 f47436734d
			
		
	
	
	f47436734d
	
	
	
		
			
			And other message logging neatening. Other miscellanea: o coalesce formats o realign arguments o standardize a couple of macros o use __func__ instead of embedding the function name Signed-off-by: Joe Perches <joe@perches.com> Signed-off-by: Chris Metcalf <cmetcalf@tilera.com>
		
			
				
	
	
		
			782 lines
		
	
	
	
		
			22 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			782 lines
		
	
	
	
		
			22 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright 2010 Tilera Corporation. All Rights Reserved.
 | |
|  *
 | |
|  *   This program is free software; you can redistribute it and/or
 | |
|  *   modify it under the terms of the GNU General Public License
 | |
|  *   as published by the Free Software Foundation, version 2.
 | |
|  *
 | |
|  *   This program is distributed in the hope that it will be useful, but
 | |
|  *   WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
 | |
|  *   NON INFRINGEMENT.  See the GNU General Public License for
 | |
|  *   more details.
 | |
|  *
 | |
|  * A code-rewriter that enables instruction single-stepping.
 | |
|  */
 | |
| 
 | |
| #include <linux/smp.h>
 | |
| #include <linux/ptrace.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/thread_info.h>
 | |
| #include <linux/uaccess.h>
 | |
| #include <linux/mman.h>
 | |
| #include <linux/types.h>
 | |
| #include <linux/err.h>
 | |
| #include <linux/prctl.h>
 | |
| #include <asm/cacheflush.h>
 | |
| #include <asm/traps.h>
 | |
| #include <asm/uaccess.h>
 | |
| #include <asm/unaligned.h>
 | |
| #include <arch/abi.h>
 | |
| #include <arch/spr_def.h>
 | |
| #include <arch/opcode.h>
 | |
| 
 | |
| 
 | |
| #ifndef __tilegx__   /* Hardware support for single step unavailable. */
 | |
| 
 | |
| #define signExtend17(val) sign_extend((val), 17)
 | |
| #define TILE_X1_MASK (0xffffffffULL << 31)
 | |
| 
 | |
| enum mem_op {
 | |
| 	MEMOP_NONE,
 | |
| 	MEMOP_LOAD,
 | |
| 	MEMOP_STORE,
 | |
| 	MEMOP_LOAD_POSTINCR,
 | |
| 	MEMOP_STORE_POSTINCR
 | |
| };
 | |
| 
 | |
| static inline tilepro_bundle_bits set_BrOff_X1(tilepro_bundle_bits n,
 | |
| 	s32 offset)
 | |
| {
 | |
| 	tilepro_bundle_bits result;
 | |
| 
 | |
| 	/* mask out the old offset */
 | |
| 	tilepro_bundle_bits mask = create_BrOff_X1(-1);
 | |
| 	result = n & (~mask);
 | |
| 
 | |
| 	/* or in the new offset */
 | |
| 	result |= create_BrOff_X1(offset);
 | |
| 
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| static inline tilepro_bundle_bits move_X1(tilepro_bundle_bits n, int dest,
 | |
| 	int src)
 | |
| {
 | |
| 	tilepro_bundle_bits result;
 | |
| 	tilepro_bundle_bits op;
 | |
| 
 | |
| 	result = n & (~TILE_X1_MASK);
 | |
| 
 | |
| 	op = create_Opcode_X1(SPECIAL_0_OPCODE_X1) |
 | |
| 		create_RRROpcodeExtension_X1(OR_SPECIAL_0_OPCODE_X1) |
 | |
| 		create_Dest_X1(dest) |
 | |
| 		create_SrcB_X1(TREG_ZERO) |
 | |
| 		create_SrcA_X1(src) ;
 | |
| 
 | |
| 	result |= op;
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| static inline tilepro_bundle_bits nop_X1(tilepro_bundle_bits n)
 | |
| {
 | |
| 	return move_X1(n, TREG_ZERO, TREG_ZERO);
 | |
| }
 | |
| 
 | |
| static inline tilepro_bundle_bits addi_X1(
 | |
| 	tilepro_bundle_bits n, int dest, int src, int imm)
 | |
| {
 | |
| 	n &= ~TILE_X1_MASK;
 | |
| 
 | |
| 	n |=  (create_SrcA_X1(src) |
 | |
| 	       create_Dest_X1(dest) |
 | |
| 	       create_Imm8_X1(imm) |
 | |
| 	       create_S_X1(0) |
 | |
| 	       create_Opcode_X1(IMM_0_OPCODE_X1) |
 | |
| 	       create_ImmOpcodeExtension_X1(ADDI_IMM_0_OPCODE_X1));
 | |
| 
 | |
| 	return n;
 | |
| }
 | |
| 
 | |
