 7cc3afdf43
			
		
	
	
	7cc3afdf43
	
	
	
		
			
			Pull x86 EFI changes from Ingo Molnar:
 "The main changes:
  - Add debug code to the dump EFI pagetable - Borislav Petkov
  - Make 1:1 runtime mapping robust when booting on machines with lots
    of memory - Borislav Petkov
  - Move the EFI facilities bits out of 'x86_efi_facility' and into
    efi.flags which is the standard architecture independent place to
    keep EFI state, by Matt Fleming.
  - Add 'EFI mixed mode' support: this allows 64-bit kernels to be
    booted from 32-bit firmware.  This needs a bootloader that supports
    the 'EFI handover protocol'.  By Matt Fleming"
* 'x86-efi-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (31 commits)
  x86, efi: Abstract x86 efi_early calls
  x86/efi: Restore 'attr' argument to query_variable_info()
  x86/efi: Rip out phys_efi_get_time()
  x86/efi: Preserve segment registers in mixed mode
  x86/boot: Fix non-EFI build
  x86, tools: Fix up compiler warnings
  x86/efi: Re-disable interrupts after calling firmware services
  x86/boot: Don't overwrite cr4 when enabling PAE
  x86/efi: Wire up CONFIG_EFI_MIXED
  x86/efi: Add mixed runtime services support
  x86/efi: Firmware agnostic handover entry points
  x86/efi: Split the boot stub into 32/64 code paths
  x86/efi: Add early thunk code to go from 64-bit to 32-bit
  x86/efi: Build our own EFI services pointer table
  efi: Add separate 32-bit/64-bit definitions
  x86/efi: Delete dead code when checking for non-native
  x86/mm/pageattr: Always dump the right page table in an oops
  x86, tools: Consolidate #ifdef code
  x86/boot: Cleanup header.S by removing some #ifdefs
  efi: Use NULL instead of 0 for pointer
  ...
		
	
			
		
			
				
	
	
		
			1892 lines
		
	
	
	
		
			44 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1892 lines
		
	
	
	
		
