Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Chris Metcalf <cmetcalf@tilera.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
		
			
				
	
	
		
			586 lines
		
	
	
	
		
			16 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			586 lines
		
	
	
	
		
			16 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * Copyright 2010 Tilera Corporation. All Rights Reserved.
 | 
						|
 *
 | 
						|
 *   This program is free software; you can redistribute it and/or
 | 
						|
 *   modify it under the terms of the GNU General Public License
 | 
						|
 *   as published by the Free Software Foundation, version 2.
 | 
						|
 *
 | 
						|
 *   This program is distributed in the hope that it will be useful, but
 | 
						|
 *   WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
 *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
 | 
						|
 *   NON INFRINGEMENT.  See the GNU General Public License for
 | 
						|
 *   more details.
 | 
						|
 */
 | 
						|
 | 
						|
#include <linux/sched.h>
 | 
						|
#include <linux/kernel.h>
 | 
						|
#include <linux/errno.h>
 | 
						|
#include <linux/mm.h>
 | 
						|
#include <linux/swap.h>
 | 
						|
#include <linux/highmem.h>
 | 
						|
#include <linux/slab.h>
 | 
						|
#include <linux/pagemap.h>
 | 
						|
#include <linux/spinlock.h>
 | 
						|
#include <linux/cpumask.h>
 | 
						|
#include <linux/module.h>
 | 
						|
#include <linux/io.h>
 | 
						|
#include <linux/vmalloc.h>
 | 
						|
#include <linux/smp.h>
 | 
						|
 | 
						|
#include <asm/pgtable.h>
 | 
						|
#include <asm/pgalloc.h>
 | 
						|
#include <asm/fixmap.h>
 | 
						|
#include <asm/tlb.h>
 | 
						|
#include <asm/tlbflush.h>
 | 
						|
#include <asm/homecache.h>
 | 
						|
 | 
						|
#define K(x) ((x) << (PAGE_SHIFT-10))
 | 
						|
 | 
						|
/*
 | 
						|
 * The normal show_free_areas() is too verbose on Tile, with dozens
 | 
						|
 * of processors and often four NUMA zones each with high and lowmem.
 | 
						|
 */
 | 
						|
void show_mem(unsigned int filter)
 | 
						|
{
 | 
						|
	struct zone *zone;
 | 
						|
 | 
						|
	pr_err("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu"
 | 
						|
	       " free:%lu\n slab:%lu mapped:%lu pagetables:%lu bounce:%lu"
 | 
						|
	       " pagecache:%lu swap:%lu\n",
 | 
						|
	       (global_page_state(NR_ACTIVE_ANON) +
 | 
						|
		global_page_state(NR_ACTIVE_FILE)),
 | 
						|
	       (global_page_state(NR_INACTIVE_ANON) +
 | 
						|
		global_page_state(NR_INACTIVE_FILE)),
 | 
						|
	       global_page_state(NR_FILE_DIRTY),
 | 
						|
	       global_page_state(NR_WRITEBACK),
 | 
						|
	       global_page_state(NR_UNSTABLE_NFS),
 | 
						|
	       global_page_state(NR_FREE_PAGES),
 | 
						|
	       (global_page_state(NR_SLAB_RECLAIMABLE) +
 | 
						|
		global_page_state(NR_SLAB_UNRECLAIMABLE)),
 | 
						|
	       global_page_state(NR_FILE_MAPPED),
 | 
						|
	       global_page_state(NR_PAGETABLE),
 | 
						|
	       global_page_state(NR_BOUNCE),
 | 
						|
	       global_page_state(NR_FILE_PAGES),
 | 
						|
	       get_nr_swap_pages());
 | 
						|
 | 
						|
	for_each_zone(zone) {
 | 
						|
		unsigned long flags, order, total = 0, largest_order = -1;
 | 
						|
 | 
						|
		if (!populated_zone(zone))
 | 
						|
			continue;
 | 
						|
 | 
						|
		spin_lock_irqsave(&zone->lock, flags);
 | 
						|
		for (order = 0; order < MAX_ORDER; order++) {
 | 
						|
			int nr = zone->free_area[order].nr_free;
 | 
						|
			total += nr << order;
 | 
						|
			if (nr)
 | 
						|
				largest_order = order;
 | 
						|
		}
 | 
						|
		spin_unlock_irqrestore(&zone->lock, flags);
 | 
						|
		pr_err("Node %d %7s: %lukB (largest %luKb)\n",
 | 
						|
		       zone_to_nid(zone), zone->name,
 | 
						|
		       K(total), largest_order ? K(1UL) << largest_order : 0);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * shatter_huge_page() - ensure a given address is mapped by a small page.
