The channel allocated/released messages are very spammy and not really interesting to users. Change them to "debug" level. Signed-off-by: Ezequiel Garcia <ezequiel.garcia@free-electrons.com> Acked-by: Matt Porter <mporter@linaro.org> Signed-off-by: Vinod Koul <vinod.koul@intel.com>
		
			
				
	
	
		
			962 lines
		
	
	
	
		
			24 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			962 lines
		
	
	
	
		
			24 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * TI EDMA DMA engine driver
 | 
						|
 *
 | 
						|
 * Copyright 2012 Texas Instruments
 | 
						|
 *
 | 
						|
 * This program is free software; you can redistribute it and/or
 | 
						|
 * modify it under the terms of the GNU General Public License as
 | 
						|
 * published by the Free Software Foundation version 2.
 | 
						|
 *
 | 
						|
 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
 | 
						|
 * kind, whether express or implied; without even the implied warranty
 | 
						|
 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
						|
 * GNU General Public License for more details.
 | 
						|
 */
 | 
						|
 | 
						|
#include <linux/dmaengine.h>
 | 
						|
#include <linux/dma-mapping.h>
 | 
						|
#include <linux/err.h>
 | 
						|
#include <linux/init.h>
 | 
						|
#include <linux/interrupt.h>
 | 
						|
#include <linux/list.h>
 | 
						|
#include <linux/module.h>
 | 
						|
#include <linux/platform_device.h>
 | 
						|
#include <linux/slab.h>
 | 
						|
#include <linux/spinlock.h>
 | 
						|
 | 
						|
#include <linux/platform_data/edma.h>
 | 
						|
 | 
						|
#include "dmaengine.h"
 | 
						|
#include "virt-dma.h"
 | 
						|
 | 
						|
/*
 | 
						|
 * This will go away when the private EDMA API is folded
 | 
						|
 * into this driver and the platform device(s) are
 | 
						|
 * instantiated in the arch code. We can only get away
 | 
						|
 * with this simplification because DA8XX may not be built
 | 
						|
 * in the same kernel image with other DaVinci parts. This
 | 
						|
 * avoids having to sprinkle dmaengine driver platform devices
 | 
						|
 * and data throughout all the existing board files.
 | 
						|
 */
 | 
						|
#ifdef CONFIG_ARCH_DAVINCI_DA8XX
 | 
						|
#define EDMA_CTLRS	2
 | 
						|
#define EDMA_CHANS	32
 | 
						|
#else
 | 
						|
#define EDMA_CTLRS	1
 | 
						|
#define EDMA_CHANS	64
 | 
						|
#endif /* CONFIG_ARCH_DAVINCI_DA8XX */
 | 
						|
 | 
						|
/*
 | 
						|
 * Max of 20 segments per channel to conserve PaRAM slots
 | 
						|
 * Also note that MAX_NR_SG should be atleast the no.of periods
 | 
						|
 * that are required for ASoC, otherwise DMA prep calls will
 | 
						|
 * fail. Today davinci-pcm is the only user of this driver and
 | 
						|
 * requires atleast 17 slots, so we setup the default to 20.
 | 
						|
 */
 | 
						|
#define MAX_NR_SG		20
 | 
						|
#define EDMA_MAX_SLOTS		MAX_NR_SG
 | 
						|
#define EDMA_DESCRIPTORS	16
 | 
						|
 | 
						|
struct edma_desc {
 | 
						|
	struct virt_dma_desc		vdesc;
 | 
						|
	struct list_head		node;
 | 
						|
	int				cyclic;
 | 
						|
	int				absync;
 | 
						|
	int				pset_nr;
 | 
						|
	int				processed;
 | 
						|
	struct edmacc_param		pset[0];
 | 
						|
};
 | 
						|
 | 
						|
struct edma_cc;
 | 
						|
 | 
						|
struct edma_chan {
 | 
						|
	struct virt_dma_chan		vchan;
 | 
						|
	struct list_head		node;
 | 
						|
	struct edma_desc		*edesc;
 | 
						|
	struct edma_cc			*ecc;
 | 
						|
	int				ch_num;
 | 
						|
	bool				alloced;
 | 
						|
	int				slot[EDMA_MAX_SLOTS];
 | 
						|
	int				missed;
 | 
						|
	struct dma_slave_config		cfg;
 | 
						|
};
 | 
						|
 | 
						|
struct edma_cc {
 | 
						|
	int				ctlr;
 | 
						|
	struct dma_device		dma_slave;
 | 
						|
	struct edma_chan		slave_chans[EDMA_CHANS];
 | 
						|
	int				num_slave_chans;
 | 
						|
	int				dummy_slot;
 | 
						|
};
 | 
						|
 | 
						|
static inline struct edma_cc *to_edma_cc(struct dma_device *d)
 | 
						|
{
 | 
						|
	return container_of(d, struct edma_cc, dma_slave);
 | 
						|
}
 | 
						|
 | 
						|
static inline struct edma_chan *to_edma_chan(struct dma_chan *c)
 | 
						|
{
 | 
						|
	return container_of(c, struct edma_chan, vchan.chan);
 | 
						|
}
 | 
						|
 | 
						|
static inline struct edma_desc
 | 
						|
*to_edma_desc(struct dma_async_tx_descriptor *tx)
