 4b9ea4626b
			
		
	
	
	4b9ea4626b
	
	
	
		
			
			This patch updates Copyright year to 2013 v2: Changed Copyright year on Makefile Signed-off-by: Akeem G. Abodunrin <akeem.g.abodunrin@intel.com> Tested-by: Aaron Brown <aaron.f.brown@intel.com> Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
		
			
				
	
	
		
			7739 lines
		
	
	
	
		
			206 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			7739 lines
		
	
	
	
		
			206 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*******************************************************************************
 | |
| 
 | |
|   Intel(R) Gigabit Ethernet Linux driver
 | |
|   Copyright(c) 2007-2013 Intel Corporation.
 | |
| 
 | |
|   This program is free software; you can redistribute it and/or modify it
 | |
|   under the terms and conditions of the GNU General Public License,
 | |
|   version 2, as published by the Free Software Foundation.
 | |
| 
 | |
|   This program is distributed in the hope it will be useful, but WITHOUT
 | |
|   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 | |
|   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 | |
|   more details.
 | |
| 
 | |
|   You should have received a copy of the GNU General Public License along with
 | |
|   this program; if not, write to the Free Software Foundation, Inc.,
 | |
|   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
 | |
| 
 | |
|   The full GNU General Public License is included in this distribution in
 | |
|   the file called "COPYING".
 | |
| 
 | |
|   Contact Information:
 | |
|   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
 | |
|   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
 | |
| 
 | |
| *******************************************************************************/
 | |
| 
 | |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 | |
| 
 | |
| #include <linux/module.h>
 | |
| #include <linux/types.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/bitops.h>
 | |
| #include <linux/vmalloc.h>
 | |
| #include <linux/pagemap.h>
 | |
| #include <linux/netdevice.h>
 | |
| #include <linux/ipv6.h>
 | |
| #include <linux/slab.h>
 | |
| #include <net/checksum.h>
 | |
| #include <net/ip6_checksum.h>
 | |
| #include <linux/net_tstamp.h>
 | |
| #include <linux/mii.h>
 | |
| #include <linux/ethtool.h>
 | |
| #include <linux/if.h>
 | |
| #include <linux/if_vlan.h>
 | |
| #include <linux/pci.h>
 | |
| #include <linux/pci-aspm.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/ip.h>
 | |
| #include <linux/tcp.h>
 | |
| #include <linux/sctp.h>
 | |
| #include <linux/if_ether.h>
 | |
| #include <linux/aer.h>
 | |
| #include <linux/prefetch.h>
 | |
| #include <linux/pm_runtime.h>
 | |
| #ifdef CONFIG_IGB_DCA
 | |
| #include <linux/dca.h>
 | |
| #endif
 | |
| #include <linux/i2c.h>
 | |
| #include "igb.h"
 | |
| 
 | |
| #define MAJ 4
 | |
| #define MIN 1
 | |
| #define BUILD 2
 | |
| #define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
 | |
| __stringify(BUILD) "-k"
 | |
| char igb_driver_name[] = "igb";
 | |
| char igb_driver_version[] = DRV_VERSION;
 | |
| static const char igb_driver_string[] =
 | |
| 				"Intel(R) Gigabit Ethernet Network Driver";
 | |
| static const char igb_copyright[] =
 | |
| 				"Copyright (c) 2007-2013 Intel Corporation.";
 | |
| 
 | |
| static const struct e1000_info *igb_info_tbl[] = {
 | |
| 	[board_82575] = &e1000_82575_info,
 | |
| };
 | |
| 
 | |
| static DEFINE_PCI_DEVICE_TABLE(igb_pci_tbl) = {
 | |
| 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
 | |
| 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
 | |
| 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
 | |
| 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
 | |
| 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
 | |
| 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
 | |
| 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
 | |
| 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
 | |
| 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
 | |
| 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
 | |
| 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
 | |
| 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
 | |
| 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
 | |
| 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
 | |
| 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
 | |
| 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
 | |
| 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
 | |
| 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
 | |
| 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
 | |
| 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
 | |
| 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
 | |
| 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
 | |
| 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
 | |
| 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
 | |
| 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
 | |
| 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
 | |
| 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
 | |
| 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
 | |
| 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
 | |
| 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
 | |
| 	/* required last entry */
 | |
| 	{0, }
 | |
| };
 | |
| 
 | |
| MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
 | |
| 
 | |
| void igb_reset(struct igb_adapter *);
 | |
| static int igb_setup_all_tx_resources(struct igb_adapter *);
 | |
| static int igb_setup_all_rx_resources(struct igb_adapter *);
 | |
| static void igb_free_all_tx_resources(struct igb_adapter *);
 | |
| static void igb_free_all_rx_resources(struct igb_adapter *);
 | |
| static void igb_setup_mrqc(struct igb_adapter *);
 | |
| static int igb_probe(struct pci_dev *, const struct pci_device_id *);
 | |
| static void igb_remove(struct pci_dev *pdev);
 | |
| static int igb_sw_init(struct igb_adapter *);
 | |
| static int igb_open(struct net_device *);
 | |
| static int igb_close(struct net_device *);
 | |
| static void igb_configure(struct igb_adapter *);
 | |
| static void igb_configure_tx(struct igb_adapter *);
 | |
| static void igb_configure_rx(struct igb_adapter *);
 | |
| static void igb_clean_all_tx_rings(struct igb_adapter *);
 | |
| static void igb_clean_all_rx_rings(struct igb_adapter *);
 | |
| static void igb_clean_tx_ring(struct igb_ring *);
 | |
| static void igb_clean_rx_ring(struct igb_ring *);
 | |
| static void igb_set_rx_mode(struct net_device *);
 | |
| static void igb_update_phy_info(unsigned long);
 | |
| static void igb_watchdog(unsigned long);
 | |
| static void igb_watchdog_task(struct work_struct *);
 | |
| static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
 | |
| static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
 | |
| 						 struct rtnl_link_stats64 *stats);
 | |
| static int igb_change_mtu(struct net_device *, int);
 | |
| static int igb_set_mac(struct net_device *, void *);
 | |
| static void igb_set_uta(struct igb_adapter *adapter);
 | |
| static irqreturn_t igb_intr(int irq, void *);
 | |
| static irqreturn_t igb_intr_msi(int irq, void *);
 | |
| static irqreturn_t igb_msix_other(int irq, void *);
 | |
| static irqreturn_t igb_msix_ring(int irq, void *);
 | |
| #ifdef CONFIG_IGB_DCA
 | |
| static void igb_update_dca(struct igb_q_vector *);
 | |
| static void igb_setup_dca(struct igb_adapter *);
 | |
| #endif /* CONFIG_IGB_DCA */
 | |
| static int igb_poll(struct napi_struct *, int);
 | |
| static bool igb_clean_tx_irq(struct igb_q_vector *);
 | |
| static bool igb_clean_rx_irq(struct igb_q_vector *, int);
 | |
| static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
 | |
| static void igb_tx_timeout(struct net_device *);
 | |
| static void igb_reset_task(struct work_struct *);
 | |
| static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features);
 | |
| static int igb_vlan_rx_add_vid(struct net_device *, u16);
 | |
| static int igb_vlan_rx_kill_vid(struct net_device *, u16);
 | |
| static void igb_restore_vlan(struct igb_adapter *);
 | |
| static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
 | |
| static void igb_ping_all_vfs(struct igb_adapter *);
 | |
| static void igb_msg_task(struct igb_adapter *);
 | |
| static void igb_vmm_control(struct igb_adapter *);
 | |
| static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
 | |
| static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
 | |
| static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
 | |
| static int igb_ndo_set_vf_vlan(struct net_device *netdev,
 | |
| 			       int vf, u16 vlan, u8 qos);
 | |
| static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate);
 | |
| static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
 | |
| 				 struct ifla_vf_info *ivi);
 | |
| static void igb_check_vf_rate_limit(struct igb_adapter *);
 | |
| 
 | |
| #ifdef CONFIG_PCI_IOV
 | |
| static int igb_vf_configure(struct igb_adapter *adapter, int vf);
 | |
| static bool igb_vfs_are_assigned(struct igb_adapter *adapter);
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_PM