 | 
						|
 *
 | 
						|
 * This function converts a huge PTE mapping kernel LOWMEM into a bunch
 | 
						|
 * of small PTEs with the same caching.  No cache flush required, but we
 | 
						|
 * must do a global TLB flush.
 | 
						|
 *
 | 
						|
 * Any caller that wishes to modify a kernel mapping that might
 | 
						|
 * have been made with a huge page should call this function,
 | 
						|
 * since doing so properly avoids race conditions with installing the
 | 
						|
 * newly-shattered page and then flushing all the TLB entries.
 | 
						|
 *
 | 
						|
 * @addr: Address at which to shatter any existing huge page.
 | 
						|
 */
 | 
						|
void shatter_huge_page(unsigned long addr)
 | 
						|
{
 | 
						|
	pgd_t *pgd;
 | 
						|
	pud_t *pud;
 | 
						|
	pmd_t *pmd;
 | 
						|
	unsigned long flags = 0;  /* happy compiler */
 | 
						|
#ifdef __PAGETABLE_PMD_FOLDED
 | 
						|
	struct list_head *pos;
 | 
						|
#endif
 | 
						|
 | 
						|
	/* Get a pointer to the pmd entry that we need to change. */
 | 
						|
	addr &= HPAGE_MASK;
 | 
						|
	BUG_ON(pgd_addr_invalid(addr));
 | 
						|
	BUG_ON(addr < PAGE_OFFSET);  /* only for kernel LOWMEM */
 | 
						|
	pgd = swapper_pg_dir + pgd_index(addr);
 | 
						|
	pud = pud_offset(pgd, addr);
 | 
						|
	BUG_ON(!pud_present(*pud));
 | 
						|
	pmd = pmd_offset(pud, addr);
 | 
						|
	BUG_ON(!pmd_present(*pmd));
 | 
						|
	if (!pmd_huge_page(*pmd))
 | 
						|
		return;
 | 
						|
 | 
						|
	spin_lock_irqsave(&init_mm.page_table_lock, flags);
 | 
						|
	if (!pmd_huge_page(*pmd)) {
 | 
						|
		/* Lost the race to convert the huge page. */
 | 
						|
		spin_unlock_irqrestore(&init_mm.page_table_lock, flags);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Shatter the huge page into the preallocated L2 page table. */
 | 
						|
	pmd_populate_kernel(&init_mm, pmd, get_prealloc_pte(pmd_pfn(*pmd)));
 | 
						|
 | 
						|
#ifdef __PAGETABLE_PMD_FOLDED
 | 
						|
	/* Walk every pgd on the system and update the pmd there. */
 | 
						|
	spin_lock(&pgd_lock);
 | 
						|
	list_for_each(pos, &pgd_list) {
 | 
						|
		pmd_t *copy_pmd;
 | 
						|
		pgd = list_to_pgd(pos) + pgd_index(addr);
 | 
						|
		pud = pud_offset(pgd, addr);
 | 
						|
		copy_pmd = pmd_offset(pud, addr);
 | 
						|
		__set_pmd(copy_pmd, *pmd);
 | 
						|
	}
 | 
						|
	spin_unlock(&pgd_lock);
 | 
						|
#endif
 | 
						|
 | 
						|
	/* Tell every cpu to notice the change. */
 | 
						|
	flush_remote(0, 0, NULL, addr, HPAGE_SIZE, HPAGE_SIZE,
 | 
						|
		     cpu_possible_mask, NULL, 0);
 | 
						|
 | 
						|
	/* Hold the lock until the TLB flush is finished to avoid races. */
 | 
						|
	spin_unlock_irqrestore(&init_mm.page_table_lock, flags);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * List of all pgd's needed so it can invalidate entries in both cached
 | 
						|
 * and uncached pgd's. This is essentially codepath-based locking
 | 
						|
 * against pageattr.c; it is the unique case in which a valid change
 | 
						|
 * of kernel pagetables can't be lazily synchronized by vmalloc faults.