			44 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright 2002 Andi Kleen, SuSE Labs.
 | |
|  * Thanks to Ben LaHaise for precious feedback.
 | |
|  */
 | |
| #include <linux/highmem.h>
 | |
| #include <linux/bootmem.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/seq_file.h>
 | |
| #include <linux/debugfs.h>
 | |
| #include <linux/pfn.h>
 | |
| #include <linux/percpu.h>
 | |
| #include <linux/gfp.h>
 | |
| #include <linux/pci.h>
 | |
| 
 | |
| #include <asm/e820.h>
 | |
| #include <asm/processor.h>
 | |
| #include <asm/tlbflush.h>
 | |
| #include <asm/sections.h>
 | |
| #include <asm/setup.h>
 | |
| #include <asm/uaccess.h>
 | |
| #include <asm/pgalloc.h>
 | |
| #include <asm/proto.h>
 | |
| #include <asm/pat.h>
 | |
| 
 | |
| /*
 | |
|  * The current flushing context - we pass it instead of 5 arguments:
 | |
|  */
 | |
| struct cpa_data {
 | |
| 	unsigned long	*vaddr;
 | |
| 	pgd_t		*pgd;
 | |
| 	pgprot_t	mask_set;
 | |
| 	pgprot_t	mask_clr;
 | |
| 	int		numpages;
 | |
| 	int		flags;
 | |
| 	unsigned long	pfn;
 | |
| 	unsigned	force_split : 1;
 | |
| 	int		curpage;
 | |
| 	struct page	**pages;
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings)
 | |
|  * using cpa_lock. So that we don't allow any other cpu, with stale large tlb
 | |
|  * entries change the page attribute in parallel to some other cpu
 | |
|  * splitting a large page entry along with changing the attribute.
 | |
|  */
 | |
| static DEFINE_SPINLOCK(cpa_lock);
 | |
| 
 | |
| #define CPA_FLUSHTLB 1
 | |
| #define CPA_ARRAY 2
 | |
| #define CPA_PAGES_ARRAY 4
 | |
| 
 | |
| #ifdef CONFIG_PROC_FS
 | |
| static unsigned long direct_pages_count[PG_LEVEL_NUM];
 | |
| 
 | |
| void update_page_count(int level, unsigned long pages)
 | |
| {
 | |
| 	/* Protect against CPA */
 | |
| 	spin_lock(&pgd_lock);
 | |
| 	direct_pages_count[level] += pages;
 | |
| 	spin_unlock(&pgd_lock);
 | |
| }
 | |
| 
 | |
| static void split_page_count(int level)
 | |
| {
 | |
| 	direct_pages_count[level]--;
 | |
| 	direct_pages_count[level - 1] += PTRS_PER_PTE;
 | |
| }
 | |
| 
 | |
| void arch_report_meminfo(struct seq_file *m)
 | |
| {
 | |
| 	seq_printf(m, "DirectMap4k:    %8lu kB\n",
 | |
| 			direct_pages_count[PG_LEVEL_4K] << 2);
 | |
| #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
 | |
| 	seq_printf(m, "DirectMap2M:    %8lu kB\n",
 | |
| 			direct_pages_count[PG_LEVEL_2M] << 11);
 | |
| #else
 | |
| 	seq_printf(m, "DirectMap4M:    %8lu kB\n",
 | |
| 			direct_pages_count[PG_LEVEL_2M] << 12);
 | |
| #endif
 | |
| #ifdef CONFIG_X86_64
 | |
| 	if (direct_gbpages)
 | |
| 		seq_printf(m, "DirectMap1G:    %8lu kB\n",
 | |
| 			direct_pages_count[PG_LEVEL_1G] << 20);
 | |
| #endif
 | |
| }
 | |
| #else
 | |
| static inline void split_page_count(int level) { }
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_X86_64
 | |
| 
 | |
| static inline unsigned long highmap_start_pfn(void)
 | |
| {
 | |
| 	return __pa_symbol(_text) >> PAGE_SHIFT;
 | |
| }
 | |
| 
 | |
| static inline unsigned long highmap_end_pfn(void)
 | |
| {
 | |
| 	return __pa_symbol(roundup(_brk_end, PMD_SIZE)) >> PAGE_SHIFT;
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_DEBUG_PAGEALLOC
 | |
| # define debug_pagealloc 1
 | |
| #else
 | |
| # define debug_pagealloc 0
 | |
| #endif
 | |
| 
 | |
| static inline int
 | |
| within(unsigned long addr, unsigned long start, unsigned long end)
 | |
| {
 | |
| 	return addr >= start && addr < end;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Flushing functions
 | |
|  */
 | |
| 
 | |
| /**
 | |
|  * clflush_cache_range - flush a cache range with clflush
 | |
|  * @vaddr:	virtual start address
 | |
|  * @size:	number of bytes to flush
 | |
|  *
 | |
|  * clflushopt is an unordered instruction which needs fencing with mfence or
 | |
|  * sfence to avoid ordering issues.
 | |
|  */
 | |
| void clflush_cache_range(void *vaddr, unsigned int size)
 | |
| {
 | |
| 	void *vend = vaddr + size - 1;
 | |
| 
 | |
| 	mb();
 | |
| 
 | |
| 	for (; vaddr < vend; vaddr += boot_cpu_data.x86_clflush_size)
 | |
| 		clflushopt(vaddr);
 | |
| 	/*
 | |
| 	 * Flush any possible final partial cacheline:
 | |
| 	 */
 | |
| 	clflushopt(vend);
 | |
| 
 | |
| 	mb();
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(clflush_cache_range);
 | |
| 
 | |
| static void __cpa_flush_all(void *arg)
 | |
| {
 | |
| 	unsigned long cache = (unsigned long)arg;
 | |
| 
 | |
| 	/*
 | |
| 	 * Flush all to work around Errata in early athlons regarding
 | |
| 	 * large page flushing.
 | |
| 	 */
 | |
| 	__flush_tlb_all();
 | |
| 
 | |
| 	if (cache && boot_cpu_data.x86 >= 4)
 | |
| 		wbinvd();
 | |
| }
 | |
| 
 | |
| static void cpa_flush_all(unsigned long cache)
 | |
| {
 | |
| 	BUG_ON(irqs_disabled());
 | |
| 
 | |
| 	on_each_cpu(__cpa_flush_all, (void *) cache, 1);
 | |
| }
 | |
| 
 | |
| static void __cpa_flush_range(void *arg)
 | |
| {
 | |
| 	/*
 | |
| 	 * We could optimize that further and do individual per page
 | |
| 	 * tlb invalidates for a low number of pages. Caveat: we must
 | |
| 	 * flush the high aliases on 64bit as well.
 | |
| 	 */
 | |
| 	__flush_tlb_all();
 | |
| }
 | |
| 
 | |
| static void cpa_flush_range(unsigned long start, int numpages, int cache)
 | |
| {
 | |
| 	unsigned int i, level;
 | |
| 	unsigned long addr;
 | |
| 
 | |
| 	BUG_ON(irqs_disabled());
 | |
| 	WARN_ON(PAGE_ALIGN(start) != start);
 | |
| 
 | |
| 	on_each_cpu(__cpa_flush_range, NULL, 1);
 | |
| 
 | |
| 	if (!cache)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * We only need to flush on one CPU,
 | |
| 	 * clflush is a MESI-coherent instruction that
 | |
| 	 * will cause all other CPUs to flush the same
 | |
| 	 * cachelines:
 | |
| 	 */
 | |
| 	for (i = 0, addr = start; i < numpages; i++, addr += PAGE_SIZE) {
 | |
| 		pte_t *pte = lookup_address(addr, &level);
 | |
| 
 | |
| 		/*
 | |
| 		 * Only flush present addresses:
 | |
| 		 */
 | |
| 		if (pte && (pte_val(*pte) & _PAGE_PRESENT))
 | |
| 			clflush_cache_range((void *) addr, PAGE_SIZE);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void cpa_flush_array(unsigned long *start, int numpages, int cache,
 | |
| 			    int in_flags, struct page **pages)
 | |
| {
 | |
| 	unsigned int i, level;
 | |
| 	unsigned long do_wbinvd = cache && numpages >= 1024; /* 4M threshold */
 | |
| 
 | |
| 	BUG_ON(irqs_disabled());
 | |
| 
 | |
| 	on_each_cpu(__cpa_flush_all, (void *) do_wbinvd, 1);
 | |
| 
 | |
| 	if (!cache || do_wbinvd)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * We only need to flush on one CPU,
 | |
| 	 * clflush is a MESI-coherent instruction that
 | |
| 	 * will cause all other CPUs to flush the same
 | |
| 	 * cachelines:
 | |
| 	 */
 | |
| 	for (i = 0; i < numpages; i++) {
 | |
| 		unsigned long addr;
 | |
| 		pte_t *pte;
 | |
| 
 | |
| 		if (in_flags & CPA_PAGES_ARRAY)
 | |
| 			addr = (unsigned long)page_address(pages[i]);
 | |
| 		else
 | |
| 			addr = start[i];
 | |
| 
 | |
| 		pte = lookup_address(addr, &level);
 | |
| 
 | |
| 		/*
 | |
| 		 * Only flush present addresses:
 | |
| 		 */
 | |
| 		if (pte && (pte_val(*pte) & _PAGE_PRESENT))
 | |
| 			clflush_cache_range((void *)addr, PAGE_SIZE);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Certain areas of memory on x86 require very specific protection flags,
 | |
|  * for example the BIOS area or kernel text. Callers don't always get this
 | |
|  * right (again, ioremap() on BIOS memory is not uncommon) so this function
 | |
|  * checks and fixes these known static required protection bits.
 | |
|  */
 | |
| static inline pgprot_t static_protections(pgprot_t prot, unsigned long address,
 | |
| 				   unsigned long pfn)
 | |
| {
 | |
| 	pgprot_t forbidden = __pgprot(0);
 | |
| 
 | |
| 	/*
 | |
| 	 * The BIOS area between 640k and 1Mb needs to be executable for
 | |
| 	 * PCI BIOS based config access (CONFIG_PCI_GOBIOS) support.
 | |
| 	 */
 | |
| #ifdef CONFIG_PCI_BIOS
 | |
| 	if (pcibios_enabled && within(pfn, BIOS_BEGIN >> PAGE_SHIFT, BIOS_END >> PAGE_SHIFT))
 | |
| 		pgprot_val(forbidden) |= _PAGE_NX;
 | |
| #endif
 | |
| 
 | |
| 	/*
 | |
| 	 * The kernel text needs to be executable for obvious reasons
 | |
| 	 * Does not cover __inittext since that is gone later on. On
 | |
| 	 * 64bit we do not enforce !NX on the low mapping
 | |
| 	 */
 | |
| 	if (within(address, (unsigned long)_text, (unsigned long)_etext))
 | |
| 		pgprot_val(forbidden) |= _PAGE_NX;
 | |
| 
 | |
| 	/*
 | |