 | |
| #ifdef CONFIG_PM_SLEEP
 | |
| static int igb_suspend(struct device *);
 | |
| #endif
 | |
| static int igb_resume(struct device *);
 | |
| #ifdef CONFIG_PM_RUNTIME
 | |
| static int igb_runtime_suspend(struct device *dev);
 | |
| static int igb_runtime_resume(struct device *dev);
 | |
| static int igb_runtime_idle(struct device *dev);
 | |
| #endif
 | |
| static const struct dev_pm_ops igb_pm_ops = {
 | |
| 	SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
 | |
| 	SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
 | |
| 			igb_runtime_idle)
 | |
| };
 | |
| #endif
 | |
| static void igb_shutdown(struct pci_dev *);
 | |
| static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
 | |
| #ifdef CONFIG_IGB_DCA
 | |
| static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
 | |
| static struct notifier_block dca_notifier = {
 | |
| 	.notifier_call	= igb_notify_dca,
 | |
| 	.next		= NULL,
 | |
| 	.priority	= 0
 | |
| };
 | |
| #endif
 | |
| #ifdef CONFIG_NET_POLL_CONTROLLER
 | |
| /* for netdump / net console */
 | |
| static void igb_netpoll(struct net_device *);
 | |
| #endif
 | |
| #ifdef CONFIG_PCI_IOV
 | |
| static unsigned int max_vfs = 0;
 | |
| module_param(max_vfs, uint, 0);
 | |
| MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
 | |
|                  "per physical function");
 | |
| #endif /* CONFIG_PCI_IOV */
 | |
| 
 | |
| static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
 | |
| 		     pci_channel_state_t);
 | |
| static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
 | |
| static void igb_io_resume(struct pci_dev *);
 | |
| 
 | |
| static const struct pci_error_handlers igb_err_handler = {
 | |
| 	.error_detected = igb_io_error_detected,
 | |
| 	.slot_reset = igb_io_slot_reset,
 | |
| 	.resume = igb_io_resume,
 | |
| };
 | |
| 
 | |
| static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
 | |
| 
 | |
| static struct pci_driver igb_driver = {
 | |
| 	.name     = igb_driver_name,
 | |
| 	.id_table = igb_pci_tbl,
 | |
| 	.probe    = igb_probe,
 | |
| 	.remove   = igb_remove,
 | |
| #ifdef CONFIG_PM
 | |
| 	.driver.pm = &igb_pm_ops,
 | |
| #endif
 | |
| 	.shutdown = igb_shutdown,
 | |
| 	.sriov_configure = igb_pci_sriov_configure,
 | |
| 	.err_handler = &igb_err_handler
 | |
| };
 | |
| 
 | |
| MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
 | |
| MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
 | |
| MODULE_LICENSE("GPL");
 | |
| MODULE_VERSION(DRV_VERSION);
 | |
| 
 | |
| #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
 | |
| static int debug = -1;
 | |
| module_param(debug, int, 0);
 | |
| MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
 | |
| 
 | |
| struct igb_reg_info {
 | |
| 	u32 ofs;
 | |
| 	char *name;
 | |
| };
 | |
| 
 | |
| static const struct igb_reg_info igb_reg_info_tbl[] = {
 | |
| 
 | |
| 	/* General Registers */
 | |
| 	{E1000_CTRL, "CTRL"},
 | |
| 	{E1000_STATUS, "STATUS"},
 | |
| 	{E1000_CTRL_EXT, "CTRL_EXT"},
 | |
| 
 | |
| 	/* Interrupt Registers */
 | |
| 	{E1000_ICR, "ICR"},
 | |
| 
 | |
| 	/* RX Registers */
 | |
| 	{E1000_RCTL, "RCTL"},
 | |
| 	{E1000_RDLEN(0), "RDLEN"},
 | |
| 	{E1000_RDH(0), "RDH"},
 | |
| 	{E1000_RDT(0), "RDT"},
 | |
| 	{E1000_RXDCTL(0), "RXDCTL"},
 | |
| 	{E1000_RDBAL(0), "RDBAL"},
 | |
| 	{E1000_RDBAH(0), "RDBAH"},
 | |
| 
 | |
| 	/* TX Registers */
 | |
| 	{E1000_TCTL, "TCTL"},
 | |
| 	{E1000_TDBAL(0), "TDBAL"},
 | |
| 	{E1000_TDBAH(0), "TDBAH"},
 | |
| 	{E1000_TDLEN(0), "TDLEN"},
 | |
| 	{E1000_TDH(0), "TDH"},
 | |
| 	{E1000_TDT(0), "TDT"},
 | |
| 	{E1000_TXDCTL(0), "TXDCTL"},
 | |
| 	{E1000_TDFH, "TDFH"},
 | |
| 	{E1000_TDFT, "TDFT"},
 | |
| 	{E1000_TDFHS, "TDFHS"},
 | |
| 	{E1000_TDFPC, "TDFPC"},
 | |
| 
 | |
| 	/* List Terminator */
 | |
| 	{}
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * igb_regdump - register printout routine
 | |
|  */
 | |
| static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
 | |
| {
 | |
| 	int n = 0;
 | |
| 	char rname[16];
 | |
| 	u32 regs[8];
 | |
| 
 | |
| 	switch (reginfo->ofs) {
 | |
| 	case E1000_RDLEN(0):
 | |
| 		for (n = 0; n < 4; n++)
 | |
| 			regs[n] = rd32(E1000_RDLEN(n));
 | |
| 		break;
 | |
| 	case E1000_RDH(0):
 | |
| 		for (n = 0; n < 4; n++)
 | |
| 			regs[n] = rd32(E1000_RDH(n));
 | |
| 		break;
 | |
| 	case E1000_RDT(0):
 | |
| 		for (n = 0; n < 4; n++)
 | |
| 			regs[n] = rd32(E1000_RDT(n));
 | |
| 		break;
 | |
| 	case E1000_RXDCTL(0):
 | |
| 		for (n = 0; n < 4; n++)
 | |
| 			regs[n] = rd32(E1000_RXDCTL(n));
 | |
| 		break;
 | |
| 	case E1000_RDBAL(0):
 | |
| 		for (n = 0; n < 4; n++)
 | |
| 			regs[n] = rd32(E1000_RDBAL(n));
 | |
| 		break;
 | |
| 	case E1000_RDBAH(0):
 | |
| 		for (n = 0; n < 4; n++)
 | |
| 			regs[n] = rd32(E1000_RDBAH(n));
 | |
| 		break;
 | |
| 	case E1000_TDBAL(0):
 | |
| 		for (n = 0; n < 4; n++)
 | |
| 			regs[n] = rd32(E1000_RDBAL(n));
 | |
| 		break;
 | |
| 	case E1000_TDBAH(0):
 | |
| 		for (n = 0; n < 4; n++)
 | |
| 			regs[n] = rd32(E1000_TDBAH(n));
 | |
| 		break;
 | |
| 	case E1000_TDLEN(0):
 | |
| 		for (n = 0; n < 4; n++)
 | |
| 			regs[n] = rd32(E1000_TDLEN(n));
 | |
| 		break;
 | |
| 	case E1000_TDH(0):
 | |
| 		for (n = 0; n < 4; n++)
 | |
| 			regs[n] = rd32(E1000_TDH(n));
 | |
| 		break;
 | |
| 	case E1000_TDT(0):
 | |
| 		for (n = 0; n < 4; n++)
 | |
| 			regs[n] = rd32(E1000_TDT(n));
 | |
| 		break;
 | |
| 	case E1000_TXDCTL(0):
 | |
| 		for (n = 0; n < 4; n++)
 | |
| 			regs[n] = rd32(E1000_TXDCTL(n));
 | |
| 		break;
 | |
| 	default:
 | |
| 		pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
 | |
| 	pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
 | |
| 		regs[2], regs[3]);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * igb_dump - Print registers, tx-rings and rx-rings
 | |
|  */
 | |
| static void igb_dump(struct igb_adapter *adapter)
 | |
| {
 | |
| 	struct net_device *netdev = adapter->netdev;
 | |
| 	struct e1000_hw *hw = &adapter->hw;
 | |
| 	struct igb_reg_info *reginfo;
 | |
| 	struct igb_ring *tx_ring;
 | |
| 	union e1000_adv_tx_desc *tx_desc;
 | |
| 	struct my_u0 { u64 a; u64 b; } *u0;
 | |
| 	struct igb_ring *rx_ring;
 | |
| 	union e1000_adv_rx_desc *rx_desc;
 | |
| 	u32 staterr;
 | |
| 	u16 i, n;
 | |
| 
 | |
| 	if (!netif_msg_hw(adapter))
 | |
| 		return;
 | |
| 
 | |
| 	/* Print netdevice Info */
 | |
| 	if (netdev) {
 | |
| 		dev_info(&adapter->pdev->dev, "Net device Info\n");
 | |
| 		pr_info("Device Name     state            trans_start      "
 | |
| 			"last_rx\n");
 | |
| 		pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
 | |
| 			netdev->state, netdev->trans_start, netdev->last_rx);
 | |
| 	}
 | |
| 
 | |
| 	/* Print Registers */
 | |
| 	dev_info(&adapter->pdev->dev, "Register Dump\n");
 | |
| 	pr_info(" Register Name   Value\n");
 | |
| 	for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
 | |
| 	     reginfo->name; reginfo++) {
 | |
| 		igb_regdump(hw, reginfo);
 | |
| 	}
 | |
| 
 | |
| 	/* Print TX Ring Summary */
 | |
| 	if (!netdev || !netif_running(netdev))
 | |
| 		goto exit;
 | |
| 
 | |
| 	dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
 | |
| 	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
 | |
| 	for (n = 0; n < adapter->num_tx_queues; n++) {
 | |
| 		struct igb_tx_buffer *buffer_info;
 | |
| 		tx_ring = adapter->tx_ring[n];
 | |
| 		buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
 | |
| 		pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
 | |
| 			n, tx_ring->next_to_use, tx_ring->next_to_clean,
 | |
| 			(u64)dma_unmap_addr(buffer_info, dma),
 | |
| 			dma_unmap_len(buffer_info, len),
 | |
| 			buffer_info->next_to_watch,
 | |
| 			(u64)buffer_info->time_stamp);
 | |
| 	}
 | |
| 
 | |
| 	/* Print TX Rings */
 | |
| 	if (!netif_msg_tx_done(adapter))
 | |
| 		goto rx_ring_summary;
 | |
| 
 | |
| 	dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
 | |
| 
 | |
| 	/* Transmit Descriptor Formats
 | |
| 	 *
 | |
| 	 * Advanced Transmit Descriptor
 | |
| 	 *   +--------------------------------------------------------------+
 | |
| 	 * 0 |         Buffer Address [63:0]                                |
 | |
| 	 *   +--------------------------------------------------------------+
 | |
| 	 * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
 | |
| 	 *   +--------------------------------------------------------------+
 | |
| 	 *   63      46 45    40 39 38 36 35 32 31   24             15       0
 | |
| 	 */
 | |
| 
 | |
| 	for (n = 0; n < adapter->num_tx_queues; n++) {
 | |
| 		tx_ring = adapter->tx_ring[n];
 | |
| 		pr_info("------------------------------------\n");
 | |
| 		pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
 | |
| 		pr_info("------------------------------------\n");
 | |
| 		pr_info("T [desc]     [address 63:0  ] [PlPOCIStDDM Ln] "
 | |
| 			"[bi->dma       ] leng  ntw timestamp        "
 | |
| 			"bi->skb\n");
 | |
| 
 | |
| 		for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
 | |
| 			const char *next_desc;
 | |
| 			struct igb_tx_buffer *buffer_info;
 | |
| 			tx_desc = IGB_TX_DESC(tx_ring, i);
 | |
| 			buffer_info = &tx_ring->tx_buffer_info[i];
 | |
| 			u0 = (struct my_u0 *)tx_desc;
 | |