 | 
						|
{
 | 
						|
	return container_of(tx, struct edma_desc, vdesc.tx);
 | 
						|
}
 | 
						|
 | 
						|
static void edma_desc_free(struct virt_dma_desc *vdesc)
 | 
						|
{
 | 
						|
	kfree(container_of(vdesc, struct edma_desc, vdesc));
 | 
						|
}
 | 
						|
 | 
						|
/* Dispatch a queued descriptor to the controller (caller holds lock) */
 | 
						|
static void edma_execute(struct edma_chan *echan)
 | 
						|
{
 | 
						|
	struct virt_dma_desc *vdesc;
 | 
						|
	struct edma_desc *edesc;
 | 
						|
	struct device *dev = echan->vchan.chan.device->dev;
 | 
						|
	int i, j, left, nslots;
 | 
						|
 | 
						|
	/* If either we processed all psets or we're still not started */
 | 
						|
	if (!echan->edesc ||
 | 
						|
	    echan->edesc->pset_nr == echan->edesc->processed) {
 | 
						|
		/* Get next vdesc */
 | 
						|
		vdesc = vchan_next_desc(&echan->vchan);
 | 
						|
		if (!vdesc) {
 | 
						|
			echan->edesc = NULL;
 | 
						|
			return;
 | 
						|
		}
 | 
						|
		list_del(&vdesc->node);
 | 
						|
		echan->edesc = to_edma_desc(&vdesc->tx);
 | 
						|
	}
 | 
						|
 | 
						|
	edesc = echan->edesc;
 | 
						|
 | 
						|
	/* Find out how many left */
 | 
						|
	left = edesc->pset_nr - edesc->processed;
 | 
						|
	nslots = min(MAX_NR_SG, left);
 | 
						|
 | 
						|
	/* Write descriptor PaRAM set(s) */
 | 
						|
	for (i = 0; i < nslots; i++) {
 | 
						|
		j = i + edesc->processed;
 | 
						|
		edma_write_slot(echan->slot[i], &edesc->pset[j]);
 | 
						|
		dev_dbg(echan->vchan.chan.device->dev,
 | 
						|
			"\n pset[%d]:\n"
 | 
						|
			"  chnum\t%d\n"
 | 
						|
			"  slot\t%d\n"
 | 
						|
			"  opt\t%08x\n"
 | 
						|
			"  src\t%08x\n"
 | 
						|
			"  dst\t%08x\n"
 | 
						|
			"  abcnt\t%08x\n"
 | 
						|
			"  ccnt\t%08x\n"
 | 
						|
			"  bidx\t%08x\n"
 | 
						|
			"  cidx\t%08x\n"
 | 
						|
			"  lkrld\t%08x\n",
 | 
						|
			j, echan->ch_num, echan->slot[i],
 | 
						|
			edesc->pset[j].opt,
 | 
						|
			edesc->pset[j].src,
 | 
						|
			edesc->pset[j].dst,
 | 
						|
			edesc->pset[j].a_b_cnt,
 | 
						|
			edesc->pset[j].ccnt,
 | 
						|
			edesc->pset[j].src_dst_bidx,
 | 
						|
			edesc->pset[j].src_dst_cidx,
 | 
						|
			edesc->pset[j].link_bcntrld);
 | 
						|
		/* Link to the previous slot if not the last set */
 | 
						|
		if (i != (nslots - 1))
 | 
						|
			edma_link(echan->slot[i], echan->slot[i+1]);
 | 
						|
	}
 | 
						|
 | 
						|
	edesc->processed += nslots;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If this is either the last set in a set of SG-list transactions
 | 
						|
	 * then setup a link to the dummy slot, this results in all future
 | 
						|
	 * events being absorbed and that's OK because we're done
 | 
						|
	 */
 | 
						|
	if (edesc->processed == edesc->pset_nr) {
 | 
						|
		if (edesc->cyclic)
 | 
						|
			edma_link(echan->slot[nslots-1], echan->slot[1]);
 | 
						|
		else
 | 
						|
			edma_link(echan->slot[nslots-1],
 | 
						|
				  echan->ecc->dummy_slot);
 | 
						|
	}
 | 
						|
 | 
						|
	edma_resume(echan->ch_num);
 | 
						|
 | 
						|
	if (edesc->processed <= MAX_NR_SG) {
 | 
						|
		dev_dbg(dev, "first transfer starting %d\n", echan->ch_num);
 | 
						|
		edma_start(echan->ch_num);
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * This happens due to setup times between intermediate transfers
 | 
						|
	 * in long SG lists which have to be broken up into transfers of
 | 
						|
	 * MAX_NR_SG
 | 
						|
	 */
 | 
						|
	if (echan->missed) {
 | 
						|
		dev_dbg(dev, "missed event in execute detected\n");
 | 
						|
		edma_clean_channel(echan->ch_num);
 | 
						|
		edma_stop(echan->ch_num);
 | 
						|
		edma_start(echan->ch_num);
 | 
						|
		edma_trigger_channel(echan->ch_num);
 | 
						|
		echan->missed = 0;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static int edma_terminate_all(struct edma_chan *echan)
 | 
						|
{
 | 
						|
	unsigned long flags;
 | 
						|
	LIST_HEAD(head);
 | 
						|
 | 
						|
	spin_lock_irqsave(&echan->vchan.lock, flags);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Stop DMA activity: we assume the callback will not be called
 | 
						|
	 * after edma_dma() returns (even if it does, it will see
 | 
						|
	 * echan->edesc is NULL and exit.)