| static tilepro_bundle_bits rewrite_load_store_unaligned(
 | |
| 	struct single_step_state *state,
 | |
| 	tilepro_bundle_bits bundle,
 | |
| 	struct pt_regs *regs,
 | |
| 	enum mem_op mem_op,
 | |
| 	int size, int sign_ext)
 | |
| {
 | |
| 	unsigned char __user *addr;
 | |
| 	int val_reg, addr_reg, err, val;
 | |
| 	int align_ctl;
 | |
| 
 | |
| 	align_ctl = unaligned_fixup;
 | |
| 	switch (task_thread_info(current)->align_ctl) {
 | |
| 	case PR_UNALIGN_NOPRINT:
 | |
| 		align_ctl = 1;
 | |
| 		break;
 | |
| 	case PR_UNALIGN_SIGBUS:
 | |
| 		align_ctl = 0;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	/* Get address and value registers */
 | |
| 	if (bundle & TILEPRO_BUNDLE_Y_ENCODING_MASK) {
 | |
| 		addr_reg = get_SrcA_Y2(bundle);
 | |
| 		val_reg = get_SrcBDest_Y2(bundle);
 | |
| 	} else if (mem_op == MEMOP_LOAD || mem_op == MEMOP_LOAD_POSTINCR) {
 | |
| 		addr_reg = get_SrcA_X1(bundle);
 | |
| 		val_reg  = get_Dest_X1(bundle);
 | |
| 	} else {
 | |
| 		addr_reg = get_SrcA_X1(bundle);
 | |
| 		val_reg  = get_SrcB_X1(bundle);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If registers are not GPRs, don't try to handle it.
 | |
| 	 *
 | |
| 	 * FIXME: we could handle non-GPR loads by getting the real value
 | |
| 	 * from memory, writing it to the single step buffer, using a
 | |
| 	 * temp_reg to hold a pointer to that memory, then executing that
 | |
| 	 * instruction and resetting temp_reg.  For non-GPR stores, it's a
 | |
| 	 * little trickier; we could use the single step buffer for that
 | |
| 	 * too, but we'd have to add some more state bits so that we could
 | |
| 	 * call back in here to copy that value to the real target.  For
 | |
| 	 * now, we just handle the simple case.
 | |
| 	 */
 | |
| 	if ((val_reg >= PTREGS_NR_GPRS &&
 | |
| 	     (val_reg != TREG_ZERO ||
 | |
| 	      mem_op == MEMOP_LOAD ||
 | |
| 	      mem_op == MEMOP_LOAD_POSTINCR)) ||
 | |
| 	    addr_reg >= PTREGS_NR_GPRS)
 | |
| 		return bundle;
 | |
| 
 | |
| 	/* If it's aligned, don't handle it specially */
 | |
| 	addr = (void __user *)regs->regs[addr_reg];
 | |
| 	if (((unsigned long)addr % size) == 0)
 | |
| 		return bundle;
 | |
| 
 | |
| 	/*
 | |
| 	 * Return SIGBUS with the unaligned address, if requested.
 | |
| 	 * Note that we return SIGBUS even for completely invalid addresses
 | |
| 	 * as long as they are in fact unaligned; this matches what the
 | |
| 	 * tilepro hardware would be doing, if it could provide us with the
 | |
| 	 * actual bad address in an SPR, which it doesn't.
 | |
| 	 */
 | |
| 	if (align_ctl == 0) {
 | |
| 		siginfo_t info = {
 | |
| 			.si_signo = SIGBUS,
 | |
| 			.si_code = BUS_ADRALN,
 | |
| 			.si_addr = addr
 | |
| 		};
 | |
| 		trace_unhandled_signal("unaligned trap", regs,
 | |
| 				       (unsigned long)addr, SIGBUS);
 | |
| 		force_sig_info(info.si_signo, &info, current);
 | |
| 		return (tilepro_bundle_bits) 0;
 | |
| 	}
 | |
| 
 | |
| 	/* Handle unaligned load/store */
 | |
| 	if (mem_op == MEMOP_LOAD || mem_op == MEMOP_LOAD_POSTINCR) {
 | |
| 		unsigned short val_16;
 | |
| 		switch (size) {
 | |
| 		case 2:
 | |
| 			err = copy_from_user(&val_16, addr, sizeof(val_16));
 | |
| 			val = sign_ext ? ((short)val_16) : val_16;
 | |
| 			break;
 | |
| 		case 4:
 | |
| 			err = copy_from_user(&val, addr, sizeof(val));
 | |
| 			break;
 | |
| 		default:
 | |
| 			BUG();
 | |
| 		}
 | |
| 		if (err == 0) {
 | |
| 			state->update_reg = val_reg;
 | |
| 			state->update_value = val;
 | |
| 			state->update = 1;
 | |
| 		}
 | |
| 	} else {
 | |
| 		unsigned short val_16;
 | |
| 		val = (val_reg == TREG_ZERO) ? 0 : regs->regs[val_reg];