| 	 * The .rodata section needs to be read-only. Using the pfn
 | |
| 	 * catches all aliases.
 | |
| 	 */
 | |
| 	if (within(pfn, __pa_symbol(__start_rodata) >> PAGE_SHIFT,
 | |
| 		   __pa_symbol(__end_rodata) >> PAGE_SHIFT))
 | |
| 		pgprot_val(forbidden) |= _PAGE_RW;
 | |
| 
 | |
| #if defined(CONFIG_X86_64) && defined(CONFIG_DEBUG_RODATA)
 | |
| 	/*
 | |
| 	 * Once the kernel maps the text as RO (kernel_set_to_readonly is set),
 | |
| 	 * kernel text mappings for the large page aligned text, rodata sections
 | |
| 	 * will be always read-only. For the kernel identity mappings covering
 | |
| 	 * the holes caused by this alignment can be anything that user asks.
 | |
| 	 *
 | |
| 	 * This will preserve the large page mappings for kernel text/data
 | |
| 	 * at no extra cost.
 | |
| 	 */
 | |
| 	if (kernel_set_to_readonly &&
 | |
| 	    within(address, (unsigned long)_text,
 | |
| 		   (unsigned long)__end_rodata_hpage_align)) {
 | |
| 		unsigned int level;
 | |
| 
 | |
| 		/*
 | |
| 		 * Don't enforce the !RW mapping for the kernel text mapping,
 | |
| 		 * if the current mapping is already using small page mapping.
 | |
| 		 * No need to work hard to preserve large page mappings in this
 | |
| 		 * case.
 | |
| 		 *
 | |
| 		 * This also fixes the Linux Xen paravirt guest boot failure
 | |
| 		 * (because of unexpected read-only mappings for kernel identity
 | |
| 		 * mappings). In this paravirt guest case, the kernel text
 | |
| 		 * mapping and the kernel identity mapping share the same
 | |
| 		 * page-table pages. Thus we can't really use different
 | |
| 		 * protections for the kernel text and identity mappings. Also,
 | |
| 		 * these shared mappings are made of small page mappings.
 | |
| 		 * Thus this don't enforce !RW mapping for small page kernel
 | |
| 		 * text mapping logic will help Linux Xen parvirt guest boot
 | |
| 		 * as well.
 | |
| 		 */
 | |
| 		if (lookup_address(address, &level) && (level != PG_LEVEL_4K))
 | |
| 			pgprot_val(forbidden) |= _PAGE_RW;
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	prot = __pgprot(pgprot_val(prot) & ~pgprot_val(forbidden));
 | |
| 
 | |
| 	return prot;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Lookup the page table entry for a virtual address in a specific pgd.
 | |
|  * Return a pointer to the entry and the level of the mapping.
 | |
|  */
 | |
| pte_t *lookup_address_in_pgd(pgd_t *pgd, unsigned long address,
 | |
| 			     unsigned int *level)
 | |
| {
 | |
| 	pud_t *pud;
 | |
| 	pmd_t *pmd;
 | |
| 
 | |
| 	*level = PG_LEVEL_NONE;
 | |
| 
 | |
| 	if (pgd_none(*pgd))
 | |
| 		return NULL;
 | |
| 
 | |
| 	pud = pud_offset(pgd, address);
 | |
| 	if (pud_none(*pud))
 | |
| 		return NULL;
 | |
| 
 | |
| 	*level = PG_LEVEL_1G;
 | |
| 	if (pud_large(*pud) || !pud_present(*pud))
 | |
| 		return (pte_t *)pud;
 | |
| 
 | |
| 	pmd = pmd_offset(pud, address);
 | |
| 	if (pmd_none(*pmd))
 | |
| 		return NULL;
 | |
| 
 | |
| 	*level = PG_LEVEL_2M;
 | |
| 	if (pmd_large(*pmd) || !pmd_present(*pmd))
 | |
| 		return (pte_t *)pmd;
 | |
| 
 | |
| 	*level = PG_LEVEL_4K;
 | |
| 
 | |
| 	return pte_offset_kernel(pmd, address);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Lookup the page table entry for a virtual address. Return a pointer
 | |
|  * to the entry and the level of the mapping.
 | |
|  *
 | |
|  * Note: We return pud and pmd either when the entry is marked large
 | |
|  * or when the present bit is not set. Otherwise we would return a
 | |
|  * pointer to a nonexisting mapping.
 | |
|  */
 | |
| pte_t *lookup_address(unsigned long address, unsigned int *level)
 | |
| {
 | |
|         return lookup_address_in_pgd(pgd_offset_k(address), address, level);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(lookup_address);
 | |
| 
 | |
| static pte_t *_lookup_address_cpa(struct cpa_data *cpa, unsigned long address,
 | |
| 				  unsigned int *level)
 | |
| {
 | |
|         if (cpa->pgd)
 | |
| 		return lookup_address_in_pgd(cpa->pgd + pgd_index(address),
 | |
| 					       address, level);
 | |
| 
 | |
|         return lookup_address(address, level);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is necessary because __pa() does not work on some
 | |
|  * kinds of memory, like vmalloc() or the alloc_remap()
 | |
|  * areas on 32-bit NUMA systems.  The percpu areas can
 | |
|  * end up in this kind of memory, for instance.
 | |
|  *
 | |
|  * This could be optimized, but it is only intended to be
 | |
|  * used at inititalization time, and keeping it
 | |
|  * unoptimized should increase the testing coverage for
 | |
|  * the more obscure platforms.
 | |
|  */
 | |
| phys_addr_t slow_virt_to_phys(void *__virt_addr)
 | |
| {
 | |
| 	unsigned long virt_addr = (unsigned long)__virt_addr;
 | |
| 	phys_addr_t phys_addr;
 | |
| 	unsigned long offset;
 | |
| 	enum pg_level level;
 | |
| 	unsigned long psize;
 | |
| 	unsigned long pmask;
 | |
| 	pte_t *pte;
 | |
| 
 | |
| 	pte = lookup_address(virt_addr, &level);
 | |
| 	BUG_ON(!pte);
 | |
| 	psize = page_level_size(level);
 | |
| 	pmask = page_level_mask(level);
 | |
| 	offset = virt_addr & ~pmask;
 | |
| 	phys_addr = pte_pfn(*pte) << PAGE_SHIFT;
 | |
| 	return (phys_addr | offset);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(slow_virt_to_phys);
 | |
| 
 | |
| /*
 | |
|  * Set the new pmd in all the pgds we know about:
 | |
|  */
 | |
| static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
 | |
| {
 | |
| 	/* change init_mm */
 | |
| 	set_pte_atomic(kpte, pte);
 | |
| #ifdef CONFIG_X86_32
 | |
| 	if (!SHARED_KERNEL_PMD) {
 | |
| 		struct page *page;
 | |
| 
 | |
| 		list_for_each_entry(page, &pgd_list, lru) {
 | |
| 			pgd_t *pgd;
 | |
| 			pud_t *pud;
 | |
| 			pmd_t *pmd;
 | |
| 
 | |
| 			pgd = (pgd_t *)page_address(page) + pgd_index(address);
 | |
| 			pud = pud_offset(pgd, address);
 | |
| 			pmd = pmd_offset(pud, address);
 | |
| 			set_pte_atomic((pte_t *)pmd, pte);
 | |
| 		}
 | |
| 	}
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static int
 | |
| try_preserve_large_page(pte_t *kpte, unsigned long address,
 | |
| 			struct cpa_data *cpa)
 | |
| {
 | |
| 	unsigned long nextpage_addr, numpages, pmask, psize, addr, pfn;
 | |
| 	pte_t new_pte, old_pte, *tmp;
 | |
| 	pgprot_t old_prot, new_prot, req_prot;
 | |
| 	int i, do_split = 1;
 | |
| 	enum pg_level level;
 | |
| 
 | |
| 	if (cpa->force_split)
 | |
| 		return 1;
 | |
| 
 | |
| 	spin_lock(&pgd_lock);
 | |
| 	/*
 | |
| 	 * Check for races, another CPU might have split this page
 | |
| 	 * up already:
 | |
| 	 */
 | |
| 	tmp = _lookup_address_cpa(cpa, address, &level);
 | |
| 	if (tmp != kpte)
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	switch (level) {
 | |
| 	case PG_LEVEL_2M:
 | |
| #ifdef CONFIG_X86_64
 | |
| 	case PG_LEVEL_1G:
 | |
| #endif
 | |
| 		psize = page_level_size(level);
 | |
| 		pmask = page_level_mask(level);
 | |
| 		break;
 | |
| 	default:
 | |
| 		do_split = -EINVAL;
 | |
| 		goto out_unlock;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Calculate the number of pages, which fit into this large
 | |
| 	 * page starting at address:
 | |
| 	 */
 | |
| 	nextpage_addr = (address + psize) & pmask;
 | |
| 	numpages = (nextpage_addr - address) >> PAGE_SHIFT;
 | |
| 	if (numpages < cpa->numpages)
 | |
| 		cpa->numpages = numpages;
 | |
| 
 | |
| 	/*
 | |
| 	 * We are safe now. Check whether the new pgprot is the same:
 | |
| 	 */
 | |
| 	old_pte = *kpte;
 | |
| 	old_prot = req_prot = pte_pgprot(old_pte);
 | |
| 
 | |
| 	pgprot_val(req_prot) &= ~pgprot_val(cpa->mask_clr);
 | |
| 	pgprot_val(req_prot) |= pgprot_val(cpa->mask_set);
 | |
| 
 | |
| 	/*
 | |
| 	 * Set the PSE and GLOBAL flags only if the PRESENT flag is
 | |
| 	 * set otherwise pmd_present/pmd_huge will return true even on
 | |
| 	 * a non present pmd. The canon_pgprot will clear _PAGE_GLOBAL
 | |
| 	 * for the ancient hardware that doesn't support it.
 | |
| 	 */
 | |
| 	if (pgprot_val(req_prot) & _PAGE_PRESENT)
 | |
| 		pgprot_val(req_prot) |= _PAGE_PSE | _PAGE_GLOBAL;
 | |
| 	else
 | |
| 		pgprot_val(req_prot) &= ~(_PAGE_PSE | _PAGE_GLOBAL);
 | |
| 
 | |
| 	req_prot = canon_pgprot(req_prot);
 | |
| 
 | |
| 	/*
 | |
| 	 * old_pte points to the large page base address. So we need
 | |
| 	 * to add the offset of the virtual address:
 | |
| 	 */
 | |
| 	pfn = pte_pfn(old_pte) + ((address & (psize - 1)) >> PAGE_SHIFT);
 | |
| 	cpa->pfn = pfn;
 | |
| 
 | |