 | 
						|
	 */
 | 
						|
	if (echan->edesc) {
 | 
						|
		echan->edesc = NULL;
 | 
						|
		edma_stop(echan->ch_num);
 | 
						|
	}
 | 
						|
 | 
						|
	vchan_get_all_descriptors(&echan->vchan, &head);
 | 
						|
	spin_unlock_irqrestore(&echan->vchan.lock, flags);
 | 
						|
	vchan_dma_desc_free_list(&echan->vchan, &head);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int edma_slave_config(struct edma_chan *echan,
 | 
						|
	struct dma_slave_config *cfg)
 | 
						|
{
 | 
						|
	if (cfg->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
 | 
						|
	    cfg->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	memcpy(&echan->cfg, cfg, sizeof(echan->cfg));
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int edma_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
 | 
						|
			unsigned long arg)
 | 
						|
{
 | 
						|
	int ret = 0;
 | 
						|
	struct dma_slave_config *config;
 | 
						|
	struct edma_chan *echan = to_edma_chan(chan);
 | 
						|
 | 
						|
	switch (cmd) {
 | 
						|
	case DMA_TERMINATE_ALL:
 | 
						|
		edma_terminate_all(echan);
 | 
						|
		break;
 | 
						|
	case DMA_SLAVE_CONFIG:
 | 
						|
		config = (struct dma_slave_config *)arg;
 | 
						|
		ret = edma_slave_config(echan, config);
 | 
						|
		break;
 | 
						|
	default:
 | 
						|
		ret = -ENOSYS;
 | 
						|
	}
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * A PaRAM set configuration abstraction used by other modes
 | 
						|
 * @chan: Channel who's PaRAM set we're configuring
 | 
						|
 * @pset: PaRAM set to initialize and setup.
 | 
						|
 * @src_addr: Source address of the DMA
 | 
						|
 * @dst_addr: Destination address of the DMA
 | 
						|
 * @burst: In units of dev_width, how much to send
 | 
						|
 * @dev_width: How much is the dev_width
 | 
						|
 * @dma_length: Total length of the DMA transfer
 | 
						|
 * @direction: Direction of the transfer
 | 
						|
 */
 | 
						|
static int edma_config_pset(struct dma_chan *chan, struct edmacc_param *pset,
 | 
						|
	dma_addr_t src_addr, dma_addr_t dst_addr, u32 burst,
 | 
						|
	enum dma_slave_buswidth dev_width, unsigned int dma_length,
 | 
						|
	enum dma_transfer_direction direction)
 | 
						|
{
 | 
						|
	struct edma_chan *echan = to_edma_chan(chan);
 | 
						|
	struct device *dev = chan->device->dev;
 | 
						|
	int acnt, bcnt, ccnt, cidx;
 | 
						|
	int src_bidx, dst_bidx, src_cidx, dst_cidx;
 | 
						|
	int absync;
 | 
						|
 | 
						|
	acnt = dev_width;
 | 
						|
	/*
 | 
						|
	 * If the maxburst is equal to the fifo width, use
 | 
						|
	 * A-synced transfers. This allows for large contiguous
 | 
						|
	 * buffer transfers using only one PaRAM set.
 | 
						|
	 */
 | 
						|
	if (burst == 1) {
 | 
						|
		/*
 | 
						|
		 * For the A-sync case, bcnt and ccnt are the remainder
 | 
						|
		 * and quotient respectively of the division of:
 | 
						|
		 * (dma_length / acnt) by (SZ_64K -1). This is so
 | 
						|
		 * that in case bcnt over flows, we have ccnt to use.
 | 
						|
		 * Note: In A-sync tranfer only, bcntrld is used, but it
 | 
						|
		 * only applies for sg_dma_len(sg) >= SZ_64K.
 | 
						|
		 * In this case, the best way adopted is- bccnt for the
 | 
						|
		 * first frame will be the remainder below. Then for
 | 
						|
		 * every successive frame, bcnt will be SZ_64K-1. This
 | 
						|
		 * is assured as bcntrld = 0xffff in end of function.
 | 
						|
		 */
 | 
						|
		absync = false;
 | 
						|
		ccnt = dma_length / acnt / (SZ_64K - 1);
 | 
						|
		bcnt = dma_length / acnt - ccnt * (SZ_64K - 1);
 | 
						|
		/*
 | 
						|
		 * If bcnt is non-zero, we have a remainder and hence an
 | 
						|
		 * extra frame to transfer, so increment ccnt.
 | 
						|
		 */
 | 
						|
		if (bcnt)
 | 
						|
			ccnt++;
 | 
						|
		else
 | 
						|
			bcnt = SZ_64K - 1;
 | 
						|
		cidx = acnt;
 | 
						|
	} else {
 | 
						|
		/*
 | 
						|
		 * If maxburst is greater than the fifo address_width,
 | 
						|
		 * use AB-synced transfers where A count is the fifo
 | 
						|
		 * address_width and B count is the maxburst. In this
 | 
						|
		 * case, we are limited to transfers of C count frames
 | 
						|
		 * of (address_width * maxburst) where C count is limited
 | 
						|
		 * to SZ_64K-1. This places an upper bound on the length
 | 
						|
		 * of an SG segment that can be handled.