 | 
						|
 * vmalloc faults work because attached pagetables are never freed.
 | 
						|
 *
 | 
						|
 * The lock is always taken with interrupts disabled, unlike on x86
 | 
						|
 * and other platforms, because we need to take the lock in
 | 
						|
 * shatter_huge_page(), which may be called from an interrupt context.
 | 
						|
 * We are not at risk from the tlbflush IPI deadlock that was seen on
 | 
						|
 * x86, since we use the flush_remote() API to have the hypervisor do
 | 
						|
 * the TLB flushes regardless of irq disabling.
 | 
						|
 */
 | 
						|
DEFINE_SPINLOCK(pgd_lock);
 | 
						|
LIST_HEAD(pgd_list);
 | 
						|
 | 
						|
static inline void pgd_list_add(pgd_t *pgd)
 | 
						|
{
 | 
						|
	list_add(pgd_to_list(pgd), &pgd_list);
 | 
						|
}
 | 
						|
 | 
						|
static inline void pgd_list_del(pgd_t *pgd)
 | 
						|
{
 | 
						|
	list_del(pgd_to_list(pgd));
 | 
						|
}
 | 
						|
 | 
						|
#define KERNEL_PGD_INDEX_START pgd_index(PAGE_OFFSET)
 | 
						|
#define KERNEL_PGD_PTRS (PTRS_PER_PGD - KERNEL_PGD_INDEX_START)
 | 
						|
 | 
						|
static void pgd_ctor(pgd_t *pgd)
 | 
						|
{
 | 
						|
	unsigned long flags;
 | 
						|
 | 
						|
	memset(pgd, 0, KERNEL_PGD_INDEX_START*sizeof(pgd_t));
 | 
						|
	spin_lock_irqsave(&pgd_lock, flags);
 | 
						|
 | 
						|
#ifndef __tilegx__
 | 
						|
	/*
 | 
						|
	 * Check that the user interrupt vector has no L2.
 | 
						|
	 * It never should for the swapper, and new page tables
 | 
						|
	 * should always start with an empty user interrupt vector.
 | 
						|
	 */
 | 
						|
	BUG_ON(((u64 *)swapper_pg_dir)[pgd_index(MEM_USER_INTRPT)] != 0);
 | 
						|
#endif
 | 
						|
 | 
						|
	memcpy(pgd + KERNEL_PGD_INDEX_START,
 | 
						|
	       swapper_pg_dir + KERNEL_PGD_INDEX_START,
 | 
						|
	       KERNEL_PGD_PTRS * sizeof(pgd_t));
 | 
						|
 | 
						|
	pgd_list_add(pgd);
 | 
						|
	spin_unlock_irqrestore(&pgd_lock, flags);
 | 
						|
}
 | 
						|
 | 
						|
static void pgd_dtor(pgd_t *pgd)
 | 
						|
{
 | 
						|
	unsigned long flags; /* can be called from interrupt context */
 | 
						|
 | 
						|
	spin_lock_irqsave(&pgd_lock, flags);
 | 
						|
	pgd_list_del(pgd);
 | 
						|
	spin_unlock_irqrestore(&pgd_lock, flags);
 | 
						|
}
 | 
						|
 | 
						|
pgd_t *pgd_alloc(struct mm_struct *mm)
 | 
						|
{
 | 
						|
	pgd_t *pgd = kmem_cache_alloc(pgd_cache, GFP_KERNEL);
 | 
						|
	if (pgd)
 | 
						|
		pgd_ctor(pgd);
 | 
						|
	return pgd;
 | 
						|
}
 | 
						|
 | 
						|
void pgd_free(struct mm_struct *mm, pgd_t *pgd)
 | 
						|
{
 | 
						|
	pgd_dtor(pgd);
 | 
						|
	kmem_cache_free(pgd_cache, pgd);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
#define L2_USER_PGTABLE_PAGES (1 << L2_USER_PGTABLE_ORDER)
 | 
						|
 | 
						|
struct page *pgtable_alloc_one(struct mm_struct *mm, unsigned long address,
 | 
						|
			       int order)
 | 
						|
{
 | 
						|
	gfp_t flags = GFP_KERNEL|__GFP_REPEAT|__GFP_ZERO;
 | 
						|
	struct page *p;
 | 
						|
	int i;
 | 
						|
 | 
						|
	p = alloc_pages(flags, L2_USER_PGTABLE_ORDER);
 | 
						|
	if (p == NULL)
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	if (!pgtable_page_ctor(p)) {
 | 
						|
		__free_pages(p, L2_USER_PGTABLE_ORDER);
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Make every page have a page_count() of one, not just the first.