| 	new_prot = static_protections(req_prot, address, pfn);
 | |
| 
 | |
| 	/*
 | |
| 	 * We need to check the full range, whether
 | |
| 	 * static_protection() requires a different pgprot for one of
 | |
| 	 * the pages in the range we try to preserve:
 | |
| 	 */
 | |
| 	addr = address & pmask;
 | |
| 	pfn = pte_pfn(old_pte);
 | |
| 	for (i = 0; i < (psize >> PAGE_SHIFT); i++, addr += PAGE_SIZE, pfn++) {
 | |
| 		pgprot_t chk_prot = static_protections(req_prot, addr, pfn);
 | |
| 
 | |
| 		if (pgprot_val(chk_prot) != pgprot_val(new_prot))
 | |
| 			goto out_unlock;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If there are no changes, return. maxpages has been updated
 | |
| 	 * above:
 | |
| 	 */
 | |
| 	if (pgprot_val(new_prot) == pgprot_val(old_prot)) {
 | |
| 		do_split = 0;
 | |
| 		goto out_unlock;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We need to change the attributes. Check, whether we can
 | |
| 	 * change the large page in one go. We request a split, when
 | |
| 	 * the address is not aligned and the number of pages is
 | |
| 	 * smaller than the number of pages in the large page. Note
 | |
| 	 * that we limited the number of possible pages already to
 | |
| 	 * the number of pages in the large page.
 | |
| 	 */
 | |
| 	if (address == (address & pmask) && cpa->numpages == (psize >> PAGE_SHIFT)) {
 | |
| 		/*
 | |
| 		 * The address is aligned and the number of pages
 | |
| 		 * covers the full page.
 | |
| 		 */
 | |
| 		new_pte = pfn_pte(pte_pfn(old_pte), new_prot);
 | |
| 		__set_pmd_pte(kpte, address, new_pte);
 | |
| 		cpa->flags |= CPA_FLUSHTLB;
 | |
| 		do_split = 0;
 | |
| 	}
 | |
| 
 | |
| out_unlock:
 | |
| 	spin_unlock(&pgd_lock);
 | |
| 
 | |
| 	return do_split;
 | |
| }
 | |
| 
 | |
| static int
 | |
| __split_large_page(struct cpa_data *cpa, pte_t *kpte, unsigned long address,
 | |
| 		   struct page *base)
 | |
| {
 | |
| 	pte_t *pbase = (pte_t *)page_address(base);
 | |
| 	unsigned long pfn, pfninc = 1;
 | |
| 	unsigned int i, level;
 | |
| 	pte_t *tmp;
 | |
| 	pgprot_t ref_prot;
 | |
| 
 | |
| 	spin_lock(&pgd_lock);
 | |
| 	/*
 | |
| 	 * Check for races, another CPU might have split this page
 | |
| 	 * up for us already:
 | |
| 	 */
 | |
| 	tmp = _lookup_address_cpa(cpa, address, &level);
 | |
| 	if (tmp != kpte) {
 | |
| 		spin_unlock(&pgd_lock);
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	paravirt_alloc_pte(&init_mm, page_to_pfn(base));
 | |
| 	ref_prot = pte_pgprot(pte_clrhuge(*kpte));
 | |
| 	/*
 | |
| 	 * If we ever want to utilize the PAT bit, we need to
 | |
| 	 * update this function to make sure it's converted from
 | |
| 	 * bit 12 to bit 7 when we cross from the 2MB level to
 | |
| 	 * the 4K level:
 | |
| 	 */
 | |
| 	WARN_ON_ONCE(pgprot_val(ref_prot) & _PAGE_PAT_LARGE);
 | |
| 
 | |
| #ifdef CONFIG_X86_64
 | |
| 	if (level == PG_LEVEL_1G) {
 | |
| 		pfninc = PMD_PAGE_SIZE >> PAGE_SHIFT;
 | |
| 		/*
 | |
| 		 * Set the PSE flags only if the PRESENT flag is set
 | |
| 		 * otherwise pmd_present/pmd_huge will return true
 | |
| 		 * even on a non present pmd.
 | |
| 		 */
 | |
| 		if (pgprot_val(ref_prot) & _PAGE_PRESENT)
 | |
| 			pgprot_val(ref_prot) |= _PAGE_PSE;
 | |
| 		else
 | |
| 			pgprot_val(ref_prot) &= ~_PAGE_PSE;
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	/*
 | |
| 	 * Set the GLOBAL flags only if the PRESENT flag is set
 | |
| 	 * otherwise pmd/pte_present will return true even on a non
 | |
| 	 * present pmd/pte. The canon_pgprot will clear _PAGE_GLOBAL
 | |
| 	 * for the ancient hardware that doesn't support it.
 | |
| 	 */
 | |
| 	if (pgprot_val(ref_prot) & _PAGE_PRESENT)
 | |
| 		pgprot_val(ref_prot) |= _PAGE_GLOBAL;
 | |
| 	else
 | |
| 		pgprot_val(ref_prot) &= ~_PAGE_GLOBAL;
 | |
| 
 | |
| 	/*
 | |
| 	 * Get the target pfn from the original entry:
 | |
| 	 */
 | |
| 	pfn = pte_pfn(*kpte);
 | |
| 	for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc)
 | |
| 		set_pte(&pbase[i], pfn_pte(pfn, canon_pgprot(ref_prot)));
 | |
| 
 | |
| 	if (pfn_range_is_mapped(PFN_DOWN(__pa(address)),
 | |
| 				PFN_DOWN(__pa(address)) + 1))
 | |
| 		split_page_count(level);
 | |
| 
 | |
| 	/*
 | |
| 	 * Install the new, split up pagetable.
 | |
| 	 *
 | |
| 	 * We use the standard kernel pagetable protections for the new
 | |
| 	 * pagetable protections, the actual ptes set above control the
 | |
| 	 * primary protection behavior:
 | |
| 	 */
 | |
| 	__set_pmd_pte(kpte, address, mk_pte(base, __pgprot(_KERNPG_TABLE)));
 | |
| 
 | |
| 	/*
 | |
| 	 * Intel Atom errata AAH41 workaround.
 | |
| 	 *
 | |
| 	 * The real fix should be in hw or in a microcode update, but
 | |
| 	 * we also probabilistically try to reduce the window of having
 | |
| 	 * a large TLB mixed with 4K TLBs while instruction fetches are
 | |
| 	 * going on.
 | |
| 	 */
 | |
| 	__flush_tlb_all();
 | |
| 	spin_unlock(&pgd_lock);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int split_large_page(struct cpa_data *cpa, pte_t *kpte,
 | |
| 			    unsigned long address)
 | |
| {
 | |
| 	struct page *base;
 | |
| 
 | |
| 	if (!debug_pagealloc)
 | |
| 		spin_unlock(&cpa_lock);
 | |
| 	base = alloc_pages(GFP_KERNEL | __GFP_NOTRACK, 0);
 | |
| 	if (!debug_pagealloc)
 | |
| 		spin_lock(&cpa_lock);
 | |
| 	if (!base)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	if (__split_large_page(cpa, kpte, address, base))
 | |
| 		__free_page(base);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static bool try_to_free_pte_page(pte_t *pte)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < PTRS_PER_PTE; i++)
 | |
| 		if (!pte_none(pte[i]))
 | |
| 			return false;
 | |
| 
 | |
| 	free_page((unsigned long)pte);
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static bool try_to_free_pmd_page(pmd_t *pmd)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < PTRS_PER_PMD; i++)
 | |
| 		if (!pmd_none(pmd[i]))
 | |
| 			return false;
 | |
| 
 | |
| 	free_page((unsigned long)pmd);
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static bool try_to_free_pud_page(pud_t *pud)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < PTRS_PER_PUD; i++)
 | |
| 		if (!pud_none(pud[i]))
 | |
| 			return false;
 | |
| 
 | |
| 	free_page((unsigned long)pud);
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static bool unmap_pte_range(pmd_t *pmd, unsigned long start, unsigned long end)
 | |
| {
 | |
| 	pte_t *pte = pte_offset_kernel(pmd, start);
 | |
| 
 | |
| 	while (start < end) {
 | |
| 		set_pte(pte, __pte(0));
 | |
| 
 | |
| 		start += PAGE_SIZE;
 | |
| 		pte++;
 | |
| 	}
 | |
| 
 | |
| 	if (try_to_free_pte_page((pte_t *)pmd_page_vaddr(*pmd))) {
 | |
| 		pmd_clear(pmd);
 | |
| 		return true;
 | |
| 	}
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static void __unmap_pmd_range(pud_t *pud, pmd_t *pmd,
 | |
| 			      unsigned long start, unsigned long end)
 | |
| {
 | |
| 	if (unmap_pte_range(pmd, start, end))
 | |
| 		if (try_to_free_pmd_page((pmd_t *)pud_page_vaddr(*pud)))
 | |
| 			pud_clear(pud);
 | |
| }
 | |
| 
 | |
| static void unmap_pmd_range(pud_t *pud, unsigned long start, unsigned long end)
 | |
| {
 | |
| 	pmd_t *pmd = pmd_offset(pud, start);
 | |
| 
 | |
| 	/*
 | |
| 	 * Not on a 2MB page boundary?
 | |
| 	 */
 | |
| 	if (start & (PMD_SIZE - 1)) {
 | |
| 		unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
 | |
| 		unsigned long pre_end = min_t(unsigned long, end, next_page);
 | |
| 
 | |
| 		__unmap_pmd_range(pud, pmd, start, pre_end);
 | |
| 
 | |
| 		start = pre_end;
 | |
| 		pmd++;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Try to unmap in 2M chunks.
 | |
| 	 */
 | |
| 	while (end - start >= PMD_SIZE) {
 | |
| 		if (pmd_large(*pmd))
 | |
| 			pmd_clear(pmd);
 | |
| 		else
 | |
| 			__unmap_pmd_range(pud, pmd, start, start + PMD_SIZE);
 | |
| 
 | |
| 		start += PMD_SIZE;
 | |
| 		pmd++;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * 4K leftovers?
 | |
| 	 */
 | |
| 	if (start < end)
 | |
| 		return __unmap_pmd_range(pud, pmd, start, end);
 | |
| 
 | |
| 	/*
 | |
| 	 * Try again to free the PMD page if haven't succeeded above.
 | |
| 	 */
 | |
| 	if (!pud_none(*pud))
 | |
| 		if (try_to_free_pmd_page((pmd_t *)pud_page_vaddr(*pud)))
 | |
| 			pud_clear(pud);
 | |
| }
 | |
| 
 | |
| static void unmap_pud_range(pgd_t *pgd, unsigned long start, unsigned long end)
 | |
| {
 | |
| 	pud_t *pud = pud_offset(pgd, start);
 | |
| 
 | |
| 	/*
 | |
| 	 * Not on a GB page boundary?
 | |
