 f47436734d
			
		
	
	
	f47436734d
	
	
	
		
			
			And other message logging neatening. Other miscellanea: o coalesce formats o realign arguments o standardize a couple of macros o use __func__ instead of embedding the function name Signed-off-by: Joe Perches <joe@perches.com> Signed-off-by: Chris Metcalf <cmetcalf@tilera.com>
		
			
				
	
	
		
			984 lines
		
	
	
	
		
			28 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			984 lines
		
	
	
	
		
			28 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (C) 1995  Linus Torvalds
 | |
|  * Copyright 2010 Tilera Corporation. All Rights Reserved.
 | |
|  *
 | |
|  *   This program is free software; you can redistribute it and/or
 | |
|  *   modify it under the terms of the GNU General Public License
 | |
|  *   as published by the Free Software Foundation, version 2.
 | |
|  *
 | |
|  *   This program is distributed in the hope that it will be useful, but
 | |
|  *   WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
 | |
|  *   NON INFRINGEMENT.  See the GNU General Public License for
 | |
|  *   more details.
 | |
|  */
 | |
| 
 | |
| #include <linux/module.h>
 | |
| #include <linux/signal.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/errno.h>
 | |
| #include <linux/string.h>
 | |
| #include <linux/types.h>
 | |
| #include <linux/ptrace.h>
 | |
| #include <linux/mman.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/hugetlb.h>
 | |
| #include <linux/swap.h>
 | |
| #include <linux/smp.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/highmem.h>
 | |
| #include <linux/pagemap.h>
 | |
| #include <linux/poison.h>
 | |
| #include <linux/bootmem.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/proc_fs.h>
 | |
| #include <linux/efi.h>
 | |
| #include <linux/memory_hotplug.h>
 | |
| #include <linux/uaccess.h>
 | |
| #include <asm/mmu_context.h>
 | |
| #include <asm/processor.h>
 | |
| #include <asm/pgtable.h>
 | |
| #include <asm/pgalloc.h>
 | |
| #include <asm/dma.h>
 | |
| #include <asm/fixmap.h>
 | |
| #include <asm/tlb.h>
 | |
| #include <asm/tlbflush.h>
 | |
| #include <asm/sections.h>
 | |
| #include <asm/setup.h>
 | |
| #include <asm/homecache.h>
 | |
| #include <hv/hypervisor.h>
 | |
| #include <arch/chip.h>
 | |
| 
 | |
| #include "migrate.h"
 | |
| 
 | |
| #define clear_pgd(pmdptr) (*(pmdptr) = hv_pte(0))
 | |
| 
 | |
| #ifndef __tilegx__
 | |
| unsigned long VMALLOC_RESERVE = CONFIG_VMALLOC_RESERVE;
 | |
| EXPORT_SYMBOL(VMALLOC_RESERVE);
 | |
| #endif
 | |
| 
 | |
| /* Create an L2 page table */
 | |
| static pte_t * __init alloc_pte(void)
 | |
| {
 | |
| 	return __alloc_bootmem(L2_KERNEL_PGTABLE_SIZE, HV_PAGE_TABLE_ALIGN, 0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * L2 page tables per controller.  We allocate these all at once from
 | |
|  * the bootmem allocator and store them here.  This saves on kernel L2
 | |
|  * page table memory, compared to allocating a full 64K page per L2
 | |
|  * page table, and also means that in cases where we use huge pages,
 | |
|  * we are guaranteed to later be able to shatter those huge pages and
 | |
|  * switch to using these page tables instead, without requiring
 | |
|  * further allocation.  Each l2_ptes[] entry points to the first page
 | |
|  * table for the first hugepage-size piece of memory on the
 | |
|  * controller; other page tables are just indexed directly, i.e. the
 | |
|  * L2 page tables are contiguous in memory for each controller.
 | |
|  */
 | |
| static pte_t *l2_ptes[MAX_NUMNODES];
 | |
| static int num_l2_ptes[MAX_NUMNODES];
 | |
| 
 | |
| static void init_prealloc_ptes(int node, int pages)
 | |
| {
 | |
| 	BUG_ON(pages & (PTRS_PER_PTE - 1));
 | |
| 	if (pages) {
 | |
| 		num_l2_ptes[node] = pages;
 | |
| 		l2_ptes[node] = __alloc_bootmem(pages * sizeof(pte_t),
 | |
| 						HV_PAGE_TABLE_ALIGN, 0);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| pte_t *get_prealloc_pte(unsigned long pfn)
 | |
| {
 | |
| 	int node = pfn_to_nid(pfn);
 | |
| 	pfn &= ~(-1UL << (NR_PA_HIGHBIT_SHIFT - PAGE_SHIFT));
 | |
| 	BUG_ON(node >= MAX_NUMNODES);
 | |
| 	BUG_ON(pfn >= num_l2_ptes[node]);
 | |
| 	return &l2_ptes[node][pfn];
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * What caching do we expect pages from the heap to have when
 | |
|  * they are allocated during bootup?  (Once we've installed the
 | |
|  * "real" swapper_pg_dir.)
 | |
|  */
 | |
| static int initial_heap_home(void)
 | |
| {
 | |
| 	if (hash_default)
 | |
| 		return PAGE_HOME_HASH;
 | |
| 	return smp_processor_id();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Place a pointer to an L2 page table in a middle page
 | |
|  * directory entry.