| 			if (i == tx_ring->next_to_use &&
 | |
| 			    i == tx_ring->next_to_clean)
 | |
| 				next_desc = " NTC/U";
 | |
| 			else if (i == tx_ring->next_to_use)
 | |
| 				next_desc = " NTU";
 | |
| 			else if (i == tx_ring->next_to_clean)
 | |
| 				next_desc = " NTC";
 | |
| 			else
 | |
| 				next_desc = "";
 | |
| 
 | |
| 			pr_info("T [0x%03X]    %016llX %016llX %016llX"
 | |
| 				" %04X  %p %016llX %p%s\n", i,
 | |
| 				le64_to_cpu(u0->a),
 | |
| 				le64_to_cpu(u0->b),
 | |
| 				(u64)dma_unmap_addr(buffer_info, dma),
 | |
| 				dma_unmap_len(buffer_info, len),
 | |
| 				buffer_info->next_to_watch,
 | |
| 				(u64)buffer_info->time_stamp,
 | |
| 				buffer_info->skb, next_desc);
 | |
| 
 | |
| 			if (netif_msg_pktdata(adapter) && buffer_info->skb)
 | |
| 				print_hex_dump(KERN_INFO, "",
 | |
| 					DUMP_PREFIX_ADDRESS,
 | |
| 					16, 1, buffer_info->skb->data,
 | |
| 					dma_unmap_len(buffer_info, len),
 | |
| 					true);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Print RX Rings Summary */
 | |
| rx_ring_summary:
 | |
| 	dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
 | |
| 	pr_info("Queue [NTU] [NTC]\n");
 | |
| 	for (n = 0; n < adapter->num_rx_queues; n++) {
 | |
| 		rx_ring = adapter->rx_ring[n];
 | |
| 		pr_info(" %5d %5X %5X\n",
 | |
| 			n, rx_ring->next_to_use, rx_ring->next_to_clean);
 | |
| 	}
 | |
| 
 | |
| 	/* Print RX Rings */
 | |
| 	if (!netif_msg_rx_status(adapter))
 | |
| 		goto exit;
 | |
| 
 | |
| 	dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
 | |
| 
 | |
| 	/* Advanced Receive Descriptor (Read) Format
 | |
| 	 *    63                                           1        0
 | |
| 	 *    +-----------------------------------------------------+
 | |
| 	 *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
 | |
| 	 *    +----------------------------------------------+------+
 | |
| 	 *  8 |       Header Buffer Address [63:1]           |  DD  |
 | |
| 	 *    +-----------------------------------------------------+
 | |
| 	 *
 | |
| 	 *
 | |
| 	 * Advanced Receive Descriptor (Write-Back) Format
 | |
| 	 *
 | |
| 	 *   63       48 47    32 31  30      21 20 17 16   4 3     0
 | |
| 	 *   +------------------------------------------------------+
 | |
| 	 * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
 | |
| 	 *   | Checksum   Ident  |   |           |    | Type | Type |
 | |
| 	 *   +------------------------------------------------------+
 | |
| 	 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
 | |
| 	 *   +------------------------------------------------------+
 | |
| 	 *   63       48 47    32 31            20 19               0
 | |
| 	 */
 | |
| 
 | |
| 	for (n = 0; n < adapter->num_rx_queues; n++) {
 | |
| 		rx_ring = adapter->rx_ring[n];
 | |
| 		pr_info("------------------------------------\n");
 | |
| 		pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
 | |
| 		pr_info("------------------------------------\n");
 | |
| 		pr_info("R  [desc]      [ PktBuf     A0] [  HeadBuf   DD] "
 | |
| 			"[bi->dma       ] [bi->skb] <-- Adv Rx Read format\n");
 | |
| 		pr_info("RWB[desc]      [PcsmIpSHl PtRs] [vl er S cks ln] -----"
 | |
| 			"----------- [bi->skb] <-- Adv Rx Write-Back format\n");
 | |
| 
 | |
| 		for (i = 0; i < rx_ring->count; i++) {
 | |
| 			const char *next_desc;
 | |
| 			struct igb_rx_buffer *buffer_info;
 | |
| 			buffer_info = &rx_ring->rx_buffer_info[i];
 | |
| 			rx_desc = IGB_RX_DESC(rx_ring, i);
 | |
| 			u0 = (struct my_u0 *)rx_desc;
 | |
| 			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
 | |
| 
 | |
| 			if (i == rx_ring->next_to_use)
 | |
| 				next_desc = " NTU";
 | |
| 			else if (i == rx_ring->next_to_clean)
 | |
| 				next_desc = " NTC";
 | |
| 			else
 | |
| 				next_desc = "";
 | |
| 
 | |
| 			if (staterr & E1000_RXD_STAT_DD) {
 | |
| 				/* Descriptor Done */
 | |
| 				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %s\n",
 | |
| 					"RWB", i,
 | |
| 					le64_to_cpu(u0->a),
 | |
| 					le64_to_cpu(u0->b),
 | |
| 					next_desc);
 | |
| 			} else {
 | |
| 				pr_info("%s[0x%03X]     %016llX %016llX %016llX %s\n",
 | |
| 					"R  ", i,
 | |
| 					le64_to_cpu(u0->a),
 | |
| 					le64_to_cpu(u0->b),
 | |
| 					(u64)buffer_info->dma,
 | |
| 					next_desc);
 | |
| 
 | |
| 				if (netif_msg_pktdata(adapter) &&
 | |
| 				    buffer_info->dma && buffer_info->page) {
 | |
| 					print_hex_dump(KERN_INFO, "",
 | |
| 					  DUMP_PREFIX_ADDRESS,
 | |
| 					  16, 1,
 | |
| 					  page_address(buffer_info->page) +
 | |
| 						      buffer_info->page_offset,
 | |
| 					  IGB_RX_BUFSZ, true);
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| exit:
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| /*  igb_get_i2c_data - Reads the I2C SDA data bit
 | |
|  *  @hw: pointer to hardware structure
 | |
|  *  @i2cctl: Current value of I2CCTL register
 | |
|  *
 | |
|  *  Returns the I2C data bit value
 | |
|  */
 | |
| static int igb_get_i2c_data(void *data)
 | |
| {
 | |
| 	struct igb_adapter *adapter = (struct igb_adapter *)data;
 | |
| 	struct e1000_hw *hw = &adapter->hw;
 | |
| 	s32 i2cctl = rd32(E1000_I2CPARAMS);
 | |
| 
 | |
| 	return ((i2cctl & E1000_I2C_DATA_IN) != 0);
 | |
| }
 | |
| 
 | |
| /* igb_set_i2c_data - Sets the I2C data bit
 | |
|  *  @data: pointer to hardware structure
 | |
|  *  @state: I2C data value (0 or 1) to set
 | |
|  *
 | |
|  *  Sets the I2C data bit
 | |
|  */
 | |
| static void igb_set_i2c_data(void *data, int state)
 | |
| {
 | |
| 	struct igb_adapter *adapter = (struct igb_adapter *)data;
 | |
| 	struct e1000_hw *hw = &adapter->hw;
 | |
| 	s32 i2cctl = rd32(E1000_I2CPARAMS);
 | |
| 
 | |
| 	if (state)
 | |
| 		i2cctl |= E1000_I2C_DATA_OUT;
 | |
| 	else
 | |
| 		i2cctl &= ~E1000_I2C_DATA_OUT;
 | |
| 
 | |
| 	i2cctl &= ~E1000_I2C_DATA_OE_N;
 | |
| 	i2cctl |= E1000_I2C_CLK_OE_N;
 | |
| 	wr32(E1000_I2CPARAMS, i2cctl);
 | |
| 	wrfl();
 | |
| 
 | |
| }
 | |
| 
 | |
| /* igb_set_i2c_clk - Sets the I2C SCL clock
 | |
|  *  @data: pointer to hardware structure
 | |
|  *  @state: state to set clock
 | |
|  *
 | |
|  *  Sets the I2C clock line to state
 | |
|  */
 | |
| static void igb_set_i2c_clk(void *data, int state)
 | |
| {
 | |
| 	struct igb_adapter *adapter = (struct igb_adapter *)data;
 | |
| 	struct e1000_hw *hw = &adapter->hw;
 | |
| 	s32 i2cctl = rd32(E1000_I2CPARAMS);
 | |
| 
 | |
| 	if (state) {
 | |
| 		i2cctl |= E1000_I2C_CLK_OUT;
 | |
| 		i2cctl &= ~E1000_I2C_CLK_OE_N;
 | |
| 	} else {
 | |
| 		i2cctl &= ~E1000_I2C_CLK_OUT;
 | |
| 		i2cctl &= ~E1000_I2C_CLK_OE_N;
 | |
| 	}
 | |
| 	wr32(E1000_I2CPARAMS, i2cctl);
 | |
| 	wrfl();
 | |
| }
 | |
| 
 | |
| /* igb_get_i2c_clk - Gets the I2C SCL clock state
 | |
|  *  @data: pointer to hardware structure
 | |
|  *
 | |
|  *  Gets the I2C clock state
 | |
|  */
 | |
| static int igb_get_i2c_clk(void *data)
 | |
| {
 | |
| 	struct igb_adapter *adapter = (struct igb_adapter *)data;
 | |
| 	struct e1000_hw *hw = &adapter->hw;
 | |
| 	s32 i2cctl = rd32(E1000_I2CPARAMS);
 | |
| 
 | |
| 	return ((i2cctl & E1000_I2C_CLK_IN) != 0);
 | |
| }
 | |
| 
 | |
| static const struct i2c_algo_bit_data igb_i2c_algo = {
 | |
| 	.setsda		= igb_set_i2c_data,
 | |
| 	.setscl		= igb_set_i2c_clk,
 | |
| 	.getsda		= igb_get_i2c_data,
 | |
| 	.getscl		= igb_get_i2c_clk,
 | |
| 	.udelay		= 5,
 | |
| 	.timeout	= 20,
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * igb_get_hw_dev - return device
 | |
|  * used by hardware layer to print debugging information
 | |
|  **/
 | |
| struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
 | |
| {
 | |
| 	struct igb_adapter *adapter = hw->back;
 | |
| 	return adapter->netdev;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * igb_init_module - Driver Registration Routine
 | |
|  *
 | |
|  * igb_init_module is the first routine called when the driver is
 | |
|  * loaded. All it does is register with the PCI subsystem.
 | |
|  **/
 | |
| static int __init igb_init_module(void)
 | |
| {
 | |
| 	int ret;
 | |
| 	pr_info("%s - version %s\n",
 | |
| 	       igb_driver_string, igb_driver_version);
 | |
| 
 | |
| 	pr_info("%s\n", igb_copyright);
 | |
| 
 | |
| #ifdef CONFIG_IGB_DCA
 | |
| 	dca_register_notify(&dca_notifier);
 | |
| #endif
 | |
| 	ret = pci_register_driver(&igb_driver);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| module_init(igb_init_module);
 | |
| 
 | |
| /**
 | |
|  * igb_exit_module - Driver Exit Cleanup Routine
 | |
|  *
 | |
|  * igb_exit_module is called just before the driver is removed
 | |
|  * from memory.
 | |
|  **/
 | |
| static void __exit igb_exit_module(void)
 | |
| {
 | |
| #ifdef CONFIG_IGB_DCA
 | |
| 	dca_unregister_notify(&dca_notifier);
 | |
| #endif
 | |
| 	pci_unregister_driver(&igb_driver);
 | |
| }
 | |
| 
 | |
| module_exit(igb_exit_module);
 | |
| 
 | |
| #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
 | |
| /**
 | |
|  * igb_cache_ring_register - Descriptor ring to register mapping
 | |
|  * @adapter: board private structure to initialize
 | |
|  *
 | |
|  * Once we know the feature-set enabled for the device, we'll cache
 | |
|  * the register offset the descriptor ring is assigned to.