| 	 */
 | |
| 	if (start & (PUD_SIZE - 1)) {
 | |
| 		unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
 | |
| 		unsigned long pre_end	= min_t(unsigned long, end, next_page);
 | |
| 
 | |
| 		unmap_pmd_range(pud, start, pre_end);
 | |
| 
 | |
| 		start = pre_end;
 | |
| 		pud++;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Try to unmap in 1G chunks?
 | |
| 	 */
 | |
| 	while (end - start >= PUD_SIZE) {
 | |
| 
 | |
| 		if (pud_large(*pud))
 | |
| 			pud_clear(pud);
 | |
| 		else
 | |
| 			unmap_pmd_range(pud, start, start + PUD_SIZE);
 | |
| 
 | |
| 		start += PUD_SIZE;
 | |
| 		pud++;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * 2M leftovers?
 | |
| 	 */
 | |
| 	if (start < end)
 | |
| 		unmap_pmd_range(pud, start, end);
 | |
| 
 | |
| 	/*
 | |
| 	 * No need to try to free the PUD page because we'll free it in
 | |
| 	 * populate_pgd's error path
 | |
| 	 */
 | |
| }
 | |
| 
 | |
| static void unmap_pgd_range(pgd_t *root, unsigned long addr, unsigned long end)
 | |
| {
 | |
| 	pgd_t *pgd_entry = root + pgd_index(addr);
 | |
| 
 | |
| 	unmap_pud_range(pgd_entry, addr, end);
 | |
| 
 | |
| 	if (try_to_free_pud_page((pud_t *)pgd_page_vaddr(*pgd_entry)))
 | |
| 		pgd_clear(pgd_entry);
 | |
| }
 | |
| 
 | |
| static int alloc_pte_page(pmd_t *pmd)
 | |
| {
 | |
| 	pte_t *pte = (pte_t *)get_zeroed_page(GFP_KERNEL | __GFP_NOTRACK);
 | |
| 	if (!pte)
 | |
| 		return -1;
 | |
| 
 | |
| 	set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int alloc_pmd_page(pud_t *pud)
 | |
| {
 | |
| 	pmd_t *pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL | __GFP_NOTRACK);
 | |
| 	if (!pmd)
 | |
| 		return -1;
 | |
| 
 | |
| 	set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void populate_pte(struct cpa_data *cpa,
 | |
| 			 unsigned long start, unsigned long end,
 | |
| 			 unsigned num_pages, pmd_t *pmd, pgprot_t pgprot)
 | |
| {
 | |
| 	pte_t *pte;
 | |
| 
 | |
| 	pte = pte_offset_kernel(pmd, start);
 | |
| 
 | |
| 	while (num_pages-- && start < end) {
 | |
| 
 | |
| 		/* deal with the NX bit */
 | |
| 		if (!(pgprot_val(pgprot) & _PAGE_NX))
 | |
| 			cpa->pfn &= ~_PAGE_NX;
 | |
| 
 | |
| 		set_pte(pte, pfn_pte(cpa->pfn >> PAGE_SHIFT, pgprot));
 | |
| 
 | |
| 		start	 += PAGE_SIZE;
 | |
| 		cpa->pfn += PAGE_SIZE;
 | |
| 		pte++;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int populate_pmd(struct cpa_data *cpa,
 | |
| 			unsigned long start, unsigned long end,
 | |
| 			unsigned num_pages, pud_t *pud, pgprot_t pgprot)
 | |
| {
 | |
| 	unsigned int cur_pages = 0;
 | |
| 	pmd_t *pmd;
 | |
| 
 | |
| 	/*
 | |
| 	 * Not on a 2M boundary?
 | |
| 	 */
 | |
| 	if (start & (PMD_SIZE - 1)) {
 | |
| 		unsigned long pre_end = start + (num_pages << PAGE_SHIFT);
 | |
| 		unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
 | |
| 
 | |
| 		pre_end   = min_t(unsigned long, pre_end, next_page);
 | |
| 		cur_pages = (pre_end - start) >> PAGE_SHIFT;
 | |
| 		cur_pages = min_t(unsigned int, num_pages, cur_pages);
 | |
| 
 | |
| 		/*
 | |
| 		 * Need a PTE page?
 | |
| 		 */
 | |
| 		pmd = pmd_offset(pud, start);
 | |
| 		if (pmd_none(*pmd))
 | |
| 			if (alloc_pte_page(pmd))
 | |
| 				return -1;
 | |
| 
 | |
| 		populate_pte(cpa, start, pre_end, cur_pages, pmd, pgprot);
 | |
| 
 | |
| 		start = pre_end;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We mapped them all?
 | |
| 	 */
 | |
| 	if (num_pages == cur_pages)
 | |
| 		return cur_pages;
 | |
| 
 | |
| 	while (end - start >= PMD_SIZE) {
 | |
| 
 | |
| 		/*
 | |
| 		 * We cannot use a 1G page so allocate a PMD page if needed.
 | |
| 		 */
 | |
| 		if (pud_none(*pud))
 | |
| 			if (alloc_pmd_page(pud))
 | |
| 				return -1;
 | |
| 
 | |
| 		pmd = pmd_offset(pud, start);
 | |
| 
 | |
| 		set_pmd(pmd, __pmd(cpa->pfn | _PAGE_PSE | massage_pgprot(pgprot)));
 | |
| 
 | |
| 		start	  += PMD_SIZE;
 | |
| 		cpa->pfn  += PMD_SIZE;
 | |
| 		cur_pages += PMD_SIZE >> PAGE_SHIFT;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Map trailing 4K pages.
 | |
| 	 */
 | |
| 	if (start < end) {
 | |
| 		pmd = pmd_offset(pud, start);
 | |
| 		if (pmd_none(*pmd))
 | |
| 			if (alloc_pte_page(pmd))
 | |
| 				return -1;
 | |
| 
 | |
| 		populate_pte(cpa, start, end, num_pages - cur_pages,
 | |
| 			     pmd, pgprot);
 | |
| 	}
 | |
| 	return num_pages;
 | |
| }
 | |
| 
 | |
| static int populate_pud(struct cpa_data *cpa, unsigned long start, pgd_t *pgd,
 | |
| 			pgprot_t pgprot)
 | |
| {
 | |
| 	pud_t *pud;
 | |
| 	unsigned long end;
 | |
| 	int cur_pages = 0;
 | |
| 
 | |
| 	end = start + (cpa->numpages << PAGE_SHIFT);
 | |
| 
 | |
| 	/*
 | |
| 	 * Not on a Gb page boundary? => map everything up to it with
 | |
| 	 * smaller pages.
 | |
| 	 */
 | |
| 	if (start & (PUD_SIZE - 1)) {
 | |
| 		unsigned long pre_end;
 | |
| 		unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
 | |
| 
 | |
| 		pre_end   = min_t(unsigned long, end, next_page);
 | |
| 		cur_pages = (pre_end - start) >> PAGE_SHIFT;
 | |
| 		cur_pages = min_t(int, (int)cpa->numpages, cur_pages);
 | |
| 
 | |
| 		pud = pud_offset(pgd, start);
 | |
| 
 | |
| 		/*
 | |
| 		 * Need a PMD page?
 | |
| 		 */
 | |
| 		if (pud_none(*pud))
 | |
| 			if (alloc_pmd_page(pud))
 | |
| 				return -1;
 | |
| 
 | |
| 		cur_pages = populate_pmd(cpa, start, pre_end, cur_pages,
 | |
| 					 pud, pgprot);
 | |
| 		if (cur_pages < 0)
 | |
| 			return cur_pages;
 | |
| 
 | |
| 		start = pre_end;
 | |
| 	}
 | |
| 
 | |
| 	/* We mapped them all? */
 | |
| 	if (cpa->numpages == cur_pages)
 | |
| 		return cur_pages;
 | |
| 
 | |
| 	pud = pud_offset(pgd, start);
 | |
| 
 | |
| 	/*
 | |
| 	 * Map everything starting from the Gb boundary, possibly with 1G pages
 | |
| 	 */
 | |
| 	while (end - start >= PUD_SIZE) {
 | |
| 		set_pud(pud, __pud(cpa->pfn | _PAGE_PSE | massage_pgprot(pgprot)));
 | |
| 
 | |
| 		start	  += PUD_SIZE;
 | |
| 		cpa->pfn  += PUD_SIZE;
 | |
| 		cur_pages += PUD_SIZE >> PAGE_SHIFT;
 | |
| 		pud++;
 | |
| 	}
 | |
| 
 | |
| 	/* Map trailing leftover */
 | |
| 	if (start < end) {
 | |
| 		int tmp;
 | |
| 
 | |
| 		pud = pud_offset(pgd, start);
 | |
| 		if (pud_none(*pud))
 | |
| 			if (alloc_pmd_page(pud))
 | |
| 				return -1;
 | |
| 
 | |
| 		tmp = populate_pmd(cpa, start, end, cpa->numpages - cur_pages,
 | |
| 				   pud, pgprot);
 | |
| 		if (tmp < 0)
 | |
| 			return cur_pages;
 | |
| 
 | |
| 		cur_pages += tmp;
 | |
| 	}
 | |
| 	return cur_pages;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Restrictions for kernel page table do not necessarily apply when mapping in
 | |
|  * an alternate PGD.
 | |
|  */
 | |
| static int populate_pgd(struct cpa_data *cpa, unsigned long addr)
 | |
| {
 | |
| 	pgprot_t pgprot = __pgprot(_KERNPG_TABLE);
 | |
| 	pud_t *pud = NULL;	/* shut up gcc */
 | |
| 	pgd_t *pgd_entry;
 | |
| 	int ret;
 | |
| 
 | |
| 	pgd_entry = cpa->pgd + pgd_index(addr);
 | |
| 
 | |
| 	/*
 | |
| 	 * Allocate a PUD page and hand it down for mapping.
 | |
| 	 */
 | |
| 	if (pgd_none(*pgd_entry)) {
 | |
| 		pud = (pud_t *)get_zeroed_page(GFP_KERNEL | __GFP_NOTRACK);
 | |
| 		if (!pud)
 | |
| 			return -1;
 | |
| 
 | |
| 		set_pgd(pgd_entry, __pgd(__pa(pud) | _KERNPG_TABLE));
 | |
| 	}
 | |
| 
 | |
| 	pgprot_val(pgprot) &= ~pgprot_val(cpa->mask_clr);
 | |
| 	pgprot_val(pgprot) |=  pgprot_val(cpa->mask_set);
 | |
| 
 | |
| 	ret = populate_pud(cpa, addr, pgd_entry, pgprot);
 | |
| 	if (ret < 0) {
 | |
| 		unmap_pgd_range(cpa->pgd, addr,
 | |
| 				addr + (cpa->numpages << PAGE_SHIFT));
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	cpa->numpages = ret;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int __cpa_process_fault(struct cpa_data *cpa, unsigned long vaddr,
 | |
| 			       int primary)
 | |
| {
 | |
| 	if (cpa->pgd)
 | |
| 		return populate_pgd(cpa, vaddr);
 | |
| 
 | |
| 	/*
 | |
| 	 * Ignore all non primary paths.
 | |
| 	 */
 | |
| 	if (!primary)
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Ignore the NULL PTE for kernel identity mapping, as it is expected
 | |
| 	 * to have holes.
 | |
| 	 * Also set numpages to '1' indicating that we processed cpa req for
 | |
| 	 * one virtual address page and its pfn. TBD: numpages can be set based
 | |
| 	 * on the initial value and the level returned by lookup_address().
 | |
| 	 */
 | |
| 	if (within(vaddr, PAGE_OFFSET,
 | |
| 		   PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))) {
 | |
| 		cpa->numpages = 1;
 | |
| 		cpa->pfn = __pa(vaddr) >> PAGE_SHIFT;
 | |
