 a0ef5e1968
			
		
	
	
	a0ef5e1968
	
	
	
		
			
			Currently when we are processing a request, we try to scrape an expired or over-limit entry off the list in preference to allocating a new one from the slab. This is unnecessarily complicated. Just use the slab layer. Signed-off-by: Jeff Layton <jlayton@redhat.com> Signed-off-by: J. Bruce Fields <bfields@redhat.com>
		
			
				
	
	
		
			613 lines
		
	
	
	
		
			16 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			613 lines
		
	
	
	
		
			16 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Request reply cache. This is currently a global cache, but this may
 | |
|  * change in the future and be a per-client cache.
 | |
|  *
 | |
|  * This code is heavily inspired by the 44BSD implementation, although
 | |
|  * it does things a bit differently.
 | |
|  *
 | |
|  * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de>
 | |
|  */
 | |
| 
 | |
| #include <linux/slab.h>
 | |
| #include <linux/sunrpc/addr.h>
 | |
| #include <linux/highmem.h>
 | |
| #include <linux/log2.h>
 | |
| #include <linux/hash.h>
 | |
| #include <net/checksum.h>
 | |
| 
 | |
| #include "nfsd.h"
 | |
| #include "cache.h"
 | |
| 
 | |
| #define NFSDDBG_FACILITY	NFSDDBG_REPCACHE
 | |
| 
 | |
| /*
 | |
|  * We use this value to determine the number of hash buckets from the max
 | |
|  * cache size, the idea being that when the cache is at its maximum number
 | |
|  * of entries, then this should be the average number of entries per bucket.
 | |
|  */
 | |
| #define TARGET_BUCKET_SIZE	64
 | |
| 
 | |
| static struct hlist_head *	cache_hash;
 | |
| static struct list_head 	lru_head;
 | |
| static struct kmem_cache	*drc_slab;
 | |
| 
 | |
| /* max number of entries allowed in the cache */
 | |
| static unsigned int		max_drc_entries;
 | |
| 
 | |
| /* number of significant bits in the hash value */
 | |
| static unsigned int		maskbits;
 | |
| 
 | |
| /*
 | |
|  * Stats and other tracking of on the duplicate reply cache. All of these and
 | |
|  * the "rc" fields in nfsdstats are protected by the cache_lock
 | |
|  */
 | |
| 
 | |
| /* total number of entries */
 | |
| static unsigned int		num_drc_entries;
 | |
| 
 | |
| /* cache misses due only to checksum comparison failures */
 | |
| static unsigned int		payload_misses;
 | |
| 
 | |
| /* amount of memory (in bytes) currently consumed by the DRC */
 | |
| static unsigned int		drc_mem_usage;
 | |
| 
 | |
| /* longest hash chain seen */
 | |
| static unsigned int		longest_chain;
 | |
| 
 | |
| /* size of cache when we saw the longest hash chain */
 | |
| static unsigned int		longest_chain_cachesize;
 | |
| 
 | |
| static int	nfsd_cache_append(struct svc_rqst *rqstp, struct kvec *vec);
 | |
| static void	cache_cleaner_func(struct work_struct *unused);
 | |
| static unsigned long nfsd_reply_cache_count(struct shrinker *shrink,
 | |
| 					    struct shrink_control *sc);
 | |
| static unsigned long nfsd_reply_cache_scan(struct shrinker *shrink,
 | |