 | |
|  **/
 | |
| static void igb_cache_ring_register(struct igb_adapter *adapter)
 | |
| {
 | |
| 	int i = 0, j = 0;
 | |
| 	u32 rbase_offset = adapter->vfs_allocated_count;
 | |
| 
 | |
| 	switch (adapter->hw.mac.type) {
 | |
| 	case e1000_82576:
 | |
| 		/* The queues are allocated for virtualization such that VF 0
 | |
| 		 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
 | |
| 		 * In order to avoid collision we start at the first free queue
 | |
| 		 * and continue consuming queues in the same sequence
 | |
| 		 */
 | |
| 		if (adapter->vfs_allocated_count) {
 | |
| 			for (; i < adapter->rss_queues; i++)
 | |
| 				adapter->rx_ring[i]->reg_idx = rbase_offset +
 | |
| 				                               Q_IDX_82576(i);
 | |
| 		}
 | |
| 	case e1000_82575:
 | |
| 	case e1000_82580:
 | |
| 	case e1000_i350:
 | |
| 	case e1000_i210:
 | |
| 	case e1000_i211:
 | |
| 	default:
 | |
| 		for (; i < adapter->num_rx_queues; i++)
 | |
| 			adapter->rx_ring[i]->reg_idx = rbase_offset + i;
 | |
| 		for (; j < adapter->num_tx_queues; j++)
 | |
| 			adapter->tx_ring[j]->reg_idx = rbase_offset + j;
 | |
| 		break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  igb_write_ivar - configure ivar for given MSI-X vector
 | |
|  *  @hw: pointer to the HW structure
 | |
|  *  @msix_vector: vector number we are allocating to a given ring
 | |
|  *  @index: row index of IVAR register to write within IVAR table
 | |
|  *  @offset: column offset of in IVAR, should be multiple of 8
 | |
|  *
 | |
|  *  This function is intended to handle the writing of the IVAR register
 | |
|  *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
 | |
|  *  each containing an cause allocation for an Rx and Tx ring, and a
 | |
|  *  variable number of rows depending on the number of queues supported.
 | |
|  **/
 | |
| static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
 | |
| 			   int index, int offset)
 | |
| {
 | |
| 	u32 ivar = array_rd32(E1000_IVAR0, index);
 | |
| 
 | |
| 	/* clear any bits that are currently set */
 | |
| 	ivar &= ~((u32)0xFF << offset);
 | |
| 
 | |
| 	/* write vector and valid bit */
 | |
| 	ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
 | |
| 
 | |
| 	array_wr32(E1000_IVAR0, index, ivar);
 | |
| }
 | |
| 
 | |
| #define IGB_N0_QUEUE -1
 | |
| static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
 | |
| {
 | |
| 	struct igb_adapter *adapter = q_vector->adapter;
 | |
| 	struct e1000_hw *hw = &adapter->hw;
 | |
| 	int rx_queue = IGB_N0_QUEUE;
 | |
| 	int tx_queue = IGB_N0_QUEUE;
 | |
| 	u32 msixbm = 0;
 | |
| 
 | |
| 	if (q_vector->rx.ring)
 | |
| 		rx_queue = q_vector->rx.ring->reg_idx;
 | |
| 	if (q_vector->tx.ring)
 | |
| 		tx_queue = q_vector->tx.ring->reg_idx;
 | |
| 
 | |
| 	switch (hw->mac.type) {
 | |
| 	case e1000_82575:
 | |
| 		/* The 82575 assigns vectors using a bitmask, which matches the
 | |
| 		   bitmask for the EICR/EIMS/EIMC registers.  To assign one
 | |
| 		   or more queues to a vector, we write the appropriate bits
 | |
| 		   into the MSIXBM register for that vector. */
 | |
| 		if (rx_queue > IGB_N0_QUEUE)
 | |
| 			msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
 | |
| 		if (tx_queue > IGB_N0_QUEUE)
 | |
| 			msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
 | |
| 		if (!adapter->msix_entries && msix_vector == 0)
 | |
| 			msixbm |= E1000_EIMS_OTHER;
 | |
| 		array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
 | |
| 		q_vector->eims_value = msixbm;
 | |
| 		break;
 | |
| 	case e1000_82576:
 | |
| 		/*
 | |
| 		 * 82576 uses a table that essentially consists of 2 columns
 | |
| 		 * with 8 rows.  The ordering is column-major so we use the
 | |
| 		 * lower 3 bits as the row index, and the 4th bit as the
 | |
| 		 * column offset.
 | |
| 		 */
 | |
| 		if (rx_queue > IGB_N0_QUEUE)
 | |
| 			igb_write_ivar(hw, msix_vector,
 | |
| 				       rx_queue & 0x7,
 | |
| 				       (rx_queue & 0x8) << 1);
 | |
| 		if (tx_queue > IGB_N0_QUEUE)
 | |
| 			igb_write_ivar(hw, msix_vector,
 | |
| 				       tx_queue & 0x7,
 | |
| 				       ((tx_queue & 0x8) << 1) + 8);
 | |
| 		q_vector->eims_value = 1 << msix_vector;
 | |
| 		break;
 | |
| 	case e1000_82580:
 | |
| 	case e1000_i350:
 | |
| 	case e1000_i210:
 | |
| 	case e1000_i211:
 | |
| 		/*
 | |
| 		 * On 82580 and newer adapters the scheme is similar to 82576
 | |
| 		 * however instead of ordering column-major we have things
 | |
| 		 * ordered row-major.  So we traverse the table by using
 | |
| 		 * bit 0 as the column offset, and the remaining bits as the
 | |
| 		 * row index.
 | |
| 		 */
 | |
| 		if (rx_queue > IGB_N0_QUEUE)
 | |
| 			igb_write_ivar(hw, msix_vector,
 | |
| 				       rx_queue >> 1,
 | |
| 				       (rx_queue & 0x1) << 4);
 | |
| 		if (tx_queue > IGB_N0_QUEUE)
 | |
| 			igb_write_ivar(hw, msix_vector,
 | |
| 				       tx_queue >> 1,
 | |
| 				       ((tx_queue & 0x1) << 4) + 8);
 | |
| 		q_vector->eims_value = 1 << msix_vector;
 | |
| 		break;
 | |
| 	default:
 | |
| 		BUG();
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	/* add q_vector eims value to global eims_enable_mask */
 | |
| 	adapter->eims_enable_mask |= q_vector->eims_value;
 | |
| 
 | |
| 	/* configure q_vector to set itr on first interrupt */
 | |
| 	q_vector->set_itr = 1;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * igb_configure_msix - Configure MSI-X hardware
 | |
|  *
 | |
|  * igb_configure_msix sets up the hardware to properly
 | |
|  * generate MSI-X interrupts.
 | |
|  **/
 | |
| static void igb_configure_msix(struct igb_adapter *adapter)
 | |
| {
 | |
| 	u32 tmp;
 | |
| 	int i, vector = 0;
 | |
| 	struct e1000_hw *hw = &adapter->hw;
 | |
| 
 | |
| 	adapter->eims_enable_mask = 0;
 | |
| 
 | |
| 	/* set vector for other causes, i.e. link changes */
 | |
| 	switch (hw->mac.type) {
 | |
| 	case e1000_82575:
 | |
| 		tmp = rd32(E1000_CTRL_EXT);
 | |
| 		/* enable MSI-X PBA support*/
 | |
| 		tmp |= E1000_CTRL_EXT_PBA_CLR;
 | |
| 
 | |
| 		/* Auto-Mask interrupts upon ICR read. */
 | |
| 		tmp |= E1000_CTRL_EXT_EIAME;
 | |
| 		tmp |= E1000_CTRL_EXT_IRCA;
 | |
| 
 | |
| 		wr32(E1000_CTRL_EXT, tmp);
 | |
| 
 | |
| 		/* enable msix_other interrupt */
 | |
| 		array_wr32(E1000_MSIXBM(0), vector++,
 | |
| 		                      E1000_EIMS_OTHER);
 | |
| 		adapter->eims_other = E1000_EIMS_OTHER;
 | |
| 
 | |
| 		break;
 | |
| 
 | |
| 	case e1000_82576:
 | |
| 	case e1000_82580:
 | |
| 	case e1000_i350:
 | |
| 	case e1000_i210:
 | |
| 	case e1000_i211:
 | |
| 		/* Turn on MSI-X capability first, or our settings
 | |
| 		 * won't stick.  And it will take days to debug. */
 | |
| 		wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
 | |
| 		                E1000_GPIE_PBA | E1000_GPIE_EIAME |
 | |
| 		                E1000_GPIE_NSICR);
 | |
| 
 | |
| 		/* enable msix_other interrupt */
 | |
| 		adapter->eims_other = 1 << vector;
 | |
| 		tmp = (vector++ | E1000_IVAR_VALID) << 8;
 | |
| 
 | |
| 		wr32(E1000_IVAR_MISC, tmp);
 | |
| 		break;
 | |
| 	default:
 | |
| 		/* do nothing, since nothing else supports MSI-X */
 | |
| 		break;
 | |
| 	} /* switch (hw->mac.type) */
 | |
| 
 | |
| 	adapter->eims_enable_mask |= adapter->eims_other;
 | |
| 
 | |
| 	for (i = 0; i < adapter->num_q_vectors; i++)
 | |
| 		igb_assign_vector(adapter->q_vector[i], vector++);
 | |
| 
 | |
| 	wrfl();
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * igb_request_msix - Initialize MSI-X interrupts
 | |
|  *
 | |
|  * igb_request_msix allocates MSI-X vectors and requests interrupts from the
 | |
|  * kernel.