 | 
						|
	 * We don't use __GFP_COMP since it doesn't look like it works
 | 
						|
	 * correctly with tlb_remove_page().
 | 
						|
	 */
 | 
						|
	for (i = 1; i < order; ++i) {
 | 
						|
		init_page_count(p+i);
 | 
						|
		inc_zone_page_state(p+i, NR_PAGETABLE);
 | 
						|
	}
 | 
						|
 | 
						|
	return p;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Free page immediately (used in __pte_alloc if we raced with another
 | 
						|
 * process).  We have to correct whatever pte_alloc_one() did before
 | 
						|
 * returning the pages to the allocator.
 | 
						|
 */
 | 
						|
void pgtable_free(struct mm_struct *mm, struct page *p, int order)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
 | 
						|
	pgtable_page_dtor(p);
 | 
						|
	__free_page(p);
 | 
						|
 | 
						|
	for (i = 1; i < order; ++i) {
 | 
						|
		__free_page(p+i);
 | 
						|
		dec_zone_page_state(p+i, NR_PAGETABLE);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void __pgtable_free_tlb(struct mmu_gather *tlb, struct page *pte,
 | 
						|
			unsigned long address, int order)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
 | 
						|
	pgtable_page_dtor(pte);
 | 
						|
	tlb_remove_page(tlb, pte);
 | 
						|
 | 
						|
	for (i = 1; i < order; ++i) {
 | 
						|
		tlb_remove_page(tlb, pte + i);
 | 
						|
		dec_zone_page_state(pte + i, NR_PAGETABLE);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
#ifndef __tilegx__
 | 
						|
 | 
						|
/*
 | 
						|
 * FIXME: needs to be atomic vs hypervisor writes.  For now we make the
 | 
						|
 * window of vulnerability a bit smaller by doing an unlocked 8-bit update.
 | 
						|
 */
 | 
						|
int ptep_test_and_clear_young(struct vm_area_struct *vma,
 | 
						|
			      unsigned long addr, pte_t *ptep)
 | 
						|
{
 | 
						|
#if HV_PTE_INDEX_ACCESSED < 8 || HV_PTE_INDEX_ACCESSED >= 16
 | 
						|
# error Code assumes HV_PTE "accessed" bit in second byte
 | 
						|
#endif
 | 
						|
	u8 *tmp = (u8 *)ptep;
 | 
						|
	u8 second_byte = tmp[1];
 | 
						|
	if (!(second_byte & (1 << (HV_PTE_INDEX_ACCESSED - 8))))
 | 
						|
		return 0;
 | 
						|
	tmp[1] = second_byte & ~(1 << (HV_PTE_INDEX_ACCESSED - 8));
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * This implementation is atomic vs hypervisor writes, since the hypervisor
 | 
						|
 * always writes the low word (where "accessed" and "dirty" are) and this
 | 
						|
 * routine only writes the high word.
 | 
						|
 */
 | 
						|
void ptep_set_wrprotect(struct mm_struct *mm,
 | 
						|
			unsigned long addr, pte_t *ptep)
 | 
						|
{
 | 
						|
#if HV_PTE_INDEX_WRITABLE < 32
 | 
						|
# error Code assumes HV_PTE "writable" bit in high word
 | 
						|
#endif
 | 
						|
	u32 *tmp = (u32 *)ptep;
 | 
						|
	tmp[1] = tmp[1] & ~(1 << (HV_PTE_INDEX_WRITABLE - 32));
 | 
						|
}
 | 
						|
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
 * Return a pointer to the PTE that corresponds to the given
 | 
						|
 * address in the given page table.  A NULL page table just uses
 | 
						|
 * the standard kernel page table; the preferred API in this case
 | 
						|
 * is virt_to_kpte().