| 					   struct shrink_control *sc);
 | |
| 
 | |
| static struct shrinker nfsd_reply_cache_shrinker = {
 | |
| 	.scan_objects = nfsd_reply_cache_scan,
 | |
| 	.count_objects = nfsd_reply_cache_count,
 | |
| 	.seeks	= 1,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * locking for the reply cache:
 | |
|  * A cache entry is "single use" if c_state == RC_INPROG
 | |
|  * Otherwise, it when accessing _prev or _next, the lock must be held.
 | |
|  */
 | |
| static DEFINE_SPINLOCK(cache_lock);
 | |
| static DECLARE_DELAYED_WORK(cache_cleaner, cache_cleaner_func);
 | |
| 
 | |
| /*
 | |
|  * Put a cap on the size of the DRC based on the amount of available
 | |
|  * low memory in the machine.
 | |
|  *
 | |
|  *  64MB:    8192
 | |
|  * 128MB:   11585
 | |
|  * 256MB:   16384
 | |
|  * 512MB:   23170
 | |
|  *   1GB:   32768
 | |
|  *   2GB:   46340
 | |
|  *   4GB:   65536
 | |
|  *   8GB:   92681
 | |
|  *  16GB:  131072
 | |
|  *
 | |
|  * ...with a hard cap of 256k entries. In the worst case, each entry will be
 | |
|  * ~1k, so the above numbers should give a rough max of the amount of memory
 | |
|  * used in k.
 | |
|  */
 | |
| static unsigned int
 | |
| nfsd_cache_size_limit(void)
 | |
| {
 | |
| 	unsigned int limit;
 | |
| 	unsigned long low_pages = totalram_pages - totalhigh_pages;
 | |
| 
 | |
| 	limit = (16 * int_sqrt(low_pages)) << (PAGE_SHIFT-10);
 | |
| 	return min_t(unsigned int, limit, 256*1024);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Compute the number of hash buckets we need. Divide the max cachesize by
 | |
|  * the "target" max bucket size, and round up to next power of two.
 | |
|  */
 | |
| static unsigned int
 | |
| nfsd_hashsize(unsigned int limit)
 | |
| {
 | |
| 	return roundup_pow_of_two(limit / TARGET_BUCKET_SIZE);
 | |
| }
 | |
| 
 | |
| static struct svc_cacherep *
 | |
| nfsd_reply_cache_alloc(void)
 | |
| {
 | |
| 	struct svc_cacherep	*rp;
 | |
| 
 | |
| 	rp = kmem_cache_alloc(drc_slab, GFP_KERNEL);
 | |
| 	if (rp) {
 | |
| 		rp->c_state = RC_UNUSED;
 | |
| 		rp->c_type = RC_NOCACHE;
 | |
| 		INIT_LIST_HEAD(&rp->c_lru);
 | |
| 		INIT_HLIST_NODE(&rp->c_hash);
 | |
| 	}
 | |
| 	return rp;
 | |
| }
 | |
| 
 | |
| static void
 | |
| nfsd_reply_cache_free_locked(struct svc_cacherep *rp)
 | |
| {
 | |
| 	if (rp->c_type == RC_REPLBUFF && rp->c_replvec.iov_base) {
 | |
| 		drc_mem_usage -= rp->c_replvec.iov_len;
 | |
| 		kfree(rp->c_replvec.iov_base);
 | |
| 	}
 | |
| 	if (!hlist_unhashed(&rp->c_hash))
 | |
| 		hlist_del(&rp->c_hash);
 | |
| 	list_del(&rp->c_lru);
 | |
| 	--num_drc_entries;
 | |
| 	drc_mem_usage -= sizeof(*rp);
 | |
| 	kmem_cache_free(drc_slab, rp);
 | |
| }
 | |
| 
 | |
| static void
 | |
| nfsd_reply_cache_free(struct svc_cacherep *rp)
 | |
| {
 | |
| 	spin_lock(&cache_lock);
 | |
| 	nfsd_reply_cache_free_locked(rp);
 | |
| 	spin_unlock(&cache_lock);
 | |
| }
 | |
| 
 | |
| int nfsd_reply_cache_init(void)
 | |
| {
 | |
| 	unsigned int hashsize;
 | |
| 
 | |