 | |
| 		switch (size) {
 | |
| 		case 2:
 | |
| 			val_16 = val;
 | |
| 			err = copy_to_user(addr, &val_16, sizeof(val_16));
 | |
| 			break;
 | |
| 		case 4:
 | |
| 			err = copy_to_user(addr, &val, sizeof(val));
 | |
| 			break;
 | |
| 		default:
 | |
| 			BUG();
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (err) {
 | |
| 		siginfo_t info = {
 | |
| 			.si_signo = SIGBUS,
 | |
| 			.si_code = BUS_ADRALN,
 | |
| 			.si_addr = addr
 | |
| 		};
 | |
| 		trace_unhandled_signal("bad address for unaligned fixup", regs,
 | |
| 				       (unsigned long)addr, SIGBUS);
 | |
| 		force_sig_info(info.si_signo, &info, current);
 | |
| 		return (tilepro_bundle_bits) 0;
 | |
| 	}
 | |
| 
 | |
| 	if (unaligned_printk || unaligned_fixup_count == 0) {
 | |
| 		pr_info("Process %d/%s: PC %#lx: Fixup of unaligned %s at %#lx\n",
 | |
| 			current->pid, current->comm, regs->pc,
 | |
| 			mem_op == MEMOP_LOAD || mem_op == MEMOP_LOAD_POSTINCR ?
 | |
| 			"load" : "store",
 | |
| 			(unsigned long)addr);
 | |
| 		if (!unaligned_printk) {
 | |
| #define P pr_info
 | |
| P("\n");
 | |
| P("Unaligned fixups in the kernel will slow your application considerably.\n");
 | |
| P("To find them, write a \"1\" to /proc/sys/tile/unaligned_fixup/printk,\n");
 | |
| P("which requests the kernel show all unaligned fixups, or write a \"0\"\n");
 | |
| P("to /proc/sys/tile/unaligned_fixup/enabled, in which case each unaligned\n");
 | |
| P("access will become a SIGBUS you can debug. No further warnings will be\n");
 | |
| P("shown so as to avoid additional slowdown, but you can track the number\n");
 | |
| P("of fixups performed via /proc/sys/tile/unaligned_fixup/count.\n");
 | |
| P("Use the tile-addr2line command (see \"info addr2line\") to decode PCs.\n");
 | |
| P("\n");
 | |
| #undef P
 | |
| 		}
 | |
| 	}
 | |
| 	++unaligned_fixup_count;
 | |
| 
 | |
| 	if (bundle & TILEPRO_BUNDLE_Y_ENCODING_MASK) {
 | |
| 		/* Convert the Y2 instruction to a prefetch. */
 | |
| 		bundle &= ~(create_SrcBDest_Y2(-1) |
 | |
| 			    create_Opcode_Y2(-1));
 | |
| 		bundle |= (create_SrcBDest_Y2(TREG_ZERO) |
 | |
| 			   create_Opcode_Y2(LW_OPCODE_Y2));
 | |
| 	/* Replace the load postincr with an addi */
 | |
| 	} else if (mem_op == MEMOP_LOAD_POSTINCR) {
 | |
| 		bundle = addi_X1(bundle, addr_reg, addr_reg,
 | |
| 				 get_Imm8_X1(bundle));
 | |
| 	/* Replace the store postincr with an addi */
 | |
| 	} else if (mem_op == MEMOP_STORE_POSTINCR) {
 | |
| 		bundle = addi_X1(bundle, addr_reg, addr_reg,
 | |
| 				 get_Dest_Imm8_X1(bundle));
 | |
| 	} else {
 | |
| 		/* Convert the X1 instruction to a nop. */
 | |
| 		bundle &= ~(create_Opcode_X1(-1) |
 | |
| 			    create_UnShOpcodeExtension_X1(-1) |
 | |
| 			    create_UnOpcodeExtension_X1(-1));
 | |
| 		bundle |= (create_Opcode_X1(SHUN_0_OPCODE_X1) |
 | |
| 			   create_UnShOpcodeExtension_X1(
 | |
| 				   UN_0_SHUN_0_OPCODE_X1) |
 | |
| 			   create_UnOpcodeExtension_X1(
 | |
| 				   NOP_UN_0_SHUN_0_OPCODE_X1));
 | |
| 	}
 | |
| 
 | |
| 	return bundle;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Called after execve() has started the new image.  This allows us
 | |
|  * to reset the info state.  Note that the the mmap'ed memory, if there
 | |
|  * was any, has already been unmapped by the exec.
 | |
|  */
 | |
| void single_step_execve(void)
 | |
| {
 | |
| 	struct thread_info *ti = current_thread_info();
 | |
| 	kfree(ti->step_state);
 | |
| 	ti->step_state = NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * single_step_once() - entry point when single stepping has been triggered.