 | |
|  */
 | |
| static void __init assign_pte(pmd_t *pmd, pte_t *page_table)
 | |
| {
 | |
| 	phys_addr_t pa = __pa(page_table);
 | |
| 	unsigned long l2_ptfn = pa >> HV_LOG2_PAGE_TABLE_ALIGN;
 | |
| 	pte_t pteval = hv_pte_set_ptfn(__pgprot(_PAGE_TABLE), l2_ptfn);
 | |
| 	BUG_ON((pa & (HV_PAGE_TABLE_ALIGN-1)) != 0);
 | |
| 	pteval = pte_set_home(pteval, initial_heap_home());
 | |
| 	*(pte_t *)pmd = pteval;
 | |
| 	if (page_table != (pte_t *)pmd_page_vaddr(*pmd))
 | |
| 		BUG();
 | |
| }
 | |
| 
 | |
| #ifdef __tilegx__
 | |
| 
 | |
| static inline pmd_t *alloc_pmd(void)
 | |
| {
 | |
| 	return __alloc_bootmem(L1_KERNEL_PGTABLE_SIZE, HV_PAGE_TABLE_ALIGN, 0);
 | |
| }
 | |
| 
 | |
| static inline void assign_pmd(pud_t *pud, pmd_t *pmd)
 | |
| {
 | |
| 	assign_pte((pmd_t *)pud, (pte_t *)pmd);
 | |
| }
 | |
| 
 | |
| #endif /* __tilegx__ */
 | |
| 
 | |
| /* Replace the given pmd with a full PTE table. */
 | |
| void __init shatter_pmd(pmd_t *pmd)
 | |
| {
 | |
| 	pte_t *pte = get_prealloc_pte(pte_pfn(*(pte_t *)pmd));
 | |
| 	assign_pte(pmd, pte);
 | |
| }
 | |
| 
 | |
| #ifdef __tilegx__
 | |
| static pmd_t *__init get_pmd(pgd_t pgtables[], unsigned long va)
 | |
| {
 | |
| 	pud_t *pud = pud_offset(&pgtables[pgd_index(va)], va);
 | |
| 	if (pud_none(*pud))
 | |
| 		assign_pmd(pud, alloc_pmd());
 | |
| 	return pmd_offset(pud, va);
 | |
| }
 | |
| #else
 | |
| static pmd_t *__init get_pmd(pgd_t pgtables[], unsigned long va)
 | |
| {
 | |
| 	return pmd_offset(pud_offset(&pgtables[pgd_index(va)], va), va);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * This function initializes a certain range of kernel virtual memory
 | |
|  * with new bootmem page tables, everywhere page tables are missing in
 | |
|  * the given range.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * NOTE: The pagetables are allocated contiguous on the physical space
 | |
|  * so we can cache the place of the first one and move around without
 | |
|  * checking the pgd every time.
 | |
|  */
 | |
| static void __init page_table_range_init(unsigned long start,
 | |
| 					 unsigned long end, pgd_t *pgd)
 | |
| {
 | |
| 	unsigned long vaddr;
 | |
| 	start = round_down(start, PMD_SIZE);
 | |
| 	end = round_up(end, PMD_SIZE);
 | |
| 	for (vaddr = start; vaddr < end; vaddr += PMD_SIZE) {
 | |
| 		pmd_t *pmd = get_pmd(pgd, vaddr);
 | |
| 		if (pmd_none(*pmd))
 | |
| 			assign_pte(pmd, alloc_pte());
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| static int __initdata ktext_hash = 1;  /* .text pages */
 | |
| static int __initdata kdata_hash = 1;  /* .data and .bss pages */
 | |
| int __write_once hash_default = 1;     /* kernel allocator pages */
 | |
| EXPORT_SYMBOL(hash_default);
 | |
| int __write_once kstack_hash = 1;      /* if no homecaching, use h4h */
 | |
| 
 | |
| /*
 | |
|  * CPUs to use to for striping the pages of kernel data.  If hash-for-home
 | |
|  * is available, this is only relevant if kcache_hash sets up the
 | |
|  * .data and .bss to be page-homed, and we don't want the default mode
 | |
|  * of using the full set of kernel cpus for the striping.
 | |
|  */
 | |
| static __initdata struct cpumask kdata_mask;
 | |
| static __initdata int kdata_arg_seen;
 | |
| 
 | |
| int __write_once kdata_huge;       /* if no homecaching, small pages */
 | |
| 
 | |
| 
 | |
| /* Combine a generic pgprot_t with cache home to get a cache-aware pgprot. */
 | |
| static pgprot_t __init construct_pgprot(pgprot_t prot, int home)
 | |
| {
 | |
| 	prot = pte_set_home(prot, home);
 | |
| 	if (home == PAGE_HOME_IMMUTABLE) {
 | |
| 		if (ktext_hash)
 | |
| 			prot = hv_pte_set_mode(prot, HV_PTE_MODE_CACHE_HASH_L3);
 | |
| 		else
 | |
| 			prot = hv_pte_set_mode(prot, HV_PTE_MODE_CACHE_NO_L3);
 | |
| 	}
 | |
| 	return prot;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * For a given kernel data VA, how should it be cached?
 | |
|  * We return the complete pgprot_t with caching bits set.
 | |
|  */
 | |
| static pgprot_t __init init_pgprot(ulong address)
 | |
| {
 | |
| 	int cpu;
 | |
| 	unsigned long page;
 | |
| 	enum { CODE_DELTA = MEM_SV_START - PAGE_OFFSET };
 | |
| 
 | |
| 	/* For kdata=huge, everything is just hash-for-home. */
 | |
| 	if (kdata_huge)
 | |
| 		return construct_pgprot(PAGE_KERNEL, PAGE_HOME_HASH);
 | |
| 
 | |
| 	/* We map the aliased pages of permanent text inaccessible. */
 | |
| 	if (address < (ulong) _sinittext - CODE_DELTA)
 | |
| 		return PAGE_NONE;
 | |
| 
 | |
| 	/* We map read-only data non-coherent for performance. */
 | |
| 	if ((address >= (ulong) __start_rodata &&
 | |
| 	     address < (ulong) __end_rodata) ||
 | |
| 	    address == (ulong) empty_zero_page) {
 | |
| 		return construct_pgprot(PAGE_KERNEL_RO, PAGE_HOME_IMMUTABLE);
 | |
| 	}
 | |
| 
 | |
| #ifndef __tilegx__
 | |
| 	/* Force the atomic_locks[] array page to be hash-for-home. */
 | |
| 	if (address == (ulong) atomic_locks)
 | |
| 		return construct_pgprot(PAGE_KERNEL, PAGE_HOME_HASH);
 | |
| #endif
 | |
| 
 | |
| 	/*
 | |
| 	 * Everything else that isn't data or bss is heap, so mark it
 | |
| 	 * with the initial heap home (hash-for-home, or this cpu).  This
 | |
| 	 * includes any addresses after the loaded image and any address before
 | |
| 	 * __init_end, since we already captured the case of text before
 | |
| 	 * _sinittext, and __pa(einittext) is approximately __pa(__init_begin).