| 	INIT_LIST_HEAD(&lru_head);
 | |
| 	max_drc_entries = nfsd_cache_size_limit();
 | |
| 	num_drc_entries = 0;
 | |
| 	hashsize = nfsd_hashsize(max_drc_entries);
 | |
| 	maskbits = ilog2(hashsize);
 | |
| 
 | |
| 	register_shrinker(&nfsd_reply_cache_shrinker);
 | |
| 	drc_slab = kmem_cache_create("nfsd_drc", sizeof(struct svc_cacherep),
 | |
| 					0, 0, NULL);
 | |
| 	if (!drc_slab)
 | |
| 		goto out_nomem;
 | |
| 
 | |
| 	cache_hash = kcalloc(hashsize, sizeof(struct hlist_head), GFP_KERNEL);
 | |
| 	if (!cache_hash)
 | |
| 		goto out_nomem;
 | |
| 
 | |
| 	return 0;
 | |
| out_nomem:
 | |
| 	printk(KERN_ERR "nfsd: failed to allocate reply cache\n");
 | |
| 	nfsd_reply_cache_shutdown();
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| void nfsd_reply_cache_shutdown(void)
 | |
| {
 | |
| 	struct svc_cacherep	*rp;
 | |
| 
 | |
| 	unregister_shrinker(&nfsd_reply_cache_shrinker);
 | |
| 	cancel_delayed_work_sync(&cache_cleaner);
 | |
| 
 | |
| 	while (!list_empty(&lru_head)) {
 | |
| 		rp = list_entry(lru_head.next, struct svc_cacherep, c_lru);
 | |
| 		nfsd_reply_cache_free_locked(rp);
 | |
| 	}
 | |
| 
 | |
| 	kfree (cache_hash);
 | |
| 	cache_hash = NULL;
 | |
| 
 | |
| 	if (drc_slab) {
 | |
| 		kmem_cache_destroy(drc_slab);
 | |
| 		drc_slab = NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Move cache entry to end of LRU list, and queue the cleaner to run if it's
 | |
|  * not already scheduled.
 | |
|  */
 | |
| static void
 | |
| lru_put_end(struct svc_cacherep *rp)
 | |
| {
 | |
| 	rp->c_timestamp = jiffies;
 | |
| 	list_move_tail(&rp->c_lru, &lru_head);
 | |
| 	schedule_delayed_work(&cache_cleaner, RC_EXPIRE);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Move a cache entry from one hash list to another
 | |
|  */
 | |
| static void
 | |
| hash_refile(struct svc_cacherep *rp)
 | |
| {
 | |
| 	hlist_del_init(&rp->c_hash);
 | |
| 	hlist_add_head(&rp->c_hash, cache_hash + hash_32(rp->c_xid, maskbits));
 | |
| }
 | |
| 
 | |
| static inline bool
 | |
| nfsd_cache_entry_expired(struct svc_cacherep *rp)
 | |
| {
 | |
| 	return rp->c_state != RC_INPROG &&
 | |
| 	       time_after(jiffies, rp->c_timestamp + RC_EXPIRE);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Walk the LRU list and prune off entries that are older than RC_EXPIRE.
 | |
|  * Also prune the oldest ones when the total exceeds the max number of entries.
 | |
|  */
 | |
| static long
 | |
| prune_cache_entries(void)
 | |
| {
 | |
| 	struct svc_cacherep *rp, *tmp;
 | |
| 	long freed = 0;
 | |
| 
 | |
| 	list_for_each_entry_safe(rp, tmp, &lru_head, c_lru) {
 | |
| 		if (!nfsd_cache_entry_expired(rp) &&
 | |
| 		    num_drc_entries <= max_drc_entries)
 | |
| 			break;
 | |
| 		nfsd_reply_cache_free_locked(rp);
 | |
| 		freed++;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Conditionally rearm the job. If we cleaned out the list, then
 | |
| 	 * cancel any pending run (since there won't be any work to do).
 | |