 | 
						|
 *
 | 
						|
 * The returned pointer can point to a huge page in other levels
 | 
						|
 * of the page table than the bottom, if the huge page is present
 | 
						|
 * in the page table.  For bottom-level PTEs, the returned pointer
 | 
						|
 * can point to a PTE that is either present or not.
 | 
						|
 */
 | 
						|
pte_t *virt_to_pte(struct mm_struct* mm, unsigned long addr)
 | 
						|
{
 | 
						|
	pgd_t *pgd;
 | 
						|
	pud_t *pud;
 | 
						|
	pmd_t *pmd;
 | 
						|
 | 
						|
	if (pgd_addr_invalid(addr))
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	pgd = mm ? pgd_offset(mm, addr) : swapper_pg_dir + pgd_index(addr);
 | 
						|
	pud = pud_offset(pgd, addr);
 | 
						|
	if (!pud_present(*pud))
 | 
						|
		return NULL;
 | 
						|
	if (pud_huge_page(*pud))
 | 
						|
		return (pte_t *)pud;
 | 
						|
	pmd = pmd_offset(pud, addr);
 | 
						|
	if (!pmd_present(*pmd))
 | 
						|
		return NULL;
 | 
						|
	if (pmd_huge_page(*pmd))
 | 
						|
		return (pte_t *)pmd;
 | 
						|
	return pte_offset_kernel(pmd, addr);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(virt_to_pte);
 | 
						|
 | 
						|
pte_t *virt_to_kpte(unsigned long kaddr)
 | 
						|
{
 | 
						|
	BUG_ON(kaddr < PAGE_OFFSET);
 | 
						|
	return virt_to_pte(NULL, kaddr);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(virt_to_kpte);
 | 
						|
 | 
						|
pgprot_t set_remote_cache_cpu(pgprot_t prot, int cpu)
 | 
						|
{
 | 
						|
	unsigned int width = smp_width;
 | 
						|
	int x = cpu % width;
 | 
						|
	int y = cpu / width;
 | 
						|
	BUG_ON(y >= smp_height);
 | 
						|
	BUG_ON(hv_pte_get_mode(prot) != HV_PTE_MODE_CACHE_TILE_L3);
 | 
						|
	BUG_ON(cpu < 0 || cpu >= NR_CPUS);
 | 
						|
	BUG_ON(!cpu_is_valid_lotar(cpu));
 | 
						|
	return hv_pte_set_lotar(prot, HV_XY_TO_LOTAR(x, y));
 | 
						|
}
 | 
						|
 | 
						|
int get_remote_cache_cpu(pgprot_t prot)
 | 
						|
{
 | 
						|
	HV_LOTAR lotar = hv_pte_get_lotar(prot);
 | 
						|
	int x = HV_LOTAR_X(lotar);
 | 
						|
	int y = HV_LOTAR_Y(lotar);
 | 
						|
	BUG_ON(hv_pte_get_mode(prot) != HV_PTE_MODE_CACHE_TILE_L3);
 | 
						|
	return x + y * smp_width;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Convert a kernel VA to a PA and homing information.