| 		return 0;
 | |
| 	} else {
 | |
| 		WARN(1, KERN_WARNING "CPA: called for zero pte. "
 | |
| 			"vaddr = %lx cpa->vaddr = %lx\n", vaddr,
 | |
| 			*cpa->vaddr);
 | |
| 
 | |
| 		return -EFAULT;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int __change_page_attr(struct cpa_data *cpa, int primary)
 | |
| {
 | |
| 	unsigned long address;
 | |
| 	int do_split, err;
 | |
| 	unsigned int level;
 | |
| 	pte_t *kpte, old_pte;
 | |
| 
 | |
| 	if (cpa->flags & CPA_PAGES_ARRAY) {
 | |
| 		struct page *page = cpa->pages[cpa->curpage];
 | |
| 		if (unlikely(PageHighMem(page)))
 | |
| 			return 0;
 | |
| 		address = (unsigned long)page_address(page);
 | |
| 	} else if (cpa->flags & CPA_ARRAY)
 | |
| 		address = cpa->vaddr[cpa->curpage];
 | |
| 	else
 | |
| 		address = *cpa->vaddr;
 | |
| repeat:
 | |
| 	kpte = _lookup_address_cpa(cpa, address, &level);
 | |
| 	if (!kpte)
 | |
| 		return __cpa_process_fault(cpa, address, primary);
 | |
| 
 | |
| 	old_pte = *kpte;
 | |
| 	if (!pte_val(old_pte))
 | |
| 		return __cpa_process_fault(cpa, address, primary);
 | |
| 
 | |
| 	if (level == PG_LEVEL_4K) {
 | |
| 		pte_t new_pte;
 | |
| 		pgprot_t new_prot = pte_pgprot(old_pte);
 | |
| 		unsigned long pfn = pte_pfn(old_pte);
 | |
| 
 | |
| 		pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
 | |
| 		pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
 | |
| 
 | |
| 		new_prot = static_protections(new_prot, address, pfn);
 | |
| 
 | |
| 		/*
 | |
| 		 * Set the GLOBAL flags only if the PRESENT flag is
 | |
| 		 * set otherwise pte_present will return true even on
 | |
| 		 * a non present pte. The canon_pgprot will clear
 | |
| 		 * _PAGE_GLOBAL for the ancient hardware that doesn't
 | |
| 		 * support it.
 | |
| 		 */
 | |
| 		if (pgprot_val(new_prot) & _PAGE_PRESENT)
 | |
| 			pgprot_val(new_prot) |= _PAGE_GLOBAL;
 | |
| 		else
 | |
| 			pgprot_val(new_prot) &= ~_PAGE_GLOBAL;
 | |
| 
 | |
| 		/*
 | |
| 		 * We need to keep the pfn from the existing PTE,
 | |
| 		 * after all we're only going to change it's attributes
 | |
| 		 * not the memory it points to
 | |
| 		 */
 | |
| 		new_pte = pfn_pte(pfn, canon_pgprot(new_prot));
 | |
| 		cpa->pfn = pfn;
 | |
| 		/*
 | |
| 		 * Do we really change anything ?
 | |
| 		 */
 | |
| 		if (pte_val(old_pte) != pte_val(new_pte)) {
 | |
| 			set_pte_atomic(kpte, new_pte);
 | |
| 			cpa->flags |= CPA_FLUSHTLB;
 | |
| 		}
 | |
| 		cpa->numpages = 1;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Check, whether we can keep the large page intact
 | |
| 	 * and just change the pte:
 | |
| 	 */
 | |
| 	do_split = try_preserve_large_page(kpte, address, cpa);
 | |
| 	/*
 | |
| 	 * When the range fits into the existing large page,
 | |
| 	 * return. cp->numpages and cpa->tlbflush have been updated in
 | |
| 	 * try_large_page:
 | |
| 	 */
 | |
| 	if (do_split <= 0)
 | |
| 		return do_split;
 | |
| 
 | |
| 	/*
 | |
| 	 * We have to split the large page:
 | |
| 	 */
 | |
| 	err = split_large_page(cpa, kpte, address);
 | |
| 	if (!err) {
 | |
| 		/*
 | |
| 	 	 * Do a global flush tlb after splitting the large page
 | |
| 	 	 * and before we do the actual change page attribute in the PTE.
 | |
| 	 	 *
 | |
| 	 	 * With out this, we violate the TLB application note, that says
 | |
| 	 	 * "The TLBs may contain both ordinary and large-page
 | |
| 		 *  translations for a 4-KByte range of linear addresses. This
 | |
| 		 *  may occur if software modifies the paging structures so that
 | |
| 		 *  the page size used for the address range changes. If the two
 | |
| 		 *  translations differ with respect to page frame or attributes
 | |
| 		 *  (e.g., permissions), processor behavior is undefined and may
 | |
| 		 *  be implementation-specific."
 | |
| 	 	 *
 | |
| 	 	 * We do this global tlb flush inside the cpa_lock, so that we
 | |
| 		 * don't allow any other cpu, with stale tlb entries change the
 | |
| 		 * page attribute in parallel, that also falls into the
 | |
| 		 * just split large page entry.
 | |
| 	 	 */
 | |
| 		flush_tlb_all();
 | |
| 		goto repeat;
 | |
| 	}
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias);
 | |
| 
 | |
| static int cpa_process_alias(struct cpa_data *cpa)
 | |
| {
 | |
| 	struct cpa_data alias_cpa;
 | |
| 	unsigned long laddr = (unsigned long)__va(cpa->pfn << PAGE_SHIFT);
 | |
| 	unsigned long vaddr;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!pfn_range_is_mapped(cpa->pfn, cpa->pfn + 1))
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * No need to redo, when the primary call touched the direct
 | |
| 	 * mapping already:
 | |
| 	 */
 | |
| 	if (cpa->flags & CPA_PAGES_ARRAY) {
 | |
| 		struct page *page = cpa->pages[cpa->curpage];
 | |
| 		if (unlikely(PageHighMem(page)))
 | |
| 			return 0;
 | |
| 		vaddr = (unsigned long)page_address(page);
 | |
| 	} else if (cpa->flags & CPA_ARRAY)
 | |
| 		vaddr = cpa->vaddr[cpa->curpage];
 | |
| 	else
 | |
| 		vaddr = *cpa->vaddr;
 | |
| 
 | |
| 	if (!(within(vaddr, PAGE_OFFSET,
 | |
| 		    PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT)))) {
 | |
| 
 | |
| 		alias_cpa = *cpa;
 | |
| 		alias_cpa.vaddr = &laddr;
 | |
| 		alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
 | |
| 
 | |
| 		ret = __change_page_attr_set_clr(&alias_cpa, 0);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 	}
 | |
| 
 | |
| #ifdef CONFIG_X86_64
 | |
| 	/*
 | |
| 	 * If the primary call didn't touch the high mapping already
 | |
| 	 * and the physical address is inside the kernel map, we need
 | |
| 	 * to touch the high mapped kernel as well:
 | |
| 	 */
 | |
| 	if (!within(vaddr, (unsigned long)_text, _brk_end) &&
 | |
| 	    within(cpa->pfn, highmap_start_pfn(), highmap_end_pfn())) {
 | |
| 		unsigned long temp_cpa_vaddr = (cpa->pfn << PAGE_SHIFT) +
 | |
| 					       __START_KERNEL_map - phys_base;
 | |
| 		alias_cpa = *cpa;
 | |
| 		alias_cpa.vaddr = &temp_cpa_vaddr;
 | |
| 		alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
 | |
| 
 | |
| 		/*
 | |
| 		 * The high mapping range is imprecise, so ignore the
 | |
| 		 * return value.
 | |
| 		 */
 | |
| 		__change_page_attr_set_clr(&alias_cpa, 0);
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias)
 | |
| {
 | |
| 	int ret, numpages = cpa->numpages;
 | |
| 
 | |
| 	while (numpages) {
 | |
| 		/*
 | |
| 		 * Store the remaining nr of pages for the large page
 | |
| 		 * preservation check.
 | |
| 		 */
 | |
| 		cpa->numpages = numpages;
 | |
| 		/* for array changes, we can't use large page */
 | |
| 		if (cpa->flags & (CPA_ARRAY | CPA_PAGES_ARRAY))
 | |
| 			cpa->numpages = 1;
 | |
| 
 | |
| 		if (!debug_pagealloc)
 | |
| 			spin_lock(&cpa_lock);
 | |
| 		ret = __change_page_attr(cpa, checkalias);
 | |
| 		if (!debug_pagealloc)
 | |
| 			spin_unlock(&cpa_lock);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 
 | |
| 		if (checkalias) {
 | |
| 			ret = cpa_process_alias(cpa);
 | |
| 			if (ret)
 | |
| 				return ret;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Adjust the number of pages with the result of the
 | |
| 		 * CPA operation. Either a large page has been
 | |
| 		 * preserved or a single page update happened.
 | |
| 		 */
 | |
| 		BUG_ON(cpa->numpages > numpages);
 | |
| 		numpages -= cpa->numpages;
 | |
| 		if (cpa->flags & (CPA_PAGES_ARRAY | CPA_ARRAY))
 | |
| 			cpa->curpage++;
 | |
| 		else
 | |
| 			*cpa->vaddr += cpa->numpages * PAGE_SIZE;
 | |
| 
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline int cache_attr(pgprot_t attr)
 | |
| {
 | |
| 	return pgprot_val(attr) &
 | |
| 		(_PAGE_PAT | _PAGE_PAT_LARGE | _PAGE_PWT | _PAGE_PCD);
 | |
| }
 | |
| 
 | |
| static int change_page_attr_set_clr(unsigned long *addr, int numpages,
 | |
| 				    pgprot_t mask_set, pgprot_t mask_clr,
 | |
| 				    int force_split, int in_flag,
 | |
| 				    struct page **pages)
 | |
| {
 | |
| 	struct cpa_data cpa;
 | |
| 	int ret, cache, checkalias;
 | |
| 	unsigned long baddr = 0;
 | |
| 
 | |
| 	memset(&cpa, 0, sizeof(cpa));
 | |
| 
 | |
| 	/*
 | |
| 	 * Check, if we are requested to change a not supported
 | |
| 	 * feature:
 | |
| 	 */
 | |
| 	mask_set = canon_pgprot(mask_set);
 | |
| 	mask_clr = canon_pgprot(mask_clr);
 | |
| 	if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* Ensure we are PAGE_SIZE aligned */
 | |
| 	if (in_flag & CPA_ARRAY) {
 | |
| 		int i;
 | |
| 		for (i = 0; i < numpages; i++) {
 | |
| 			if (addr[i] & ~PAGE_MASK) {
 | |