| 	 * Otherwise, we rearm the job or modify the existing one to run in
 | |
| 	 * RC_EXPIRE since we just ran the pruner.
 | |
| 	 */
 | |
| 	if (list_empty(&lru_head))
 | |
| 		cancel_delayed_work(&cache_cleaner);
 | |
| 	else
 | |
| 		mod_delayed_work(system_wq, &cache_cleaner, RC_EXPIRE);
 | |
| 	return freed;
 | |
| }
 | |
| 
 | |
| static void
 | |
| cache_cleaner_func(struct work_struct *unused)
 | |
| {
 | |
| 	spin_lock(&cache_lock);
 | |
| 	prune_cache_entries();
 | |
| 	spin_unlock(&cache_lock);
 | |
| }
 | |
| 
 | |
| static unsigned long
 | |
| nfsd_reply_cache_count(struct shrinker *shrink, struct shrink_control *sc)
 | |
| {
 | |
| 	unsigned long num;
 | |
| 
 | |
| 	spin_lock(&cache_lock);
 | |
| 	num = num_drc_entries;
 | |
| 	spin_unlock(&cache_lock);
 | |
| 
 | |
| 	return num;
 | |
| }
 | |
| 
 | |
| static unsigned long
 | |
| nfsd_reply_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
 | |
| {
 | |
| 	unsigned long freed;
 | |
| 
 | |
| 	spin_lock(&cache_lock);
 | |
| 	freed = prune_cache_entries();
 | |
| 	spin_unlock(&cache_lock);
 | |
| 	return freed;
 | |
| }
 | |
| /*
 | |
|  * Walk an xdr_buf and get a CRC for at most the first RC_CSUMLEN bytes
 | |
|  */
 | |
| static __wsum
 | |
| nfsd_cache_csum(struct svc_rqst *rqstp)
 | |
| {
 | |
| 	int idx;
 | |
| 	unsigned int base;
 | |
| 	__wsum csum;
 | |
| 	struct xdr_buf *buf = &rqstp->rq_arg;
 | |
| 	const unsigned char *p = buf->head[0].iov_base;
 | |
| 	size_t csum_len = min_t(size_t, buf->head[0].iov_len + buf->page_len,
 | |
| 				RC_CSUMLEN);
 | |
| 	size_t len = min(buf->head[0].iov_len, csum_len);
 | |
| 
 | |
| 	/* rq_arg.head first */
 | |
| 	csum = csum_partial(p, len, 0);
 | |
| 	csum_len -= len;
 | |
| 
 | |
| 	/* Continue into page array */
 | |
| 	idx = buf->page_base / PAGE_SIZE;
 | |
| 	base = buf->page_base & ~PAGE_MASK;
 | |
| 	while (csum_len) {
 | |
| 		p = page_address(buf->pages[idx]) + base;
 | |
| 		len = min_t(size_t, PAGE_SIZE - base, csum_len);
 | |
| 		csum = csum_partial(p, len, csum);
 | |
| 		csum_len -= len;
 | |
| 		base = 0;
 | |
| 		++idx;
 | |
| 	}
 | |
| 	return csum;
 | |
| }
 | |
| 
 | |
| static bool
 | |
| nfsd_cache_match(struct svc_rqst *rqstp, __wsum csum, struct svc_cacherep *rp)
 | |
| {
 | |
| 	/* Check RPC header info first */
 | |
| 	if (rqstp->rq_xid != rp->c_xid || rqstp->rq_proc != rp->c_proc ||
 | |
| 	    rqstp->rq_prot != rp->c_prot || rqstp->rq_vers != rp->c_vers ||
 | |
| 	    rqstp->rq_arg.len != rp->c_len ||
 | |
| 	    !rpc_cmp_addr(svc_addr(rqstp), (struct sockaddr *)&rp->c_addr) ||
 | |
| 	    rpc_get_port(svc_addr(rqstp)) != rpc_get_port((struct sockaddr *)&rp->c_addr))
 | |
| 		return false;
 | |
| 
 | |
| 	/* compare checksum of NFS data */
 | |
| 	if (csum != rp->c_csum) {
 | |
| 		++payload_misses;
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Search the request hash for an entry that matches the given rqstp.
 | |
|  * Must be called with cache_lock held. Returns the found entry or
