 1331107f8a
			
		
	
	
	1331107f8a
	
	
	
		
			
			This reverts commit 95d4403889.
The patch is broken for on-stack bios, amongst other things.
		
	
			
		
			
				
	
	
		
			2033 lines
		
	
	
	
		
			49 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2033 lines
		
	
	
	
		
			49 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License version 2 as
 | |
|  * published by the Free Software Foundation.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public Licens
 | |
|  * along with this program; if not, write to the Free Software
 | |
|  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
 | |
|  *
 | |
|  */
 | |
| #include <linux/mm.h>
 | |
| #include <linux/swap.h>
 | |
| #include <linux/bio.h>
 | |
| #include <linux/blkdev.h>
 | |
| #include <linux/uio.h>
 | |
| #include <linux/iocontext.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/export.h>
 | |
| #include <linux/mempool.h>
 | |
| #include <linux/workqueue.h>
 | |
| #include <linux/cgroup.h>
 | |
| #include <scsi/sg.h>		/* for struct sg_iovec */
 | |
| 
 | |
| #include <trace/events/block.h>
 | |
| 
 | |
| /*
 | |
|  * Test patch to inline a certain number of bi_io_vec's inside the bio
 | |
|  * itself, to shrink a bio data allocation from two mempool calls to one
 | |
|  */
 | |
| #define BIO_INLINE_VECS		4
 | |
| 
 | |
| /*
 | |
|  * if you change this list, also change bvec_alloc or things will
 | |
|  * break badly! cannot be bigger than what you can fit into an
 | |
|  * unsigned short
 | |
|  */
 | |
| #define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
 | |
| static struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly = {
 | |
| 	BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
 | |
| };
 | |
| #undef BV
 | |
| 
 | |
| /*
 | |
|  * fs_bio_set is the bio_set containing bio and iovec memory pools used by
 | |
|  * IO code that does not need private memory pools.
 | |
|  */
 | |
| struct bio_set *fs_bio_set;
 | |
| EXPORT_SYMBOL(fs_bio_set);
 | |
| 
 | |
| /*
 | |
|  * Our slab pool management
 | |
|  */
 | |
| struct bio_slab {
 | |
| 	struct kmem_cache *slab;
 | |
| 	unsigned int slab_ref;
 | |
| 	unsigned int slab_size;
 | |
| 	char name[8];
 | |
| };
 | |
| static DEFINE_MUTEX(bio_slab_lock);
 | |
| static struct bio_slab *bio_slabs;
 | |
| static unsigned int bio_slab_nr, bio_slab_max;
 | |
| 
 | |
| static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
 | |
| {
 | |
| 	unsigned int sz = sizeof(struct bio) + extra_size;
 | |
| 	struct kmem_cache *slab = NULL;
 | |
| 	struct bio_slab *bslab, *new_bio_slabs;
 | |
| 	unsigned int new_bio_slab_max;
 | |
| 	unsigned int i, entry = -1;
 | |
| 
 | |
| 	mutex_lock(&bio_slab_lock);
 | |
| 
 | |
| 	i = 0;
 | |
| 	while (i < bio_slab_nr) {
 | |
| 		bslab = &bio_slabs[i];
 | |
| 
 | |
| 		if (!bslab->slab && entry == -1)
 | |
| 			entry = i;
 | |
| 		else if (bslab->slab_size == sz) {
 | |
| 			slab = bslab->slab;
 | |
| 			bslab->slab_ref++;
 | |
| 			break;
 | |
| 		}
 | |
| 		i++;
 | |
| 	}
 | |
| 
 | |
| 	if (slab)
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	if (bio_slab_nr == bio_slab_max && entry == -1) {
 | |
| 		new_bio_slab_max = bio_slab_max << 1;
 | |
| 		new_bio_slabs = krealloc(bio_slabs,
 | |
| 					 new_bio_slab_max * sizeof(struct bio_slab),
 | |
| 					 GFP_KERNEL);
 | |
| 		if (!new_bio_slabs)
 | |
| 			goto out_unlock;
 | |
| 		bio_slab_max = new_bio_slab_max;
 | |
| 		bio_slabs = new_bio_slabs;
 | |
| 	}
 | |
| 	if (entry == -1)
 | |
| 		entry = bio_slab_nr++;
 | |
| 
 | |
| 	bslab = &bio_slabs[entry];
 | |
| 
 | |
| 	snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
 | |
| 	slab = kmem_cache_create(bslab->name, sz, 0, SLAB_HWCACHE_ALIGN, NULL);
 | |
| 	if (!slab)
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	printk(KERN_INFO "bio: create slab <%s> at %d\n", bslab->name, entry);
 | |
| 	bslab->slab = slab;
 | |
| 	bslab->slab_ref = 1;
 | |
| 	bslab->slab_size = sz;
 | |
| out_unlock:
 | |
| 	mutex_unlock(&bio_slab_lock);
 | |
| 	return slab;
 | |
| }
 | |
| 
 | |
| static void bio_put_slab(struct bio_set *bs)
 | |
| {
 | |
| 	struct bio_slab *bslab = NULL;
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	mutex_lock(&bio_slab_lock);
 | |
| 
 | |
| 	for (i = 0; i < bio_slab_nr; i++) {
 | |
| 		if (bs->bio_slab == bio_slabs[i].slab) {
 | |
| 			bslab = &bio_slabs[i];
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
 | |
| 		goto out;
 | |
| 
 | |
| 	WARN_ON(!bslab->slab_ref);
 | |
| 
 | |
| 	if (--bslab->slab_ref)
 | |
| 		goto out;
 | |
| 
 | |
| 	kmem_cache_destroy(bslab->slab);
 | |
| 	bslab->slab = NULL;
 | |
| 
 | |
| out:
 | |
| 	mutex_unlock(&bio_slab_lock);
 | |
| }
 | |
| 
 | |
| unsigned int bvec_nr_vecs(unsigned short idx)
 | |
| {
 | |
| 	return bvec_slabs[idx].nr_vecs;
 | |
| }
 | |
| 
 | |
| void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
 | |
| {
 | |
| 	BIO_BUG_ON(idx >= BIOVEC_NR_POOLS);
 | |
| 
 | |
| 	if (idx == BIOVEC_MAX_IDX)
 | |
| 		mempool_free(bv, pool);
 | |
| 	else {
 | |
| 		struct biovec_slab *bvs = bvec_slabs + idx;
 | |
| 
 | |
| 		kmem_cache_free(bvs->slab, bv);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
 | |
| 			   mempool_t *pool)
 | |
| {
 | |
| 	struct bio_vec *bvl;
 | |
| 
 | |
| 	/*
 | |
| 	 * see comment near bvec_array define!
 | |
| 	 */
 | |
| 	switch (nr) {
 | |
| 	case 1:
 | |
| 		*idx = 0;
 | |
| 		break;
 | |
| 	case 2 ... 4:
 | |
| 		*idx = 1;
 | |
| 		break;
 | |
| 	case 5 ... 16:
 | |
| 		*idx = 2;
 | |
| 		break;
 | |
| 	case 17 ... 64:
 | |
| 		*idx = 3;
 | |
| 		break;
 | |
| 	case 65 ... 128:
 | |
| 		*idx = 4;
 | |
| 		break;
 | |
| 	case 129 ... BIO_MAX_PAGES:
 | |
| 		*idx = 5;
 | |
| 		break;
 | |
| 	default:
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * idx now points to the pool we want to allocate from. only the
 | |
| 	 * 1-vec entry pool is mempool backed.
 | |
| 	 */
 | |
| 	if (*idx == BIOVEC_MAX_IDX) {
 | |
| fallback:
 | |
| 		bvl = mempool_alloc(pool, gfp_mask);
 | |
| 	} else {
 | |
| 		struct biovec_slab *bvs = bvec_slabs + *idx;
 | |
| 		gfp_t __gfp_mask = gfp_mask & ~(__GFP_WAIT | __GFP_IO);
 | |
| 
 | |
| 		/*
 | |
| 		 * Make this allocation restricted and don't dump info on
 | |
| 		 * allocation failures, since we'll fallback to the mempool
 | |
| 		 * in case of failure.
 | |
| 		 */
 | |
| 		__gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
 | |
| 
 | |
| 		/*
 | |
| 		 * Try a slab allocation. If this fails and __GFP_WAIT
 | |
| 		 * is set, retry with the 1-entry mempool
 | |
| 		 */
 | |
| 		bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
 | |
| 		if (unlikely(!bvl && (gfp_mask & __GFP_WAIT))) {
 | |
| 			*idx = BIOVEC_MAX_IDX;
 | |
| 			goto fallback;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return bvl;
 | |
| }
 | |
| 
 | |
| static void __bio_free(struct bio *bio)
 | |
| {
 | |
| 	bio_disassociate_task(bio);
 | |
| 
 | |
| 	if (bio_integrity(bio))
 | |
| 		bio_integrity_free(bio);
 | |
| }
 | |
| 
 | |
| static void bio_free(struct bio *bio)
 | |
| {
 | |
| 	struct bio_set *bs = bio->bi_pool;
 | |
| 	void *p;
 | |
| 
 | |
| 	__bio_free(bio);
 | |
| 
 | |
| 	if (bs) {
 | |
| 		if (bio_flagged(bio, BIO_OWNS_VEC))
 | |
| 			bvec_free(bs->bvec_pool, bio->bi_io_vec, BIO_POOL_IDX(bio));
 | |
| 
 | |
| 		/*
 | |
| 		 * If we have front padding, adjust the bio pointer before freeing
 | |
| 		 */
 | |
| 		p = bio;
 | |
| 		p -= bs->front_pad;
 | |
| 
 | |
| 		mempool_free(p, bs->bio_pool);
 | |
| 	} else {
 | |
| 		/* Bio was allocated by bio_kmalloc() */
 | |
| 		kfree(bio);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void bio_init(struct bio *bio)
 | |
| {
 | |
| 	memset(bio, 0, sizeof(*bio));
 | |
| 	bio->bi_flags = 1 << BIO_UPTODATE;
 | |
| 	atomic_set(&bio->bi_remaining, 1);
 | |
| 	atomic_set(&bio->bi_cnt, 1);
 | |
| }
 | |
| EXPORT_SYMBOL(bio_init);
 | |
| 
 | |
| /**
 | |
|  * bio_reset - reinitialize a bio
 | |
|  * @bio:	bio to reset
 | |
|  *
 | |
|  * Description:
 | |