 | |
| 	 *
 | |
| 	 * All the LOWMEM pages that we mark this way will get their
 | |
| 	 * struct page homecache properly marked later, in set_page_homes().
 | |
| 	 * The HIGHMEM pages we leave with a default zero for their
 | |
| 	 * homes, but with a zero free_time we don't have to actually
 | |
| 	 * do a flush action the first time we use them, either.
 | |
| 	 */
 | |
| 	if (address >= (ulong) _end || address < (ulong) __init_end)
 | |
| 		return construct_pgprot(PAGE_KERNEL, initial_heap_home());
 | |
| 
 | |
| 	/* Use hash-for-home if requested for data/bss. */
 | |
| 	if (kdata_hash)
 | |
| 		return construct_pgprot(PAGE_KERNEL, PAGE_HOME_HASH);
 | |
| 
 | |
| 	/*
 | |
| 	 * Otherwise we just hand out consecutive cpus.  To avoid
 | |
| 	 * requiring this function to hold state, we just walk forward from
 | |
| 	 * __end_rodata by PAGE_SIZE, skipping the readonly and init data, to
 | |
| 	 * reach the requested address, while walking cpu home around
 | |
| 	 * kdata_mask. This is typically no more than a dozen or so iterations.
 | |
| 	 */
 | |
| 	page = (((ulong)__end_rodata) + PAGE_SIZE - 1) & PAGE_MASK;
 | |
| 	BUG_ON(address < page || address >= (ulong)_end);
 | |
| 	cpu = cpumask_first(&kdata_mask);
 | |
| 	for (; page < address; page += PAGE_SIZE) {
 | |
| 		if (page >= (ulong)&init_thread_union &&
 | |
| 		    page < (ulong)&init_thread_union + THREAD_SIZE)
 | |
| 			continue;
 | |
| 		if (page == (ulong)empty_zero_page)
 | |
| 			continue;
 | |
| #ifndef __tilegx__
 | |
| 		if (page == (ulong)atomic_locks)
 | |
| 			continue;
 | |
| #endif
 | |
| 		cpu = cpumask_next(cpu, &kdata_mask);
 | |
| 		if (cpu == NR_CPUS)
 | |
| 			cpu = cpumask_first(&kdata_mask);
 | |
| 	}
 | |
| 	return construct_pgprot(PAGE_KERNEL, cpu);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function sets up how we cache the kernel text.  If we have
 | |
|  * hash-for-home support, normally that is used instead (see the
 | |
|  * kcache_hash boot flag for more information).  But if we end up
 | |
|  * using a page-based caching technique, this option sets up the
 | |
|  * details of that.  In addition, the "ktext=nocache" option may
 | |
|  * always be used to disable local caching of text pages, if desired.
 | |
|  */
 | |
| 
 | |
| static int __initdata ktext_arg_seen;
 | |
| static int __initdata ktext_small;
 | |
| static int __initdata ktext_local;
 | |
| static int __initdata ktext_all;
 | |
| static int __initdata ktext_nondataplane;
 | |
| static int __initdata ktext_nocache;
 | |
| static struct cpumask __initdata ktext_mask;
 | |
| 
 | |
| static int __init setup_ktext(char *str)
 | |
| {
 | |
| 	if (str == NULL)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/* If you have a leading "nocache", turn off ktext caching */
 | |
| 	if (strncmp(str, "nocache", 7) == 0) {
 | |
| 		ktext_nocache = 1;
 | |
| 		pr_info("ktext: disabling local caching of kernel text\n");
 | |
| 		str += 7;
 | |
| 		if (*str == ',')
 | |
| 			++str;
 | |
| 		if (*str == '\0')
 | |
| 			return 0;
 | |
| 	}
 | |
| 
 | |
| 	ktext_arg_seen = 1;
 | |
| 
 | |
| 	/* Default setting: use a huge page */
 | |
| 	if (strcmp(str, "huge") == 0)
 | |
| 		pr_info("ktext: using one huge locally cached page\n");
 | |
| 
 | |
| 	/* Pay TLB cost but get no cache benefit: cache small pages locally */
 | |
| 	else if (strcmp(str, "local") == 0) {
 | |
| 		ktext_small = 1;
 | |
| 		ktext_local = 1;
 | |
| 		pr_info("ktext: using small pages with local caching\n");
 | |
| 	}
 | |
| 
 | |
| 	/* Neighborhood cache ktext pages on all cpus. */
 | |
| 	else if (strcmp(str, "all") == 0) {
 | |
| 		ktext_small = 1;
 | |
| 		ktext_all = 1;
 | |
| 		pr_info("ktext: using maximal caching neighborhood\n");
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	/* Neighborhood ktext pages on specified mask */
 | |
| 	else if (cpulist_parse(str, &ktext_mask) == 0) {
 | |
| 		char buf[NR_CPUS * 5];
 | |
| 		cpulist_scnprintf(buf, sizeof(buf), &ktext_mask);
 | |
| 		if (cpumask_weight(&ktext_mask) > 1) {
 | |
| 			ktext_small = 1;
 | |
| 			pr_info("ktext: using caching neighborhood %s with small pages\n",
 | |
| 				buf);
 | |
| 		} else {
 | |
| 			pr_info("ktext: caching on cpu %s with one huge page\n",
 | |
| 				buf);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	else if (*str)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| early_param("ktext", setup_ktext);
 | |
| 
 | |
| 
 | |
| static inline pgprot_t ktext_set_nocache(pgprot_t prot)
 | |
| {
 | |
| 	if (!ktext_nocache)
 | |
| 		prot = hv_pte_set_nc(prot);
 | |
| 	else
 | |
| 		prot = hv_pte_set_no_alloc_l2(prot);
 | |
| 	return prot;
 | |
| }
 | |
| 
 | |
| /* Temporary page table we use for staging. */
 | |
| static pgd_t pgtables[PTRS_PER_PGD]
 | |
|  __attribute__((aligned(HV_PAGE_TABLE_ALIGN)));
 | |
| 
 | |
| /*
 | |
|  * This maps the physical memory to kernel virtual address space, a total
 | |
|  * of max_low_pfn pages, by creating page tables starting from address
 | |
|  * PAGE_OFFSET.