 | |
|  * NULL on failure.
 | |
|  */
 | |
| static struct svc_cacherep *
 | |
| nfsd_cache_search(struct svc_rqst *rqstp, __wsum csum)
 | |
| {
 | |
| 	struct svc_cacherep	*rp, *ret = NULL;
 | |
| 	struct hlist_head 	*rh;
 | |
| 	unsigned int		entries = 0;
 | |
| 
 | |
| 	rh = &cache_hash[hash_32(rqstp->rq_xid, maskbits)];
 | |
| 	hlist_for_each_entry(rp, rh, c_hash) {
 | |
| 		++entries;
 | |
| 		if (nfsd_cache_match(rqstp, csum, rp)) {
 | |
| 			ret = rp;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* tally hash chain length stats */
 | |
| 	if (entries > longest_chain) {
 | |
| 		longest_chain = entries;
 | |
| 		longest_chain_cachesize = num_drc_entries;
 | |
| 	} else if (entries == longest_chain) {
 | |
| 		/* prefer to keep the smallest cachesize possible here */
 | |
| 		longest_chain_cachesize = min(longest_chain_cachesize,
 | |
| 						num_drc_entries);
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Try to find an entry matching the current call in the cache. When none
 | |
|  * is found, we try to grab the oldest expired entry off the LRU list. If
 | |
|  * a suitable one isn't there, then drop the cache_lock and allocate a
 | |
|  * new one, then search again in case one got inserted while this thread
 | |
|  * didn't hold the lock.
 | |
|  */
 | |
| int
 | |
| nfsd_cache_lookup(struct svc_rqst *rqstp)
 | |
| {
 | |
| 	struct svc_cacherep	*rp, *found;
 | |
| 	__be32			xid = rqstp->rq_xid;
 | |
| 	u32			proto =  rqstp->rq_prot,
 | |
| 				vers = rqstp->rq_vers,
 | |
| 				proc = rqstp->rq_proc;
 | |
| 	__wsum			csum;
 | |
| 	unsigned long		age;
 | |
| 	int type = rqstp->rq_cachetype;
 | |
| 	int rtn = RC_DOIT;
 | |
| 
 | |
| 	rqstp->rq_cacherep = NULL;
 | |
| 	if (type == RC_NOCACHE) {
 | |
| 		nfsdstats.rcnocache++;
 | |
| 		return rtn;
 | |
| 	}
 | |
| 
 | |
| 	csum = nfsd_cache_csum(rqstp);
 | |
| 
 | |
| 	/*
 | |
| 	 * Since the common case is a cache miss followed by an insert,
 | |
| 	 * preallocate an entry.
 | |
| 	 */
 | |
| 	rp = nfsd_reply_cache_alloc();
 | |
| 	spin_lock(&cache_lock);
 | |
| 	if (likely(rp)) {
 | |
| 		++num_drc_entries;
 | |
| 		drc_mem_usage += sizeof(*rp);
 | |
| 	}
 | |
| 
 | |
| 	/* go ahead and prune the cache */
 | |
| 	prune_cache_entries();
 | |
| 
 | |
| 	found = nfsd_cache_search(rqstp, csum);
 | |
| 	if (found) {
 | |
| 		if (likely(rp))
 | |
| 			nfsd_reply_cache_free_locked(rp);
 | |
| 		rp = found;
 | |
| 		goto found_entry;
 | |
| 	}
 | |
| 
 | |
| 	if (!rp) {
 | |
| 		dprintk("nfsd: unable to allocate DRC entry!\n");
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	nfsdstats.rcmisses++;
 | |
| 	rqstp->rq_cacherep = rp;
 | |
| 	rp->c_state = RC_INPROG;
 | |
| 	rp->c_xid = xid;
 | |
| 	rp->c_proc = proc;
 | |
| 	rpc_copy_addr((struct sockaddr *)&rp->c_addr, svc_addr(rqstp));
 | |
| 	rpc_set_port((struct sockaddr *)&rp->c_addr, rpc_get_port(svc_addr(rqstp)));
 | |
| 	rp->c_prot = proto;
 | |
| 	rp->c_vers = vers;
 | |
| 	rp->c_len = rqstp->rq_arg.len;