 | |
|  * @regs: The machine register state
 | |
|  *
 | |
|  *  When we arrive at this routine via a trampoline, the single step
 | |
|  *  engine copies the executing bundle to the single step buffer.
 | |
|  *  If the instruction is a condition branch, then the target is
 | |
|  *  reset to one past the next instruction. If the instruction
 | |
|  *  sets the lr, then that is noted. If the instruction is a jump
 | |
|  *  or call, then the new target pc is preserved and the current
 | |
|  *  bundle instruction set to null.
 | |
|  *
 | |
|  *  The necessary post-single-step rewriting information is stored in
 | |
|  *  single_step_state->  We use data segment values because the
 | |
|  *  stack will be rewound when we run the rewritten single-stepped
 | |
|  *  instruction.
 | |
|  */
 | |
| void single_step_once(struct pt_regs *regs)
 | |
| {
 | |
| 	extern tilepro_bundle_bits __single_step_ill_insn;
 | |
| 	extern tilepro_bundle_bits __single_step_j_insn;
 | |
| 	extern tilepro_bundle_bits __single_step_addli_insn;
 | |
| 	extern tilepro_bundle_bits __single_step_auli_insn;
 | |
| 	struct thread_info *info = (void *)current_thread_info();
 | |
| 	struct single_step_state *state = info->step_state;
 | |
| 	int is_single_step = test_ti_thread_flag(info, TIF_SINGLESTEP);
 | |
| 	tilepro_bundle_bits __user *buffer, *pc;
 | |
| 	tilepro_bundle_bits bundle;
 | |
| 	int temp_reg;
 | |
| 	int target_reg = TREG_LR;
 | |
| 	int err;
 | |
| 	enum mem_op mem_op = MEMOP_NONE;
 | |
| 	int size = 0, sign_ext = 0;  /* happy compiler */
 | |
| 	int align_ctl;
 | |
| 
 | |
| 	align_ctl = unaligned_fixup;
 | |
| 	switch (task_thread_info(current)->align_ctl) {
 | |
| 	case PR_UNALIGN_NOPRINT:
 | |
| 		align_ctl = 1;
 | |
| 		break;
 | |
| 	case PR_UNALIGN_SIGBUS:
 | |
| 		align_ctl = 0;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	asm(
 | |
| "    .pushsection .rodata.single_step\n"
 | |
| "    .align 8\n"
 | |
| "    .globl    __single_step_ill_insn\n"
 | |
| "__single_step_ill_insn:\n"
 | |
| "    ill\n"
 | |
| "    .globl    __single_step_addli_insn\n"
 | |
| "__single_step_addli_insn:\n"
 | |
| "    { nop; addli r0, zero, 0 }\n"
 | |
| "    .globl    __single_step_auli_insn\n"
 | |
| "__single_step_auli_insn:\n"
 | |
| "    { nop; auli r0, r0, 0 }\n"
 | |
| "    .globl    __single_step_j_insn\n"
 | |
| "__single_step_j_insn:\n"
 | |
| "    j .\n"
 | |
| "    .popsection\n"
 | |
| 	);
 | |
| 
 | |
| 	/*
 | |
| 	 * Enable interrupts here to allow touching userspace and the like.
 | |
| 	 * The callers expect this: do_trap() already has interrupts
 | |
| 	 * enabled, and do_work_pending() handles functions that enable
 | |
| 	 * interrupts internally.
 | |
| 	 */
 | |
| 	local_irq_enable();
 | |
| 
 | |
| 	if (state == NULL) {
 | |
| 		/* allocate a page of writable, executable memory */
 | |
| 		state = kmalloc(sizeof(struct single_step_state), GFP_KERNEL);
 | |
| 		if (state == NULL) {
 | |
| 			pr_err("Out of kernel memory trying to single-step\n");
 | |
| 			return;
 | |
| 		}
 | |
| 
 | |
| 		/* allocate a cache line of writable, executable memory */
 | |
| 		buffer = (void __user *) vm_mmap(NULL, 0, 64,
 | |
| 					  PROT_EXEC | PROT_READ | PROT_WRITE,
 | |
| 					  MAP_PRIVATE | MAP_ANONYMOUS,
 | |
| 					  0);
 | |
| 
 | |
| 		if (IS_ERR((void __force *)buffer)) {
 | |
| 			kfree(state);
 | |
| 			pr_err("Out of kernel pages trying to single-step\n");
 | |
| 			return;
 | |
| 		}
 | |
| 
 | |
| 		state->buffer = buffer;
 | |
| 		state->is_enabled = 0;
 | |
| 
 | |
| 		info->step_state = state;
 | |
| 
 | |
| 		/* Validate our stored instruction patterns */
 | |
| 		BUG_ON(get_Opcode_X1(__single_step_addli_insn) !=
 | |
| 		       ADDLI_OPCODE_X1);
 | |
| 		BUG_ON(get_Opcode_X1(__single_step_auli_insn) !=
 | |
| 		       AULI_OPCODE_X1);
 | |
| 		BUG_ON(get_SrcA_X1(__single_step_addli_insn) != TREG_ZERO);
 | |
| 		BUG_ON(get_Dest_X1(__single_step_addli_insn) != 0);
 | |
| 		BUG_ON(get_JOffLong_X1(__single_step_j_insn) != 0);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If we are returning from a syscall, we still haven't hit the
 | |
| 	 * "ill" for the swint1 instruction.  So back the PC up to be
 | |
| 	 * pointing at the swint1, but we'll actually return directly
 | |
| 	 * back to the "ill" so we come back in via SIGILL as if we
 | |
| 	 * had "executed" the swint1 without ever being in kernel space.