| 				addr[i] &= PAGE_MASK;
 | |
| 				WARN_ON_ONCE(1);
 | |
| 			}
 | |
| 		}
 | |
| 	} else if (!(in_flag & CPA_PAGES_ARRAY)) {
 | |
| 		/*
 | |
| 		 * in_flag of CPA_PAGES_ARRAY implies it is aligned.
 | |
| 		 * No need to cehck in that case
 | |
| 		 */
 | |
| 		if (*addr & ~PAGE_MASK) {
 | |
| 			*addr &= PAGE_MASK;
 | |
| 			/*
 | |
| 			 * People should not be passing in unaligned addresses:
 | |
| 			 */
 | |
| 			WARN_ON_ONCE(1);
 | |
| 		}
 | |
| 		/*
 | |
| 		 * Save address for cache flush. *addr is modified in the call
 | |
| 		 * to __change_page_attr_set_clr() below.
 | |
| 		 */
 | |
| 		baddr = *addr;
 | |
| 	}
 | |
| 
 | |
| 	/* Must avoid aliasing mappings in the highmem code */
 | |
| 	kmap_flush_unused();
 | |
| 
 | |
| 	vm_unmap_aliases();
 | |
| 
 | |
| 	cpa.vaddr = addr;
 | |
| 	cpa.pages = pages;
 | |
| 	cpa.numpages = numpages;
 | |
| 	cpa.mask_set = mask_set;
 | |
| 	cpa.mask_clr = mask_clr;
 | |
| 	cpa.flags = 0;
 | |
| 	cpa.curpage = 0;
 | |
| 	cpa.force_split = force_split;
 | |
| 
 | |
| 	if (in_flag & (CPA_ARRAY | CPA_PAGES_ARRAY))
 | |
| 		cpa.flags |= in_flag;
 | |
| 
 | |
| 	/* No alias checking for _NX bit modifications */
 | |
| 	checkalias = (pgprot_val(mask_set) | pgprot_val(mask_clr)) != _PAGE_NX;
 | |
| 
 | |
| 	ret = __change_page_attr_set_clr(&cpa, checkalias);
 | |
| 
 | |
| 	/*
 | |
| 	 * Check whether we really changed something:
 | |
| 	 */
 | |
| 	if (!(cpa.flags & CPA_FLUSHTLB))
 | |
| 		goto out;
 | |
| 
 | |
| 	/*
 | |
| 	 * No need to flush, when we did not set any of the caching
 | |
| 	 * attributes:
 | |
| 	 */
 | |
| 	cache = cache_attr(mask_set);
 | |
| 
 | |
| 	/*
 | |
| 	 * On success we use CLFLUSH, when the CPU supports it to
 | |
| 	 * avoid the WBINVD. If the CPU does not support it and in the
 | |
| 	 * error case we fall back to cpa_flush_all (which uses
 | |
| 	 * WBINVD):
 | |
| 	 */
 | |
| 	if (!ret && cpu_has_clflush) {
 | |
| 		if (cpa.flags & (CPA_PAGES_ARRAY | CPA_ARRAY)) {
 | |
| 			cpa_flush_array(addr, numpages, cache,
 | |
| 					cpa.flags, pages);
 | |
| 		} else
 | |
| 			cpa_flush_range(baddr, numpages, cache);
 | |
| 	} else
 | |
| 		cpa_flush_all(cache);
 | |
| 
 | |
| out:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static inline int change_page_attr_set(unsigned long *addr, int numpages,
 | |
| 				       pgprot_t mask, int array)
 | |
| {
 | |
| 	return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0,
 | |
| 		(array ? CPA_ARRAY : 0), NULL);
 | |
| }
 | |
| 
 | |
| static inline int change_page_attr_clear(unsigned long *addr, int numpages,
 | |
| 					 pgprot_t mask, int array)
 | |
| {
 | |
| 	return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0,
 | |
| 		(array ? CPA_ARRAY : 0), NULL);
 | |
| }
 | |
| 
 | |
| static inline int cpa_set_pages_array(struct page **pages, int numpages,
 | |
| 				       pgprot_t mask)
 | |
| {
 | |
| 	return change_page_attr_set_clr(NULL, numpages, mask, __pgprot(0), 0,
 | |
| 		CPA_PAGES_ARRAY, pages);
 | |
| }
 | |
| 
 | |
| static inline int cpa_clear_pages_array(struct page **pages, int numpages,
 | |
| 					 pgprot_t mask)
 | |
| {
 | |
| 	return change_page_attr_set_clr(NULL, numpages, __pgprot(0), mask, 0,
 | |
| 		CPA_PAGES_ARRAY, pages);
 | |
| }
 | |
| 
 | |
| int _set_memory_uc(unsigned long addr, int numpages)
 | |
| {
 | |
| 	/*
 | |
| 	 * for now UC MINUS. see comments in ioremap_nocache()
 | |
| 	 */
 | |
| 	return change_page_attr_set(&addr, numpages,
 | |
| 				    __pgprot(_PAGE_CACHE_UC_MINUS), 0);
 | |
| }
 | |
| 
 | |
| int set_memory_uc(unsigned long addr, int numpages)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * for now UC MINUS. see comments in ioremap_nocache()
 | |
| 	 */
 | |
| 	ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
 | |
| 			    _PAGE_CACHE_UC_MINUS, NULL);
 | |
| 	if (ret)
 | |
| 		goto out_err;
 | |
| 
 | |
| 	ret = _set_memory_uc(addr, numpages);
 | |
| 	if (ret)
 | |
| 		goto out_free;
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| out_free:
 | |
| 	free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
 | |
| out_err:
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL(set_memory_uc);
 | |
| 
 | |
| static int _set_memory_array(unsigned long *addr, int addrinarray,
 | |
| 		unsigned long new_type)
 | |
| {
 | |
| 	int i, j;
 | |
| 	int ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * for now UC MINUS. see comments in ioremap_nocache()
 | |
| 	 */
 | |
| 	for (i = 0; i < addrinarray; i++) {
 | |
| 		ret = reserve_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE,
 | |
| 					new_type, NULL);
 | |
| 		if (ret)
 | |
| 			goto out_free;
 | |
| 	}
 | |
| 
 | |
| 	ret = change_page_attr_set(addr, addrinarray,
 | |
| 				    __pgprot(_PAGE_CACHE_UC_MINUS), 1);
 | |
| 
 | |
| 	if (!ret && new_type == _PAGE_CACHE_WC)
 | |
| 		ret = change_page_attr_set_clr(addr, addrinarray,
 | |
| 					       __pgprot(_PAGE_CACHE_WC),
 | |
| 					       __pgprot(_PAGE_CACHE_MASK),
 | |
| 					       0, CPA_ARRAY, NULL);
 | |
| 	if (ret)
 | |
| 		goto out_free;
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| out_free:
 | |
| 	for (j = 0; j < i; j++)
 | |
| 		free_memtype(__pa(addr[j]), __pa(addr[j]) + PAGE_SIZE);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int set_memory_array_uc(unsigned long *addr, int addrinarray)
 | |
| {
 | |
| 	return _set_memory_array(addr, addrinarray, _PAGE_CACHE_UC_MINUS);
 | |
| }
 | |
| EXPORT_SYMBOL(set_memory_array_uc);
 | |
| 
 | |
| int set_memory_array_wc(unsigned long *addr, int addrinarray)
 | |
| {
 | |
| 	return _set_memory_array(addr, addrinarray, _PAGE_CACHE_WC);
 | |
| }
 | |
| EXPORT_SYMBOL(set_memory_array_wc);
 | |
| 
 | |
| int _set_memory_wc(unsigned long addr, int numpages)
 | |
| {
 | |
| 	int ret;
 | |
| 	unsigned long addr_copy = addr;
 | |
| 
 | |
| 	ret = change_page_attr_set(&addr, numpages,
 | |
| 				    __pgprot(_PAGE_CACHE_UC_MINUS), 0);
 | |
| 	if (!ret) {
 | |
| 		ret = change_page_attr_set_clr(&addr_copy, numpages,
 | |
| 					       __pgprot(_PAGE_CACHE_WC),
 | |
| 					       __pgprot(_PAGE_CACHE_MASK),
 | |
| 					       0, 0, NULL);
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int set_memory_wc(unsigned long addr, int numpages)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!pat_enabled)
 | |
| 		return set_memory_uc(addr, numpages);
 | |
| 
 | |
| 	ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
 | |
| 		_PAGE_CACHE_WC, NULL);
 | |
| 	if (ret)
 | |
| 		goto out_err;
 | |
| 
 | |
| 	ret = _set_memory_wc(addr, numpages);
 | |
| 	if (ret)
 | |
| 		goto out_free;
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| out_free:
 | |
| 	free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
 | |
| out_err:
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL(set_memory_wc);
 | |
| 
 | |
| int _set_memory_wb(unsigned long addr, int numpages)
 | |
| {
 | |
| 	return change_page_attr_clear(&addr, numpages,
 | |
| 				      __pgprot(_PAGE_CACHE_MASK), 0);
 | |
| }
 | |
| 
 | |
| int set_memory_wb(unsigned long addr, int numpages)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = _set_memory_wb(addr, numpages);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL(set_memory_wb);
 | |
| 
 | |
| int set_memory_array_wb(unsigned long *addr, int addrinarray)
 | |
| {
 | |
| 	int i;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = change_page_attr_clear(addr, addrinarray,
 | |
| 				      __pgprot(_PAGE_CACHE_MASK), 1);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	for (i = 0; i < addrinarray; i++)
 | |
| 		free_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL(set_memory_array_wb);
 | |
| 
 | |
| int set_memory_x(unsigned long addr, int numpages)
 | |
| {
 | |
| 	if (!(__supported_pte_mask & _PAGE_NX))
 | |
| 		return 0;
 | |
| 
 | |
| 	return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_NX), 0);
 | |
| }
 | |
| EXPORT_SYMBOL(set_memory_x);
 | |
| 
 | |
| int set_memory_nx(unsigned long addr, int numpages)
 | |
| {
 | |
| 	if (!(__supported_pte_mask & _PAGE_NX))
 | |
| 		return 0;
 | |
| 
 | |
| 	return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_NX), 0);
 | |
| }
 | |
| EXPORT_SYMBOL(set_memory_nx);
 | |
| 
 | |
| int set_memory_ro(unsigned long addr, int numpages)
 | |
| {
 | |
| 	return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_RW), 0);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(set_memory_ro);
 | |
| 
 | |