 | |
|  **/
 | |
| static int igb_request_msix(struct igb_adapter *adapter)
 | |
| {
 | |
| 	struct net_device *netdev = adapter->netdev;
 | |
| 	struct e1000_hw *hw = &adapter->hw;
 | |
| 	int i, err = 0, vector = 0, free_vector = 0;
 | |
| 
 | |
| 	err = request_irq(adapter->msix_entries[vector].vector,
 | |
| 	                  igb_msix_other, 0, netdev->name, adapter);
 | |
| 	if (err)
 | |
| 		goto err_out;
 | |
| 
 | |
| 	for (i = 0; i < adapter->num_q_vectors; i++) {
 | |
| 		struct igb_q_vector *q_vector = adapter->q_vector[i];
 | |
| 
 | |
| 		vector++;
 | |
| 
 | |
| 		q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
 | |
| 
 | |
| 		if (q_vector->rx.ring && q_vector->tx.ring)
 | |
| 			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
 | |
| 				q_vector->rx.ring->queue_index);
 | |
| 		else if (q_vector->tx.ring)
 | |
| 			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
 | |
| 				q_vector->tx.ring->queue_index);
 | |
| 		else if (q_vector->rx.ring)
 | |
| 			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
 | |
| 				q_vector->rx.ring->queue_index);
 | |
| 		else
 | |
| 			sprintf(q_vector->name, "%s-unused", netdev->name);
 | |
| 
 | |
| 		err = request_irq(adapter->msix_entries[vector].vector,
 | |
| 		                  igb_msix_ring, 0, q_vector->name,
 | |
| 		                  q_vector);
 | |
| 		if (err)
 | |
| 			goto err_free;
 | |
| 	}
 | |
| 
 | |
| 	igb_configure_msix(adapter);
 | |
| 	return 0;
 | |
| 
 | |
| err_free:
 | |
| 	/* free already assigned IRQs */
 | |
| 	free_irq(adapter->msix_entries[free_vector++].vector, adapter);
 | |
| 
 | |
| 	vector--;
 | |
| 	for (i = 0; i < vector; i++) {
 | |
| 		free_irq(adapter->msix_entries[free_vector++].vector,
 | |
| 			 adapter->q_vector[i]);
 | |
| 	}
 | |
| err_out:
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
 | |
| {
 | |
| 	if (adapter->msix_entries) {
 | |
| 		pci_disable_msix(adapter->pdev);
 | |
| 		kfree(adapter->msix_entries);
 | |
| 		adapter->msix_entries = NULL;
 | |
| 	} else if (adapter->flags & IGB_FLAG_HAS_MSI) {
 | |
| 		pci_disable_msi(adapter->pdev);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * igb_free_q_vector - Free memory allocated for specific interrupt vector
 | |
|  * @adapter: board private structure to initialize
 | |
|  * @v_idx: Index of vector to be freed
 | |
|  *
 | |
|  * This function frees the memory allocated to the q_vector.  In addition if
 | |
|  * NAPI is enabled it will delete any references to the NAPI struct prior
 | |
|  * to freeing the q_vector.
 | |
|  **/
 | |
| static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
 | |
| {
 | |
| 	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
 | |
| 
 | |
| 	if (q_vector->tx.ring)
 | |
| 		adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
 | |
| 
 | |
| 	if (q_vector->rx.ring)
 | |
| 		adapter->tx_ring[q_vector->rx.ring->queue_index] = NULL;
 | |
| 
 | |
| 	adapter->q_vector[v_idx] = NULL;
 | |
| 	netif_napi_del(&q_vector->napi);
 | |
| 
 | |
| 	/*
 | |
| 	 * ixgbe_get_stats64() might access the rings on this vector,
 | |
| 	 * we must wait a grace period before freeing it.
 | |
| 	 */
 | |
| 	kfree_rcu(q_vector, rcu);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * igb_free_q_vectors - Free memory allocated for interrupt vectors
 | |
|  * @adapter: board private structure to initialize
 | |
|  *
 | |
|  * This function frees the memory allocated to the q_vectors.  In addition if
 | |
|  * NAPI is enabled it will delete any references to the NAPI struct prior
 | |
|  * to freeing the q_vector.
 | |
|  **/
 | |
| static void igb_free_q_vectors(struct igb_adapter *adapter)
 | |
| {
 | |
| 	int v_idx = adapter->num_q_vectors;
 | |
| 
 | |
| 	adapter->num_tx_queues = 0;
 | |
| 	adapter->num_rx_queues = 0;
 | |
| 	adapter->num_q_vectors = 0;
 | |
| 
 | |
| 	while (v_idx--)
 | |
| 		igb_free_q_vector(adapter, v_idx);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
 | |
|  *
 | |
|  * This function resets the device so that it has 0 rx queues, tx queues, and
 | |
|  * MSI-X interrupts allocated.
 | |
|  */
 | |
| static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
 | |
| {
 | |
| 	igb_free_q_vectors(adapter);
 | |
| 	igb_reset_interrupt_capability(adapter);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * igb_set_interrupt_capability - set MSI or MSI-X if supported
 | |
|  *
 | |
|  * Attempt to configure interrupts using the best available
 | |
|  * capabilities of the hardware and kernel.
 | |
|  **/
 | |
| static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
 | |
| {
 | |
| 	int err;
 | |
| 	int numvecs, i;
 | |
| 
 | |
| 	if (!msix)
 | |
| 		goto msi_only;
 | |
| 
 | |
| 	/* Number of supported queues. */
 | |
| 	adapter->num_rx_queues = adapter->rss_queues;
 | |
| 	if (adapter->vfs_allocated_count)
 | |
| 		adapter->num_tx_queues = 1;
 | |
| 	else
 | |
| 		adapter->num_tx_queues = adapter->rss_queues;
 | |
| 
 | |
| 	/* start with one vector for every rx queue */
 | |
| 	numvecs = adapter->num_rx_queues;
 | |
| 
 | |
| 	/* if tx handler is separate add 1 for every tx queue */
 | |
| 	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
 | |
| 		numvecs += adapter->num_tx_queues;
 | |
| 
 | |
| 	/* store the number of vectors reserved for queues */
 | |
| 	adapter->num_q_vectors = numvecs;
 | |
| 
 | |
| 	/* add 1 vector for link status interrupts */
 | |
| 	numvecs++;
 | |
| 	adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
 | |
| 					GFP_KERNEL);
 | |
| 
 | |
| 	if (!adapter->msix_entries)
 | |
| 		goto msi_only;
 | |
| 
 | |
| 	for (i = 0; i < numvecs; i++)
 | |
| 		adapter->msix_entries[i].entry = i;
 | |
| 
 | |
| 	err = pci_enable_msix(adapter->pdev,
 | |
| 			      adapter->msix_entries,
 | |
| 			      numvecs);
 | |
| 	if (err == 0)
 | |
| 		return;
 | |
| 
 | |
| 	igb_reset_interrupt_capability(adapter);
 | |
| 
 | |
| 	/* If we can't do MSI-X, try MSI */
 | |
| msi_only:
 | |
| #ifdef CONFIG_PCI_IOV
 | |
| 	/* disable SR-IOV for non MSI-X configurations */
 | |
| 	if (adapter->vf_data) {
 | |
| 		struct e1000_hw *hw = &adapter->hw;
 | |
| 		/* disable iov and allow time for transactions to clear */
 | |
| 		pci_disable_sriov(adapter->pdev);
 | |
| 		msleep(500);
 | |
| 
 | |
| 		kfree(adapter->vf_data);
 | |
| 		adapter->vf_data = NULL;
 | |
| 		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
 | |
| 		wrfl();
 | |
| 		msleep(100);
 | |
| 		dev_info(&adapter->pdev->dev, "IOV Disabled\n");
 | |
| 	}
 | |
| #endif
 | |
| 	adapter->vfs_allocated_count = 0;
 | |
| 	adapter->rss_queues = 1;
 | |
| 	adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
 | |
| 	adapter->num_rx_queues = 1;
 | |
| 	adapter->num_tx_queues = 1;
 | |
| 	adapter->num_q_vectors = 1;
 | |
| 	if (!pci_enable_msi(adapter->pdev))
 | |
| 		adapter->flags |= IGB_FLAG_HAS_MSI;
 | |
| }
 | |
| 
 | |
| static void igb_add_ring(struct igb_ring *ring,
 | |
| 			 struct igb_ring_container *head)
 | |
| {
 | |
| 	head->ring = ring;
 | |
| 	head->count++;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * igb_alloc_q_vector - Allocate memory for a single interrupt vector
 | |
|  * @adapter: board private structure to initialize
 | |
|  * @v_count: q_vectors allocated on adapter, used for ring interleaving
 | |
|  * @v_idx: index of vector in adapter struct
 | |
|  * @txr_count: total number of Tx rings to allocate
 | |
|  * @txr_idx: index of first Tx ring to allocate
 | |
|  * @rxr_count: total number of Rx rings to allocate
 | |
|  * @rxr_idx: index of first Rx ring to allocate
 | |
|  *
 | |
|  * We allocate one q_vector.  If allocation fails we return -ENOMEM.
 | |
|  **/
 | |
| static int igb_alloc_q_vector(struct igb_adapter *adapter,
 | |
| 			      int v_count, int v_idx,
 | |
| 			      int txr_count, int txr_idx,
 | |
| 			      int rxr_count, int rxr_idx)
 | |
| {
 | |
| 	struct igb_q_vector *q_vector;
 | |
| 	struct igb_ring *ring;
 | |
| 	int ring_count, size;
 | |
| 
 | |
| 	/* igb only supports 1 Tx and/or 1 Rx queue per vector */
 | |
| 	if (txr_count > 1 || rxr_count > 1)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	ring_count = txr_count + rxr_count;
 | |
| 	size = sizeof(struct igb_q_vector) +
 | |
| 	       (sizeof(struct igb_ring) * ring_count);
 | |
| 
 | |
| 	/* allocate q_vector and rings */
 | |
| 	q_vector = kzalloc(size, GFP_KERNEL);
 | |
| 	if (!q_vector)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	/* initialize NAPI */
 | |
| 	netif_napi_add(adapter->netdev, &q_vector->napi,
 | |
| 		       igb_poll, 64);
 | |
| 
 | |
| 	/* tie q_vector and adapter together */
 | |
| 	adapter->q_vector[v_idx] = q_vector;
 | |
| 	q_vector->adapter = adapter;
 | |
| 
 | |
| 	/* initialize work limits */
 | |
| 	q_vector->tx.work_limit = adapter->tx_work_limit;
 | |
| 
 | |
| 	/* initialize ITR configuration */
 | |
| 	q_vector->itr_register = adapter->hw.hw_addr + E1000_EITR(0);
 | |
| 	q_vector->itr_val = IGB_START_ITR;
 | |
| 
 | |
| 	/* initialize pointer to rings */
 | |
| 	ring = q_vector->ring;
 | |
| 
 | |
| 	if (txr_count) {
 | |
| 		/* assign generic ring traits */
 | |
| 		ring->dev = &adapter->pdev->dev;
 | |
| 		ring->netdev = adapter->netdev;
 | |
| 
 | |
| 		/* configure backlink on ring */
 | |
| 		ring->q_vector = q_vector;
 | |
| 
 | |
| 		/* update q_vector Tx values */
 | |
| 		igb_add_ring(ring, &q_vector->tx);
 | |
| 
 | |
| 		/* For 82575, context index must be unique per ring. */
 | |
| 		if (adapter->hw.mac.type == e1000_82575)
 | |
| 			set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
 | |
| 
 | |
| 		/* apply Tx specific ring traits */
 | |
| 		ring->count = adapter->tx_ring_count;
 | |
| 		ring->queue_index = txr_idx;
 | |
| 
 | |
| 		/* assign ring to adapter */
 | |
| 		adapter->tx_ring[txr_idx] = ring;
 | |
| 
 | |
| 		/* push pointer to next ring */
 | |
| 		ring++;
 | |
| 	}
 | |
| 
 | |
| 	if (rxr_count) {
 | |
| 		/* assign generic ring traits */
 | |
| 		ring->dev = &adapter->pdev->dev;
 | |
| 		ring->netdev = adapter->netdev;
 | |
| 
 | |
| 		/* configure backlink on ring */
 | |
| 		ring->q_vector = q_vector;
 | |
| 
 | |
| 		/* update q_vector Rx values */
 | |
| 		igb_add_ring(ring, &q_vector->rx);
 | |
| 
 | |
| 		/* set flag indicating ring supports SCTP checksum offload */
 | |
| 		if (adapter->hw.mac.type >= e1000_82576)
 | |
| 			set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
 | |
| 
 | |
| 		/*
 | |
| 		 * On i350, i210, and i211, loopback VLAN packets
 | |
| 		 * have the tag byte-swapped.