 | |
| 	 */
 | |
| 	if (regs->faultnum == INT_SWINT_1)
 | |
| 		regs->pc -= 8;
 | |
| 
 | |
| 	pc = (tilepro_bundle_bits __user *)(regs->pc);
 | |
| 	if (get_user(bundle, pc) != 0) {
 | |
| 		pr_err("Couldn't read instruction at %p trying to step\n", pc);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* We'll follow the instruction with 2 ill op bundles */
 | |
| 	state->orig_pc = (unsigned long)pc;
 | |
| 	state->next_pc = (unsigned long)(pc + 1);
 | |
| 	state->branch_next_pc = 0;
 | |
| 	state->update = 0;
 | |
| 
 | |
| 	if (!(bundle & TILEPRO_BUNDLE_Y_ENCODING_MASK)) {
 | |
| 		/* two wide, check for control flow */
 | |
| 		int opcode = get_Opcode_X1(bundle);
 | |
| 
 | |
| 		switch (opcode) {
 | |
| 		/* branches */
 | |
| 		case BRANCH_OPCODE_X1:
 | |
| 		{
 | |
| 			s32 offset = signExtend17(get_BrOff_X1(bundle));
 | |
| 
 | |
| 			/*
 | |
| 			 * For branches, we use a rewriting trick to let the
 | |
| 			 * hardware evaluate whether the branch is taken or
 | |
| 			 * untaken.  We record the target offset and then
 | |
| 			 * rewrite the branch instruction to target 1 insn
 | |
| 			 * ahead if the branch is taken.  We then follow the
 | |
| 			 * rewritten branch with two bundles, each containing
 | |
| 			 * an "ill" instruction. The supervisor examines the
 | |
| 			 * pc after the single step code is executed, and if
 | |
| 			 * the pc is the first ill instruction, then the
 | |
| 			 * branch (if any) was not taken.  If the pc is the
 | |
| 			 * second ill instruction, then the branch was
 | |
| 			 * taken. The new pc is computed for these cases, and
 | |
| 			 * inserted into the registers for the thread.  If
 | |
| 			 * the pc is the start of the single step code, then
 | |
| 			 * an exception or interrupt was taken before the
 | |
| 			 * code started processing, and the same "original"
 | |
| 			 * pc is restored.  This change, different from the
 | |
| 			 * original implementation, has the advantage of
 | |
| 			 * executing a single user instruction.