| int set_memory_rw(unsigned long addr, int numpages)
 | |
| {
 | |
| 	return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_RW), 0);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(set_memory_rw);
 | |
| 
 | |
| int set_memory_np(unsigned long addr, int numpages)
 | |
| {
 | |
| 	return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_PRESENT), 0);
 | |
| }
 | |
| 
 | |
| int set_memory_4k(unsigned long addr, int numpages)
 | |
| {
 | |
| 	return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
 | |
| 					__pgprot(0), 1, 0, NULL);
 | |
| }
 | |
| 
 | |
| int set_pages_uc(struct page *page, int numpages)
 | |
| {
 | |
| 	unsigned long addr = (unsigned long)page_address(page);
 | |
| 
 | |
| 	return set_memory_uc(addr, numpages);
 | |
| }
 | |
| EXPORT_SYMBOL(set_pages_uc);
 | |
| 
 | |
| static int _set_pages_array(struct page **pages, int addrinarray,
 | |
| 		unsigned long new_type)
 | |
| {
 | |
| 	unsigned long start;
 | |
| 	unsigned long end;
 | |
| 	int i;
 | |
| 	int free_idx;
 | |
| 	int ret;
 | |
| 
 | |
| 	for (i = 0; i < addrinarray; i++) {
 | |
| 		if (PageHighMem(pages[i]))
 | |
| 			continue;
 | |
| 		start = page_to_pfn(pages[i]) << PAGE_SHIFT;
 | |
| 		end = start + PAGE_SIZE;
 | |
| 		if (reserve_memtype(start, end, new_type, NULL))
 | |
| 			goto err_out;
 | |
| 	}
 | |
| 
 | |
| 	ret = cpa_set_pages_array(pages, addrinarray,
 | |
| 			__pgprot(_PAGE_CACHE_UC_MINUS));
 | |
| 	if (!ret && new_type == _PAGE_CACHE_WC)
 | |
| 		ret = change_page_attr_set_clr(NULL, addrinarray,
 | |
| 					       __pgprot(_PAGE_CACHE_WC),
 | |
| 					       __pgprot(_PAGE_CACHE_MASK),
 | |
| 					       0, CPA_PAGES_ARRAY, pages);
 | |
| 	if (ret)
 | |
| 		goto err_out;
 | |
| 	return 0; /* Success */
 | |
| err_out:
 | |
| 	free_idx = i;
 | |
| 	for (i = 0; i < free_idx; i++) {
 | |
| 		if (PageHighMem(pages[i]))
 | |
| 			continue;
 | |
| 		start = page_to_pfn(pages[i]) << PAGE_SHIFT;
 | |
| 		end = start + PAGE_SIZE;
 | |
| 		free_memtype(start, end);
 | |
| 	}
 | |
| 	return -EINVAL;
 | |
| }
 | |
| 
 | |
| int set_pages_array_uc(struct page **pages, int addrinarray)
 | |
| {
 | |
| 	return _set_pages_array(pages, addrinarray, _PAGE_CACHE_UC_MINUS);
 | |
| }
 | |
| EXPORT_SYMBOL(set_pages_array_uc);
 | |
| 
 | |
| int set_pages_array_wc(struct page **pages, int addrinarray)
 | |
| {
 | |
| 	return _set_pages_array(pages, addrinarray, _PAGE_CACHE_WC);
 | |
| }
 | |
| EXPORT_SYMBOL(set_pages_array_wc);
 | |
| 
 | |
| int set_pages_wb(struct page *page, int numpages)
 | |
| {
 | |
| 	unsigned long addr = (unsigned long)page_address(page);
 | |
| 
 | |
| 	return set_memory_wb(addr, numpages);
 | |
| }
 | |
| EXPORT_SYMBOL(set_pages_wb);
 | |
| 
 | |
| int set_pages_array_wb(struct page **pages, int addrinarray)
 | |
| {
 | |
| 	int retval;
 | |
| 	unsigned long start;
 | |
| 	unsigned long end;
 | |
| 	int i;
 | |
| 
 | |
| 	retval = cpa_clear_pages_array(pages, addrinarray,
 | |
| 			__pgprot(_PAGE_CACHE_MASK));
 | |
| 	if (retval)
 | |
| 		return retval;
 | |
| 
 | |
| 	for (i = 0; i < addrinarray; i++) {
 | |
| 		if (PageHighMem(pages[i]))
 | |
| 			continue;
 | |
| 		start = page_to_pfn(pages[i]) << PAGE_SHIFT;
 | |
| 		end = start + PAGE_SIZE;
 | |
| 		free_memtype(start, end);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL(set_pages_array_wb);
 | |
| 
 | |
| int set_pages_x(struct page *page, int numpages)
 | |
| {
 | |
| 	unsigned long addr = (unsigned long)page_address(page);
 | |
| 
 | |
| 	return set_memory_x(addr, numpages);
 | |
| }
 | |
| EXPORT_SYMBOL(set_pages_x);
 | |
| 
 | |
| int set_pages_nx(struct page *page, int numpages)
 | |
| {
 | |
| 	unsigned long addr = (unsigned long)page_address(page);
 | |
| 
 | |
| 	return set_memory_nx(addr, numpages);
 | |
| }
 | |
| EXPORT_SYMBOL(set_pages_nx);
 | |
| 
 | |
| int set_pages_ro(struct page *page, int numpages)
 | |
| {
 | |
| 	unsigned long addr = (unsigned long)page_address(page);
 | |
| 
 | |
| 	return set_memory_ro(addr, numpages);
 | |
| }
 | |
| 
 | |
| int set_pages_rw(struct page *page, int numpages)
 | |
| {
 | |
| 	unsigned long addr = (unsigned long)page_address(page);
 | |
| 
 | |
| 	return set_memory_rw(addr, numpages);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_DEBUG_PAGEALLOC
 | |
| 
 | |
| static int __set_pages_p(struct page *page, int numpages)
 | |
| {
 | |
| 	unsigned long tempaddr = (unsigned long) page_address(page);
 | |
| 	struct cpa_data cpa = { .vaddr = &tempaddr,
 | |
| 				.pgd = NULL,
 | |
| 				.numpages = numpages,
 | |
| 				.mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW),
 | |
| 				.mask_clr = __pgprot(0),
 | |
| 				.flags = 0};
 | |
| 
 | |
| 	/*
 | |
| 	 * No alias checking needed for setting present flag. otherwise,
 | |
| 	 * we may need to break large pages for 64-bit kernel text
 | |
| 	 * mappings (this adds to complexity if we want to do this from
 | |
| 	 * atomic context especially). Let's keep it simple!
 | |
| 	 */
 | |
| 	return __change_page_attr_set_clr(&cpa, 0);
 | |
| }
 | |
| 
 | |
| static int __set_pages_np(struct page *page, int numpages)
 | |
| {
 | |
| 	unsigned long tempaddr = (unsigned long) page_address(page);
 | |
| 	struct cpa_data cpa = { .vaddr = &tempaddr,
 | |
| 				.pgd = NULL,
 | |
| 				.numpages = numpages,
 | |
| 				.mask_set = __pgprot(0),
 | |
| 				.mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW),
 | |
| 				.flags = 0};
 | |
| 
 | |
| 	/*
 | |
| 	 * No alias checking needed for setting not present flag. otherwise,
 | |
| 	 * we may need to break large pages for 64-bit kernel text
 | |
| 	 * mappings (this adds to complexity if we want to do this from
 | |
| 	 * atomic context especially). Let's keep it simple!
 | |
| 	 */
 | |
| 	return __change_page_attr_set_clr(&cpa, 0);
 | |
| }
 | |
| 
 | |
| void kernel_map_pages(struct page *page, int numpages, int enable)
 | |
| {
 | |
| 	if (PageHighMem(page))
 | |
| 		return;
 | |
| 	if (!enable) {
 | |
| 		debug_check_no_locks_freed(page_address(page),
 | |
| 					   numpages * PAGE_SIZE);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * The return value is ignored as the calls cannot fail.
 | |
| 	 * Large pages for identity mappings are not used at boot time
 | |
| 	 * and hence no memory allocations during large page split.
 | |
| 	 */
 | |
| 	if (enable)
 | |
| 		__set_pages_p(page, numpages);
 | |
| 	else
 | |
| 		__set_pages_np(page, numpages);
 | |
| 
 | |
| 	/*
 | |
| 	 * We should perform an IPI and flush all tlbs,
 | |
| 	 * but that can deadlock->flush only current cpu:
 | |
| 	 */
 | |
| 	__flush_tlb_all();
 | |
| 
 | |
| 	arch_flush_lazy_mmu_mode();
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_HIBERNATION
 | |
| 
 | |
| bool kernel_page_present(struct page *page)
 | |
| {
 | |
| 	unsigned int level;
 | |
| 	pte_t *pte;
 | |
| 
 | |
| 	if (PageHighMem(page))
 | |
| 		return false;
 | |
| 
 | |
| 	pte = lookup_address((unsigned long)page_address(page), &level);
 | |
| 	return (pte_val(*pte) & _PAGE_PRESENT);
 | |
| }
 | |
| 
 | |
| #endif /* CONFIG_HIBERNATION */
 | |
| 
 | |
| #endif /* CONFIG_DEBUG_PAGEALLOC */
 | |
| 
 | |
| int kernel_map_pages_in_pgd(pgd_t *pgd, u64 pfn, unsigned long address,
 | |
| 			    unsigned numpages, unsigned long page_flags)
 | |
| {
 | |
| 	int retval = -EINVAL;
 | |
| 
 | |
| 	struct cpa_data cpa = {
 | |
| 		.vaddr = &address,
 | |
| 		.pfn = pfn,
 | |
| 		.pgd = pgd,
 | |
| 		.numpages = numpages,
 | |
| 		.mask_set = __pgprot(0),
 | |
| 		.mask_clr = __pgprot(0),
 | |
| 		.flags = 0,
 | |
| 	};
 | |
| 
 | |
| 	if (!(__supported_pte_mask & _PAGE_NX))
 | |
| 		goto out;
 | |
| 
 | |
| 	if (!(page_flags & _PAGE_NX))
 | |
| 		cpa.mask_clr = __pgprot(_PAGE_NX);
 | |
| 
 | |
| 	cpa.mask_set = __pgprot(_PAGE_PRESENT | page_flags);
 | |
| 
 | |
| 	retval = __change_page_attr_set_clr(&cpa, 0);
 | |
| 	__flush_tlb_all();
 | |
| 
 | |
| out:
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| void kernel_unmap_pages_in_pgd(pgd_t *root, unsigned long address,
 | |
| 			       unsigned numpages)
 | |
| {
 | |
| 	unmap_pgd_range(root, address, address + (numpages << PAGE_SHIFT));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The testcases use internal knowledge of the implementation that shouldn't
 | |
|  * be exposed to the rest of the kernel. Include these directly here.
 | |
|  */
 | |
| #ifdef CONFIG_CPA_DEBUG
 | |
| #include "pageattr-test.c"
 | |
| #endif
 |