|  *   After calling bio_reset(), @bio will be in the same state as a freshly
 | |
|  *   allocated bio returned bio bio_alloc_bioset() - the only fields that are
 | |
|  *   preserved are the ones that are initialized by bio_alloc_bioset(). See
 | |
|  *   comment in struct bio.
 | |
|  */
 | |
| void bio_reset(struct bio *bio)
 | |
| {
 | |
| 	unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
 | |
| 
 | |
| 	__bio_free(bio);
 | |
| 
 | |
| 	memset(bio, 0, BIO_RESET_BYTES);
 | |
| 	bio->bi_flags = flags|(1 << BIO_UPTODATE);
 | |
| 	atomic_set(&bio->bi_remaining, 1);
 | |
| }
 | |
| EXPORT_SYMBOL(bio_reset);
 | |
| 
 | |
| static void bio_chain_endio(struct bio *bio, int error)
 | |
| {
 | |
| 	bio_endio(bio->bi_private, error);
 | |
| 	bio_put(bio);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * bio_chain - chain bio completions
 | |
|  *
 | |
|  * The caller won't have a bi_end_io called when @bio completes - instead,
 | |
|  * @parent's bi_end_io won't be called until both @parent and @bio have
 | |
|  * completed; the chained bio will also be freed when it completes.
 | |
|  *
 | |
|  * The caller must not set bi_private or bi_end_io in @bio.
 | |
|  */
 | |
| void bio_chain(struct bio *bio, struct bio *parent)
 | |
| {
 | |
| 	BUG_ON(bio->bi_private || bio->bi_end_io);
 | |
| 
 | |
| 	bio->bi_private = parent;
 | |
| 	bio->bi_end_io	= bio_chain_endio;
 | |
| 	atomic_inc(&parent->bi_remaining);
 | |
| }
 | |
| EXPORT_SYMBOL(bio_chain);
 | |
| 
 | |
| static void bio_alloc_rescue(struct work_struct *work)
 | |
| {
 | |
| 	struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
 | |
| 	struct bio *bio;
 | |
| 
 | |
| 	while (1) {
 | |
| 		spin_lock(&bs->rescue_lock);
 | |
| 		bio = bio_list_pop(&bs->rescue_list);
 | |
| 		spin_unlock(&bs->rescue_lock);
 | |
| 
 | |
| 		if (!bio)
 | |
| 			break;
 | |
| 
 | |
| 		generic_make_request(bio);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void punt_bios_to_rescuer(struct bio_set *bs)
 | |
| {
 | |
| 	struct bio_list punt, nopunt;
 | |
| 	struct bio *bio;
 | |
| 
 | |
| 	/*
 | |
| 	 * In order to guarantee forward progress we must punt only bios that
 | |
| 	 * were allocated from this bio_set; otherwise, if there was a bio on
 | |
| 	 * there for a stacking driver higher up in the stack, processing it
 | |
| 	 * could require allocating bios from this bio_set, and doing that from
 | |
| 	 * our own rescuer would be bad.
 | |
| 	 *
 | |
| 	 * Since bio lists are singly linked, pop them all instead of trying to
 | |
| 	 * remove from the middle of the list:
 | |
| 	 */
 | |
| 
 | |
| 	bio_list_init(&punt);
 | |
| 	bio_list_init(&nopunt);
 | |
| 
 | |
| 	while ((bio = bio_list_pop(current->bio_list)))
 | |
| 		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
 | |
| 
 | |
| 	*current->bio_list = nopunt;
 | |
| 
 | |
| 	spin_lock(&bs->rescue_lock);
 | |
| 	bio_list_merge(&bs->rescue_list, &punt);
 | |
| 	spin_unlock(&bs->rescue_lock);
 | |
| 
 | |
| 	queue_work(bs->rescue_workqueue, &bs->rescue_work);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * bio_alloc_bioset - allocate a bio for I/O
 | |
|  * @gfp_mask:   the GFP_ mask given to the slab allocator
 | |
|  * @nr_iovecs:	number of iovecs to pre-allocate
 | |
|  * @bs:		the bio_set to allocate from.
 | |
|  *
 | |
|  * Description:
 | |
|  *   If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
 | |
|  *   backed by the @bs's mempool.
 | |
|  *
 | |
|  *   When @bs is not NULL, if %__GFP_WAIT is set then bio_alloc will always be
 | |
|  *   able to allocate a bio. This is due to the mempool guarantees. To make this
 | |
|  *   work, callers must never allocate more than 1 bio at a time from this pool.
 | |
|  *   Callers that need to allocate more than 1 bio must always submit the
 | |
|  *   previously allocated bio for IO before attempting to allocate a new one.
 | |
|  *   Failure to do so can cause deadlocks under memory pressure.
 | |
|  *
 | |
|  *   Note that when running under generic_make_request() (i.e. any block
 | |
|  *   driver), bios are not submitted until after you return - see the code in
 | |
|  *   generic_make_request() that converts recursion into iteration, to prevent
 | |
|  *   stack overflows.
 | |
|  *
 | |
|  *   This would normally mean allocating multiple bios under
 | |
|  *   generic_make_request() would be susceptible to deadlocks, but we have
 | |
|  *   deadlock avoidance code that resubmits any blocked bios from a rescuer
 | |
|  *   thread.
 | |
|  *
 | |
|  *   However, we do not guarantee forward progress for allocations from other
 | |
|  *   mempools. Doing multiple allocations from the same mempool under
 | |
|  *   generic_make_request() should be avoided - instead, use bio_set's front_pad
 | |
|  *   for per bio allocations.
 | |
|  *
 | |
|  *   RETURNS:
 | |
|  *   Pointer to new bio on success, NULL on failure.
 | |
|  */
 | |
| struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs)
 | |
| {
 | |
| 	gfp_t saved_gfp = gfp_mask;
 | |
| 	unsigned front_pad;
 | |
| 	unsigned inline_vecs;
 | |
| 	unsigned long idx = BIO_POOL_NONE;
 | |
| 	struct bio_vec *bvl = NULL;
 | |
| 	struct bio *bio;
 | |
| 	void *p;
 | |
| 
 | |
| 	if (!bs) {
 | |
| 		if (nr_iovecs > UIO_MAXIOV)
 | |
| 			return NULL;
 | |
| 
 | |
| 		p = kmalloc(sizeof(struct bio) +
 | |
| 			    nr_iovecs * sizeof(struct bio_vec),
 | |
| 			    gfp_mask);
 | |
| 		front_pad = 0;
 | |
| 		inline_vecs = nr_iovecs;
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * generic_make_request() converts recursion to iteration; this
 | |
| 		 * means if we're running beneath it, any bios we allocate and
 | |
| 		 * submit will not be submitted (and thus freed) until after we
 | |
| 		 * return.
 | |
| 		 *
 | |
| 		 * This exposes us to a potential deadlock if we allocate
 | |
| 		 * multiple bios from the same bio_set() while running
 | |
| 		 * underneath generic_make_request(). If we were to allocate
 | |
| 		 * multiple bios (say a stacking block driver that was splitting
 | |
| 		 * bios), we would deadlock if we exhausted the mempool's
 | |
| 		 * reserve.
 | |
| 		 *
 | |
| 		 * We solve this, and guarantee forward progress, with a rescuer
 | |
| 		 * workqueue per bio_set. If we go to allocate and there are
 | |
| 		 * bios on current->bio_list, we first try the allocation
 | |
| 		 * without __GFP_WAIT; if that fails, we punt those bios we
 | |
| 		 * would be blocking to the rescuer workqueue before we retry
 | |
| 		 * with the original gfp_flags.
 | |
| 		 */
 | |
| 
 | |
| 		if (current->bio_list && !bio_list_empty(current->bio_list))
 | |
| 			gfp_mask &= ~__GFP_WAIT;
 | |
| 
 | |
| 		p = mempool_alloc(bs->bio_pool, gfp_mask);
 | |
| 		if (!p && gfp_mask != saved_gfp) {
 | |
| 			punt_bios_to_rescuer(bs);
 | |
| 			gfp_mask = saved_gfp;
 | |
| 			p = mempool_alloc(bs->bio_pool, gfp_mask);
 | |
| 		}
 | |
| 
 | |
| 		front_pad = bs->front_pad;
 | |
| 		inline_vecs = BIO_INLINE_VECS;
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(!p))
 | |
| 		return NULL;
 | |
| 
 | |
| 	bio = p + front_pad;
 | |
| 	bio_init(bio);
 | |
| 
 | |
| 	if (nr_iovecs > inline_vecs) {
 | |
| 		bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
 | |
| 		if (!bvl && gfp_mask != saved_gfp) {
 | |
| 			punt_bios_to_rescuer(bs);
 | |
| 			gfp_mask = saved_gfp;
 | |
| 			bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
 | |
| 		}
 | |
| 
 | |
| 		if (unlikely(!bvl))
 | |
| 			goto err_free;
 | |
| 
 | |
| 		bio->bi_flags |= 1 << BIO_OWNS_VEC;
 | |
| 	} else if (nr_iovecs) {
 | |
| 		bvl = bio->bi_inline_vecs;
 | |
| 	}
 | |
| 
 | |
| 	bio->bi_pool = bs;
 | |
| 	bio->bi_flags |= idx << BIO_POOL_OFFSET;
 | |
| 	bio->bi_max_vecs = nr_iovecs;
 | |
| 	bio->bi_io_vec = bvl;
 | |
| 	return bio;
 | |
| 
 | |
| err_free:
 | |
| 	mempool_free(p, bs->bio_pool);
 | |
| 	return NULL;
 | |
| }
 | |
| EXPORT_SYMBOL(bio_alloc_bioset);
 | |
| 
 | |
| void zero_fill_bio(struct bio *bio)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	struct bio_vec bv;
 | |