 | |
| 			 */
 | |
| 			state->branch_next_pc = (unsigned long)(pc + offset);
 | |
| 
 | |
| 			/* rewrite branch offset to go forward one bundle */
 | |
| 			bundle = set_BrOff_X1(bundle, 2);
 | |
| 		}
 | |
| 		break;
 | |
| 
 | |
| 		/* jumps */
 | |
| 		case JALB_OPCODE_X1:
 | |
| 		case JALF_OPCODE_X1:
 | |
| 			state->update = 1;
 | |
| 			state->next_pc =
 | |
| 				(unsigned long) (pc + get_JOffLong_X1(bundle));
 | |
| 			break;
 | |
| 
 | |
| 		case JB_OPCODE_X1:
 | |
| 		case JF_OPCODE_X1:
 | |
| 			state->next_pc =
 | |
| 				(unsigned long) (pc + get_JOffLong_X1(bundle));
 | |
| 			bundle = nop_X1(bundle);
 | |
| 			break;
 | |
| 
 | |
| 		case SPECIAL_0_OPCODE_X1:
 | |
| 			switch (get_RRROpcodeExtension_X1(bundle)) {
 | |
| 			/* jump-register */
 | |
| 			case JALRP_SPECIAL_0_OPCODE_X1:
 | |
| 			case JALR_SPECIAL_0_OPCODE_X1:
 | |
| 				state->update = 1;
 | |
| 				state->next_pc =
 | |
| 					regs->regs[get_SrcA_X1(bundle)];
 | |
| 				break;
 | |
| 
 | |
| 			case JRP_SPECIAL_0_OPCODE_X1:
 | |
| 			case JR_SPECIAL_0_OPCODE_X1:
 | |
| 				state->next_pc =
 | |
| 					regs->regs[get_SrcA_X1(bundle)];
 | |
| 				bundle = nop_X1(bundle);
 | |
| 				break;
 | |
| 
 | |
| 			case LNK_SPECIAL_0_OPCODE_X1:
 | |
| 				state->update = 1;
 | |
| 				target_reg = get_Dest_X1(bundle);
 | |
| 				break;
 | |
| 
 | |
| 			/* stores */
 | |
| 			case SH_SPECIAL_0_OPCODE_X1:
 | |
| 				mem_op = MEMOP_STORE;
 | |
| 				size = 2;
 | |
| 				break;
 | |
| 
 | |
| 			case SW_SPECIAL_0_OPCODE_X1:
 | |
| 				mem_op = MEMOP_STORE;
 | |
| 				size = 4;
 | |
| 				break;
 | |
| 			}
 | |
| 			break;
 | |
| 
 | |
| 		/* loads and iret */
 | |
| 		case SHUN_0_OPCODE_X1:
 | |
| 			if (get_UnShOpcodeExtension_X1(bundle) ==
 | |
| 			    UN_0_SHUN_0_OPCODE_X1) {
 | |
| 				switch (get_UnOpcodeExtension_X1(bundle)) {
 | |
| 				case LH_UN_0_SHUN_0_OPCODE_X1:
 | |
| 					mem_op = MEMOP_LOAD;
 | |
| 					size = 2;
 | |
| 					sign_ext = 1;
 | |
| 					break;
 | |
| 
 | |
| 				case LH_U_UN_0_SHUN_0_OPCODE_X1:
 | |
| 					mem_op = MEMOP_LOAD;
 | |
| 					size = 2;
 | |
| 					sign_ext = 0;
 | |
| 					break;
 | |
| 
 | |
| 				case LW_UN_0_SHUN_0_OPCODE_X1:
 | |
| 					mem_op = MEMOP_LOAD;
 | |
| 					size = 4;
 | |
| 					break;
 | |
| 
 | |
| 				case IRET_UN_0_SHUN_0_OPCODE_X1:
 | |
| 				{
 | |
| 					unsigned long ex0_0 = __insn_mfspr(
 | |
| 						SPR_EX_CONTEXT_0_0);
 | |
| 					unsigned long ex0_1 = __insn_mfspr(
 | |
| 						SPR_EX_CONTEXT_0_1);
 | |
| 					/*
 | |
| 					 * Special-case it if we're iret'ing
 | |
| 					 * to PL0 again.  Otherwise just let
 | |
| 					 * it run and it will generate SIGILL.
 | |
| 					 */
 | |
| 					if (EX1_PL(ex0_1) == USER_PL) {
 | |
| 						state->next_pc = ex0_0;
 | |
| 						regs->ex1 = ex0_1;
 | |
| 						bundle = nop_X1(bundle);
 | |
| 					}
 | |
| 				}
 | |
| 				}
 | |
| 			}
 | |
| 			break;
 | |
| 
 | |
| 		/* postincrement operations */
 | |
| 		case IMM_0_OPCODE_X1:
 | |
| 			switch (get_ImmOpcodeExtension_X1(bundle)) {
 | |
| 			case LWADD_IMM_0_OPCODE_X1:
 | |
| 				mem_op = MEMOP_LOAD_POSTINCR;
 | |
| 				size = 4;
 | |
| 				break;
 | |
| 
 | |
| 			case LHADD_IMM_0_OPCODE_X1:
 | |
| 				mem_op = MEMOP_LOAD_POSTINCR;
 | |
| 				size = 2;
 | |
| 				sign_ext = 1;
 | |
| 				break;
 | |
| 
 | |
| 			case LHADD_U_IMM_0_OPCODE_X1:
 | |
| 				mem_op = MEMOP_LOAD_POSTINCR;
 | |
| 				size = 2;
 | |
| 				sign_ext = 0;
 | |
| 				break;
 | |
| 
 | |
| 			case SWADD_IMM_0_OPCODE_X1:
 | |
| 				mem_op = MEMOP_STORE_POSTINCR;
 | |
| 				size = 4;
 | |
| 				break;
 | |
| 
 | |
| 			case SHADD_IMM_0_OPCODE_X1:
 | |
| 				mem_op = MEMOP_STORE_POSTINCR;
 | |
| 				size = 2;
 | |
| 				break;
 | |
| 
 | |
| 			default:
 | |
| 				break;
 | |
| 			}
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		if (state->update) {
 | |
| 			/*
 | |
| 			 * Get an available register.  We start with a
 | |
| 			 * bitmask with 1's for available registers.