 | |
|  *
 | |
|  * This routine transitions us from using a set of compiled-in large
 | |
|  * pages to using some more precise caching, including removing access
 | |
|  * to code pages mapped at PAGE_OFFSET (executed only at MEM_SV_START)
 | |
|  * marking read-only data as locally cacheable, striping the remaining
 | |
|  * .data and .bss across all the available tiles, and removing access
 | |
|  * to pages above the top of RAM (thus ensuring a page fault from a bad
 | |
|  * virtual address rather than a hypervisor shoot down for accessing
 | |
|  * memory outside the assigned limits).
 | |
|  */
 | |
| static void __init kernel_physical_mapping_init(pgd_t *pgd_base)
 | |
| {
 | |
| 	unsigned long long irqmask;
 | |
| 	unsigned long address, pfn;
 | |
| 	pmd_t *pmd;
 | |
| 	pte_t *pte;
 | |
| 	int pte_ofs;
 | |
| 	const struct cpumask *my_cpu_mask = cpumask_of(smp_processor_id());
 | |
| 	struct cpumask kstripe_mask;
 | |
| 	int rc, i;
 | |
| 
 | |
| 	if (ktext_arg_seen && ktext_hash) {
 | |
| 		pr_warn("warning: \"ktext\" boot argument ignored if \"kcache_hash\" sets up text hash-for-home\n");
 | |
| 		ktext_small = 0;
 | |
| 	}
 | |
| 
 | |
| 	if (kdata_arg_seen && kdata_hash) {
 | |
| 		pr_warn("warning: \"kdata\" boot argument ignored if \"kcache_hash\" sets up data hash-for-home\n");
 | |
| 	}
 | |
| 
 | |
| 	if (kdata_huge && !hash_default) {
 | |
| 		pr_warn("warning: disabling \"kdata=huge\"; requires kcache_hash=all or =allbutstack\n");
 | |
| 		kdata_huge = 0;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Set up a mask for cpus to use for kernel striping.
 | |
| 	 * This is normally all cpus, but minus dataplane cpus if any.
 | |
| 	 * If the dataplane covers the whole chip, we stripe over
 | |
| 	 * the whole chip too.
 | |
| 	 */
 | |
| 	cpumask_copy(&kstripe_mask, cpu_possible_mask);
 | |
| 	if (!kdata_arg_seen)
 | |
| 		kdata_mask = kstripe_mask;
 | |
| 
 | |
| 	/* Allocate and fill in L2 page tables */
 | |
| 	for (i = 0; i < MAX_NUMNODES; ++i) {
 | |
| #ifdef CONFIG_HIGHMEM
 | |
| 		unsigned long end_pfn = node_lowmem_end_pfn[i];
 | |
| #else
 | |
| 		unsigned long end_pfn = node_end_pfn[i];
 | |
| #endif
 | |
| 		unsigned long end_huge_pfn = 0;
 | |
| 
 | |
| 		/* Pre-shatter the last huge page to allow per-cpu pages. */
 | |
| 		if (kdata_huge)
 | |
| 			end_huge_pfn = end_pfn - (HPAGE_SIZE >> PAGE_SHIFT);
 | |
| 
 | |
| 		pfn = node_start_pfn[i];
 | |
| 
 | |
| 		/* Allocate enough memory to hold L2 page tables for node. */
 | |
| 		init_prealloc_ptes(i, end_pfn - pfn);
 | |
| 
 | |
| 		address = (unsigned long) pfn_to_kaddr(pfn);
 | |
| 		while (pfn < end_pfn) {
 | |
| 			BUG_ON(address & (HPAGE_SIZE-1));
 | |
| 			pmd = get_pmd(pgtables, address);
 | |
| 			pte = get_prealloc_pte(pfn);
 | |
| 			if (pfn < end_huge_pfn) {
 | |
| 				pgprot_t prot = init_pgprot(address);
 | |
| 				*(pte_t *)pmd = pte_mkhuge(pfn_pte(pfn, prot));
 | |
| 				for (pte_ofs = 0; pte_ofs < PTRS_PER_PTE;
 | |
| 				     pfn++, pte_ofs++, address += PAGE_SIZE)
 | |
| 					pte[pte_ofs] = pfn_pte(pfn, prot);
 | |
| 			} else {
 | |
| 				if (kdata_huge)
 | |
| 					printk(KERN_DEBUG "pre-shattered huge page at %#lx\n",
 | |
| 					       address);
 | |
| 				for (pte_ofs = 0; pte_ofs < PTRS_PER_PTE;
 | |
| 				     pfn++, pte_ofs++, address += PAGE_SIZE) {
 | |
| 					pgprot_t prot = init_pgprot(address);
 | |
| 					pte[pte_ofs] = pfn_pte(pfn, prot);
 | |
| 				}
 | |
| 				assign_pte(pmd, pte);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Set or check ktext_map now that we have cpu_possible_mask
 | |
| 	 * and kstripe_mask to work with.
