAGE_WRENABLE)
 | |
| #define _PAGE_KERNEL_NC	(_PAGE_BASE_NC | _PAGE_SHARED | _PAGE_WRENABLE)
 | |
| 
 | |
| #ifdef CONFIG_PPC_STD_MMU
 | |
| /* On standard PPC MMU, no user access implies kernel read/write access,
 | |
|  * so to write-protect kernel memory we must turn on user access */
 | |
| #define _PAGE_KERNEL_RO	(_PAGE_BASE | _PAGE_SHARED | _PAGE_USER)
 | |
| #else
 | |
| #define _PAGE_KERNEL_RO	(_PAGE_BASE | _PAGE_SHARED)
 | |
| #endif
 | |
| 
 | |
| #define _PAGE_IO	(_PAGE_KERNEL_NC | _PAGE_GUARDED)
 | |
| #define _PAGE_RAM	(_PAGE_KERNEL | _PAGE_HWEXEC)
 | |
| 
 | |
| #if defined(CONFIG_KGDB) || defined(CONFIG_XMON) || defined(CONFIG_BDI_SWITCH) ||\
 | |
| 	defined(CONFIG_KPROBES)
 | |
| /* We want the debuggers to be able to set breakpoints anywhere, so
 | |
|  * don't write protect the kernel text */
 | |
| #define _PAGE_RAM_TEXT	_PAGE_RAM
 | |
| #else
 | |
| #define _PAGE_RAM_TEXT	(_PAGE_KERNEL_RO | _PAGE_HWEXEC)
 | |
| #endif
 | |
| 
 | |
| #define PAGE_NONE	__pgprot(_PAGE_BASE)
 | |
| #define PAGE_READONLY	__pgprot(_PAGE_BASE | _PAGE_USER)
 | |
| #define PAGE_READONLY_X	__pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC)
 | |
| #define PAGE_SHARED	__pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_RW)
 | |
| #define PAGE_SHARED_X	__pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_RW | _PAGE_EXEC)
 | |
| #define PAGE_COPY	__pgprot(_PAGE_BASE | _PAGE_USER)
 | |
| #define PAGE_COPY_X	__pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC)
 | |
| 
 | |
| #define PAGE_KERNEL		__pgprot(_PAGE_RAM)
 | |
| #define PAGE_KERNEL_NOCACHE	__pgprot(_PAGE_IO)
 | |
| 
 | |
| /*
 | |
|  * The PowerPC can only do execute protection on a segment (256MB) basis,
 | |
|  * not on a page basis.  So we consider execute permission the same as read.
 | |
|  * Also, write permissions imply read permissions.
 | |
|  * This is the closest we can get..
 | |
|  */
 | |
| #define __P000	PAGE_NONE
 | |
| #define __P001	PAGE_READONLY_X
 | |
| #define __P010	PAGE_COPY
 | |
| #define __P011	PAGE_COPY_X
 | |
| #define __P100	PAGE_READONLY
 | |
| #define __P101	PAGE_READONLY_X
 | |
| #define __P110	PAGE_COPY
 | |
| #define __P111	PAGE_COPY_X
 | |
| 
 | |
| #define __S000	PAGE_NONE
 | |
| #define __S001	PAGE_READONLY_X
 | |
| #define __S010	PAGE_SHARED
 | |
| #define __S011	PAGE_SHARED_X
 | |
| #define __S100	PAGE_READONLY
 | |
| #define __S101	PAGE_READONLY_X
 | |
| #define __S110	PAGE_SHARED
 | |
| #define __S111	PAGE_SHARED_X
 | |
| 
 | |
| #ifndef __ASSEMBLY__
 | |
| /* Make sure we get a link error if PMD_PAGE_SIZE is ever called on a
 | |
|  * kernel without large page PMD support */
 | |
| extern unsigned long bad_call_to_PMD_PAGE_SIZE(void);
 | |
| 
 | |
| /*
 | |
|  * Conversions between PTE values and page frame numbers.