 | 
						|
		 */
 | 
						|
		absync = true;
 | 
						|
		bcnt = burst;
 | 
						|
		ccnt = dma_length / (acnt * bcnt);
 | 
						|
		if (ccnt > (SZ_64K - 1)) {
 | 
						|
			dev_err(dev, "Exceeded max SG segment size\n");
 | 
						|
			return -EINVAL;
 | 
						|
		}
 | 
						|
		cidx = acnt * bcnt;
 | 
						|
	}
 | 
						|
 | 
						|
	if (direction == DMA_MEM_TO_DEV) {
 | 
						|
		src_bidx = acnt;
 | 
						|
		src_cidx = cidx;
 | 
						|
		dst_bidx = 0;
 | 
						|
		dst_cidx = 0;
 | 
						|
	} else if (direction == DMA_DEV_TO_MEM)  {
 | 
						|
		src_bidx = 0;
 | 
						|
		src_cidx = 0;
 | 
						|
		dst_bidx = acnt;
 | 
						|
		dst_cidx = cidx;
 | 
						|
	} else {
 | 
						|
		dev_err(dev, "%s: direction not implemented yet\n", __func__);
 | 
						|
		return -EINVAL;
 | 
						|
	}
 | 
						|
 | 
						|
	pset->opt = EDMA_TCC(EDMA_CHAN_SLOT(echan->ch_num));
 | 
						|
	/* Configure A or AB synchronized transfers */
 | 
						|
	if (absync)
 | 
						|
		pset->opt |= SYNCDIM;
 | 
						|
 | 
						|
	pset->src = src_addr;
 | 
						|
	pset->dst = dst_addr;
 | 
						|
 | 
						|
	pset->src_dst_bidx = (dst_bidx << 16) | src_bidx;
 | 
						|
	pset->src_dst_cidx = (dst_cidx << 16) | src_cidx;
 | 
						|
 | 
						|
	pset->a_b_cnt = bcnt << 16 | acnt;
 | 
						|
	pset->ccnt = ccnt;
 | 
						|
	/*
 | 
						|
	 * Only time when (bcntrld) auto reload is required is for
 | 
						|
	 * A-sync case, and in this case, a requirement of reload value
 | 
						|
	 * of SZ_64K-1 only is assured. 'link' is initially set to NULL
 | 
						|
	 * and then later will be populated by edma_execute.
 | 
						|
	 */
 | 
						|
	pset->link_bcntrld = 0xffffffff;
 | 
						|
	return absync;
 | 
						|
}
 | 
						|
 | 
						|
static struct dma_async_tx_descriptor *edma_prep_slave_sg(
 | 
						|
	struct dma_chan *chan, struct scatterlist *sgl,
 | 
						|
	unsigned int sg_len, enum dma_transfer_direction direction,
 | 
						|
	unsigned long tx_flags, void *context)
 | 
						|
{
 | 
						|
	struct edma_chan *echan = to_edma_chan(chan);
 | 
						|
	struct device *dev = chan->device->dev;
 | 
						|
	struct edma_desc *edesc;
 | 
						|
	dma_addr_t src_addr = 0, dst_addr = 0;
 | 
						|
	enum dma_slave_buswidth dev_width;
 | 
						|
	u32 burst;
 | 
						|
	struct scatterlist *sg;
 | 
						|
	int i, nslots, ret;
 | 
						|
 | 
						|
	if (unlikely(!echan || !sgl || !sg_len))
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	if (direction == DMA_DEV_TO_MEM) {
 | 
						|
		src_addr = echan->cfg.src_addr;
 | 
						|
		dev_width = echan->cfg.src_addr_width;
 | 
						|
		burst = echan->cfg.src_maxburst;
 | 
						|
	} else if (direction == DMA_MEM_TO_DEV) {
 | 
						|
		dst_addr = echan->cfg.dst_addr;
 | 
						|
		dev_width = echan->cfg.dst_addr_width;
 | 
						|
		burst = echan->cfg.dst_maxburst;
 | 
						|
	} else {
 | 
						|
		dev_err(dev, "%s: bad direction?\n", __func__);
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
 | 
						|
	if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) {
 | 
						|
		dev_err(dev, "Undefined slave buswidth\n");
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
 | 
						|
	edesc = kzalloc(sizeof(*edesc) + sg_len *
 | 
						|
		sizeof(edesc->pset[0]), GFP_ATOMIC);
 | 
						|
	if (!edesc) {
 | 
						|
		dev_dbg(dev, "Failed to allocate a descriptor\n");
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
 | 
						|
	edesc->pset_nr = sg_len;
 | 
						|
 | 
						|
	/* Allocate a PaRAM slot, if needed */
 | 
						|
	nslots = min_t(unsigned, MAX_NR_SG, sg_len);
 | 
						|
 | 
						|
	for (i = 0; i < nslots; i++) {
 | 
						|
		if (echan->slot[i] < 0) {
 | 
						|
			echan->slot[i] =
 | 
						|
				edma_alloc_slot(EDMA_CTLR(echan->ch_num),
 | 
						|
						EDMA_SLOT_ANY);
 | 
						|
			if (echan->slot[i] < 0) {
 | 
						|
				kfree(edesc);
 | 
						|
				dev_err(dev, "Failed to allocate slot\n");
 | 
						|
				return NULL;
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/* Configure PaRAM sets for each SG */
 | 
						|
	for_each_sg(sgl, sg, sg_len, i) {
 | 
						|
		/* Get address for each SG */
 | 
						|
		if (direction == DMA_DEV_TO_MEM)
 | 
						|
			dst_addr = sg_dma_address(sg);
 | 
						|
		else
 | 
						|
			src_addr = sg_dma_address(sg);
 | 
						|
 | 
						|
		ret = edma_config_pset(chan, &edesc->pset[i], src_addr,
 | 
						|
				       dst_addr, burst, dev_width,
 | 
						|
				       sg_dma_len(sg), direction);
 | 
						|
		if (ret < 0) {
 | 
						|
			kfree(edesc);
 | 
						|
			return NULL;
 | 
						|
		}
 | 
						|
 | 
						|
		edesc->absync = ret;
 | 
						|
 | 
						|
		/* If this is the last in a current SG set of transactions,
 | 
						|
		   enable interrupts so that next set is processed */
 | 
						|
		if (!((i+1) % MAX_NR_SG))
 | 
						|
			edesc->pset[i].opt |= TCINTEN;
 | 
						|
 | 
						|
		/* If this is the last set, enable completion interrupt flag */
 | 
						|
		if (i == sg_len - 1)
 | 
						|