 | |
| 			 * We truncate to the low 32 registers since
 | |
| 			 * we are guaranteed to have set bits in the
 | |
| 			 * low 32 bits, then use ctz to pick the first.
 | |
| 			 */
 | |
| 			u32 mask = (u32) ~((1ULL << get_Dest_X0(bundle)) |
 | |
| 					   (1ULL << get_SrcA_X0(bundle)) |
 | |
| 					   (1ULL << get_SrcB_X0(bundle)) |
 | |
| 					   (1ULL << target_reg));
 | |
| 			temp_reg = __builtin_ctz(mask);
 | |
| 			state->update_reg = temp_reg;
 | |
| 			state->update_value = regs->regs[temp_reg];
 | |
| 			regs->regs[temp_reg] = (unsigned long) (pc+1);
 | |
| 			regs->flags |= PT_FLAGS_RESTORE_REGS;
 | |
| 			bundle = move_X1(bundle, target_reg, temp_reg);
 | |
| 		}
 | |
| 	} else {
 | |
| 		int opcode = get_Opcode_Y2(bundle);
 | |
| 
 | |
| 		switch (opcode) {
 | |
| 		/* loads */
 | |
| 		case LH_OPCODE_Y2:
 | |
| 			mem_op = MEMOP_LOAD;
 | |
| 			size = 2;
 | |
| 			sign_ext = 1;
 | |
| 			break;
 | |
| 
 | |
| 		case LH_U_OPCODE_Y2:
 | |
| 			mem_op = MEMOP_LOAD;
 | |
| 			size = 2;
 | |
| 			sign_ext = 0;
 | |
| 			break;
 | |
| 
 | |
| 		case LW_OPCODE_Y2:
 | |
| 			mem_op = MEMOP_LOAD;
 | |
| 			size = 4;
 | |
| 			break;
 | |
| 
 | |
| 		/* stores */
 | |
| 		case SH_OPCODE_Y2:
 | |
| 			mem_op = MEMOP_STORE;
 | |
| 			size = 2;
 | |
| 			break;
 | |
| 
 | |
| 		case SW_OPCODE_Y2:
 | |
| 			mem_op = MEMOP_STORE;
 | |
| 			size = 4;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Check if we need to rewrite an unaligned load/store.
 | |
| 	 * Returning zero is a special value meaning we generated a signal.
 | |
| 	 */
 | |
| 	if (mem_op != MEMOP_NONE && align_ctl >= 0) {
 | |
| 		bundle = rewrite_load_store_unaligned(state, bundle, regs,
 | |
| 						      mem_op, size, sign_ext);
 | |
| 		if (bundle == 0)
 | |
| 			return;
 | |
| 	}
 | |
| 
 | |
| 	/* write the bundle to our execution area */
 | |
| 	buffer = state->buffer;
 | |
| 	err = __put_user(bundle, buffer++);
 | |
| 
 | |
| 	/*
 | |
| 	 * If we're really single-stepping, we take an INT_ILL after.
 | |
| 	 * If we're just handling an unaligned access, we can just
 | |
| 	 * jump directly back to where we were in user code.
 | |
| 	 */
 | |
| 	if (is_single_step) {
 | |
| 		err |= __put_user(__single_step_ill_insn, buffer++);
 | |
| 		err |= __put_user(__single_step_ill_insn, buffer++);
 | |
| 	} else {
 | |
| 		long delta;
 | |
| 
 | |
| 		if (state->update) {
 | |
| 			/* We have some state to update; do it inline */
 | |
| 			int ha16;
 | |
| 			bundle = __single_step_addli_insn;
 | |
| 			bundle |= create_Dest_X1(state->update_reg);
 | |
| 			bundle |= create_Imm16_X1(state->update_value);
 | |
| 			err |= __put_user(bundle, buffer++);
 | |
| 			bundle = __single_step_auli_insn;
 | |
| 			bundle |= create_Dest_X1(state->update_reg);
 | |
| 			bundle |= create_SrcA_X1(state->update_reg);
 | |
| 			ha16 = (state->update_value + 0x8000) >> 16;
 | |
| 			bundle |= create_Imm16_X1(ha16);
 | |
| 			err |= __put_user(bundle, buffer++);
 | |
| 			state->update = 0;
 | |
| 		}
 | |
| 
 | |
| 		/* End with a jump back to the next instruction */
 | |
| 		delta = ((regs->pc + TILEPRO_BUNDLE_SIZE_IN_BYTES) -
 | |
| 			(unsigned long)buffer) >>
 | |
| 			TILEPRO_LOG2_BUNDLE_ALIGNMENT_IN_BYTES;
 | |
| 		bundle = __single_step_j_insn;
 | |
| 		bundle |= create_JOffLong_X1(delta);
 | |
| 		err |= __put_user(bundle, buffer++);
 | |
| 	}
 | |
| 
 | |
| 	if (err) {
 | |
| 		pr_err("Fault when writing to single-step buffer\n");
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Flush the buffer.