 | |
| 		 * */
 | |
| 		if (adapter->hw.mac.type >= e1000_i350)
 | |
| 			set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
 | |
| 
 | |
| 		/* apply Rx specific ring traits */
 | |
| 		ring->count = adapter->rx_ring_count;
 | |
| 		ring->queue_index = rxr_idx;
 | |
| 
 | |
| 		/* assign ring to adapter */
 | |
| 		adapter->rx_ring[rxr_idx] = ring;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * igb_alloc_q_vectors - Allocate memory for interrupt vectors
 | |
|  * @adapter: board private structure to initialize
 | |
|  *
 | |
|  * We allocate one q_vector per queue interrupt.  If allocation fails we
 | |
|  * return -ENOMEM.
 | |
|  **/
 | |
| static int igb_alloc_q_vectors(struct igb_adapter *adapter)
 | |
| {
 | |
| 	int q_vectors = adapter->num_q_vectors;
 | |
| 	int rxr_remaining = adapter->num_rx_queues;
 | |
| 	int txr_remaining = adapter->num_tx_queues;
 | |
| 	int rxr_idx = 0, txr_idx = 0, v_idx = 0;
 | |
| 	int err;
 | |
| 
 | |
| 	if (q_vectors >= (rxr_remaining + txr_remaining)) {
 | |
| 		for (; rxr_remaining; v_idx++) {
 | |
| 			err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
 | |
| 						 0, 0, 1, rxr_idx);
 | |
| 
 | |
| 			if (err)
 | |
| 				goto err_out;
 | |
| 
 | |
| 			/* update counts and index */
 | |
| 			rxr_remaining--;
 | |
| 			rxr_idx++;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	for (; v_idx < q_vectors; v_idx++) {
 | |
| 		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
 | |
| 		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
 | |
| 		err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
 | |
| 					 tqpv, txr_idx, rqpv, rxr_idx);
 | |
| 
 | |
| 		if (err)
 | |
| 			goto err_out;
 | |
| 
 | |
| 		/* update counts and index */
 | |
| 		rxr_remaining -= rqpv;
 | |
| 		txr_remaining -= tqpv;
 | |
| 		rxr_idx++;
 | |
| 		txr_idx++;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| err_out:
 | |
| 	adapter->num_tx_queues = 0;
 | |
| 	adapter->num_rx_queues = 0;
 | |
| 	adapter->num_q_vectors = 0;
 | |
| 
 | |
| 	while (v_idx--)
 | |
| 		igb_free_q_vector(adapter, v_idx);
 | |
| 
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
 | |
|  *
 | |
|  * This function initializes the interrupts and allocates all of the queues.
 | |
|  **/
 | |
| static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
 | |
| {
 | |
| 	struct pci_dev *pdev = adapter->pdev;
 | |
| 	int err;
 | |
| 
 | |
| 	igb_set_interrupt_capability(adapter, msix);
 | |
| 
 | |
| 	err = igb_alloc_q_vectors(adapter);
 | |
| 	if (err) {
 | |
| 		dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
 | |
| 		goto err_alloc_q_vectors;
 | |
| 	}
 | |
| 
 | |
| 	igb_cache_ring_register(adapter);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| err_alloc_q_vectors:
 | |
| 	igb_reset_interrupt_capability(adapter);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * igb_request_irq - initialize interrupts
 | |
|  *
 | |
|  * Attempts to configure interrupts using the best available
 | |
|  * capabilities of the hardware and kernel.
 | |
|  **/
 | |
| static int igb_request_irq(struct igb_adapter *adapter)
 | |
| {
 | |
| 	struct net_device *netdev = adapter->netdev;
 | |
| 	struct pci_dev *pdev = adapter->pdev;
 | |
| 	int err = 0;
 | |
| 
 | |
| 	if (adapter->msix_entries) {
 | |
| 		err = igb_request_msix(adapter);
 | |
| 		if (!err)
 | |
| 			goto request_done;
 | |
| 		/* fall back to MSI */
 | |
| 		igb_free_all_tx_resources(adapter);
 | |
| 		igb_free_all_rx_resources(adapter);
 | |
| 
 | |
| 		igb_clear_interrupt_scheme(adapter);
 | |
| 		err = igb_init_interrupt_scheme(adapter, false);
 | |
| 		if (err)
 | |
| 			goto request_done;
 | |
| 
 | |
| 		igb_setup_all_tx_resources(adapter);
 | |
| 		igb_setup_all_rx_resources(adapter);
 | |
| 		igb_configure(adapter);
 | |
| 	}
 | |
| 
 | |
| 	igb_assign_vector(adapter->q_vector[0], 0);
 | |
| 
 | |
| 	if (adapter->flags & IGB_FLAG_HAS_MSI) {
 | |
| 		err = request_irq(pdev->irq, igb_intr_msi, 0,
 | |
| 				  netdev->name, adapter);
 | |
| 		if (!err)
 | |
| 			goto request_done;
 | |
| 
 | |
| 		/* fall back to legacy interrupts */
 | |
| 		igb_reset_interrupt_capability(adapter);
 | |
| 		adapter->flags &= ~IGB_FLAG_HAS_MSI;
 | |
| 	}
 | |
| 
 | |
| 	err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
 | |
| 			  netdev->name, adapter);
 | |
| 
 | |
| 	if (err)
 | |
| 		dev_err(&pdev->dev, "Error %d getting interrupt\n",
 | |
| 			err);
 | |
| 
 | |
| request_done:
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static void igb_free_irq(struct igb_adapter *adapter)
 | |
| {
 | |
| 	if (adapter->msix_entries) {
 | |
| 		int vector = 0, i;
 | |
| 
 | |
| 		free_irq(adapter->msix_entries[vector++].vector, adapter);
 | |
| 
 | |
| 		for (i = 0; i < adapter->num_q_vectors; i++)
 | |
| 			free_irq(adapter->msix_entries[vector++].vector,
 | |
| 				 adapter->q_vector[i]);
 | |
| 	} else {
 | |
| 		free_irq(adapter->pdev->irq, adapter);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * igb_irq_disable - Mask off interrupt generation on the NIC
 | |
|  * @adapter: board private structure
 | |
|  **/
 | |
| static void igb_irq_disable(struct igb_adapter *adapter)
 | |
| {
 | |
| 	struct e1000_hw *hw = &adapter->hw;
 | |
| 
 | |
| 	/*
 | |
| 	 * we need to be careful when disabling interrupts.  The VFs are also
 | |
| 	 * mapped into these registers and so clearing the bits can cause
 | |
| 	 * issues on the VF drivers so we only need to clear what we set
 | |
| 	 */
 | |
| 	if (adapter->msix_entries) {
 | |
| 		u32 regval = rd32(E1000_EIAM);
 | |
| 		wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
 | |
| 		wr32(E1000_EIMC, adapter->eims_enable_mask);
 | |
| 		regval = rd32(E1000_EIAC);
 | |
| 		wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
 | |
| 	}
 | |
| 
 | |
| 	wr32(E1000_IAM, 0);
 | |
| 	wr32(E1000_IMC, ~0);
 | |
| 	wrfl();
 | |
| 	if (adapter->msix_entries) {
 | |
| 		int i;
 | |
| 		for (i = 0; i < adapter->num_q_vectors; i++)
 | |
| 			synchronize_irq(adapter->msix_entries[i].vector);
 | |
| 	} else {
 | |
| 		synchronize_irq(adapter->pdev->irq);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * igb_irq_enable - Enable default interrupt generation settings
 | |
|  * @adapter: board private structure
 | |
|  **/
 | |
| static void igb_irq_enable(struct igb_adapter *adapter)
 | |
| {
 | |
| 	struct e1000_hw *hw = &adapter->hw;
 | |
| 
 | |
| 	if (adapter->msix_entries) {
 | |
| 		u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
 | |
| 		u32 regval = rd32(E1000_EIAC);
 | |
| 		wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
 | |
| 		regval = rd32(E1000_EIAM);
 | |
| 		wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
 | |
| 		wr32(E1000_EIMS, adapter->eims_enable_mask);
 | |
| 		if (adapter->vfs_allocated_count) {
 | |
| 			wr32(E1000_MBVFIMR, 0xFF);
 | |
| 			ims |= E1000_IMS_VMMB;
 | |
| 		}
 | |
| 		wr32(E1000_IMS, ims);
 | |
| 	} else {
 | |
| 		wr32(E1000_IMS, IMS_ENABLE_MASK |
 | |
| 				E1000_IMS_DRSTA);
 | |
| 		wr32(E1000_IAM, IMS_ENABLE_MASK |
 | |
| 				E1000_IMS_DRSTA);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void igb_update_mng_vlan(struct igb_adapter *adapter)
 | |
| {
 | |
| 	struct e1000_hw *hw = &adapter->hw;
 | |
| 	u16 vid = adapter->hw.mng_cookie.vlan_id;
 | |
| 	u16 old_vid = adapter->mng_vlan_id;
 | |
| 
 | |
| 	if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
 | |
| 		/* add VID to filter table */
 | |
| 		igb_vfta_set(hw, vid, true);
 | |
| 		adapter->mng_vlan_id = vid;
 | |
| 	} else {
 | |
| 		adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
 | |
| 	}
 | |
| 
 | |
| 	if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
 | |
| 	    (vid != old_vid) &&
 | |
| 	    !test_bit(old_vid, adapter->active_vlans)) {
 | |
| 		/* remove VID from filter table */
 | |
| 		igb_vfta_set(hw, old_vid, false);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * igb_release_hw_control - release control of the h/w to f/w
 | |
|  * @adapter: address of board private structure
 | |
|  *
 | |
|  * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
 | |
|  * For ASF and Pass Through versions of f/w this means that the
 | |
|  * driver is no longer loaded.