			edesc->pset[i].opt |= TCINTEN;
 | 
						|
	}
 | 
						|
 | 
						|
	return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
 | 
						|
}
 | 
						|
 | 
						|
static struct dma_async_tx_descriptor *edma_prep_dma_cyclic(
 | 
						|
	struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
 | 
						|
	size_t period_len, enum dma_transfer_direction direction,
 | 
						|
	unsigned long tx_flags, void *context)
 | 
						|
{
 | 
						|
	struct edma_chan *echan = to_edma_chan(chan);
 | 
						|
	struct device *dev = chan->device->dev;
 | 
						|
	struct edma_desc *edesc;
 | 
						|
	dma_addr_t src_addr, dst_addr;
 | 
						|
	enum dma_slave_buswidth dev_width;
 | 
						|
	u32 burst;
 | 
						|
	int i, ret, nslots;
 | 
						|
 | 
						|
	if (unlikely(!echan || !buf_len || !period_len))
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	if (direction == DMA_DEV_TO_MEM) {
 | 
						|
		src_addr = echan->cfg.src_addr;
 | 
						|
		dst_addr = buf_addr;
 | 
						|
		dev_width = echan->cfg.src_addr_width;
 | 
						|
		burst = echan->cfg.src_maxburst;
 | 
						|
	} else if (direction == DMA_MEM_TO_DEV) {
 | 
						|
		src_addr = buf_addr;
 | 
						|
		dst_addr = echan->cfg.dst_addr;
 | 
						|
		dev_width = echan->cfg.dst_addr_width;
 | 
						|
		burst = echan->cfg.dst_maxburst;
 | 
						|
	} else {
 | 
						|
		dev_err(dev, "%s: bad direction?\n", __func__);
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
 | 
						|
	if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) {
 | 
						|
		dev_err(dev, "Undefined slave buswidth\n");
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
 | 
						|
	if (unlikely(buf_len % period_len)) {
 | 
						|
		dev_err(dev, "Period should be multiple of Buffer length\n");
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
 | 
						|
	nslots = (buf_len / period_len) + 1;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Cyclic DMA users such as audio cannot tolerate delays introduced
 | 
						|
	 * by cases where the number of periods is more than the maximum
 | 
						|
	 * number of SGs the EDMA driver can handle at a time. For DMA types
 | 
						|
	 * such as Slave SGs, such delays are tolerable and synchronized,
 | 
						|
	 * but the synchronization is difficult to achieve with Cyclic and
 | 
						|
	 * cannot be guaranteed, so we error out early.
 | 
						|
	 */
 | 
						|
	if (nslots > MAX_NR_SG)
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	edesc = kzalloc(sizeof(*edesc) + nslots *
 | 
						|
		sizeof(edesc->pset[0]), GFP_ATOMIC);
 | 
						|
	if (!edesc) {
 | 
						|
		dev_dbg(dev, "Failed to allocate a descriptor\n");
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
 | 
						|
	edesc->cyclic = 1;
 | 
						|
	edesc->pset_nr = nslots;
 | 
						|
 | 
						|
	dev_dbg(dev, "%s: nslots=%d\n", __func__, nslots);
 | 
						|
	dev_dbg(dev, "%s: period_len=%d\n", __func__, period_len);
 | 
						|
	dev_dbg(dev, "%s: buf_len=%d\n", __func__, buf_len);
 | 
						|
 | 
						|
	for (i = 0; i < nslots; i++) {
 | 
						|
		/* Allocate a PaRAM slot, if needed */
 | 
						|
		if (echan->slot[i] < 0) {
 | 
						|
			echan->slot[i] =
 | 
						|
				edma_alloc_slot(EDMA_CTLR(echan->ch_num),
 | 
						|
						EDMA_SLOT_ANY);
 | 
						|
			if (echan->slot[i] < 0) {
 | 
						|
				dev_err(dev, "Failed to allocate slot\n");
 | 
						|
				return NULL;
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		if (i == nslots - 1) {
 | 
						|
			memcpy(&edesc->pset[i], &edesc->pset[0],
 | 
						|
			       sizeof(edesc->pset[0]));
 | 
						|
			break;
 | 
						|
		}
 | 
						|
 | 
						|
		ret = edma_config_pset(chan, &edesc->pset[i], src_addr,
 | 
						|
				       dst_addr, burst, dev_width, period_len,
 | 
						|
				       direction);
 | 
						|
		if (ret < 0)
 | 
						|
			return NULL;
 | 
						|
 | 
						|
		if (direction == DMA_DEV_TO_MEM)
 | 
						|
			dst_addr += period_len;
 | 
						|
		else
 | 
						|
			src_addr += period_len;
 | 
						|
 | 
						|
		dev_dbg(dev, "%s: Configure period %d of buf:\n", __func__, i);
 | 
						|
		dev_dbg(dev,
 | 
						|
			"\n pset[%d]:\n"
 | 
						|
			"  chnum\t%d\n"
 | 
						|
			"  slot\t%d\n"
 | 
						|
			"  opt\t%08x\n"
 | 
						|
			"  src\t%08x\n"
 | 
						|
			"  dst\t%08x\n"
 | 
						|
			"  abcnt\t%08x\n"
 | 
						|
			"  ccnt\t%08x\n"
 | 
						|
			"  bidx\t%08x\n"
 | 
						|
			"  cidx\t%08x\n"
 | 
						|
			"  lkrld\t%08x\n",
 | 
						|
			i, echan->ch_num, echan->slot[i],
 | 
						|
			edesc->pset[i].opt,
 | 
						|
			edesc->pset[i].src,
 | 
						|
			edesc->pset[i].dst,
 | 
						|
			edesc->pset[i].a_b_cnt,
 | 
						|
			edesc->pset[i].ccnt,
 | 
						|
			edesc->pset[i].src_dst_bidx,
 | 
						|
			edesc->pset[i].src_dst_cidx,
 | 
						|
			edesc->pset[i].link_bcntrld);
 | 
						|
 | 
						|
		edesc->absync = ret;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Enable interrupts for every period because callback
 | 
						|
		 * has to be called for every period.