 | |
| 	 */
 | |
| 	if (ktext_all)
 | |
| 		cpumask_copy(&ktext_mask, cpu_possible_mask);
 | |
| 	else if (ktext_nondataplane)
 | |
| 		ktext_mask = kstripe_mask;
 | |
| 	else if (!cpumask_empty(&ktext_mask)) {
 | |
| 		/* Sanity-check any mask that was requested */
 | |
| 		struct cpumask bad;
 | |
| 		cpumask_andnot(&bad, &ktext_mask, cpu_possible_mask);
 | |
| 		cpumask_and(&ktext_mask, &ktext_mask, cpu_possible_mask);
 | |
| 		if (!cpumask_empty(&bad)) {
 | |
| 			char buf[NR_CPUS * 5];
 | |
| 			cpulist_scnprintf(buf, sizeof(buf), &bad);
 | |
| 			pr_info("ktext: not using unavailable cpus %s\n", buf);
 | |
| 		}
 | |
| 		if (cpumask_empty(&ktext_mask)) {
 | |
| 			pr_warn("ktext: no valid cpus; caching on %d\n",
 | |
| 				smp_processor_id());
 | |
| 			cpumask_copy(&ktext_mask,
 | |
| 				     cpumask_of(smp_processor_id()));
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	address = MEM_SV_START;
 | |
| 	pmd = get_pmd(pgtables, address);
 | |
| 	pfn = 0;  /* code starts at PA 0 */
 | |
| 	if (ktext_small) {
 | |
| 		/* Allocate an L2 PTE for the kernel text */
 | |
| 		int cpu = 0;
 | |
| 		pgprot_t prot = construct_pgprot(PAGE_KERNEL_EXEC,
 | |
| 						 PAGE_HOME_IMMUTABLE);
 | |
| 
 | |
| 		if (ktext_local) {
 | |
| 			if (ktext_nocache)
 | |
| 				prot = hv_pte_set_mode(prot,
 | |
| 						       HV_PTE_MODE_UNCACHED);
 | |
| 			else
 | |
| 				prot = hv_pte_set_mode(prot,
 | |
| 						       HV_PTE_MODE_CACHE_NO_L3);
 | |
| 		} else {
 | |
| 			prot = hv_pte_set_mode(prot,
 | |
| 					       HV_PTE_MODE_CACHE_TILE_L3);
 | |
| 			cpu = cpumask_first(&ktext_mask);
 | |
| 
 | |
| 			prot = ktext_set_nocache(prot);
 | |
| 		}
 | |
| 
 | |
| 		BUG_ON(address != (unsigned long)_text);
 | |
| 		pte = NULL;
 | |
| 		for (; address < (unsigned long)_einittext;
 | |
| 		     pfn++, address += PAGE_SIZE) {
 | |
| 			pte_ofs = pte_index(address);
 | |
| 			if (pte_ofs == 0) {
 | |
| 				if (pte)
 | |
| 					assign_pte(pmd++, pte);
 | |
| 				pte = alloc_pte();
 | |
| 			}
 | |
| 			if (!ktext_local) {
 | |
| 				prot = set_remote_cache_cpu(prot, cpu);
 | |
| 				cpu = cpumask_next(cpu, &ktext_mask);
 | |
| 				if (cpu == NR_CPUS)
 | |
| 					cpu = cpumask_first(&ktext_mask);
 | |
| 			}
 | |
| 			pte[pte_ofs] = pfn_pte(pfn, prot);
 | |
| 		}
 | |
| 		if (pte)
 | |
| 			assign_pte(pmd, pte);
 | |
| 	} else {
 | |
| 		pte_t pteval = pfn_pte(0, PAGE_KERNEL_EXEC);
 | |
| 		pteval = pte_mkhuge(pteval);
 | |
| 		if (ktext_hash) {
 | |
| 			pteval = hv_pte_set_mode(pteval,
 | |
| 						 HV_PTE_MODE_CACHE_HASH_L3);
 | |
| 			pteval = ktext_set_nocache(pteval);
 | |
| 		} else
 | |
| 		if (cpumask_weight(&ktext_mask) == 1) {
 | |
| 			pteval = set_remote_cache_cpu(pteval,
 | |
| 					      cpumask_first(&ktext_mask));
 | |
| 			pteval = hv_pte_set_mode(pteval,
 | |
| 						 HV_PTE_MODE_CACHE_TILE_L3);
 | |
| 			pteval = ktext_set_nocache(pteval);
 | |
| 		} else if (ktext_nocache)
 | |
| 			pteval = hv_pte_set_mode(pteval,
 | |
| 						 HV_PTE_MODE_UNCACHED);
 | |
| 		else
 | |
| 			pteval = hv_pte_set_mode(pteval,
 | |
| 						 HV_PTE_MODE_CACHE_NO_L3);
 | |
| 		for (; address < (unsigned long)_einittext;
 | |
| 		     pfn += PFN_DOWN(HPAGE_SIZE), address += HPAGE_SIZE)
 | |
| 			*(pte_t *)(pmd++) = pfn_pte(pfn, pteval);
 | |
| 	}
 | |
| 
 | |
| 	/* Set swapper_pgprot here so it is flushed to memory right away. */
 | |
| 	swapper_pgprot = init_pgprot((unsigned long)swapper_pg_dir);
 | |
| 
 | |
| 	/*
 | |
| 	 * Since we may be changing the caching of the stack and page
 | |
| 	 * table itself, we invoke an assembly helper to do the
 | |
| 	 * following steps:
 | |
| 	 *
 | |
| 	 *  - flush the cache so we start with an empty slate
 | |
| 	 *  - install pgtables[] as the real page table
 | |
| 	 *  - flush the TLB so the new page table takes effect
 | |
| 	 */
 | |
| 	irqmask = interrupt_mask_save_mask();
 | |
| 	interrupt_mask_set_mask(-1ULL);
 | |
| 	rc = flush_and_install_context(__pa(pgtables),
 | |
| 				       init_pgprot((unsigned long)pgtables),
 | |
| 				       __this_cpu_read(current_asid),
 | |
| 				       cpumask_bits(my_cpu_mask));
 | |
| 	interrupt_mask_restore_mask(irqmask);
 | |
| 	BUG_ON(rc != 0);
 | |
| 
 | |
| 	/* Copy the page table back to the normal swapper_pg_dir. */
 | |
| 	memcpy(pgd_base, pgtables, sizeof(pgtables));
 | |
| 	__install_page_table(pgd_base, __this_cpu_read(current_asid),
 | |
| 			     swapper_pgprot);
 | |
| 
 | |
| 	/*
 | |
| 	 * We just read swapper_pgprot and thus brought it into the cache,
 | |
| 	 * with its new home & caching mode.  When we start the other CPUs,
 | |
| 	 * they're going to reference swapper_pgprot via their initial fake
 | |
| 	 * VA-is-PA mappings, which cache everything locally.  At that
 | |
| 	 * time, if it's in our cache with a conflicting home, the
 | |
| 	 * simulator's coherence checker will complain.  So, flush it out
 | |
| 	 * of our cache; we're not going to ever use it again anyway.