 | |
| 	rp->c_csum = csum;
 | |
| 
 | |
| 	hash_refile(rp);
 | |
| 	lru_put_end(rp);
 | |
| 
 | |
| 	/* release any buffer */
 | |
| 	if (rp->c_type == RC_REPLBUFF) {
 | |
| 		drc_mem_usage -= rp->c_replvec.iov_len;
 | |
| 		kfree(rp->c_replvec.iov_base);
 | |
| 		rp->c_replvec.iov_base = NULL;
 | |
| 	}
 | |
| 	rp->c_type = RC_NOCACHE;
 | |
|  out:
 | |
| 	spin_unlock(&cache_lock);
 | |
| 	return rtn;
 | |
| 
 | |
| found_entry:
 | |
| 	nfsdstats.rchits++;
 | |
| 	/* We found a matching entry which is either in progress or done. */
 | |
| 	age = jiffies - rp->c_timestamp;
 | |
| 	lru_put_end(rp);
 | |
| 
 | |
| 	rtn = RC_DROPIT;
 | |
| 	/* Request being processed or excessive rexmits */
 | |
| 	if (rp->c_state == RC_INPROG || age < RC_DELAY)
 | |
| 		goto out;
 | |
| 
 | |
| 	/* From the hall of fame of impractical attacks:
 | |
| 	 * Is this a user who tries to snoop on the cache? */
 | |
| 	rtn = RC_DOIT;
 | |
| 	if (!rqstp->rq_secure && rp->c_secure)
 | |
| 		goto out;
 | |
| 
 | |
| 	/* Compose RPC reply header */
 | |
| 	switch (rp->c_type) {
 | |
| 	case RC_NOCACHE:
 | |
| 		break;
 | |
| 	case RC_REPLSTAT:
 | |
| 		svc_putu32(&rqstp->rq_res.head[0], rp->c_replstat);
 | |
| 		rtn = RC_REPLY;
 | |
| 		break;
 | |
| 	case RC_REPLBUFF:
 | |
| 		if (!nfsd_cache_append(rqstp, &rp->c_replvec))
 | |
| 			goto out;	/* should not happen */
 | |
| 		rtn = RC_REPLY;
 | |
| 		break;
 | |
| 	default:
 | |
| 		printk(KERN_WARNING "nfsd: bad repcache type %d\n", rp->c_type);
 | |
| 		nfsd_reply_cache_free_locked(rp);
 | |
| 	}
 | |
| 
 | |
| 	goto out;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Update a cache entry. This is called from nfsd_dispatch when
 | |
|  * the procedure has been executed and the complete reply is in
 | |
|  * rqstp->rq_res.
 | |
|  *
 | |
|  * We're copying around data here rather than swapping buffers because
 | |
|  * the toplevel loop requires max-sized buffers, which would be a waste
 | |
|  * of memory for a cache with a max reply size of 100 bytes (diropokres).
 | |
|  *
 | |
|  * If we should start to use different types of cache entries tailored
 | |
|  * specifically for attrstat and fh's, we may save even more space.
 | |
|  *
 | |
|  * Also note that a cachetype of RC_NOCACHE can legally be passed when
 | |
|  * nfsd failed to encode a reply that otherwise would have been cached.
 | |
|  * In this case, nfsd_cache_update is called with statp == NULL.
 | |
|  */
 | |
| void
 | |
| nfsd_cache_update(struct svc_rqst *rqstp, int cachetype, __be32 *statp)
 | |
| {
 | |
| 	struct svc_cacherep *rp = rqstp->rq_cacherep;
 | |
| 	struct kvec	*resv = &rqstp->rq_res.head[0], *cachv;
 | |
| 	int		len;
 | |
| 	size_t		bufsize = 0;
 | |
| 
 | |
| 	if (!rp)
 | |
| 		return;
 | |
| 
 | |
| 	len = resv->iov_len - ((char*)statp - (char*)resv->iov_base);
 | |
| 	len >>= 2;
 | |
| 
 | |
| 	/* Don't cache excessive amounts of data and XDR failures */
 | |
| 	if (!statp || len > (256 >> 2)) {
 | |