 | 
						|
		 */
 | 
						|
		edesc->pset[i].opt |= TCINTEN;
 | 
						|
	}
 | 
						|
 | 
						|
	return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
 | 
						|
}
 | 
						|
 | 
						|
static void edma_callback(unsigned ch_num, u16 ch_status, void *data)
 | 
						|
{
 | 
						|
	struct edma_chan *echan = data;
 | 
						|
	struct device *dev = echan->vchan.chan.device->dev;
 | 
						|
	struct edma_desc *edesc;
 | 
						|
	unsigned long flags;
 | 
						|
	struct edmacc_param p;
 | 
						|
 | 
						|
	edesc = echan->edesc;
 | 
						|
 | 
						|
	/* Pause the channel for non-cyclic */
 | 
						|
	if (!edesc || (edesc && !edesc->cyclic))
 | 
						|
		edma_pause(echan->ch_num);
 | 
						|
 | 
						|
	switch (ch_status) {
 | 
						|
	case EDMA_DMA_COMPLETE:
 | 
						|
		spin_lock_irqsave(&echan->vchan.lock, flags);
 | 
						|
 | 
						|
		if (edesc) {
 | 
						|
			if (edesc->cyclic) {
 | 
						|
				vchan_cyclic_callback(&edesc->vdesc);
 | 
						|
			} else if (edesc->processed == edesc->pset_nr) {
 | 
						|
				dev_dbg(dev, "Transfer complete, stopping channel %d\n", ch_num);
 | 
						|
				edma_stop(echan->ch_num);
 | 
						|
				vchan_cookie_complete(&edesc->vdesc);
 | 
						|
				edma_execute(echan);
 | 
						|
			} else {
 | 
						|
				dev_dbg(dev, "Intermediate transfer complete on channel %d\n", ch_num);
 | 
						|
				edma_execute(echan);
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		spin_unlock_irqrestore(&echan->vchan.lock, flags);
 | 
						|
 | 
						|
		break;
 | 
						|
	case EDMA_DMA_CC_ERROR:
 | 
						|
		spin_lock_irqsave(&echan->vchan.lock, flags);
 | 
						|
 | 
						|
		edma_read_slot(EDMA_CHAN_SLOT(echan->slot[0]), &p);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Issue later based on missed flag which will be sure
 | 
						|
		 * to happen as:
 | 
						|
		 * (1) we finished transmitting an intermediate slot and
 | 
						|
		 *     edma_execute is coming up.
 | 
						|
		 * (2) or we finished current transfer and issue will
 | 
						|
		 *     call edma_execute.
 | 
						|
		 *
 | 
						|
		 * Important note: issuing can be dangerous here and
 | 
						|
		 * lead to some nasty recursion when we are in a NULL
 | 
						|
		 * slot. So we avoid doing so and set the missed flag.
 | 
						|
		 */
 | 
						|
		if (p.a_b_cnt == 0 && p.ccnt == 0) {
 | 
						|
			dev_dbg(dev, "Error occurred, looks like slot is null, just setting miss\n");
 | 
						|
			echan->missed = 1;
 | 
						|
		} else {
 | 
						|
			/*
 | 
						|
			 * The slot is already programmed but the event got
 | 
						|
			 * missed, so its safe to issue it here.
 | 
						|
			 */
 | 
						|
			dev_dbg(dev, "Error occurred but slot is non-null, TRIGGERING\n");
 | 
						|
			edma_clean_channel(echan->ch_num);
 | 
						|
			edma_stop(echan->ch_num);
 | 
						|
			edma_start(echan->ch_num);
 | 
						|
			edma_trigger_channel(echan->ch_num);
 | 
						|
		}
 | 
						|
 | 
						|
		spin_unlock_irqrestore(&echan->vchan.lock, flags);
 | 
						|
 | 
						|
		break;
 | 
						|
	default:
 | 
						|
		break;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/* Alloc channel resources */
 | 
						|
static int edma_alloc_chan_resources(struct dma_chan *chan)
 | 
						|
{
 | 
						|
	struct edma_chan *echan = to_edma_chan(chan);
 | 
						|
	struct device *dev = chan->device->dev;
 | 
						|
	int ret;
 | 
						|
	int a_ch_num;
 | 
						|
	LIST_HEAD(descs);
 | 
						|
 | 
						|
	a_ch_num = edma_alloc_channel(echan->ch_num, edma_callback,
 | 
						|
					chan, EVENTQ_DEFAULT);
 | 
						|
 | 
						|
	if (a_ch_num < 0) {
 | 
						|
		ret = -ENODEV;
 | 
						|
		goto err_no_chan;
 | 
						|
	}
 | 
						|
 | 
						|
	if (a_ch_num != echan->ch_num) {
 | 
						|
		dev_err(dev, "failed to allocate requested channel %u:%u\n",
 | 
						|
			EDMA_CTLR(echan->ch_num),
 | 
						|
			EDMA_CHAN_SLOT(echan->ch_num));
 | 
						|
		ret = -ENODEV;
 | 
						|
		goto err_wrong_chan;
 | 
						|
	}
 | 
						|
 | 
						|
	echan->alloced = true;
 | 
						|
	echan->slot[0] = echan->ch_num;
 | 
						|
 | 
						|
	dev_dbg(dev, "allocated channel for %u:%u\n",
 | 
						|
		EDMA_CTLR(echan->ch_num), EDMA_CHAN_SLOT(echan->ch_num));
 | 
						|
 | 
						|
	return 0;
 | 
						|
 | 
						|
err_wrong_chan:
 | 
						|
	edma_free_channel(a_ch_num);
 | 
						|
err_no_chan:
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/* Free channel resources */
 | 
						|
static void edma_free_chan_resources(struct dma_chan *chan)
 | 
						|
{
 | 
						|
	struct edma_chan *echan = to_edma_chan(chan);
 | 
						|
	struct device *dev = chan->device->dev;
 | 
						|
	int i;
 | 
						|
 | 
						|
	/* Terminate transfers */
 | 
						|
	edma_stop(echan->ch_num);
 | 
						|
 | 
						|
	vchan_free_chan_resources(&echan->vchan);
 | 
						|
 | 
						|
	/* Free EDMA PaRAM slots */
 | 
						|
	for (i = 1; i < EDMA_MAX_SLOTS; i++) {
 | 
						|
		if (echan->slot[i] >= 0) {
 | 
						|
			edma_free_slot(echan->slot[i]);
 | 
						|
			echan->slot[i] = -1;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/* Free EDMA channel */
 | 
						|
	if (echan->alloced) {
 | 
						|
		edma_free_channel(echan->ch_num);
 | 
						|
		echan->alloced = false;
 | 
						|
	}
 | 
						|
 | 
						|
	dev_dbg(dev, "freeing channel for %u\n", echan->ch_num);
 | 
						|
}
 | 
						|
 | 
						|
/* Send pending descriptor to hardware */
 | 
						|
static void edma_issue_pending(struct dma_chan *chan)
 | 
						|
{
 | 
						|
	struct edma_chan *echan = to_edma_chan(chan);
 | 
						|
	unsigned long flags;
 | 
						|
 | 
						|
	spin_lock_irqsave(&echan->vchan.lock, flags);
 | 
						|
	if (vchan_issue_pending(&echan->vchan) && !echan->edesc)
 | 
						|
		edma_execute(echan);
 | 
						|
	spin_unlock_irqrestore(&echan->vchan.lock, flags);
 | 
						|
}
 | 
						|
 | 
						|
static size_t edma_desc_size(struct edma_desc *edesc)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
	size_t size;
 | 
						|
 | 
						|
	if (edesc->absync)
 | 
						|
		for (size = i = 0; i < edesc->pset_nr; i++)
 | 
						|
			size += (edesc->pset[i].a_b_cnt & 0xffff) *
 | 
						|
				(edesc->pset[i].a_b_cnt >> 16) *
 | 
						|
				 edesc->pset[i].ccnt;
 | 
						|
	else
 | 
						|
		size = (edesc->pset[0].a_b_cnt & 0xffff) *
 | 
						|
			(edesc->pset[0].a_b_cnt >> 16) +
 | 
						|
			(edesc->pset[0].a_b_cnt & 0xffff) *
 | 
						|
			(SZ_64K - 1) * edesc->pset[0].ccnt;
 | 
						|
 | 
						|
	return size;
 | 
						|
}
 | 
						|
 | 
						|
/* Check request completion status */
 | 
						|
static enum dma_status edma_tx_status(struct dma_chan *chan,
 | 
						|
				      dma_cookie_t cookie,
 | 
						|
				      struct dma_tx_state *txstate)
 | 
						|
{
 | 
						|
	struct edma_chan *echan = to_edma_chan(chan);
 | 
						|
	struct virt_dma_desc *vdesc;
 | 
						|
	enum dma_status ret;
 | 
						|
	unsigned long flags;
 | 
						|
 | 
						|
	ret = dma_cookie_status(chan, cookie, txstate);
 | 
						|
	if (ret == DMA_COMPLETE || !txstate)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	spin_lock_irqsave(&echan->vchan.lock, flags);
 | 
						|
	vdesc = vchan_find_desc(&echan->vchan, cookie);
 | 
						|
	if (vdesc) {
 | 
						|
		txstate->residue = edma_desc_size(to_edma_desc(&vdesc->tx));
 | 
						|
	} else if (echan->edesc && echan->edesc->vdesc.tx.cookie == cookie) {
 | 
						|
		struct edma_desc *edesc = echan->edesc;
 | 
						|
		txstate->residue = edma_desc_size(edesc);
 | 
						|
	}
 | 
						|
	spin_unlock_irqrestore(&echan->vchan.lock, flags);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static void __init edma_chan_init(struct edma_cc *ecc,
 | 
						|
				  struct dma_device *dma,
 | 
						|
				  struct edma_chan *echans)
 | 
						|
{
 | 
						|
	int i, j;
 | 
						|
 | 
						|
	for (i = 0; i < EDMA_CHANS; i++) {
 | 
						|
		struct edma_chan *echan = &echans[i];
 | 
						|
		echan->ch_num = EDMA_CTLR_CHAN(ecc->ctlr, i);
 | 
						|
		echan->ecc = ecc;
 | 
						|
		echan->vchan.desc_free = edma_desc_free;
 | 
						|
 | 
						|
		vchan_init(&echan->vchan, dma);
 | 
						|
 | 
						|
		INIT_LIST_HEAD(&echan->node);
 | 
						|
		for (j = 0; j < EDMA_MAX_SLOTS; j++)
 | 
						|
			echan->slot[j] = -1;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void edma_dma_init(struct edma_cc *ecc, struct dma_device *dma,
 | 
						|
			  struct device *dev)
 | 
						|
{
 | 
						|
	dma->device_prep_slave_sg = edma_prep_slave_sg;
 | 
						|
	dma->device_prep_dma_cyclic = edma_prep_dma_cyclic;
 | 
						|
	dma->device_alloc_chan_resources = edma_alloc_chan_resources;
 | 
						|
	dma->device_free_chan_resources = edma_free_chan_resources;
 | 
						|
	dma->device_issue_pending = edma_issue_pending;
 | 
						|