 | |
|  *
 | |
|  **/
 | |
| static void igb_release_hw_control(struct igb_adapter *adapter)
 | |
| {
 | |
| 	struct e1000_hw *hw = &adapter->hw;
 | |
| 	u32 ctrl_ext;
 | |
| 
 | |
| 	/* Let firmware take over control of h/w */
 | |
| 	ctrl_ext = rd32(E1000_CTRL_EXT);
 | |
| 	wr32(E1000_CTRL_EXT,
 | |
| 			ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * igb_get_hw_control - get control of the h/w from f/w
 | |
|  * @adapter: address of board private structure
 | |
|  *
 | |
|  * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
 | |
|  * For ASF and Pass Through versions of f/w this means that
 | |
|  * the driver is loaded.
 | |
|  *
 | |
|  **/
 | |
| static void igb_get_hw_control(struct igb_adapter *adapter)
 | |
| {
 | |
| 	struct e1000_hw *hw = &adapter->hw;
 | |
| 	u32 ctrl_ext;
 | |
| 
 | |
| 	/* Let firmware know the driver has taken over */
 | |
| 	ctrl_ext = rd32(E1000_CTRL_EXT);
 | |
| 	wr32(E1000_CTRL_EXT,
 | |
| 			ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * igb_configure - configure the hardware for RX and TX
 | |
|  * @adapter: private board structure
 | |
|  **/
 | |
| static void igb_configure(struct igb_adapter *adapter)
 | |
| {
 | |
| 	struct net_device *netdev = adapter->netdev;
 | |
| 	int i;
 | |
| 
 | |
| 	igb_get_hw_control(adapter);
 | |
| 	igb_set_rx_mode(netdev);
 | |
| 
 | |
| 	igb_restore_vlan(adapter);
 | |
| 
 | |
| 	igb_setup_tctl(adapter);
 | |
| 	igb_setup_mrqc(adapter);
 | |
| 	igb_setup_rctl(adapter);
 | |
| 
 | |
| 	igb_configure_tx(adapter);
 | |
| 	igb_configure_rx(adapter);
 | |
| 
 | |
| 	igb_rx_fifo_flush_82575(&adapter->hw);
 | |
| 
 | |
| 	/* call igb_desc_unused which always leaves
 | |
| 	 * at least 1 descriptor unused to make sure
 | |
| 	 * next_to_use != next_to_clean */
 | |
| 	for (i = 0; i < adapter->num_rx_queues; i++) {
 | |
| 		struct igb_ring *ring = adapter->rx_ring[i];
 | |
| 		igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * igb_power_up_link - Power up the phy/serdes link
 | |
|  * @adapter: address of board private structure
 | |
|  **/
 | |
| void igb_power_up_link(struct igb_adapter *adapter)
 | |
| {
 | |
| 	igb_reset_phy(&adapter->hw);
 | |
| 
 | |
| 	if (adapter->hw.phy.media_type == e1000_media_type_copper)
 | |
| 		igb_power_up_phy_copper(&adapter->hw);
 | |
| 	else
 | |
| 		igb_power_up_serdes_link_82575(&adapter->hw);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * igb_power_down_link - Power down the phy/serdes link
 | |
|  * @adapter: address of board private structure
 | |
|  */
 | |
| static void igb_power_down_link(struct igb_adapter *adapter)
 | |
| {
 | |
| 	if (adapter->hw.phy.media_type == e1000_media_type_copper)
 | |
| 		igb_power_down_phy_copper_82575(&adapter->hw);
 | |
| 	else
 | |
| 		igb_shutdown_serdes_link_82575(&adapter->hw);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * igb_up - Open the interface and prepare it to handle traffic
 | |
|  * @adapter: board private structure
 | |
|  **/
 | |
| int igb_up(struct igb_adapter *adapter)
 | |
| {
 | |
| 	struct e1000_hw *hw = &adapter->hw;
 | |
| 	int i;
 | |
| 
 | |
| 	/* hardware has been reset, we need to reload some things */
 | |
| 	igb_configure(adapter);
 | |
| 
 | |
| 	clear_bit(__IGB_DOWN, &adapter->state);
 | |
| 
 | |
| 	for (i = 0; i < adapter->num_q_vectors; i++)
 | |
| 		napi_enable(&(adapter->q_vector[i]->napi));
 | |
| 
 | |
| 	if (adapter->msix_entries)
 | |
| 		igb_configure_msix(adapter);
 | |
| 	else
 | |
| 		igb_assign_vector(adapter->q_vector[0], 0);
 | |
| 
 | |
| 	/* Clear any pending interrupts. */
 | |
| 	rd32(E1000_ICR);
 | |
| 	igb_irq_enable(adapter);
 | |
| 
 | |
| 	/* notify VFs that reset has been completed */
 | |
| 	if (adapter->vfs_allocated_count) {
 | |
| 		u32 reg_data = rd32(E1000_CTRL_EXT);
 | |
| 		reg_data |= E1000_CTRL_EXT_PFRSTD;
 | |
| 		wr32(E1000_CTRL_EXT, reg_data);
 | |
| 	}
 | |
| 
 | |
| 	netif_tx_start_all_queues(adapter->netdev);
 | |
| 
 | |
| 	/* start the watchdog. */
 | |
| 	hw->mac.get_link_status = 1;
 | |
| 	schedule_work(&adapter->watchdog_task);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void igb_down(struct igb_adapter *adapter)
 | |
| {
 | |
| 	struct net_device *netdev = adapter->netdev;
 | |
| 	struct e1000_hw *hw = &adapter->hw;
 | |
| 	u32 tctl, rctl;
 | |
| 	int i;
 | |
| 
 | |
| 	/* signal that we're down so the interrupt handler does not
 | |
| 	 * reschedule our watchdog timer */
 | |
| 	set_bit(__IGB_DOWN, &adapter->state);
 | |
| 
 | |
| 	/* disable receives in the hardware */
 | |
| 	rctl = rd32(E1000_RCTL);
 | |
| 	wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
 | |
| 	/* flush and sleep below */
 | |
| 
 | |
| 	netif_tx_stop_all_queues(netdev);
 | |
| 
 | |
| 	/* disable transmits in the hardware */
 | |
| 	tctl = rd32(E1000_TCTL);
 | |
| 	tctl &= ~E1000_TCTL_EN;
 | |
| 	wr32(E1000_TCTL, tctl);
 | |
| 	/* flush both disables and wait for them to finish */
 | |
| 	wrfl();
 | |
| 	msleep(10);
 | |
| 
 | |
| 	for (i = 0; i < adapter->num_q_vectors; i++)
 | |
| 		napi_disable(&(adapter->q_vector[i]->napi));
 | |
| 
 | |
| 	igb_irq_disable(adapter);
 | |
| 
 | |
| 	del_timer_sync(&adapter->watchdog_timer);
 | |
| 	del_timer_sync(&adapter->phy_info_timer);
 | |
| 
 | |
| 	netif_carrier_off(netdev);
 | |
| 
 | |
| 	/* record the stats before reset*/
 | |
| 	spin_lock(&adapter->stats64_lock);
 | |
| 	igb_update_stats(adapter, &adapter->stats64);
 | |
| 	spin_unlock(&adapter->stats64_lock);
 | |
| 
 | |
| 	adapter->link_speed = 0;
 | |
| 	adapter->link_duplex = 0;
 | |
| 
 | |
| 	if (!pci_channel_offline(adapter->pdev))
 | |
| 		igb_reset(adapter);
 | |
| 	igb_clean_all_tx_rings(adapter);
 | |
| 	igb_clean_all_rx_rings(adapter);
 | |
| #ifdef CONFIG_IGB_DCA
 | |
| 
 | |
| 	/* since we reset the hardware DCA settings were cleared */
 | |
| 	igb_setup_dca(adapter);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| void igb_reinit_locked(struct igb_adapter *adapter)
 | |
| {
 | |
| 	WARN_ON(in_interrupt());
 | |
| 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
 | |
| 		msleep(1);
 | |
| 	igb_down(adapter);
 | |
| 	igb_up(adapter);
 | |
| 	clear_bit(__IGB_RESETTING, &adapter->state);
 | |
| }
 | |
| 
 | |
| void igb_reset(struct igb_adapter *adapter)
 | |
| {
 | |
| 	struct pci_dev *pdev = adapter->pdev;
 | |
| 	struct e1000_hw *hw = &adapter->hw;
 | |
| 	struct e1000_mac_info *mac = &hw->mac;
 | |
| 	struct e1000_fc_info *fc = &hw->fc;
 | |
| 	u32 pba = 0, tx_space, min_tx_space, min_rx_space, hwm;
 | |
| 
 | |
| 	/* Repartition Pba for greater than 9k mtu
 | |
| 	 * To take effect CTRL.RST is required.