| 	struct bvec_iter iter;
 | |
| 
 | |
| 	bio_for_each_segment(bv, bio, iter) {
 | |
| 		char *data = bvec_kmap_irq(&bv, &flags);
 | |
| 		memset(data, 0, bv.bv_len);
 | |
| 		flush_dcache_page(bv.bv_page);
 | |
| 		bvec_kunmap_irq(data, &flags);
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL(zero_fill_bio);
 | |
| 
 | |
| /**
 | |
|  * bio_put - release a reference to a bio
 | |
|  * @bio:   bio to release reference to
 | |
|  *
 | |
|  * Description:
 | |
|  *   Put a reference to a &struct bio, either one you have gotten with
 | |
|  *   bio_alloc, bio_get or bio_clone. The last put of a bio will free it.
 | |
|  **/
 | |
| void bio_put(struct bio *bio)
 | |
| {
 | |
| 	BIO_BUG_ON(!atomic_read(&bio->bi_cnt));
 | |
| 
 | |
| 	/*
 | |
| 	 * last put frees it
 | |
| 	 */
 | |
| 	if (atomic_dec_and_test(&bio->bi_cnt))
 | |
| 		bio_free(bio);
 | |
| }
 | |
| EXPORT_SYMBOL(bio_put);
 | |
| 
 | |
| inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
 | |
| {
 | |
| 	if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
 | |
| 		blk_recount_segments(q, bio);
 | |
| 
 | |
| 	return bio->bi_phys_segments;
 | |
| }
 | |
| EXPORT_SYMBOL(bio_phys_segments);
 | |
| 
 | |
| /**
 | |
|  * 	__bio_clone_fast - clone a bio that shares the original bio's biovec
 | |
|  * 	@bio: destination bio
 | |
|  * 	@bio_src: bio to clone
 | |
|  *
 | |
|  *	Clone a &bio. Caller will own the returned bio, but not
 | |
|  *	the actual data it points to. Reference count of returned
 | |
|  * 	bio will be one.
 | |
|  *
 | |
|  * 	Caller must ensure that @bio_src is not freed before @bio.
 | |
|  */
 | |
| void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
 | |
| {
 | |
| 	BUG_ON(bio->bi_pool && BIO_POOL_IDX(bio) != BIO_POOL_NONE);
 | |
| 
 | |
| 	/*
 | |
| 	 * most users will be overriding ->bi_bdev with a new target,
 | |
| 	 * so we don't set nor calculate new physical/hw segment counts here
 | |
| 	 */
 | |
| 	bio->bi_bdev = bio_src->bi_bdev;
 | |
| 	bio->bi_flags |= 1 << BIO_CLONED;
 | |
| 	bio->bi_rw = bio_src->bi_rw;
 | |
| 	bio->bi_iter = bio_src->bi_iter;
 | |
| 	bio->bi_io_vec = bio_src->bi_io_vec;
 | |
| }
 | |
| EXPORT_SYMBOL(__bio_clone_fast);
 | |
| 
 | |
| /**
 | |
|  *	bio_clone_fast - clone a bio that shares the original bio's biovec
 | |
|  *	@bio: bio to clone
 | |
|  *	@gfp_mask: allocation priority
 | |
|  *	@bs: bio_set to allocate from
 | |
|  *
 | |
|  * 	Like __bio_clone_fast, only also allocates the returned bio
 | |
|  */
 | |
| struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
 | |
| {
 | |
| 	struct bio *b;
 | |
| 
 | |
| 	b = bio_alloc_bioset(gfp_mask, 0, bs);
 | |
| 	if (!b)
 | |
| 		return NULL;
 | |
| 
 | |
| 	__bio_clone_fast(b, bio);
 | |
| 
 | |
| 	if (bio_integrity(bio)) {
 | |
| 		int ret;
 | |
| 
 | |
| 		ret = bio_integrity_clone(b, bio, gfp_mask);
 | |
| 
 | |
| 		if (ret < 0) {
 | |
| 			bio_put(b);
 | |
| 			return NULL;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return b;
 | |
| }
 | |
| EXPORT_SYMBOL(bio_clone_fast);
 | |
| 
 | |
| /**
 | |
|  * 	bio_clone_bioset - clone a bio
 | |
|  * 	@bio_src: bio to clone
 | |
|  *	@gfp_mask: allocation priority
 | |
|  *	@bs: bio_set to allocate from
 | |
|  *
 | |
|  *	Clone bio. Caller will own the returned bio, but not the actual data it
 | |
|  *	points to. Reference count of returned bio will be one.
 | |
|  */
 | |
| struct bio *bio_clone_bioset(struct bio *bio_src, gfp_t gfp_mask,
 | |
| 			     struct bio_set *bs)
 | |
| {
 | |
| 	unsigned nr_iovecs = 0;
 | |
| 	struct bvec_iter iter;
 | |
| 	struct bio_vec bv;
 | |
| 	struct bio *bio;
 | |
| 
 | |
| 	/*
 | |
| 	 * Pre immutable biovecs, __bio_clone() used to just do a memcpy from
 | |
| 	 * bio_src->bi_io_vec to bio->bi_io_vec.
 | |
| 	 *
 | |
| 	 * We can't do that anymore, because:
 | |
| 	 *
 | |
| 	 *  - The point of cloning the biovec is to produce a bio with a biovec
 | |
| 	 *    the caller can modify: bi_idx and bi_bvec_done should be 0.
 | |
| 	 *
 | |
| 	 *  - The original bio could've had more than BIO_MAX_PAGES biovecs; if
 | |
| 	 *    we tried to clone the whole thing bio_alloc_bioset() would fail.
 | |
| 	 *    But the clone should succeed as long as the number of biovecs we
 | |
| 	 *    actually need to allocate is fewer than BIO_MAX_PAGES.
 | |
| 	 *
 | |
| 	 *  - Lastly, bi_vcnt should not be looked at or relied upon by code
 | |
| 	 *    that does not own the bio - reason being drivers don't use it for
 | |
| 	 *    iterating over the biovec anymore, so expecting it to be kept up
 | |
| 	 *    to date (i.e. for clones that share the parent biovec) is just
 | |
| 	 *    asking for trouble and would force extra work on
 | |
| 	 *    __bio_clone_fast() anyways.
 | |
| 	 */
 | |
| 
 | |
| 	bio_for_each_segment(bv, bio_src, iter)
 | |
| 		nr_iovecs++;
 | |
| 
 | |
| 	bio = bio_alloc_bioset(gfp_mask, nr_iovecs, bs);
 | |
| 	if (!bio)
 | |
| 		return NULL;
 | |
| 
 | |
| 	bio->bi_bdev		= bio_src->bi_bdev;
 | |
| 	bio->bi_rw		= bio_src->bi_rw;
 | |
| 	bio->bi_iter.bi_sector	= bio_src->bi_iter.bi_sector;
 | |
| 	bio->bi_iter.bi_size	= bio_src->bi_iter.bi_size;
 | |
| 
 | |
| 	bio_for_each_segment(bv, bio_src, iter)
 | |
| 		bio->bi_io_vec[bio->bi_vcnt++] = bv;
 | |
| 
 | |
| 	if (bio_integrity(bio_src)) {
 | |
| 		int ret;
 | |
| 
 | |
| 		ret = bio_integrity_clone(bio, bio_src, gfp_mask);
 | |
| 		if (ret < 0) {
 | |
| 			bio_put(bio);
 | |
| 			return NULL;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return bio;
 | |
| }
 | |
| EXPORT_SYMBOL(bio_clone_bioset);
 | |
| 
 | |
| /**
 | |
|  *	bio_get_nr_vecs		- return approx number of vecs
 | |
|  *	@bdev:  I/O target
 | |
|  *
 | |
|  *	Return the approximate number of pages we can send to this target.
 | |
|  *	There's no guarantee that you will be able to fit this number of pages
 | |
|  *	into a bio, it does not account for dynamic restrictions that vary
 | |
|  *	on offset.
 | |
|  */
 | |
| int bio_get_nr_vecs(struct block_device *bdev)
 | |
| {
 | |
| 	struct request_queue *q = bdev_get_queue(bdev);
 | |
| 	int nr_pages;
 | |
| 
 | |
| 	nr_pages = min_t(unsigned,
 | |
| 		     queue_max_segments(q),
 | |
| 		     queue_max_sectors(q) / (PAGE_SIZE >> 9) + 1);
 | |
| 
 | |
| 	return min_t(unsigned, nr_pages, BIO_MAX_PAGES);
 | |
| 
 | |
| }
 | |
| EXPORT_SYMBOL(bio_get_nr_vecs);
 | |
| 
 | |
| static int __bio_add_page(struct request_queue *q, struct bio *bio, struct page
 | |
| 			  *page, unsigned int len, unsigned int offset,
 | |
| 			  unsigned int max_sectors)
 | |
| {
 | |
| 	int retried_segments = 0;
 | |
| 	struct bio_vec *bvec;
 | |
| 
 | |
| 	/*
 | |
| 	 * cloned bio must not modify vec list
 | |
| 	 */
 | |
| 	if (unlikely(bio_flagged(bio, BIO_CLONED)))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (((bio->bi_iter.bi_size + len) >> 9) > max_sectors)
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * For filesystems with a blocksize smaller than the pagesize
 | |
| 	 * we will often be called with the same page as last time and
 | |
| 	 * a consecutive offset.  Optimize this special case.
 | |
| 	 */
 | |
| 	if (bio->bi_vcnt > 0) {
 | |
| 		struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
 | |
| 
 | |
| 		if (page == prev->bv_page &&
 | |
| 		    offset == prev->bv_offset + prev->bv_len) {
 | |
| 			unsigned int prev_bv_len = prev->bv_len;
 | |
| 			prev->bv_len += len;
 | |
| 
 | |
| 			if (q->merge_bvec_fn) {
 | |
| 				struct bvec_merge_data bvm = {
 | |
| 					/* prev_bvec is already charged in
 | |
| 					   bi_size, discharge it in order to
 | |
| 					   simulate merging updated prev_bvec
 | |
| 					   as new bvec. */
 | |
| 					.bi_bdev = bio->bi_bdev,
 | |
| 					.bi_sector = bio->bi_iter.bi_sector,
 | |
| 					.bi_size = bio->bi_iter.bi_size -
 | |
| 						prev_bv_len,
 | |
| 					.bi_rw = bio->bi_rw,
 | |
| 				};
 | |
| 
 | |
| 				if (q->merge_bvec_fn(q, &bvm, prev) < prev->bv_len) {
 | |
| 					prev->bv_len -= len;
 | |
| 					return 0;