	dma->device_tx_status = edma_tx_status;
 | 
						|
	dma->device_control = edma_control;
 | 
						|
	dma->dev = dev;
 | 
						|
 | 
						|
	INIT_LIST_HEAD(&dma->channels);
 | 
						|
}
 | 
						|
 | 
						|
static int edma_probe(struct platform_device *pdev)
 | 
						|
{
 | 
						|
	struct edma_cc *ecc;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
 | 
						|
	if (ret)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	ecc = devm_kzalloc(&pdev->dev, sizeof(*ecc), GFP_KERNEL);
 | 
						|
	if (!ecc) {
 | 
						|
		dev_err(&pdev->dev, "Can't allocate controller\n");
 | 
						|
		return -ENOMEM;
 | 
						|
	}
 | 
						|
 | 
						|
	ecc->ctlr = pdev->id;
 | 
						|
	ecc->dummy_slot = edma_alloc_slot(ecc->ctlr, EDMA_SLOT_ANY);
 | 
						|
	if (ecc->dummy_slot < 0) {
 | 
						|
		dev_err(&pdev->dev, "Can't allocate PaRAM dummy slot\n");
 | 
						|
		return -EIO;
 | 
						|
	}
 | 
						|
 | 
						|
	dma_cap_zero(ecc->dma_slave.cap_mask);
 | 
						|
	dma_cap_set(DMA_SLAVE, ecc->dma_slave.cap_mask);
 | 
						|
 | 
						|
	edma_dma_init(ecc, &ecc->dma_slave, &pdev->dev);
 | 
						|
 | 
						|
	edma_chan_init(ecc, &ecc->dma_slave, ecc->slave_chans);
 | 
						|
 | 
						|
	ret = dma_async_device_register(&ecc->dma_slave);
 | 
						|
	if (ret)
 | 
						|
		goto err_reg1;
 | 
						|
 | 
						|
	platform_set_drvdata(pdev, ecc);
 | 
						|
 | 
						|
	dev_info(&pdev->dev, "TI EDMA DMA engine driver\n");
 | 
						|
 | 
						|
	return 0;
 | 
						|
 | 
						|
err_reg1:
 | 
						|
	edma_free_slot(ecc->dummy_slot);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static int edma_remove(struct platform_device *pdev)
 | 
						|
{
 | 
						|
	struct device *dev = &pdev->dev;
 | 
						|
	struct edma_cc *ecc = dev_get_drvdata(dev);
 | 
						|
 | 
						|
	dma_async_device_unregister(&ecc->dma_slave);
 | 
						|
	edma_free_slot(ecc->dummy_slot);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static struct platform_driver edma_driver = {
 | 
						|
	.probe		= edma_probe,
 | 
						|
	.remove		= edma_remove,
 | 
						|
	.driver = {
 | 
						|
		.name = "edma-dma-engine",
 | 
						|
		.owner = THIS_MODULE,
 | 
						|
	},
 | 
						|
};
 | 
						|
 | 
						|
bool edma_filter_fn(struct dma_chan *chan, void *param)
 | 
						|
{
 | 
						|
	if (chan->device->dev->driver == &edma_driver.driver) {
 | 
						|
		struct edma_chan *echan = to_edma_chan(chan);
 | 
						|
		unsigned ch_req = *(unsigned *)param;
 | 
						|
		return ch_req == echan->ch_num;
 | 
						|
	}
 | 
						|
	return false;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(edma_filter_fn);
 | 
						|
 | 
						|
static struct platform_device *pdev0, *pdev1;
 | 
						|
 | 
						|
static const struct platform_device_info edma_dev_info0 = {
 | 
						|
	.name = "edma-dma-engine",
 | 
						|
	.id = 0,
 | 
						|
	.dma_mask = DMA_BIT_MASK(32),
 | 
						|
};
 | 
						|
 | 
						|
static const struct platform_device_info edma_dev_info1 = {
 | 
						|
	.name = "edma-dma-engine",
 | 
						|
	.id = 1,
 | 
						|
	.dma_mask = DMA_BIT_MASK(32),
 | 
						|
};
 | 
						|
 | 
						|
static int edma_init(void)
 | 
						|
{
 | 
						|
	int ret = platform_driver_register(&edma_driver);
 | 
						|
 | 
						|
	if (ret == 0) {
 | 
						|
		pdev0 = platform_device_register_full(&edma_dev_info0);
 | 
						|
		if (IS_ERR(pdev0)) {
 | 
						|
			platform_driver_unregister(&edma_driver);
 | 
						|
			ret = PTR_ERR(pdev0);
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if (EDMA_CTLRS == 2) {
 | 
						|
		pdev1 = platform_device_register_full(&edma_dev_info1);
 | 
						|
		if (IS_ERR(pdev1)) {
 | 
						|
			platform_driver_unregister(&edma_driver);
 | 
						|
			platform_device_unregister(pdev0);
 | 
						|
			ret = PTR_ERR(pdev1);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
out:
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
subsys_initcall(edma_init);
 | 
						|
 | 
						|
static void __exit edma_exit(void)
 | 
						|
{
 | 
						|
	platform_device_unregister(pdev0);
 | 
						|
	if (pdev1)
 | 
						|
		platform_device_unregister(pdev1);
 | 
						|
	platform_driver_unregister(&edma_driver);
 | 
						|
}
 | 
						|
module_exit(edma_exit);
 | 
						|
 | 
						|
MODULE_AUTHOR("Matt Porter <matt.porter@linaro.org>");
 | 
						|
MODULE_DESCRIPTION("TI EDMA DMA engine driver");
 | 
						|
MODULE_LICENSE("GPL v2");
 |