 | |
|  */
 | |
| 
 | |
| /* in some case we want to additionaly adjust where the pfn is in the pte to
 | |
|  * allow room for more flags */
 | |
| #if defined(CONFIG_FSL_BOOKE) && defined(CONFIG_PTE_64BIT)
 | |
| #define PFN_SHIFT_OFFSET	(PAGE_SHIFT + 8)
 | |
| #else
 | |
| #define PFN_SHIFT_OFFSET	(PAGE_SHIFT)
 | |
| #endif
 | |
| 
 | |
| #define pte_pfn(x)		(pte_val(x) >> PFN_SHIFT_OFFSET)
 | |
| #define pte_page(x)		pfn_to_page(pte_pfn(x))
 | |
| 
 | |
| #define pfn_pte(pfn, prot)	__pte(((pte_basic_t)(pfn) << PFN_SHIFT_OFFSET) |\
 | |
| 					pgprot_val(prot))
 | |
| #define mk_pte(page, prot)	pfn_pte(page_to_pfn(page), prot)
 | |
| #endif /* __ASSEMBLY__ */
 | |
| 
 | |
| #define pte_none(pte)		((pte_val(pte) & ~_PTE_NONE_MASK) == 0)
 | |
| #define pte_present(pte)	(pte_val(pte) & _PAGE_PRESENT)
 | |
| #define pte_clear(mm, addr, ptep) \
 | |
| 	do { pte_update(ptep, ~_PAGE_HASHPTE, 0); } while (0)
 | |
| 
 | |
| #define pmd_none(pmd)		(!pmd_val(pmd))
 | |
| #define	pmd_bad(pmd)		(pmd_val(pmd) & _PMD_BAD)
 | |
| #define	pmd_present(pmd)	(pmd_val(pmd) & _PMD_PRESENT_MASK)
 | |
| #define	pmd_clear(pmdp)		do { pmd_val(*(pmdp)) = 0; } while (0)
 | |
| 
 | |
| #ifndef __ASSEMBLY__
 | |
| /*
 | |
|  * The following only work if pte_present() is true.
 | |
|  * Undefined behaviour if not..
 | |
|  */
 | |
| static inline int pte_write(pte_t pte)		{ return pte_val(pte) & _PAGE_RW; }
 | |
| static inline int pte_dirty(pte_t pte)		{ return pte_val(pte) & _PAGE_DIRTY; }
 | |
| static inline int pte_young(pte_t pte)		{ return pte_val(pte) & _PAGE_ACCESSED; }
 | |
| static inline int pte_file(pte_t pte)		{ return pte_val(pte) & _PAGE_FILE; }
 | |
| static inline int pte_special(pte_t pte)	{ return pte_val(pte) & _PAGE_SPECIAL; }
 | |
| 
 | |
| static inline pte_t pte_wrprotect(pte_t pte) {
 | |
| 	pte_val(pte) &= ~(_PAGE_RW | _PAGE_HWWRITE); return pte; }
 | |
| static inline pte_t pte_mkclean(pte_t pte) {
 | |
| 	pte_val(pte) &= ~(_PAGE_DIRTY | _PAGE_HWWRITE); return pte; }
 | |
| static inline pte_t pte_mkold(pte_t pte) {
 | |
| 	pte_val(pte) &= ~_PAGE_ACCESSED; return pte; }
 | |
| 
 | |
| static inline pte_t pte_mkwrite(pte_t pte) {
 | |
| 	pte_val(pte) |= _PAGE_RW; return pte; }
 | |
| static inline pte_t pte_mkdirty(pte_t pte) {
 | |
| 	pte_val(pte) |= _PAGE_DIRTY; return pte; }
 | |
| static inline pte_t pte_mkyoung(pte_t pte) {
 | |
| 	pte_val(pte) |= _PAGE_ACCESSED; return pte; }
 | |
| static inline pte_t pte_mkspecial(pte_t pte) {
 | |
| 	pte_val(pte) |= _PAGE_SPECIAL; return pte; }
 | |
| static inline pgprot_t pte_pgprot(pte_t pte)
 | |
| {
 | |
| 	return __pgprot(pte_val(pte) & PAGE_PROT_BITS);
 | |
| }
 | |
| 
 | |
| static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
 | |
| {
 | |
| 	pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot);
 | |
| 	return pte;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * When flushing the tlb entry for a page, we also need to flush the hash
 | |
|  * table entry.  flush_hash_pages is assembler (for speed) in hashtable.S.