 | |
| 	 * We do a local flush only, since this is a thread-specific buffer.
 | |
| 	 */
 | |
| 	__flush_icache_range((unsigned long)state->buffer,
 | |
| 			     (unsigned long)buffer);
 | |
| 
 | |
| 	/* Indicate enabled */
 | |
| 	state->is_enabled = is_single_step;
 | |
| 	regs->pc = (unsigned long)state->buffer;
 | |
| 
 | |
| 	/* Fault immediately if we are coming back from a syscall. */
 | |
| 	if (regs->faultnum == INT_SWINT_1)
 | |
| 		regs->pc += 8;
 | |
| }
 | |
| 
 | |
| #else
 | |
| 
 | |
| static DEFINE_PER_CPU(unsigned long, ss_saved_pc);
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Called directly on the occasion of an interrupt.
 | |
|  *
 | |
|  * If the process doesn't have single step set, then we use this as an
 | |
|  * opportunity to turn single step off.
 | |
|  *
 | |
|  * It has been mentioned that we could conditionally turn off single stepping
 | |
|  * on each entry into the kernel and rely on single_step_once to turn it
 | |
|  * on for the processes that matter (as we already do), but this
 | |
|  * implementation is somewhat more efficient in that we muck with registers
 | |
|  * once on a bum interrupt rather than on every entry into the kernel.
 | |
|  *
 | |
|  * If SINGLE_STEP_CONTROL_K has CANCELED set, then an interrupt occurred,
 | |
|  * so we have to run through this process again before we can say that an
 | |
|  * instruction has executed.
 | |
|  *
 | |
|  * swint will set CANCELED, but it's a legitimate instruction.  Fortunately
 | |
|  * it changes the PC.  If it hasn't changed, then we know that the interrupt
 | |
|  * wasn't generated by swint and we'll need to run this process again before
 | |
|  * we can say an instruction has executed.
 | |
|  *
 | |
|  * If either CANCELED == 0 or the PC's changed, we send out SIGTRAPs and get
 | |
|  * on with our lives.
 | |
|  */
 | |
| 
 | |
| void gx_singlestep_handle(struct pt_regs *regs, int fault_num)
 | |
| {
 | |
| 	unsigned long *ss_pc = this_cpu_ptr(&ss_saved_pc);
 | |
| 	struct thread_info *info = (void *)current_thread_info();
 | |
| 	int is_single_step = test_ti_thread_flag(info, TIF_SINGLESTEP);
 | |
| 	unsigned long control = __insn_mfspr(SPR_SINGLE_STEP_CONTROL_K);
 | |
| 
 | |
| 	if (is_single_step == 0) {
 | |
| 		__insn_mtspr(SPR_SINGLE_STEP_EN_K_K, 0);
 | |
| 
 | |
| 	} else if ((*ss_pc != regs->pc) ||
 | |
| 		   (!(control & SPR_SINGLE_STEP_CONTROL_1__CANCELED_MASK))) {
 | |
| 
 | |
| 		control |= SPR_SINGLE_STEP_CONTROL_1__CANCELED_MASK;
 | |
| 		control |= SPR_SINGLE_STEP_CONTROL_1__INHIBIT_MASK;
 | |
| 		__insn_mtspr(SPR_SINGLE_STEP_CONTROL_K, control);
 | |
| 		send_sigtrap(current, regs);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Called from need_singlestep.  Set up the control registers and the enable
 | |
|  * register, then return back.
 | |
|  */
 | |
| 
 | |
| void single_step_once(struct pt_regs *regs)
 | |
| {
 | |
| 	unsigned long *ss_pc = this_cpu_ptr(&ss_saved_pc);
 | |
| 	unsigned long control = __insn_mfspr(SPR_SINGLE_STEP_CONTROL_K);
 | |
| 
 | |
| 	*ss_pc = regs->pc;
 | |
| 	control |= SPR_SINGLE_STEP_CONTROL_1__CANCELED_MASK;
 | |
| 	control |= SPR_SINGLE_STEP_CONTROL_1__INHIBIT_MASK;
 | |
| 	__insn_mtspr(SPR_SINGLE_STEP_CONTROL_K, control);
 | |
| 	__insn_mtspr(SPR_SINGLE_STEP_EN_K_K, 1 << USER_PL);
 | |
| }
 | |
| 
 | |
| void single_step_execve(void)
 | |
| {
 | |
| 	/* Nothing */
 | |
| }
 | |
| 
 | |
| #endif /* !__tilegx__ */
 |