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			goto done;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (bio->bi_vcnt >= bio->bi_max_vecs)
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * we might lose a segment or two here, but rather that than
 | |
| 	 * make this too complex.
 | |
| 	 */
 | |
| 
 | |
| 	while (bio->bi_phys_segments >= queue_max_segments(q)) {
 | |
| 
 | |
| 		if (retried_segments)
 | |
| 			return 0;
 | |
| 
 | |
| 		retried_segments = 1;
 | |
| 		blk_recount_segments(q, bio);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * setup the new entry, we might clear it again later if we
 | |
| 	 * cannot add the page
 | |
| 	 */
 | |
| 	bvec = &bio->bi_io_vec[bio->bi_vcnt];
 | |
| 	bvec->bv_page = page;
 | |
| 	bvec->bv_len = len;
 | |
| 	bvec->bv_offset = offset;
 | |
| 
 | |
| 	/*
 | |
| 	 * if queue has other restrictions (eg varying max sector size
 | |
| 	 * depending on offset), it can specify a merge_bvec_fn in the
 | |
| 	 * queue to get further control
 | |
| 	 */
 | |
| 	if (q->merge_bvec_fn) {
 | |
| 		struct bvec_merge_data bvm = {
 | |
| 			.bi_bdev = bio->bi_bdev,
 | |
| 			.bi_sector = bio->bi_iter.bi_sector,
 | |
| 			.bi_size = bio->bi_iter.bi_size,
 | |
| 			.bi_rw = bio->bi_rw,
 | |
| 		};
 | |
| 
 | |
| 		/*
 | |
| 		 * merge_bvec_fn() returns number of bytes it can accept
 | |
| 		 * at this offset
 | |
| 		 */
 | |
| 		if (q->merge_bvec_fn(q, &bvm, bvec) < bvec->bv_len) {
 | |
| 			bvec->bv_page = NULL;
 | |
| 			bvec->bv_len = 0;
 | |
| 			bvec->bv_offset = 0;
 | |
| 			return 0;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* If we may be able to merge these biovecs, force a recount */
 | |
| 	if (bio->bi_vcnt && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
 | |
| 		bio->bi_flags &= ~(1 << BIO_SEG_VALID);
 | |
| 
 | |
| 	bio->bi_vcnt++;
 | |
| 	bio->bi_phys_segments++;
 | |
|  done:
 | |
| 	bio->bi_iter.bi_size += len;
 | |
| 	return len;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	bio_add_pc_page	-	attempt to add page to bio
 | |
|  *	@q: the target queue
 | |
|  *	@bio: destination bio
 | |
|  *	@page: page to add
 | |
|  *	@len: vec entry length
 | |
|  *	@offset: vec entry offset
 | |
|  *
 | |
|  *	Attempt to add a page to the bio_vec maplist. This can fail for a
 | |
|  *	number of reasons, such as the bio being full or target block device
 | |
|  *	limitations. The target block device must allow bio's up to PAGE_SIZE,
 | |
|  *	so it is always possible to add a single page to an empty bio.
 | |
|  *
 | |
|  *	This should only be used by REQ_PC bios.
 | |
|  */
 | |
| int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page *page,
 | |
| 		    unsigned int len, unsigned int offset)
 | |
| {
 | |
| 	return __bio_add_page(q, bio, page, len, offset,
 | |
| 			      queue_max_hw_sectors(q));
 | |
| }
 | |
| EXPORT_SYMBOL(bio_add_pc_page);
 | |
| 
 | |
| /**
 | |
|  *	bio_add_page	-	attempt to add page to bio
 | |
|  *	@bio: destination bio
 | |
|  *	@page: page to add
 | |
|  *	@len: vec entry length
 | |
|  *	@offset: vec entry offset
 | |
|  *
 | |
|  *	Attempt to add a page to the bio_vec maplist. This can fail for a
 | |
|  *	number of reasons, such as the bio being full or target block device
 | |
|  *	limitations. The target block device must allow bio's up to PAGE_SIZE,
 | |
|  *	so it is always possible to add a single page to an empty bio.
 | |
|  */
 | |
| int bio_add_page(struct bio *bio, struct page *page, unsigned int len,
 | |
| 		 unsigned int offset)
 | |
| {
 | |
| 	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
 | |
| 	return __bio_add_page(q, bio, page, len, offset, queue_max_sectors(q));
 | |
| }
 | |
| EXPORT_SYMBOL(bio_add_page);
 | |
| 
 | |
| struct submit_bio_ret {
 | |
| 	struct completion event;
 | |
| 	int error;
 | |
| };
 | |
| 
 | |
| static void submit_bio_wait_endio(struct bio *bio, int error)
 | |
| {
 | |
| 	struct submit_bio_ret *ret = bio->bi_private;
 | |
| 
 | |
| 	ret->error = error;
 | |
| 	complete(&ret->event);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * submit_bio_wait - submit a bio, and wait until it completes
 | |
|  * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
 | |
|  * @bio: The &struct bio which describes the I/O
 | |
|  *
 | |
|  * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
 | |
|  * bio_endio() on failure.
 | |
|  */
 | |
| int submit_bio_wait(int rw, struct bio *bio)
 | |
| {
 | |
| 	struct submit_bio_ret ret;
 | |
| 
 | |
| 	rw |= REQ_SYNC;
 | |
| 	init_completion(&ret.event);
 | |
| 	bio->bi_private = &ret;
 | |
| 	bio->bi_end_io = submit_bio_wait_endio;
 | |
| 	submit_bio(rw, bio);
 | |
| 	wait_for_completion(&ret.event);
 | |
| 
 | |
| 	return ret.error;
 | |
| }
 | |
| EXPORT_SYMBOL(submit_bio_wait);
 | |
| 
 | |
| /**
 | |
|  * bio_advance - increment/complete a bio by some number of bytes
 | |
|  * @bio:	bio to advance
 | |
|  * @bytes:	number of bytes to complete
 | |
|  *
 | |
|  * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
 | |
|  * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
 | |
|  * be updated on the last bvec as well.
 | |
|  *
 | |
|  * @bio will then represent the remaining, uncompleted portion of the io.
 | |
|  */
 | |
| void bio_advance(struct bio *bio, unsigned bytes)
 | |
| {
 | |
| 	if (bio_integrity(bio))
 | |
| 		bio_integrity_advance(bio, bytes);
 | |
| 
 | |
| 	bio_advance_iter(bio, &bio->bi_iter, bytes);
 | |
| }
 | |
| EXPORT_SYMBOL(bio_advance);
 | |
| 
 | |
| /**
 | |
|  * bio_alloc_pages - allocates a single page for each bvec in a bio
 | |
|  * @bio: bio to allocate pages for
 | |
|  * @gfp_mask: flags for allocation
 | |
|  *
 | |
|  * Allocates pages up to @bio->bi_vcnt.
 | |
|  *
 | |
|  * Returns 0 on success, -ENOMEM on failure. On failure, any allocated pages are
 | |
|  * freed.
 | |
|  */
 | |
| int bio_alloc_pages(struct bio *bio, gfp_t gfp_mask)
 | |
| {
 | |
| 	int i;
 | |
| 	struct bio_vec *bv;
 | |
| 
 | |
| 	bio_for_each_segment_all(bv, bio, i) {
 | |
| 		bv->bv_page = alloc_page(gfp_mask);
 | |
| 		if (!bv->bv_page) {
 | |
| 			while (--bv >= bio->bi_io_vec)
 | |
| 				__free_page(bv->bv_page);
 | |
| 			return -ENOMEM;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL(bio_alloc_pages);
 | |
| 
 | |
| /**
 | |
|  * bio_copy_data - copy contents of data buffers from one chain of bios to
 | |
|  * another
 | |
|  * @src: source bio list
 | |
|  * @dst: destination bio list
 | |
|  *
 | |
|  * If @src and @dst are single bios, bi_next must be NULL - otherwise, treats
 | |
|  * @src and @dst as linked lists of bios.
 | |
|  *
 | |
|  * Stops when it reaches the end of either @src or @dst - that is, copies
 | |
|  * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
 | |
|  */
 | |
| void bio_copy_data(struct bio *dst, struct bio *src)
 | |
| {
 | |
| 	struct bvec_iter src_iter, dst_iter;
 | |
| 	struct bio_vec src_bv, dst_bv;
 | |
| 	void *src_p, *dst_p;
 | |
| 	unsigned bytes;
 | |
| 
 | |
| 	src_iter = src->bi_iter;
 | |
| 	dst_iter = dst->bi_iter;
 | |
| 
 | |
| 	while (1) {
 | |
| 		if (!src_iter.bi_size) {
 | |
| 			src = src->bi_next;
 | |
| 			if (!src)
 | |
| 				break;
 | |
| 
 | |
| 			src_iter = src->bi_iter;
 | |
| 		}
 | |
| 
 | |
| 		if (!dst_iter.bi_size) {
 | |
| 			dst = dst->bi_next;
 | |
| 			if (!dst)
 | |
| 				break;
 | |
| 
 | |
| 			dst_iter = dst->bi_iter;
 | |
| 		}
 | |
| 
 | |
| 		src_bv = bio_iter_iovec(src, src_iter);
 | |
| 		dst_bv = bio_iter_iovec(dst, dst_iter);
 | |
| 
 | |
| 		bytes = min(src_bv.bv_len, dst_bv.bv_len);
 | |
| 
 | |
| 		src_p = kmap_atomic(src_bv.bv_page);
 | |
| 		dst_p = kmap_atomic(dst_bv.bv_page);
 | |
| 
 | |
| 		memcpy(dst_p + dst_bv.bv_offset,
 | |
| 		       src_p + src_bv.bv_offset,
 | |
| 		       bytes);
 | |
| 
 | |
| 		kunmap_atomic(dst_p);
 | |
| 		kunmap_atomic(src_p);
 | |
| 
 | |
| 		bio_advance_iter(src, &src_iter, bytes);
 | |
| 		bio_advance_iter(dst, &dst_iter, bytes);
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL(bio_copy_data);
 | |
| 
 | |
| struct bio_map_data {