 | 
						|
 */
 | 
						|
int va_to_cpa_and_pte(void *va, unsigned long long *cpa, pte_t *pte)
 | 
						|
{
 | 
						|
	struct page *page = virt_to_page(va);
 | 
						|
	pte_t null_pte = { 0 };
 | 
						|
 | 
						|
	*cpa = __pa(va);
 | 
						|
 | 
						|
	/* Note that this is not writing a page table, just returning a pte. */
 | 
						|
	*pte = pte_set_home(null_pte, page_home(page));
 | 
						|
 | 
						|
	return 0; /* return non-zero if not hfh? */
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(va_to_cpa_and_pte);
 | 
						|
 | 
						|
void __set_pte(pte_t *ptep, pte_t pte)
 | 
						|
{
 | 
						|
#ifdef __tilegx__
 | 
						|
	*ptep = pte;
 | 
						|
#else
 | 
						|
# if HV_PTE_INDEX_PRESENT >= 32 || HV_PTE_INDEX_MIGRATING >= 32
 | 
						|
#  error Must write the present and migrating bits last
 | 
						|
# endif
 | 
						|
	if (pte_present(pte)) {
 | 
						|
		((u32 *)ptep)[1] = (u32)(pte_val(pte) >> 32);
 | 
						|
		barrier();
 | 
						|
		((u32 *)ptep)[0] = (u32)(pte_val(pte));
 | 
						|
	} else {
 | 
						|
		((u32 *)ptep)[0] = (u32)(pte_val(pte));
 | 
						|
		barrier();
 | 
						|
		((u32 *)ptep)[1] = (u32)(pte_val(pte) >> 32);
 | 
						|
	}
 | 
						|
#endif /* __tilegx__ */
 | 
						|
}
 | 
						|
 | 
						|
void set_pte(pte_t *ptep, pte_t pte)
 | 
						|
{
 | 
						|
	if (pte_present(pte) &&
 | 
						|
	    (!CHIP_HAS_MMIO() || hv_pte_get_mode(pte) != HV_PTE_MODE_MMIO)) {
 | 
						|
		/* The PTE actually references physical memory. */
 | 
						|
		unsigned long pfn = pte_pfn(pte);
 | 
						|
		if (pfn_valid(pfn)) {
 | 
						|
			/* Update the home of the PTE from the struct page. */
 | 
						|
			pte = pte_set_home(pte, page_home(pfn_to_page(pfn)));
 | 
						|
		} else if (hv_pte_get_mode(pte) == 0) {
 | 
						|
			/* remap_pfn_range(), etc, must supply PTE mode. */
 | 
						|
			panic("set_pte(): out-of-range PFN and mode 0\n");
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	__set_pte(ptep, pte);
 | 
						|
}
 | 
						|
 | 
						|
/* Can this mm load a PTE with cached_priority set? */
 | 
						|
static inline int mm_is_priority_cached(struct mm_struct *mm)
 | 
						|
{
 | 
						|
	return mm->context.priority_cached != 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Add a priority mapping to an mm_context and
 | 
						|
 * notify the hypervisor if this is the first one.
 | 
						|
 */
 | 
						|
void start_mm_caching(struct mm_struct *mm)
 | 
						|
{
 | 
						|
	if (!mm_is_priority_cached(mm)) {
 | 
						|
		mm->context.priority_cached = -1UL;
 | 
						|
		hv_set_caching(-1UL);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Validate and return the priority_cached flag.  We know if it's zero
 | 
						|
 * that we don't need to scan, since we immediately set it non-zero
 | 
						|
 * when we first consider a MAP_CACHE_PRIORITY mapping.
 | 
						|
 *
 | 
						|
 * We only _try_ to acquire the mmap_sem semaphore; if we can't acquire it,
 | 
						|
 * since we're in an interrupt context (servicing switch_mm) we don't
 | 
						|
 * worry about it and don't unset the "priority_cached" field.
 | 
						|
 * Presumably we'll come back later and have more luck and clear
 | 
						|
 * the value then; for now we'll just keep the cache marked for priority.
 | 
						|
 */
 | 
						|
static unsigned long update_priority_cached(struct mm_struct *mm)
 | 
						|
{
 | 
						|
	if (mm->context.priority_cached && down_write_trylock(&mm->mmap_sem)) {
 | 
						|
		struct vm_area_struct *vm;
 | 
						|
		for (vm = mm->mmap; vm; vm = vm->vm_next) {
 | 
						|
			if (hv_pte_get_cached_priority(vm->vm_page_prot))
 | 
						|
				break;
 | 
						|
		}
 | 
						|
		if (vm == NULL)
 | 
						|
			mm->context.priority_cached = 0;
 | 
						|
		up_write(&mm->mmap_sem);
 | 
						|
	}
 | 
						|
	return mm->context.priority_cached;
 | 
						|
}
 | 
						|
 | 
						|
/* Set caching correctly for an mm that we are switching to. */
 | 
						|
void check_mm_caching(struct mm_struct *prev, struct mm_struct *next)
 | 
						|
{
 | 
						|
	if (!mm_is_priority_cached(next)) {
 | 
						|
		/*
 | 
						|
		 * If the new mm doesn't use priority caching, just see if we
 | 
						|
		 * need the hv_set_caching(), or can assume it's already zero.