 | |
| 	 */
 | |
| 	__insn_finv(&swapper_pgprot);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * devmem_is_allowed() checks to see if /dev/mem access to a certain address
 | |
|  * is valid. The argument is a physical page number.
 | |
|  *
 | |
|  * On Tile, the only valid things for which we can just hand out unchecked
 | |
|  * PTEs are the kernel code and data.  Anything else might change its
 | |
|  * homing with time, and we wouldn't know to adjust the /dev/mem PTEs.
 | |
|  * Note that init_thread_union is released to heap soon after boot,
 | |
|  * so we include it in the init data.
 | |
|  *
 | |
|  * For TILE-Gx, we might want to consider allowing access to PA
 | |
|  * regions corresponding to PCI space, etc.
 | |
|  */
 | |
| int devmem_is_allowed(unsigned long pagenr)
 | |
| {
 | |
| 	return pagenr < kaddr_to_pfn(_end) &&
 | |
| 		!(pagenr >= kaddr_to_pfn(&init_thread_union) ||
 | |
| 		  pagenr < kaddr_to_pfn(__init_end)) &&
 | |
| 		!(pagenr >= kaddr_to_pfn(_sinittext) ||
 | |
| 		  pagenr <= kaddr_to_pfn(_einittext-1));
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_HIGHMEM
 | |
| static void __init permanent_kmaps_init(pgd_t *pgd_base)
 | |
| {
 | |
| 	pgd_t *pgd;
 | |
| 	pud_t *pud;
 | |
| 	pmd_t *pmd;
 | |
| 	pte_t *pte;
 | |
| 	unsigned long vaddr;
 | |
| 
 | |
| 	vaddr = PKMAP_BASE;
 | |
| 	page_table_range_init(vaddr, vaddr + PAGE_SIZE*LAST_PKMAP, pgd_base);
 | |
| 
 | |
| 	pgd = swapper_pg_dir + pgd_index(vaddr);
 | |
| 	pud = pud_offset(pgd, vaddr);
 | |
| 	pmd = pmd_offset(pud, vaddr);
 | |
| 	pte = pte_offset_kernel(pmd, vaddr);
 | |
| 	pkmap_page_table = pte;
 | |
| }
 | |
| #endif /* CONFIG_HIGHMEM */
 | |
| 
 | |
| 
 | |
| #ifndef CONFIG_64BIT
 | |
| static void __init init_free_pfn_range(unsigned long start, unsigned long end)
 | |
| {
 | |
| 	unsigned long pfn;
 | |
| 	struct page *page = pfn_to_page(start);
 | |
| 
 | |
| 	for (pfn = start; pfn < end; ) {
 | |
| 		/* Optimize by freeing pages in large batches */
 | |
| 		int order = __ffs(pfn);
 | |
| 		int count, i;
 | |
| 		struct page *p;
 | |
| 
 | |
| 		if (order >= MAX_ORDER)
 | |
| 			order = MAX_ORDER-1;
 | |
| 		count = 1 << order;
 | |
| 		while (pfn + count > end) {
 | |
| 			count >>= 1;
 | |
| 			--order;
 | |
| 		}
 | |
| 		for (p = page, i = 0; i < count; ++i, ++p) {
 | |
| 			__ClearPageReserved(p);
 | |
| 			/*
 | |
| 			 * Hacky direct set to avoid unnecessary
 | |
| 			 * lock take/release for EVERY page here.
 | |
| 			 */
 | |
| 			p->_count.counter = 0;
 | |
| 			p->_mapcount.counter = -1;
 | |
| 		}
 | |
| 		init_page_count(page);
 | |
| 		__free_pages(page, order);
 | |
| 		adjust_managed_page_count(page, count);
 | |
| 
 | |
| 		page += count;
 | |
| 		pfn += count;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void __init set_non_bootmem_pages_init(void)
 | |
| {
 | |
| 	struct zone *z;
 | |
| 	for_each_zone(z) {
 | |
| 		unsigned long start, end;
 | |
| 		int nid = z->zone_pgdat->node_id;
 | |
| #ifdef CONFIG_HIGHMEM
 | |
| 		int idx = zone_idx(z);
 | |
| #endif
 | |
| 
 | |
| 		start = z->zone_start_pfn;
 | |
| 		end = start + z->spanned_pages;
 | |
| 		start = max(start, node_free_pfn[nid]);
 | |
| 		start = max(start, max_low_pfn);
 | |
| 
 | |
| #ifdef CONFIG_HIGHMEM
 | |
| 		if (idx == ZONE_HIGHMEM)
 | |
| 			totalhigh_pages += z->spanned_pages;
 | |
| #endif
 | |
| 		if (kdata_huge) {
 | |
| 			unsigned long percpu_pfn = node_percpu_pfn[nid];
 | |
| 			if (start < percpu_pfn && end > percpu_pfn)
 | |
| 				end = percpu_pfn;
 | |
| 		}
 | |
| #ifdef CONFIG_PCI
 | |
| 		if (start <= pci_reserve_start_pfn &&
 | |
| 		    end > pci_reserve_start_pfn) {
 | |
| 			if (end > pci_reserve_end_pfn)
 | |
| 				init_free_pfn_range(pci_reserve_end_pfn, end);
 | |
| 			end = pci_reserve_start_pfn;
 | |
| 		}
 | |
| #endif
 | |
| 		init_free_pfn_range(start, end);
 | |
| 	}
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * paging_init() sets up the page tables - note that all of lowmem is
 | |
|  * already mapped by head.S.