 | |
|  */
 | |
| extern int flush_hash_pages(unsigned context, unsigned long va,
 | |
| 			    unsigned long pmdval, int count);
 | |
| 
 | |
| /* Add an HPTE to the hash table */
 | |
| extern void add_hash_page(unsigned context, unsigned long va,
 | |
| 			  unsigned long pmdval);
 | |
| 
 | |
| /* Flush an entry from the TLB/hash table */
 | |
| extern void flush_hash_entry(struct mm_struct *mm, pte_t *ptep,
 | |
| 			     unsigned long address);
 | |
| 
 | |
| /*
 | |
|  * Atomic PTE updates.
 | |
|  *
 | |
|  * pte_update clears and sets bit atomically, and returns
 | |
|  * the old pte value.  In the 64-bit PTE case we lock around the
 | |
|  * low PTE word since we expect ALL flag bits to be there
 | |
|  */
 | |
| #ifndef CONFIG_PTE_64BIT
 | |
| static inline unsigned long pte_update(pte_t *p,
 | |
| 				       unsigned long clr,
 | |
| 				       unsigned long set)
 | |
| {
 | |
| #ifdef PTE_ATOMIC_UPDATES
 | |
| 	unsigned long old, tmp;
 | |
| 
 | |
| 	__asm__ __volatile__("\
 | |
| 1:	lwarx	%0,0,%3\n\
 | |
| 	andc	%1,%0,%4\n\
 | |
| 	or	%1,%1,%5\n"
 | |
| 	PPC405_ERR77(0,%3)
 | |
| "	stwcx.	%1,0,%3\n\
 | |
| 	bne-	1b"
 | |
| 	: "=&r" (old), "=&r" (tmp), "=m" (*p)
 | |
| 	: "r" (p), "r" (clr), "r" (set), "m" (*p)
 | |
| 	: "cc" );
 | |
| #else /* PTE_ATOMIC_UPDATES */
 | |
| 	unsigned long old = pte_val(*p);
 | |
| 	*p = __pte((old & ~clr) | set);
 | |
| #endif /* !PTE_ATOMIC_UPDATES */
 | |
| 
 | |
| #ifdef CONFIG_44x
 | |
| 	if ((old & _PAGE_USER) && (old & _PAGE_HWEXEC))
 | |
| 		icache_44x_need_flush = 1;
 | |
| #endif
 | |
| 	return old;
 | |
| }
 | |
| #else /* CONFIG_PTE_64BIT */
 | |
| static inline unsigned long long pte_update(pte_t *p,
 | |
| 					    unsigned long clr,
 | |
| 					    unsigned long set)
 | |
| {
 | |
| #ifdef PTE_ATOMIC_UPDATES
 | |
| 	unsigned long long old;
 | |
| 	unsigned long tmp;
 | |
| 
 | |
| 	__asm__ __volatile__("\
 | |
| 1:	lwarx	%L0,0,%4\n\
 | |
| 	lwzx	%0,0,%3\n\
 | |
| 	andc	%1,%L0,%5\n\
 | |
| 	or	%1,%1,%6\n"
 | |
| 	PPC405_ERR77(0,%3)
 | |
| "	stwcx.	%1,0,%4\n\
 | |
| 	bne-	1b"
 | |
| 	: "=&r" (old), "=&r" (tmp), "=m" (*p)
 | |
| 	: "r" (p), "r" ((unsigned long)(p) + 4), "r" (clr), "r" (set), "m" (*p)
 | |
| 	: "cc" );
 | |
| #else /* PTE_ATOMIC_UPDATES */
 | |
| 	unsigned long long old = pte_val(*p);
 | |
| 	*p = __pte((old & ~(unsigned long long)clr) | set);
 | |
| #endif /* !PTE_ATOMIC_UPDATES */
 | |
| 
 | |
| #ifdef CONFIG_44x
 | |
| 	if ((old & _PAGE_USER) && (old & _PAGE_HWEXEC))
 | |
| 		icache_44x_need_flush = 1;
 | |
| #endif
 | |
| 	return old;
 | |
| }
 | |
| #endif /* CONFIG_PTE_64BIT */
 | |
| 
 | |
| /*
 | |
|  * set_pte stores a linux PTE into the linux page table.
 | |
|  * On machines which use an MMU hash table we avoid changing the
 | |
|  * _PAGE_HASHPTE bit.