 | |
| 	int nr_sgvecs;
 | |
| 	int is_our_pages;
 | |
| 	struct sg_iovec sgvecs[];
 | |
| };
 | |
| 
 | |
| static void bio_set_map_data(struct bio_map_data *bmd, struct bio *bio,
 | |
| 			     struct sg_iovec *iov, int iov_count,
 | |
| 			     int is_our_pages)
 | |
| {
 | |
| 	memcpy(bmd->sgvecs, iov, sizeof(struct sg_iovec) * iov_count);
 | |
| 	bmd->nr_sgvecs = iov_count;
 | |
| 	bmd->is_our_pages = is_our_pages;
 | |
| 	bio->bi_private = bmd;
 | |
| }
 | |
| 
 | |
| static struct bio_map_data *bio_alloc_map_data(int nr_segs,
 | |
| 					       unsigned int iov_count,
 | |
| 					       gfp_t gfp_mask)
 | |
| {
 | |
| 	if (iov_count > UIO_MAXIOV)
 | |
| 		return NULL;
 | |
| 
 | |
| 	return kmalloc(sizeof(struct bio_map_data) +
 | |
| 		       sizeof(struct sg_iovec) * iov_count, gfp_mask);
 | |
| }
 | |
| 
 | |
| static int __bio_copy_iov(struct bio *bio, struct sg_iovec *iov, int iov_count,
 | |
| 			  int to_user, int from_user, int do_free_page)
 | |
| {
 | |
| 	int ret = 0, i;
 | |
| 	struct bio_vec *bvec;
 | |
| 	int iov_idx = 0;
 | |
| 	unsigned int iov_off = 0;
 | |
| 
 | |
| 	bio_for_each_segment_all(bvec, bio, i) {
 | |
| 		char *bv_addr = page_address(bvec->bv_page);
 | |
| 		unsigned int bv_len = bvec->bv_len;
 | |
| 
 | |
| 		while (bv_len && iov_idx < iov_count) {
 | |
| 			unsigned int bytes;
 | |
| 			char __user *iov_addr;
 | |
| 
 | |
| 			bytes = min_t(unsigned int,
 | |
| 				      iov[iov_idx].iov_len - iov_off, bv_len);
 | |
| 			iov_addr = iov[iov_idx].iov_base + iov_off;
 | |
| 
 | |
| 			if (!ret) {
 | |
| 				if (to_user)
 | |
| 					ret = copy_to_user(iov_addr, bv_addr,
 | |
| 							   bytes);
 | |
| 
 | |
| 				if (from_user)
 | |
| 					ret = copy_from_user(bv_addr, iov_addr,
 | |
| 							     bytes);
 | |
| 
 | |
| 				if (ret)
 | |
| 					ret = -EFAULT;
 | |
| 			}
 | |
| 
 | |
| 			bv_len -= bytes;
 | |
| 			bv_addr += bytes;
 | |
| 			iov_addr += bytes;
 | |
| 			iov_off += bytes;
 | |
| 
 | |
| 			if (iov[iov_idx].iov_len == iov_off) {
 | |
| 				iov_idx++;
 | |
| 				iov_off = 0;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (do_free_page)
 | |
| 			__free_page(bvec->bv_page);
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	bio_uncopy_user	-	finish previously mapped bio
 | |
|  *	@bio: bio being terminated
 | |
|  *
 | |
|  *	Free pages allocated from bio_copy_user() and write back data
 | |
|  *	to user space in case of a read.
 | |
|  */
 | |
| int bio_uncopy_user(struct bio *bio)
 | |
| {
 | |
| 	struct bio_map_data *bmd = bio->bi_private;
 | |
| 	struct bio_vec *bvec;
 | |
| 	int ret = 0, i;
 | |
| 
 | |
| 	if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
 | |
| 		/*
 | |
| 		 * if we're in a workqueue, the request is orphaned, so
 | |
| 		 * don't copy into a random user address space, just free.
 | |
| 		 */
 | |
| 		if (current->mm)
 | |
| 			ret = __bio_copy_iov(bio, bmd->sgvecs, bmd->nr_sgvecs,
 | |
| 					     bio_data_dir(bio) == READ,
 | |
| 					     0, bmd->is_our_pages);
 | |
| 		else if (bmd->is_our_pages)
 | |
| 			bio_for_each_segment_all(bvec, bio, i)
 | |
| 				__free_page(bvec->bv_page);
 | |
| 	}
 | |
| 	kfree(bmd);
 | |
| 	bio_put(bio);
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL(bio_uncopy_user);
 | |
| 
 | |
| /**
 | |
|  *	bio_copy_user_iov	-	copy user data to bio
 | |
|  *	@q: destination block queue
 | |
|  *	@map_data: pointer to the rq_map_data holding pages (if necessary)
 | |
|  *	@iov:	the iovec.
 | |
|  *	@iov_count: number of elements in the iovec
 | |
|  *	@write_to_vm: bool indicating writing to pages or not
 | |
|  *	@gfp_mask: memory allocation flags
 | |
|  *
 | |
|  *	Prepares and returns a bio for indirect user io, bouncing data
 | |
|  *	to/from kernel pages as necessary. Must be paired with
 | |
|  *	call bio_uncopy_user() on io completion.
 | |
|  */
 | |
| struct bio *bio_copy_user_iov(struct request_queue *q,
 | |
| 			      struct rq_map_data *map_data,
 | |
| 			      struct sg_iovec *iov, int iov_count,
 | |
| 			      int write_to_vm, gfp_t gfp_mask)
 | |
| {
 | |
| 	struct bio_map_data *bmd;
 | |
| 	struct bio_vec *bvec;
 | |
| 	struct page *page;
 | |
| 	struct bio *bio;
 | |
| 	int i, ret;
 | |
| 	int nr_pages = 0;
 | |
| 	unsigned int len = 0;
 | |
| 	unsigned int offset = map_data ? map_data->offset & ~PAGE_MASK : 0;
 | |
| 
 | |
| 	for (i = 0; i < iov_count; i++) {
 | |
| 		unsigned long uaddr;
 | |
| 		unsigned long end;
 | |
| 		unsigned long start;
 | |
| 
 | |
| 		uaddr = (unsigned long)iov[i].iov_base;
 | |
| 		end = (uaddr + iov[i].iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
 | |
| 		start = uaddr >> PAGE_SHIFT;
 | |
| 
 | |
| 		/*
 | |
| 		 * Overflow, abort
 | |
| 		 */
 | |
| 		if (end < start)
 | |
| 			return ERR_PTR(-EINVAL);
 | |
| 
 | |
| 		nr_pages += end - start;
 | |
| 		len += iov[i].iov_len;
 | |
| 	}
 | |
| 
 | |
| 	if (offset)
 | |
| 		nr_pages++;
 | |
| 
 | |
| 	bmd = bio_alloc_map_data(nr_pages, iov_count, gfp_mask);
 | |
| 	if (!bmd)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 
 | |
| 	ret = -ENOMEM;
 | |
| 	bio = bio_kmalloc(gfp_mask, nr_pages);
 | |
| 	if (!bio)
 | |
| 		goto out_bmd;
 | |
| 
 | |
| 	if (!write_to_vm)
 | |
| 		bio->bi_rw |= REQ_WRITE;
 | |
| 
 | |
| 	ret = 0;
 | |
| 
 | |
| 	if (map_data) {
 | |
| 		nr_pages = 1 << map_data->page_order;
 | |
| 		i = map_data->offset / PAGE_SIZE;
 | |
| 	}
 | |
| 	while (len) {
 | |
| 		unsigned int bytes = PAGE_SIZE;
 | |
| 
 | |
| 		bytes -= offset;
 | |
| 
 | |
| 		if (bytes > len)
 | |
| 			bytes = len;
 | |
| 
 | |
| 		if (map_data) {
 | |
| 			if (i == map_data->nr_entries * nr_pages) {
 | |
| 				ret = -ENOMEM;
 | |
| 				break;
 | |
| 			}
 | |
| 
 | |
| 			page = map_data->pages[i / nr_pages];
 | |
| 			page += (i % nr_pages);
 | |
| 
 | |
| 			i++;
 | |
| 		} else {
 | |
| 			page = alloc_page(q->bounce_gfp | gfp_mask);
 | |
| 			if (!page) {
 | |
| 				ret = -ENOMEM;
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
 | |
| 			break;
 | |
| 
 | |
| 		len -= bytes;
 | |
| 		offset = 0;
 | |
| 	}
 | |
| 
 | |
| 	if (ret)
 | |
| 		goto cleanup;
 | |
| 
 | |
| 	/*
 | |
| 	 * success
 | |
| 	 */
 | |
| 	if ((!write_to_vm && (!map_data || !map_data->null_mapped)) ||
 | |
| 	    (map_data && map_data->from_user)) {
 | |
| 		ret = __bio_copy_iov(bio, iov, iov_count, 0, 1, 0);
 | |
| 		if (ret)
 | |
| 			goto cleanup;
 | |
| 	}
 | |
| 
 | |
| 	bio_set_map_data(bmd, bio, iov, iov_count, map_data ? 0 : 1);
 | |
| 	return bio;
 | |
| cleanup:
 | |
| 	if (!map_data)
 | |
| 		bio_for_each_segment_all(bvec, bio, i)
 | |
| 			__free_page(bvec->bv_page);
 | |
| 
 | |
| 	bio_put(bio);
 | |
| out_bmd:
 | |
| 	kfree(bmd);
 | |
| 	return ERR_PTR(ret);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	bio_copy_user	-	copy user data to bio
 | |
|  *	@q: destination block queue
 | |
|  *	@map_data: pointer to the rq_map_data holding pages (if necessary)
 | |
|  *	@uaddr: start of user address
 | |
|  *	@len: length in bytes
 | |
|  *	@write_to_vm: bool indicating writing to pages or not
 | |
|  *	@gfp_mask: memory allocation flags
 | |
|  *
 | |
|  *	Prepares and returns a bio for indirect user io, bouncing data
 | |
|  *	to/from kernel pages as necessary. Must be paired with
 | |
|  *	call bio_uncopy_user() on io completion.
 | |
|  */
 | |
| struct bio *bio_copy_user(struct request_queue *q, struct rq_map_data *map_data,
 | |
| 			  unsigned long uaddr, unsigned int len,
 | |
| 			  int write_to_vm, gfp_t gfp_mask)
 | |
| {
 | |
| 	struct sg_iovec iov;
 | |
| 
 | |
| 	iov.iov_base = (void __user *)uaddr;
 | |
| 	iov.iov_len = len;
 | |
| 
 | |
| 	return bio_copy_user_iov(q, map_data, &iov, 1, write_to_vm, gfp_mask);
 | |
| }
 | |
| EXPORT_SYMBOL(bio_copy_user);
 | |
| 
 | |
| static struct bio *__bio_map_user_iov(struct request_queue *q,
 | |
| 				      struct block_device *bdev,
 | |
| 				      struct sg_iovec *iov, int iov_count,
 | |
| 				      int write_to_vm, gfp_t gfp_mask)
 | |
| {
 | |
| 	int i, j;
 | |