 | |
|  */
 | |
| void __init paging_init(void)
 | |
| {
 | |
| #ifdef __tilegx__
 | |
| 	pud_t *pud;
 | |
| #endif
 | |
| 	pgd_t *pgd_base = swapper_pg_dir;
 | |
| 
 | |
| 	kernel_physical_mapping_init(pgd_base);
 | |
| 
 | |
| 	/* Fixed mappings, only the page table structure has to be created. */
 | |
| 	page_table_range_init(fix_to_virt(__end_of_fixed_addresses - 1),
 | |
| 			      FIXADDR_TOP, pgd_base);
 | |
| 
 | |
| #ifdef CONFIG_HIGHMEM
 | |
| 	permanent_kmaps_init(pgd_base);
 | |
| #endif
 | |
| 
 | |
| #ifdef __tilegx__
 | |
| 	/*
 | |
| 	 * Since GX allocates just one pmd_t array worth of vmalloc space,
 | |
| 	 * we go ahead and allocate it statically here, then share it
 | |
| 	 * globally.  As a result we don't have to worry about any task
 | |
| 	 * changing init_mm once we get up and running, and there's no
 | |
| 	 * need for e.g. vmalloc_sync_all().
 | |
| 	 */
 | |
| 	BUILD_BUG_ON(pgd_index(VMALLOC_START) != pgd_index(VMALLOC_END - 1));
 | |
| 	pud = pud_offset(pgd_base + pgd_index(VMALLOC_START), VMALLOC_START);
 | |
| 	assign_pmd(pud, alloc_pmd());
 | |
| #endif
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Walk the kernel page tables and derive the page_home() from
 | |
|  * the PTEs, so that set_pte() can properly validate the caching
 | |
|  * of all PTEs it sees.
 | |
|  */
 | |
| void __init set_page_homes(void)
 | |
| {
 | |
| }
 | |
| 
 | |
| static void __init set_max_mapnr_init(void)
 | |
| {
 | |
| #ifdef CONFIG_FLATMEM
 | |
| 	max_mapnr = max_low_pfn;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| void __init mem_init(void)
 | |
| {
 | |
| 	int i;
 | |
| #ifndef __tilegx__
 | |
| 	void *last;
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_FLATMEM
 | |
| 	BUG_ON(!mem_map);
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_HIGHMEM
 | |
| 	/* check that fixmap and pkmap do not overlap */
 | |
| 	if (PKMAP_ADDR(LAST_PKMAP-1) >= FIXADDR_START) {
 | |
| 		pr_err("fixmap and kmap areas overlap - this will crash\n");
 | |
| 		pr_err("pkstart: %lxh pkend: %lxh fixstart %lxh\n",
 | |
| 		       PKMAP_BASE, PKMAP_ADDR(LAST_PKMAP-1), FIXADDR_START);
 | |
| 		BUG();
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	set_max_mapnr_init();
 | |
| 
 | |
| 	/* this will put all bootmem onto the freelists */
 | |
| 	free_all_bootmem();
 | |
| 
 | |
| #ifndef CONFIG_64BIT
 | |
| 	/* count all remaining LOWMEM and give all HIGHMEM to page allocator */
 | |
| 	set_non_bootmem_pages_init();
 | |
| #endif
 | |
| 
 | |
| 	mem_init_print_info(NULL);
 | |
| 
 | |
| 	/*
 | |
| 	 * In debug mode, dump some interesting memory mappings.
 | |
| 	 */
 | |
| #ifdef CONFIG_HIGHMEM
 | |
| 	printk(KERN_DEBUG "  KMAP    %#lx - %#lx\n",
 | |
| 	       FIXADDR_START, FIXADDR_TOP + PAGE_SIZE - 1);
 | |
| 	printk(KERN_DEBUG "  PKMAP   %#lx - %#lx\n",
 | |
| 	       PKMAP_BASE, PKMAP_ADDR(LAST_PKMAP) - 1);
 | |
| #endif
 | |
| 	printk(KERN_DEBUG "  VMALLOC %#lx - %#lx\n",
 | |
| 	       _VMALLOC_START, _VMALLOC_END - 1);
 | |
| #ifdef __tilegx__
 | |
| 	for (i = MAX_NUMNODES-1; i >= 0; --i) {
 | |
| 		struct pglist_data *node = &node_data[i];
 | |
| 		if (node->node_present_pages) {
 | |
| 			unsigned long start = (unsigned long)
 | |
| 				pfn_to_kaddr(node->node_start_pfn);
 | |
| 			unsigned long end = start +
 | |
| 				(node->node_present_pages << PAGE_SHIFT);
 | |
| 			printk(KERN_DEBUG "  MEM%d    %#lx - %#lx\n",
 | |
| 			       i, start, end - 1);
 | |
| 		}
 | |
| 	}
 | |
| #else
 | |
| 	last = high_memory;
 | |
| 	for (i = MAX_NUMNODES-1; i >= 0; --i) {
 | |
| 		if ((unsigned long)vbase_map[i] != -1UL) {
 | |
| 			printk(KERN_DEBUG "  LOWMEM%d %#lx - %#lx\n",
 | |
| 			       i, (unsigned long) (vbase_map[i]),
 | |
| 			       (unsigned long) (last-1));
 | |
| 			last = vbase_map[i];
 | |
| 		}
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| #ifndef __tilegx__
 | |
| 	/*
 | |
| 	 * Convert from using one lock for all atomic operations to
 | |
| 	 * one per cpu.