| 		nfsd_reply_cache_free(rp);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	switch (cachetype) {
 | |
| 	case RC_REPLSTAT:
 | |
| 		if (len != 1)
 | |
| 			printk("nfsd: RC_REPLSTAT/reply len %d!\n",len);
 | |
| 		rp->c_replstat = *statp;
 | |
| 		break;
 | |
| 	case RC_REPLBUFF:
 | |
| 		cachv = &rp->c_replvec;
 | |
| 		bufsize = len << 2;
 | |
| 		cachv->iov_base = kmalloc(bufsize, GFP_KERNEL);
 | |
| 		if (!cachv->iov_base) {
 | |
| 			nfsd_reply_cache_free(rp);
 | |
| 			return;
 | |
| 		}
 | |
| 		cachv->iov_len = bufsize;
 | |
| 		memcpy(cachv->iov_base, statp, bufsize);
 | |
| 		break;
 | |
| 	case RC_NOCACHE:
 | |
| 		nfsd_reply_cache_free(rp);
 | |
| 		return;
 | |
| 	}
 | |
| 	spin_lock(&cache_lock);
 | |
| 	drc_mem_usage += bufsize;
 | |
| 	lru_put_end(rp);
 | |
| 	rp->c_secure = rqstp->rq_secure;
 | |
| 	rp->c_type = cachetype;
 | |
| 	rp->c_state = RC_DONE;
 | |
| 	spin_unlock(&cache_lock);
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Copy cached reply to current reply buffer. Should always fit.
 | |
|  * FIXME as reply is in a page, we should just attach the page, and
 | |
|  * keep a refcount....
 | |
|  */
 | |
| static int
 | |
| nfsd_cache_append(struct svc_rqst *rqstp, struct kvec *data)
 | |
| {
 | |
| 	struct kvec	*vec = &rqstp->rq_res.head[0];
 | |
| 
 | |
| 	if (vec->iov_len + data->iov_len > PAGE_SIZE) {
 | |
| 		printk(KERN_WARNING "nfsd: cached reply too large (%Zd).\n",
 | |
| 				data->iov_len);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	memcpy((char*)vec->iov_base + vec->iov_len, data->iov_base, data->iov_len);
 | |
| 	vec->iov_len += data->iov_len;
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Note that fields may be added, removed or reordered in the future. Programs
 | |
|  * scraping this file for info should test the labels to ensure they're
 | |
|  * getting the correct field.
 | |
|  */
 | |
| static int nfsd_reply_cache_stats_show(struct seq_file *m, void *v)
 | |
| {
 | |
| 	spin_lock(&cache_lock);
 | |
| 	seq_printf(m, "max entries:           %u\n", max_drc_entries);
 | |
| 	seq_printf(m, "num entries:           %u\n", num_drc_entries);
 | |
| 	seq_printf(m, "hash buckets:          %u\n", 1 << maskbits);
 | |
| 	seq_printf(m, "mem usage:             %u\n", drc_mem_usage);
 | |
| 	seq_printf(m, "cache hits:            %u\n", nfsdstats.rchits);
 | |
| 	seq_printf(m, "cache misses:          %u\n", nfsdstats.rcmisses);
 | |
| 	seq_printf(m, "not cached:            %u\n", nfsdstats.rcnocache);
 | |
| 	seq_printf(m, "payload misses:        %u\n", payload_misses);
 | |
| 	seq_printf(m, "longest chain len:     %u\n", longest_chain);
 | |
| 	seq_printf(m, "cachesize at longest:  %u\n", longest_chain_cachesize);
 | |
| 	spin_unlock(&cache_lock);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int nfsd_reply_cache_stats_open(struct inode *inode, struct file *file)
 | |
| {
 | |
| 	return single_open(file, nfsd_reply_cache_stats_show, NULL);
 | |
| }
 |