| 	int nr_pages = 0;
 | |
| 	struct page **pages;
 | |
| 	struct bio *bio;
 | |
| 	int cur_page = 0;
 | |
| 	int ret, offset;
 | |
| 
 | |
| 	for (i = 0; i < iov_count; i++) {
 | |
| 		unsigned long uaddr = (unsigned long)iov[i].iov_base;
 | |
| 		unsigned long len = iov[i].iov_len;
 | |
| 		unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
 | |
| 		unsigned long start = uaddr >> PAGE_SHIFT;
 | |
| 
 | |
| 		/*
 | |
| 		 * Overflow, abort
 | |
| 		 */
 | |
| 		if (end < start)
 | |
| 			return ERR_PTR(-EINVAL);
 | |
| 
 | |
| 		nr_pages += end - start;
 | |
| 		/*
 | |
| 		 * buffer must be aligned to at least hardsector size for now
 | |
| 		 */
 | |
| 		if (uaddr & queue_dma_alignment(q))
 | |
| 			return ERR_PTR(-EINVAL);
 | |
| 	}
 | |
| 
 | |
| 	if (!nr_pages)
 | |
| 		return ERR_PTR(-EINVAL);
 | |
| 
 | |
| 	bio = bio_kmalloc(gfp_mask, nr_pages);
 | |
| 	if (!bio)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 
 | |
| 	ret = -ENOMEM;
 | |
| 	pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask);
 | |
| 	if (!pages)
 | |
| 		goto out;
 | |
| 
 | |
| 	for (i = 0; i < iov_count; i++) {
 | |
| 		unsigned long uaddr = (unsigned long)iov[i].iov_base;
 | |
| 		unsigned long len = iov[i].iov_len;
 | |
| 		unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
 | |
| 		unsigned long start = uaddr >> PAGE_SHIFT;
 | |
| 		const int local_nr_pages = end - start;
 | |
| 		const int page_limit = cur_page + local_nr_pages;
 | |
| 
 | |
| 		ret = get_user_pages_fast(uaddr, local_nr_pages,
 | |
| 				write_to_vm, &pages[cur_page]);
 | |
| 		if (ret < local_nr_pages) {
 | |
| 			ret = -EFAULT;
 | |
| 			goto out_unmap;
 | |
| 		}
 | |
| 
 | |
| 		offset = uaddr & ~PAGE_MASK;
 | |
| 		for (j = cur_page; j < page_limit; j++) {
 | |
| 			unsigned int bytes = PAGE_SIZE - offset;
 | |
| 
 | |
| 			if (len <= 0)
 | |
| 				break;
 | |
| 			
 | |
| 			if (bytes > len)
 | |
| 				bytes = len;
 | |
| 
 | |
| 			/*
 | |
| 			 * sorry...
 | |
| 			 */
 | |
| 			if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
 | |
| 					    bytes)
 | |
| 				break;
 | |
| 
 | |
| 			len -= bytes;
 | |
| 			offset = 0;
 | |
| 		}
 | |
| 
 | |
| 		cur_page = j;
 | |
| 		/*
 | |
| 		 * release the pages we didn't map into the bio, if any
 | |
| 		 */
 | |
| 		while (j < page_limit)
 | |
| 			page_cache_release(pages[j++]);
 | |
| 	}
 | |
| 
 | |
| 	kfree(pages);
 | |
| 
 | |
| 	/*
 | |
| 	 * set data direction, and check if mapped pages need bouncing
 | |
| 	 */
 | |
| 	if (!write_to_vm)
 | |
| 		bio->bi_rw |= REQ_WRITE;
 | |
| 
 | |
| 	bio->bi_bdev = bdev;
 | |
| 	bio->bi_flags |= (1 << BIO_USER_MAPPED);
 | |
| 	return bio;
 | |
| 
 | |
|  out_unmap:
 | |
| 	for (i = 0; i < nr_pages; i++) {
 | |
| 		if(!pages[i])
 | |
| 			break;
 | |
| 		page_cache_release(pages[i]);
 | |
| 	}
 | |
|  out:
 | |
| 	kfree(pages);
 | |
| 	bio_put(bio);
 | |
| 	return ERR_PTR(ret);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	bio_map_user	-	map user address into bio
 | |
|  *	@q: the struct request_queue for the bio
 | |
|  *	@bdev: destination block device
 | |
|  *	@uaddr: start of user address
 | |
|  *	@len: length in bytes
 | |
|  *	@write_to_vm: bool indicating writing to pages or not
 | |
|  *	@gfp_mask: memory allocation flags
 | |
|  *
 | |
|  *	Map the user space address into a bio suitable for io to a block
 | |
|  *	device. Returns an error pointer in case of error.
 | |
|  */
 | |
| struct bio *bio_map_user(struct request_queue *q, struct block_device *bdev,
 | |
| 			 unsigned long uaddr, unsigned int len, int write_to_vm,
 | |
| 			 gfp_t gfp_mask)
 | |
| {
 | |
| 	struct sg_iovec iov;
 | |
| 
 | |
| 	iov.iov_base = (void __user *)uaddr;
 | |
| 	iov.iov_len = len;
 | |
| 
 | |
| 	return bio_map_user_iov(q, bdev, &iov, 1, write_to_vm, gfp_mask);
 | |
| }
 | |
| EXPORT_SYMBOL(bio_map_user);
 | |
| 
 | |
| /**
 | |
|  *	bio_map_user_iov - map user sg_iovec table into bio
 | |
|  *	@q: the struct request_queue for the bio
 | |
|  *	@bdev: destination block device
 | |
|  *	@iov:	the iovec.
 | |
|  *	@iov_count: number of elements in the iovec
 | |
|  *	@write_to_vm: bool indicating writing to pages or not
 | |
|  *	@gfp_mask: memory allocation flags
 | |
|  *
 | |
|  *	Map the user space address into a bio suitable for io to a block
 | |
|  *	device. Returns an error pointer in case of error.
 | |
|  */
 | |
| struct bio *bio_map_user_iov(struct request_queue *q, struct block_device *bdev,
 | |
| 			     struct sg_iovec *iov, int iov_count,
 | |
| 			     int write_to_vm, gfp_t gfp_mask)
 | |
| {
 | |
| 	struct bio *bio;
 | |
| 
 | |
| 	bio = __bio_map_user_iov(q, bdev, iov, iov_count, write_to_vm,
 | |
| 				 gfp_mask);
 | |
| 	if (IS_ERR(bio))
 | |
| 		return bio;
 | |
| 
 | |
| 	/*
 | |
| 	 * subtle -- if __bio_map_user() ended up bouncing a bio,
 | |
| 	 * it would normally disappear when its bi_end_io is run.
 | |
| 	 * however, we need it for the unmap, so grab an extra
 | |
| 	 * reference to it
 | |
| 	 */
 | |
| 	bio_get(bio);
 | |
| 
 | |
| 	return bio;
 | |
| }
 | |
| 
 | |
| static void __bio_unmap_user(struct bio *bio)
 | |
| {
 | |
| 	struct bio_vec *bvec;
 | |
| 	int i;
 | |
| 
 | |
| 	/*
 | |
| 	 * make sure we dirty pages we wrote to
 | |
| 	 */
 | |
| 	bio_for_each_segment_all(bvec, bio, i) {
 | |
| 		if (bio_data_dir(bio) == READ)
 | |
| 			set_page_dirty_lock(bvec->bv_page);
 | |
| 
 | |
| 		page_cache_release(bvec->bv_page);
 | |
| 	}
 | |
| 
 | |
| 	bio_put(bio);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	bio_unmap_user	-	unmap a bio
 | |
|  *	@bio:		the bio being unmapped
 | |
|  *
 | |
|  *	Unmap a bio previously mapped by bio_map_user(). Must be called with
 | |
|  *	a process context.
 | |
|  *
 | |
|  *	bio_unmap_user() may sleep.
 | |
|  */
 | |
| void bio_unmap_user(struct bio *bio)
 | |
| {
 | |
| 	__bio_unmap_user(bio);
 | |
| 	bio_put(bio);
 | |
| }
 | |
| EXPORT_SYMBOL(bio_unmap_user);
 | |
| 
 | |
| static void bio_map_kern_endio(struct bio *bio, int err)
 | |
| {
 | |
| 	bio_put(bio);
 | |
| }
 | |
| 
 | |
| static struct bio *__bio_map_kern(struct request_queue *q, void *data,
 | |
| 				  unsigned int len, gfp_t gfp_mask)
 | |
| {
 | |
| 	unsigned long kaddr = (unsigned long)data;
 | |
| 	unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
 | |
| 	unsigned long start = kaddr >> PAGE_SHIFT;
 | |
| 	const int nr_pages = end - start;
 | |
| 	int offset, i;
 | |
| 	struct bio *bio;
 | |
| 
 | |
| 	bio = bio_kmalloc(gfp_mask, nr_pages);
 | |
| 	if (!bio)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 
 | |
| 	offset = offset_in_page(kaddr);
 | |
| 	for (i = 0; i < nr_pages; i++) {
 | |
| 		unsigned int bytes = PAGE_SIZE - offset;
 | |
| 
 | |
| 		if (len <= 0)
 | |
| 			break;
 | |
| 
 | |
| 		if (bytes > len)
 | |
| 			bytes = len;
 | |
| 
 | |
| 		if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
 | |
| 				    offset) < bytes)
 | |
| 			break;
 | |
| 
 | |
| 		data += bytes;
 | |
| 		len -= bytes;
 | |
| 		offset = 0;
 | |
| 	}
 | |
| 
 | |
| 	bio->bi_end_io = bio_map_kern_endio;
 | |
| 	return bio;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	bio_map_kern	-	map kernel address into bio
 | |
|  *	@q: the struct request_queue for the bio
 | |
|  *	@data: pointer to buffer to map
 | |
|  *	@len: length in bytes
 | |
|  *	@gfp_mask: allocation flags for bio allocation
 | |
|  *
 | |
|  *	Map the kernel address into a bio suitable for io to a block
 | |
|  *	device. Returns an error pointer in case of error.
 | |
|  */
 | |
| struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
 | |
| 			 gfp_t gfp_mask)
 | |
| {
 | |
| 	struct bio *bio;
 | |
| 
 | |
| 	bio = __bio_map_kern(q, data, len, gfp_mask);
 | |
| 	if (IS_ERR(bio))
 | |
| 		return bio;
 | |
| 
 | |
| 	if (bio->bi_iter.bi_size == len)
 | |
| 		return bio;
 | |
| 
 | |
| 	/*
 | |
| 	 * Don't support partial mappings.
 | |
| 	 */
 | |
| 	bio_put(bio);
 | |
| 	return ERR_PTR(-EINVAL);
 | |
| }
 | |
| EXPORT_SYMBOL(bio_map_kern);
 | |
| 
 | |