 | 
						|
		 */
 | 
						|
		if (mm_is_priority_cached(prev))
 | 
						|
			hv_set_caching(0);
 | 
						|
	} else {
 | 
						|
		hv_set_caching(update_priority_cached(next));
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
#if CHIP_HAS_MMIO()
 | 
						|
 | 
						|
/* Map an arbitrary MMIO address, homed according to pgprot, into VA space. */
 | 
						|
void __iomem *ioremap_prot(resource_size_t phys_addr, unsigned long size,
 | 
						|
			   pgprot_t home)
 | 
						|
{
 | 
						|
	void *addr;
 | 
						|
	struct vm_struct *area;
 | 
						|
	unsigned long offset, last_addr;
 | 
						|
	pgprot_t pgprot;
 | 
						|
 | 
						|
	/* Don't allow wraparound or zero size */
 | 
						|
	last_addr = phys_addr + size - 1;
 | 
						|
	if (!size || last_addr < phys_addr)
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	/* Create a read/write, MMIO VA mapping homed at the requested shim. */
 | 
						|
	pgprot = PAGE_KERNEL;
 | 
						|
	pgprot = hv_pte_set_mode(pgprot, HV_PTE_MODE_MMIO);
 | 
						|
	pgprot = hv_pte_set_lotar(pgprot, hv_pte_get_lotar(home));
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Mappings have to be page-aligned
 | 
						|
	 */
 | 
						|
	offset = phys_addr & ~PAGE_MASK;
 | 
						|
	phys_addr &= PAGE_MASK;
 | 
						|
	size = PAGE_ALIGN(last_addr+1) - phys_addr;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Ok, go for it..
 | 
						|
	 */
 | 
						|
	area = get_vm_area(size, VM_IOREMAP /* | other flags? */);
 | 
						|
	if (!area)
 | 
						|
		return NULL;
 | 
						|
	area->phys_addr = phys_addr;
 | 
						|
	addr = area->addr;
 | 
						|
	if (ioremap_page_range((unsigned long)addr, (unsigned long)addr + size,
 | 
						|
			       phys_addr, pgprot)) {
 | 
						|
		free_vm_area(area);
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
	return (__force void __iomem *) (offset + (char *)addr);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(ioremap_prot);
 | 
						|
 | 
						|
/* Unmap an MMIO VA mapping. */
 | 
						|
void iounmap(volatile void __iomem *addr_in)
 | 
						|
{
 | 
						|
	volatile void __iomem *addr = (volatile void __iomem *)
 | 
						|
		(PAGE_MASK & (unsigned long __force)addr_in);
 | 
						|
#if 1
 | 
						|
	vunmap((void * __force)addr);
 | 
						|
#else
 | 
						|
	/* x86 uses this complicated flow instead of vunmap().  Is
 | 
						|
	 * there any particular reason we should do the same? */
 | 
						|
	struct vm_struct *p, *o;
 | 
						|
 | 
						|
	/* Use the vm area unlocked, assuming the caller
 | 
						|
	   ensures there isn't another iounmap for the same address
 | 
						|
	   in parallel. Reuse of the virtual address is prevented by
 | 
						|
	   leaving it in the global lists until we're done with it.
 | 
						|
	   cpa takes care of the direct mappings. */
 | 
						|
	p = find_vm_area((void *)addr);
 | 
						|
 | 
						|
	if (!p) {
 | 
						|
		pr_err("iounmap: bad address %p\n", addr);
 | 
						|
		dump_stack();
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Finally remove it */
 | 
						|
	o = remove_vm_area((void *)addr);
 | 
						|
	BUG_ON(p != o || o == NULL);
 | 
						|
	kfree(p);
 | 
						|
#endif
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(iounmap);
 | 
						|
 | 
						|
#endif /* CHIP_HAS_MMIO() */
 |