 | |
| 	 */
 | |
| 	__init_atomic_per_cpu();
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * this is for the non-NUMA, single node SMP system case.
 | |
|  * Specifically, in the case of x86, we will always add
 | |
|  * memory to the highmem for now.
 | |
|  */
 | |
| #ifndef CONFIG_NEED_MULTIPLE_NODES
 | |
| int arch_add_memory(u64 start, u64 size)
 | |
| {
 | |
| 	struct pglist_data *pgdata = &contig_page_data;
 | |
| 	struct zone *zone = pgdata->node_zones + MAX_NR_ZONES-1;
 | |
| 	unsigned long start_pfn = start >> PAGE_SHIFT;
 | |
| 	unsigned long nr_pages = size >> PAGE_SHIFT;
 | |
| 
 | |
| 	return __add_pages(zone, start_pfn, nr_pages);
 | |
| }
 | |
| 
 | |
| int remove_memory(u64 start, u64 size)
 | |
| {
 | |
| 	return -EINVAL;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_MEMORY_HOTREMOVE
 | |
| int arch_remove_memory(u64 start, u64 size)
 | |
| {
 | |
| 	/* TODO */
 | |
| 	return -EBUSY;
 | |
| }
 | |
| #endif
 | |
| #endif
 | |
| 
 | |
| struct kmem_cache *pgd_cache;
 | |
| 
 | |
| void __init pgtable_cache_init(void)
 | |
| {
 | |
| 	pgd_cache = kmem_cache_create("pgd", SIZEOF_PGD, SIZEOF_PGD, 0, NULL);
 | |
| 	if (!pgd_cache)
 | |
| 		panic("pgtable_cache_init(): Cannot create pgd cache");
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_DEBUG_PAGEALLOC
 | |
| static long __write_once initfree;
 | |
| #else
 | |
| static long __write_once initfree = 1;
 | |
| #endif
 | |
| 
 | |
| /* Select whether to free (1) or mark unusable (0) the __init pages. */
 | |
| static int __init set_initfree(char *str)
 | |
| {
 | |
| 	long val;
 | |
| 	if (kstrtol(str, 0, &val) == 0) {
 | |
| 		initfree = val;
 | |
| 		pr_info("initfree: %s free init pages\n",
 | |
| 			initfree ? "will" : "won't");
 | |
| 	}
 | |
| 	return 1;
 | |
| }
 | |
| __setup("initfree=", set_initfree);
 | |
| 
 | |
| static void free_init_pages(char *what, unsigned long begin, unsigned long end)
 | |
| {
 | |
| 	unsigned long addr = (unsigned long) begin;
 | |
| 
 | |
| 	if (kdata_huge && !initfree) {
 | |
| 		pr_warn("Warning: ignoring initfree=0: incompatible with kdata=huge\n");
 | |
| 		initfree = 1;
 | |
| 	}
 | |
| 	end = (end + PAGE_SIZE - 1) & PAGE_MASK;
 | |
| 	local_flush_tlb_pages(NULL, begin, PAGE_SIZE, end - begin);
 | |
| 	for (addr = begin; addr < end; addr += PAGE_SIZE) {
 | |
| 		/*
 | |
| 		 * Note we just reset the home here directly in the
 | |
| 		 * page table.  We know this is safe because our caller
 | |
| 		 * just flushed the caches on all the other cpus,
 | |
| 		 * and they won't be touching any of these pages.
 | |
| 		 */
 | |
| 		int pfn = kaddr_to_pfn((void *)addr);
 | |
| 		struct page *page = pfn_to_page(pfn);
 | |
| 		pte_t *ptep = virt_to_kpte(addr);
 | |
| 		if (!initfree) {
 | |
| 			/*
 | |
| 			 * If debugging page accesses then do not free
 | |
| 			 * this memory but mark them not present - any
 | |
| 			 * buggy init-section access will create a
 | |
| 			 * kernel page fault:
 | |
| 			 */
 | |
| 			pte_clear(&init_mm, addr, ptep);
 | |
| 			continue;
 | |
| 		}
 | |
| 		if (pte_huge(*ptep))
 | |
| 			BUG_ON(!kdata_huge);
 | |
| 		else
 | |
| 			set_pte_at(&init_mm, addr, ptep,
 | |
| 				   pfn_pte(pfn, PAGE_KERNEL));
 | |
| 		memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
 | |
| 		free_reserved_page(page);
 | |
| 	}
 | |
| 	pr_info("Freeing %s: %ldk freed\n", what, (end - begin) >> 10);
 | |
| }
 | |
| 
 | |
| void free_initmem(void)
 | |
| {
 | |
| 	const unsigned long text_delta = MEM_SV_START - PAGE_OFFSET;
 | |
| 
 | |
| 	/*
 | |
| 	 * Evict the cache on all cores to avoid incoherence.
 | |
| 	 * We are guaranteed that no one will touch the init pages any more.
 | |
| 	 */
 | |
| 	homecache_evict(&cpu_cacheable_map);
 | |
| 
 | |
| 	/* Free the data pages that we won't use again after init. */
 | |
| 	free_init_pages("unused kernel data",
 | |
| 			(unsigned long)__init_begin,
 | |
| 			(unsigned long)__init_end);
 | |
| 
 | |
| 	/*
 | |
| 	 * Free the pages mapped from 0xc0000000 that correspond to code
 | |
| 	 * pages from MEM_SV_START that we won't use again after init.
 | |
| 	 */
 | |
| 	free_init_pages("unused kernel text",
 | |
| 			(unsigned long)_sinittext - text_delta,
 | |
| 			(unsigned long)_einittext - text_delta);
 | |
| 	/* Do a global TLB flush so everyone sees the changes. */
 | |
| 	flush_tlb_all();
 | |
| }
 |