| static void bio_copy_kern_endio(struct bio *bio, int err)
 | |
| {
 | |
| 	struct bio_vec *bvec;
 | |
| 	const int read = bio_data_dir(bio) == READ;
 | |
| 	struct bio_map_data *bmd = bio->bi_private;
 | |
| 	int i;
 | |
| 	char *p = bmd->sgvecs[0].iov_base;
 | |
| 
 | |
| 	bio_for_each_segment_all(bvec, bio, i) {
 | |
| 		char *addr = page_address(bvec->bv_page);
 | |
| 
 | |
| 		if (read)
 | |
| 			memcpy(p, addr, bvec->bv_len);
 | |
| 
 | |
| 		__free_page(bvec->bv_page);
 | |
| 		p += bvec->bv_len;
 | |
| 	}
 | |
| 
 | |
| 	kfree(bmd);
 | |
| 	bio_put(bio);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	bio_copy_kern	-	copy kernel address into bio
 | |
|  *	@q: the struct request_queue for the bio
 | |
|  *	@data: pointer to buffer to copy
 | |
|  *	@len: length in bytes
 | |
|  *	@gfp_mask: allocation flags for bio and page allocation
 | |
|  *	@reading: data direction is READ
 | |
|  *
 | |
|  *	copy the kernel address into a bio suitable for io to a block
 | |
|  *	device. Returns an error pointer in case of error.
 | |
|  */
 | |
| struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
 | |
| 			  gfp_t gfp_mask, int reading)
 | |
| {
 | |
| 	struct bio *bio;
 | |
| 	struct bio_vec *bvec;
 | |
| 	int i;
 | |
| 
 | |
| 	bio = bio_copy_user(q, NULL, (unsigned long)data, len, 1, gfp_mask);
 | |
| 	if (IS_ERR(bio))
 | |
| 		return bio;
 | |
| 
 | |
| 	if (!reading) {
 | |
| 		void *p = data;
 | |
| 
 | |
| 		bio_for_each_segment_all(bvec, bio, i) {
 | |
| 			char *addr = page_address(bvec->bv_page);
 | |
| 
 | |
| 			memcpy(addr, p, bvec->bv_len);
 | |
| 			p += bvec->bv_len;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	bio->bi_end_io = bio_copy_kern_endio;
 | |
| 
 | |
| 	return bio;
 | |
| }
 | |
| EXPORT_SYMBOL(bio_copy_kern);
 | |
| 
 | |
| /*
 | |
|  * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
 | |
|  * for performing direct-IO in BIOs.
 | |
|  *
 | |
|  * The problem is that we cannot run set_page_dirty() from interrupt context
 | |
|  * because the required locks are not interrupt-safe.  So what we can do is to
 | |
|  * mark the pages dirty _before_ performing IO.  And in interrupt context,
 | |
|  * check that the pages are still dirty.   If so, fine.  If not, redirty them
 | |
|  * in process context.
 | |
|  *
 | |
|  * We special-case compound pages here: normally this means reads into hugetlb
 | |
|  * pages.  The logic in here doesn't really work right for compound pages
 | |
|  * because the VM does not uniformly chase down the head page in all cases.
 | |
|  * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
 | |
|  * handle them at all.  So we skip compound pages here at an early stage.
 | |
|  *
 | |
|  * Note that this code is very hard to test under normal circumstances because
 | |
|  * direct-io pins the pages with get_user_pages().  This makes
 | |
|  * is_page_cache_freeable return false, and the VM will not clean the pages.
 | |
|  * But other code (eg, flusher threads) could clean the pages if they are mapped
 | |
|  * pagecache.
 | |
|  *
 | |
|  * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
 | |
|  * deferred bio dirtying paths.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * bio_set_pages_dirty() will mark all the bio's pages as dirty.
 | |
|  */
 | |
| void bio_set_pages_dirty(struct bio *bio)
 | |
| {
 | |
| 	struct bio_vec *bvec;
 | |
| 	int i;
 | |
| 
 | |
| 	bio_for_each_segment_all(bvec, bio, i) {
 | |
| 		struct page *page = bvec->bv_page;
 | |
| 
 | |
| 		if (page && !PageCompound(page))
 | |
| 			set_page_dirty_lock(page);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void bio_release_pages(struct bio *bio)
 | |
| {
 | |
| 	struct bio_vec *bvec;
 | |
| 	int i;
 | |
| 
 | |
| 	bio_for_each_segment_all(bvec, bio, i) {
 | |
| 		struct page *page = bvec->bv_page;
 | |
| 
 | |
| 		if (page)
 | |
| 			put_page(page);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
 | |
|  * If they are, then fine.  If, however, some pages are clean then they must
 | |
|  * have been written out during the direct-IO read.  So we take another ref on
 | |
|  * the BIO and the offending pages and re-dirty the pages in process context.
 | |
|  *
 | |
|  * It is expected that bio_check_pages_dirty() will wholly own the BIO from
 | |
|  * here on.  It will run one page_cache_release() against each page and will
 | |
|  * run one bio_put() against the BIO.
 | |
|  */
 | |
| 
 | |
| static void bio_dirty_fn(struct work_struct *work);
 | |
| 
 | |
| static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
 | |
| static DEFINE_SPINLOCK(bio_dirty_lock);
 | |
| static struct bio *bio_dirty_list;
 | |
| 
 | |
| /*
 | |
|  * This runs in process context
 | |
|  */
 | |
| static void bio_dirty_fn(struct work_struct *work)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	struct bio *bio;
 | |
| 
 | |
| 	spin_lock_irqsave(&bio_dirty_lock, flags);
 | |
| 	bio = bio_dirty_list;
 | |
| 	bio_dirty_list = NULL;
 | |
| 	spin_unlock_irqrestore(&bio_dirty_lock, flags);
 | |
| 
 | |
| 	while (bio) {
 | |
| 		struct bio *next = bio->bi_private;
 | |
| 
 | |
| 		bio_set_pages_dirty(bio);
 | |
| 		bio_release_pages(bio);
 | |
| 		bio_put(bio);
 | |
| 		bio = next;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void bio_check_pages_dirty(struct bio *bio)
 | |
| {
 | |
| 	struct bio_vec *bvec;
 | |
| 	int nr_clean_pages = 0;
 | |
| 	int i;
 | |
| 
 | |
| 	bio_for_each_segment_all(bvec, bio, i) {
 | |
| 		struct page *page = bvec->bv_page;
 | |
| 
 | |
| 		if (PageDirty(page) || PageCompound(page)) {
 | |
| 			page_cache_release(page);
 | |
| 			bvec->bv_page = NULL;
 | |
| 		} else {
 | |
| 			nr_clean_pages++;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (nr_clean_pages) {
 | |
| 		unsigned long flags;
 | |
| 
 | |
| 		spin_lock_irqsave(&bio_dirty_lock, flags);
 | |
| 		bio->bi_private = bio_dirty_list;
 | |
| 		bio_dirty_list = bio;
 | |
| 		spin_unlock_irqrestore(&bio_dirty_lock, flags);
 | |
| 		schedule_work(&bio_dirty_work);
 | |
| 	} else {
 | |
| 		bio_put(bio);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
 | |
| void bio_flush_dcache_pages(struct bio *bi)
 | |
| {
 | |
| 	struct bio_vec bvec;
 | |
| 	struct bvec_iter iter;
 | |
| 
 | |
| 	bio_for_each_segment(bvec, bi, iter)
 | |
| 		flush_dcache_page(bvec.bv_page);
 | |
| }
 | |
| EXPORT_SYMBOL(bio_flush_dcache_pages);
 | |
| #endif
 | |
| 
 | |
| /**
 | |
|  * bio_endio - end I/O on a bio
 | |
|  * @bio:	bio
 | |
|  * @error:	error, if any
 | |
|  *
 | |
|  * Description:
 | |
|  *   bio_endio() will end I/O on the whole bio. bio_endio() is the
 | |
|  *   preferred way to end I/O on a bio, it takes care of clearing
 | |
|  *   BIO_UPTODATE on error. @error is 0 on success, and and one of the
 | |
|  *   established -Exxxx (-EIO, for instance) error values in case
 | |
|  *   something went wrong. No one should call bi_end_io() directly on a
 | |
|  *   bio unless they own it and thus know that it has an end_io
 | |
|  *   function.
 | |
|  **/
 | |
| void bio_endio(struct bio *bio, int error)
 | |
| {
 | |
| 	while (bio) {
 | |
| 		BUG_ON(atomic_read(&bio->bi_remaining) <= 0);
 | |
| 
 | |
| 		if (error)
 | |
| 			clear_bit(BIO_UPTODATE, &bio->bi_flags);
 | |
| 		else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
 | |
| 			error = -EIO;
 | |
| 
 | |
| 		if (!atomic_dec_and_test(&bio->bi_remaining))
 | |
| 			return;
 | |
| 
 | |
| 		/*
 | |
| 		 * Need to have a real endio function for chained bios,
 | |
| 		 * otherwise various corner cases will break (like stacking
 | |
| 		 * block devices that save/restore bi_end_io) - however, we want
 | |
| 		 * to avoid unbounded recursion and blowing the stack. Tail call
 | |
| 		 * optimization would handle this, but compiling with frame
 | |
| 		 * pointers also disables gcc's sibling call optimization.
 | |
| 		 */
 | |
| 		if (bio->bi_end_io == bio_chain_endio) {
 | |
| 			struct bio *parent = bio->bi_private;
 | |
| 			bio_put(bio);
 | |
| 			bio = parent;
 | |