 | |
|  */
 | |
| 
 | |
| static inline void __set_pte_at(struct mm_struct *mm, unsigned long addr,
 | |
| 			      pte_t *ptep, pte_t pte)
 | |
| {
 | |
| #if (_PAGE_HASHPTE != 0) && defined(CONFIG_SMP) && !defined(CONFIG_PTE_64BIT)
 | |
| 	pte_update(ptep, ~_PAGE_HASHPTE, pte_val(pte) & ~_PAGE_HASHPTE);
 | |
| #elif defined(CONFIG_PTE_64BIT) && defined(CONFIG_SMP)
 | |
| #if _PAGE_HASHPTE != 0
 | |
| 	if (pte_val(*ptep) & _PAGE_HASHPTE)
 | |
| 		flush_hash_entry(mm, ptep, addr);
 | |
| #endif
 | |
| 	__asm__ __volatile__("\
 | |
| 		stw%U0%X0 %2,%0\n\
 | |
| 		eieio\n\
 | |
| 		stw%U0%X0 %L2,%1"
 | |
| 	: "=m" (*ptep), "=m" (*((unsigned char *)ptep+4))
 | |
| 	: "r" (pte) : "memory");
 | |
| #else
 | |
| 	*ptep = __pte((pte_val(*ptep) & _PAGE_HASHPTE)
 | |
| 		      | (pte_val(pte) & ~_PAGE_HASHPTE));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| 
 | |
| static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
 | |
| 			      pte_t *ptep, pte_t pte)
 | |
| {
 | |
| #if defined(CONFIG_PTE_64BIT) && defined(CONFIG_SMP) && defined(CONFIG_DEBUG_VM)
 | |
| 	WARN_ON(pte_present(*ptep));
 | |
| #endif
 | |
| 	__set_pte_at(mm, addr, ptep, pte);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * 2.6 calls this without flushing the TLB entry; this is wrong
 | |
|  * for our hash-based implementation, we fix that up here.
 | |
|  */
 | |
| #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
 | |
| static inline int __ptep_test_and_clear_young(unsigned int context, unsigned long addr, pte_t *ptep)
 | |
| {
 | |
| 	unsigned long old;
 | |
| 	old = pte_update(ptep, _PAGE_ACCESSED, 0);
 | |
| #if _PAGE_HASHPTE != 0
 | |
| 	if (old & _PAGE_HASHPTE) {
 | |
| 		unsigned long ptephys = __pa(ptep) & PAGE_MASK;
 | |
| 		flush_hash_pages(context, addr, ptephys, 1);
 | |
| 	}
 | |
| #endif
 | |
| 	return (old & _PAGE_ACCESSED) != 0;
 | |
| }
 | |
| #define ptep_test_and_clear_young(__vma, __addr, __ptep) \
 | |
| 	__ptep_test_and_clear_young((__vma)->vm_mm->context.id, __addr, __ptep)
 | |
| 
 | |
| #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
 | |
| static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr,
 | |
| 				       pte_t *ptep)
 | |
| {
 | |
| 	return __pte(pte_update(ptep, ~_PAGE_HASHPTE, 0));
 | |
| }
 | |
| 
 | |
| #define __HAVE_ARCH_PTEP_SET_WRPROTECT
 | |
| static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr,
 | |
| 				      pte_t *ptep)
 | |
| {
 | |
| 	pte_update(ptep, (_PAGE_RW | _PAGE_HWWRITE), 0);
 | |
| }
 | |
| static inline void huge_ptep_set_wrprotect(struct mm_struct *mm,
 | |
| 					   unsigned long addr, pte_t *ptep)
 | |
| {
 | |
| 	ptep_set_wrprotect(mm, addr, ptep);
 | |
| }
 | |
| 
 | |
| 
 | |
| #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
 | |
| static inline void __ptep_set_access_flags(pte_t *ptep, pte_t entry, int dirty)
 | |
| {
 | |
| 	unsigned long bits = pte_val(entry) &
 | |
| 		(_PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_RW);
 | |
| 	pte_update(ptep, 0, bits);
 | |
| }
 | |
| 
 | |
| #define  ptep_set_access_flags(__vma, __address, __ptep, __entry, __dirty) \
 | |
| ({									   \
 | |
| 	int __changed = !pte_same(*(__ptep), __entry);			   \
 | |
| 	if (__changed) {						   \
 | |
| 		__ptep_set_access_flags(__ptep, __entry, __dirty);         \