| 		} else {
 | |
| 			if (bio->bi_end_io)
 | |
| 				bio->bi_end_io(bio, error);
 | |
| 			bio = NULL;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL(bio_endio);
 | |
| 
 | |
| /**
 | |
|  * bio_endio_nodec - end I/O on a bio, without decrementing bi_remaining
 | |
|  * @bio:	bio
 | |
|  * @error:	error, if any
 | |
|  *
 | |
|  * For code that has saved and restored bi_end_io; thing hard before using this
 | |
|  * function, probably you should've cloned the entire bio.
 | |
|  **/
 | |
| void bio_endio_nodec(struct bio *bio, int error)
 | |
| {
 | |
| 	atomic_inc(&bio->bi_remaining);
 | |
| 	bio_endio(bio, error);
 | |
| }
 | |
| EXPORT_SYMBOL(bio_endio_nodec);
 | |
| 
 | |
| /**
 | |
|  * bio_split - split a bio
 | |
|  * @bio:	bio to split
 | |
|  * @sectors:	number of sectors to split from the front of @bio
 | |
|  * @gfp:	gfp mask
 | |
|  * @bs:		bio set to allocate from
 | |
|  *
 | |
|  * Allocates and returns a new bio which represents @sectors from the start of
 | |
|  * @bio, and updates @bio to represent the remaining sectors.
 | |
|  *
 | |
|  * The newly allocated bio will point to @bio's bi_io_vec; it is the caller's
 | |
|  * responsibility to ensure that @bio is not freed before the split.
 | |
|  */
 | |
| struct bio *bio_split(struct bio *bio, int sectors,
 | |
| 		      gfp_t gfp, struct bio_set *bs)
 | |
| {
 | |
| 	struct bio *split = NULL;
 | |
| 
 | |
| 	BUG_ON(sectors <= 0);
 | |
| 	BUG_ON(sectors >= bio_sectors(bio));
 | |
| 
 | |
| 	split = bio_clone_fast(bio, gfp, bs);
 | |
| 	if (!split)
 | |
| 		return NULL;
 | |
| 
 | |
| 	split->bi_iter.bi_size = sectors << 9;
 | |
| 
 | |
| 	if (bio_integrity(split))
 | |
| 		bio_integrity_trim(split, 0, sectors);
 | |
| 
 | |
| 	bio_advance(bio, split->bi_iter.bi_size);
 | |
| 
 | |
| 	return split;
 | |
| }
 | |
| EXPORT_SYMBOL(bio_split);
 | |
| 
 | |
| /**
 | |
|  * bio_trim - trim a bio
 | |
|  * @bio:	bio to trim
 | |
|  * @offset:	number of sectors to trim from the front of @bio
 | |
|  * @size:	size we want to trim @bio to, in sectors
 | |
|  */
 | |
| void bio_trim(struct bio *bio, int offset, int size)
 | |
| {
 | |
| 	/* 'bio' is a cloned bio which we need to trim to match
 | |
| 	 * the given offset and size.
 | |
| 	 */
 | |
| 
 | |
| 	size <<= 9;
 | |
| 	if (offset == 0 && size == bio->bi_iter.bi_size)
 | |
| 		return;
 | |
| 
 | |
| 	clear_bit(BIO_SEG_VALID, &bio->bi_flags);
 | |
| 
 | |
| 	bio_advance(bio, offset << 9);
 | |
| 
 | |
| 	bio->bi_iter.bi_size = size;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(bio_trim);
 | |
| 
 | |
| /*
 | |
|  * create memory pools for biovec's in a bio_set.
 | |
|  * use the global biovec slabs created for general use.
 | |
|  */
 | |
| mempool_t *biovec_create_pool(struct bio_set *bs, int pool_entries)
 | |
| {
 | |
| 	struct biovec_slab *bp = bvec_slabs + BIOVEC_MAX_IDX;
 | |
| 
 | |
| 	return mempool_create_slab_pool(pool_entries, bp->slab);
 | |
| }
 | |
| 
 | |
| void bioset_free(struct bio_set *bs)
 | |
| {
 | |
| 	if (bs->rescue_workqueue)
 | |
| 		destroy_workqueue(bs->rescue_workqueue);
 | |
| 
 | |
| 	if (bs->bio_pool)
 | |
| 		mempool_destroy(bs->bio_pool);
 | |
| 
 | |
| 	if (bs->bvec_pool)
 | |
| 		mempool_destroy(bs->bvec_pool);
 | |
| 
 | |
| 	bioset_integrity_free(bs);
 | |
| 	bio_put_slab(bs);
 | |
| 
 | |
| 	kfree(bs);
 | |
| }
 | |
| EXPORT_SYMBOL(bioset_free);
 | |
| 
 | |
| /**
 | |
|  * bioset_create  - Create a bio_set
 | |
|  * @pool_size:	Number of bio and bio_vecs to cache in the mempool
 | |
|  * @front_pad:	Number of bytes to allocate in front of the returned bio
 | |
|  *
 | |
|  * Description:
 | |
|  *    Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
 | |
|  *    to ask for a number of bytes to be allocated in front of the bio.
 | |
|  *    Front pad allocation is useful for embedding the bio inside
 | |
|  *    another structure, to avoid allocating extra data to go with the bio.
 | |
|  *    Note that the bio must be embedded at the END of that structure always,
 | |
|  *    or things will break badly.
 | |
|  */
 | |
| struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad)
 | |
| {
 | |
| 	unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
 | |
| 	struct bio_set *bs;
 | |
| 
 | |
| 	bs = kzalloc(sizeof(*bs), GFP_KERNEL);
 | |
| 	if (!bs)
 | |
| 		return NULL;
 | |
| 
 | |
| 	bs->front_pad = front_pad;
 | |
| 
 | |
| 	spin_lock_init(&bs->rescue_lock);
 | |
| 	bio_list_init(&bs->rescue_list);
 | |
| 	INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
 | |
| 
 | |
| 	bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
 | |
| 	if (!bs->bio_slab) {
 | |
| 		kfree(bs);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab);
 | |
| 	if (!bs->bio_pool)
 | |
| 		goto bad;
 | |
| 
 | |
| 	bs->bvec_pool = biovec_create_pool(bs, pool_size);
 | |
| 	if (!bs->bvec_pool)
 | |
| 		goto bad;
 | |
| 
 | |
| 	bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
 | |
| 	if (!bs->rescue_workqueue)
 | |
| 		goto bad;
 | |
| 
 | |
| 	return bs;
 | |
| bad:
 | |
| 	bioset_free(bs);
 | |
| 	return NULL;
 | |
| }
 | |
| EXPORT_SYMBOL(bioset_create);
 | |
| 
 | |
| #ifdef CONFIG_BLK_CGROUP
 | |
| /**
 | |
|  * bio_associate_current - associate a bio with %current
 | |
|  * @bio: target bio
 | |
|  *
 | |
|  * Associate @bio with %current if it hasn't been associated yet.  Block
 | |
|  * layer will treat @bio as if it were issued by %current no matter which
 | |
|  * task actually issues it.
 | |
|  *
 | |
|  * This function takes an extra reference of @task's io_context and blkcg
 | |
|  * which will be put when @bio is released.  The caller must own @bio,
 | |
|  * ensure %current->io_context exists, and is responsible for synchronizing
 | |
|  * calls to this function.
 | |
|  */
 | |
| int bio_associate_current(struct bio *bio)
 | |
| {
 | |
| 	struct io_context *ioc;
 | |
| 	struct cgroup_subsys_state *css;
 | |
| 
 | |
| 	if (bio->bi_ioc)
 | |
| 		return -EBUSY;
 | |
| 
 | |
| 	ioc = current->io_context;
 | |
| 	if (!ioc)
 | |
| 		return -ENOENT;
 | |
| 
 | |
| 	/* acquire active ref on @ioc and associate */
 | |
| 	get_io_context_active(ioc);
 | |
| 	bio->bi_ioc = ioc;
 | |
| 
 | |
| 	/* associate blkcg if exists */
 | |
| 	rcu_read_lock();
 | |
| 	css = task_css(current, blkio_subsys_id);
 | |
| 	if (css && css_tryget(css))
 | |
| 		bio->bi_css = css;
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * bio_disassociate_task - undo bio_associate_current()
 | |
|  * @bio: target bio
 | |
|  */
 | |
| void bio_disassociate_task(struct bio *bio)
 | |
| {
 | |
| 	if (bio->bi_ioc) {
 | |
| 		put_io_context(bio->bi_ioc);
 | |
| 		bio->bi_ioc = NULL;
 | |
| 	}
 | |
| 	if (bio->bi_css) {
 | |
| 		css_put(bio->bi_css);
 | |
| 		bio->bi_css = NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #endif /* CONFIG_BLK_CGROUP */
 | |
| 
 | |
| static void __init biovec_init_slabs(void)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < BIOVEC_NR_POOLS; i++) {
 | |
| 		int size;
 | |
| 		struct biovec_slab *bvs = bvec_slabs + i;
 | |
| 
 | |
| 		if (bvs->nr_vecs <= BIO_INLINE_VECS) {
 | |
| 			bvs->slab = NULL;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		size = bvs->nr_vecs * sizeof(struct bio_vec);
 | |
| 		bvs->slab = kmem_cache_create(bvs->name, size, 0,
 | |
|                                 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int __init init_bio(void)
 | |
| {
 | |
| 	bio_slab_max = 2;
 | |
| 	bio_slab_nr = 0;
 | |
| 	bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
 | |
| 	if (!bio_slabs)
 | |
| 		panic("bio: can't allocate bios\n");
 | |
| 
 | |
| 	bio_integrity_init();
 | |
| 	biovec_init_slabs();
 | |
| 
 | |
| 	fs_bio_set = bioset_create(BIO_POOL_SIZE, 0);
 | |
| 	if (!fs_bio_set)
 | |
| 		panic("bio: can't allocate bios\n");
 | |
| 
 | |
| 	if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE))
 | |
| 		panic("bio: can't create integrity pool\n");
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| subsys_initcall(init_bio);
 |