 | |
| 		flush_tlb_page_nohash(__vma, __address);		   \
 | |
| 	}								   \
 | |
| 	__changed;							   \
 | |
| })
 | |
| 
 | |
| #define __HAVE_ARCH_PTE_SAME
 | |
| #define pte_same(A,B)	(((pte_val(A) ^ pte_val(B)) & ~_PAGE_HASHPTE) == 0)
 | |
| 
 | |
| /*
 | |
|  * Note that on Book E processors, the pmd contains the kernel virtual
 | |
|  * (lowmem) address of the pte page.  The physical address is less useful
 | |
|  * because everything runs with translation enabled (even the TLB miss
 | |
|  * handler).  On everything else the pmd contains the physical address
 | |
|  * of the pte page.  -- paulus
 | |
|  */
 | |
| #ifndef CONFIG_BOOKE
 | |
| #define pmd_page_vaddr(pmd)	\
 | |
| 	((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))
 | |
| #define pmd_page(pmd)		\
 | |
| 	(mem_map + (pmd_val(pmd) >> PAGE_SHIFT))
 | |
| #else
 | |
| #define pmd_page_vaddr(pmd)	\
 | |
| 	((unsigned long) (pmd_val(pmd) & PAGE_MASK))
 | |
| #define pmd_page(pmd)		\
 | |
| 	pfn_to_page((__pa(pmd_val(pmd)) >> PAGE_SHIFT))
 | |
| #endif
 | |
| 
 | |
| /* to find an entry in a kernel page-table-directory */
 | |
| #define pgd_offset_k(address) pgd_offset(&init_mm, address)
 | |
| 
 | |
| /* to find an entry in a page-table-directory */
 | |
| #define pgd_index(address)	 ((address) >> PGDIR_SHIFT)
 | |
| #define pgd_offset(mm, address)	 ((mm)->pgd + pgd_index(address))
 | |
| 
 | |
| /* Find an entry in the third-level page table.. */
 | |
| #define pte_index(address)		\
 | |
| 	(((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
 | |
| #define pte_offset_kernel(dir, addr)	\
 | |
| 	((pte_t *) pmd_page_vaddr(*(dir)) + pte_index(addr))
 | |
| #define pte_offset_map(dir, addr)		\
 | |
| 	((pte_t *) kmap_atomic(pmd_page(*(dir)), KM_PTE0) + pte_index(addr))
 | |
| #define pte_offset_map_nested(dir, addr)	\
 | |
| 	((pte_t *) kmap_atomic(pmd_page(*(dir)), KM_PTE1) + pte_index(addr))
 | |
| 
 | |
| #define pte_unmap(pte)		kunmap_atomic(pte, KM_PTE0)
 | |
| #define pte_unmap_nested(pte)	kunmap_atomic(pte, KM_PTE1)
 | |
| 
 | |
| /*
 | |
|  * Encode and decode a swap entry.
 | |
|  * Note that the bits we use in a PTE for representing a swap entry
 | |
|  * must not include the _PAGE_PRESENT bit, the _PAGE_FILE bit, or the
 | |
|  *_PAGE_HASHPTE bit (if used).  -- paulus
 | |
|  */
 | |
| #define __swp_type(entry)		((entry).val & 0x1f)
 | |
| #define __swp_offset(entry)		((entry).val >> 5)
 | |
| #define __swp_entry(type, offset)	((swp_entry_t) { (type) | ((offset) << 5) })
 | |
| #define __pte_to_swp_entry(pte)		((swp_entry_t) { pte_val(pte) >> 3 })
 | |
| #define __swp_entry_to_pte(x)		((pte_t) { (x).val << 3 })
 | |
| 
 | |
| /* Encode and decode a nonlinear file mapping entry */
 | |
| #define PTE_FILE_MAX_BITS	29
 | |
| #define pte_to_pgoff(pte)	(pte_val(pte) >> 3)
 | |
| #define pgoff_to_pte(off)	((pte_t) { ((off) << 3) | _PAGE_FILE })
 | |
| 
 | |
| /*
 | |
|  * No page table caches to initialise
 | |
|  */
 | |
| #define pgtable_cache_init()	do { } while (0)
 | |
| 
 | |
| extern int get_pteptr(struct mm_struct *mm, unsigned long addr, pte_t **ptep,
 | |
| 		      pmd_t **pmdp);
 | |
| 
 | |
| #endif /* !__ASSEMBLY__ */
 | |
| 
 | |
| #endif /* _ASM_POWERPC_PGTABLE_PPC32_H */
 |