 | |
| 	 */
 | |
| 	switch (mac->type) {
 | |
| 	case e1000_i350:
 | |
| 	case e1000_82580:
 | |
| 		pba = rd32(E1000_RXPBS);
 | |
| 		pba = igb_rxpbs_adjust_82580(pba);
 | |
| 		break;
 | |
| 	case e1000_82576:
 | |
| 		pba = rd32(E1000_RXPBS);
 | |
| 		pba &= E1000_RXPBS_SIZE_MASK_82576;
 | |
| 		break;
 | |
| 	case e1000_82575:
 | |
| 	case e1000_i210:
 | |
| 	case e1000_i211:
 | |
| 	default:
 | |
| 		pba = E1000_PBA_34K;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
 | |
| 	    (mac->type < e1000_82576)) {
 | |
| 		/* adjust PBA for jumbo frames */
 | |
| 		wr32(E1000_PBA, pba);
 | |
| 
 | |
| 		/* To maintain wire speed transmits, the Tx FIFO should be
 | |
| 		 * large enough to accommodate two full transmit packets,
 | |
| 		 * rounded up to the next 1KB and expressed in KB.  Likewise,
 | |
| 		 * the Rx FIFO should be large enough to accommodate at least
 | |
| 		 * one full receive packet and is similarly rounded up and
 | |
| 		 * expressed in KB. */
 | |
| 		pba = rd32(E1000_PBA);
 | |
| 		/* upper 16 bits has Tx packet buffer allocation size in KB */
 | |
| 		tx_space = pba >> 16;
 | |
| 		/* lower 16 bits has Rx packet buffer allocation size in KB */
 | |
| 		pba &= 0xffff;
 | |
| 		/* the tx fifo also stores 16 bytes of information about the tx
 | |
| 		 * but don't include ethernet FCS because hardware appends it */
 | |
| 		min_tx_space = (adapter->max_frame_size +
 | |
| 				sizeof(union e1000_adv_tx_desc) -
 | |
| 				ETH_FCS_LEN) * 2;
 | |
| 		min_tx_space = ALIGN(min_tx_space, 1024);
 | |
| 		min_tx_space >>= 10;
 | |
| 		/* software strips receive CRC, so leave room for it */
 | |
| 		min_rx_space = adapter->max_frame_size;
 | |
| 		min_rx_space = ALIGN(min_rx_space, 1024);
 | |
| 		min_rx_space >>= 10;
 | |
| 
 | |
| 		/* If current Tx allocation is less than the min Tx FIFO size,
 | |
| 		 * and the min Tx FIFO size is less than the current Rx FIFO
 | |
| 		 * allocation, take space away from current Rx allocation */
 | |
| 		if (tx_space < min_tx_space &&
 | |
| 		    ((min_tx_space - tx_space) < pba)) {
 | |
| 			pba = pba - (min_tx_space - tx_space);
 | |
| 
 | |
| 			/* if short on rx space, rx wins and must trump tx
 | |
| 			 * adjustment */
 | |
| 			if (pba < min_rx_space)
 | |
| 				pba = min_rx_space;
 | |
| 		}
 | |
| 		wr32(E1000_PBA, pba);
 | |
| 	}
 | |
| 
 | |
| 	/* flow control settings */
 | |
| 	/* The high water mark must be low enough to fit one full frame
 | |
| 	 * (or the size used for early receive) above it in the Rx FIFO.
 | |
| 	 * Set it to the lower of:
 | |
| 	 * - 90% of the Rx FIFO size, or
 | |
| 	 * - the full Rx FIFO size minus one full frame */
 | |
| 	hwm = min(((pba << 10) * 9 / 10),
 | |
| 			((pba << 10) - 2 * adapter->max_frame_size));
 | |
| 
 | |
| 	fc->high_water = hwm & 0xFFFFFFF0;	/* 16-byte granularity */
 | |
| 	fc->low_water = fc->high_water - 16;
 | |
| 	fc->pause_time = 0xFFFF;
 | |
| 	fc->send_xon = 1;
 | |
| 	fc->current_mode = fc->requested_mode;
 | |
| 
 | |
| 	/* disable receive for all VFs and wait one second */
 | |
| 	if (adapter->vfs_allocated_count) {
 | |
| 		int i;
 | |
| 		for (i = 0 ; i < adapter->vfs_allocated_count; i++)
 | |
| 			adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
 | |
| 
 | |
| 		/* ping all the active vfs to let them know we are going down */
 | |
| 		igb_ping_all_vfs(adapter);
 | |
| 
 | |
| 		/* disable transmits and receives */
 | |
| 		wr32(E1000_VFRE, 0);
 | |
| 		wr32(E1000_VFTE, 0);
 | |
| 	}
 | |
| 
 | |
| 	/* Allow time for pending master requests to run */
 | |
| 	hw->mac.ops.reset_hw(hw);
 | |
| 	wr32(E1000_WUC, 0);
 | |
| 
 | |
| 	if (hw->mac.ops.init_hw(hw))
 | |
| 		dev_err(&pdev->dev, "Hardware Error\n");
 | |
| 
 | |
| 	/*
 | |
| 	 * Flow control settings reset on hardware reset, so guarantee flow
 | |
| 	 * control is off when forcing speed.
 | |
| 	 */
 | |
| 	if (!hw->mac.autoneg)
 | |
| 		igb_force_mac_fc(hw);
 | |
| 
 | |
| 	igb_init_dmac(adapter, pba);
 | |
| #ifdef CONFIG_IGB_HWMON
 | |
| 	/* Re-initialize the thermal sensor on i350 devices. */
 | |
| 	if (!test_bit(__IGB_DOWN, &adapter->state)) {
 | |
| 		if (mac->type == e1000_i350 && hw->bus.func == 0) {
 | |
| 			/* If present, re-initialize the external thermal sensor
 | |
| 			 * interface.
 | |
| 			 */
 | |
| 			if (adapter->ets)
 | |
| 				mac->ops.init_thermal_sensor_thresh(hw);
 | |
| 		}
 | |
| 	}
 | |
| #endif
 | |
| 	if (!netif_running(adapter->netdev))
 | |
| 		igb_power_down_link(adapter);
 | |
| 
 | |
| 	igb_update_mng_vlan(adapter);
 | |
| 
 | |
| 	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
 | |
| 	wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
 | |
| 
 | |
| 	/* Re-enable PTP, where applicable. */
 | |
| 	igb_ptp_reset(adapter);
 | |
| 
 | |
| 	igb_get_phy_info(hw);
 | |
| }
 | |
| 
 | |
| static netdev_features_t igb_fix_features(struct net_device *netdev,
 | |
| 	netdev_features_t features)
 | |
| {
 | |
| 	/*
 | |
| 	 * Since there is no support for separate rx/tx vlan accel
 | |
| 	 * enable/disable make sure tx flag is always in same state as rx.
 | |
| 	 */
 | |
| 	if (features & NETIF_F_HW_VLAN_RX)
 | |
| 		features |= NETIF_F_HW_VLAN_TX;
 | |
| 	else
 | |
| 		features &= ~NETIF_F_HW_VLAN_TX;
 | |
| 
 | |
| 	return features;
 | |
| }
 | |
| 
 | |
| static int igb_set_features(struct net_device *netdev,
 | |
| 	netdev_features_t features)
 | |
| {
 | |
| 	netdev_features_t changed = netdev->features ^ features;
 | |
| 	struct igb_adapter *adapter = netdev_priv(netdev);
 | |
| 
 | |
| 	if (changed & NETIF_F_HW_VLAN_RX)
 | |
| 		igb_vlan_mode(netdev, features);
 | |
| 
 | |
| 	if (!(changed & NETIF_F_RXALL))
 | |
| 		return 0;
 | |
| 
 | |
| 	netdev->features = features;
 | |
| 
 | |
| 	if (netif_running(netdev))
 | |
| 		igb_reinit_locked(adapter);
 | |
| 	else
 | |
| 		igb_reset(adapter);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static const struct net_device_ops igb_netdev_ops = {
 | |
| 	.ndo_open		= igb_open,
 | |
| 	.ndo_stop		= igb_close,
 | |
| 	.ndo_start_xmit		= igb_xmit_frame,
 | |
| 	.ndo_get_stats64	= igb_get_stats64,
 | |
| 	.ndo_set_rx_mode	= igb_set_rx_mode,
 | |
| 	.ndo_set_mac_address	= igb_set_mac,
 | |
| 	.ndo_change_mtu		= igb_change_mtu,
 | |
| 	.ndo_do_ioctl		= igb_ioctl,
 | |
| 	.ndo_tx_timeout		= igb_tx_timeout,
 | |
| 	.ndo_validate_addr	= eth_validate_addr,
 | |
| 	.ndo_vlan_rx_add_vid	= igb_vlan_rx_add_vid,
 | |
| 	.ndo_vlan_rx_kill_vid	= igb_vlan_rx_kill_vid,
 | |
| 	.ndo_set_vf_mac		= igb_ndo_set_vf_mac,
 | |
| 	.ndo_set_vf_vlan	= igb_ndo_set_vf_vlan,
 | |
| 	.ndo_set_vf_tx_rate	= igb_ndo_set_vf_bw,
 | |
| 	.ndo_get_vf_config	= igb_ndo_get_vf_config,
 | |
| #ifdef CONFIG_NET_POLL_CONTROLLER
 | |
| 	.ndo_poll_controller	= igb_netpoll,
 | |
| #endif
 | |
| 	.ndo_fix_features	= igb_fix_features,
 | |
| 	.ndo_set_features	= igb_set_features,
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * igb_set_fw_version - Configure version string for ethtool
 | |
|  * @adapter: adapter struct
 | |
|  *
 | |
|  **/
 | |
| void igb_set_fw_version(struct igb_adapter *adapter)
 | |
| {
 | |
| 	struct e1000_hw *hw = &adapter->hw;
 | |
| 	struct e1000_fw_version fw;
 | |
| 
 | |
| 	igb_get_fw_version(hw, &fw);
 | |
| 
 | |
| 	switch (hw->mac.type) {
 | |
| 	case e1000_i211:
 | |
| 		snprintf(adapter->fw_version, sizeof(adapter->fw_version),
 | |
| 			 "%2d.%2d-%d",
 | |
| 			 fw.invm_major, fw.invm_minor, fw.invm_img_type);
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		/* if option is rom valid, display its version too */
 | |
| 		if (fw.or_valid) {
 | |
| 			snprintf(adapter->fw_version,
 | |
| 				 sizeof(adapter->fw_version),
 | |
| 				 "%d.%d, 0x%08x, %d.%d.%d",
 | |
| 				 fw.eep_major, fw.eep_minor, fw.etrack_id,
 | |
| 				 fw.or_major, fw.or_build, fw.or_patch);
 | |
| 		/* no option rom */
 | |
| 		} else {
 | |
| 			snprintf(adapter->fw_version,
 | |
| 				 sizeof(adapter->fw_version),
 | |
| 				 "%d.%d, 0x%08x",
 | |
| 				 fw.eep_major, fw.eep_minor, fw.etrack_id);
 | |
| 		}
 | |
| 		break;
 | |
| 	}
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| static const struct i2c_board_info i350_sensor_info = {
 | |
| 	I2C_BOARD_INFO("i350bb", 0Xf8),
 | |
| };
 | |
| 
 | |
| /*  igb_init_i2c - Init I2C interface
 | |
|  *  @adapter: pointer to adapter structure
 | |
|  *
 | |
|  */
 | |
| static s32 igb_init_i2c(struct igb_adapter *adapter)
 | |
| {
 | |
| 	s32 status = E1000_SUCCESS;
 | |
| 
 | |
| 	/* I2C interface supported on i350 devices */
 | |
| 	if (adapter->hw.mac.type != e1000_i350)
 | |
| 		return E1000_SUCCESS;
 | |
| 
 | |
| 	/* Initialize the i2c bus which is controlled by the registers.
 | |
| 	 * This bus will use the i2c_algo_bit structue that implements
 | |
| 	 * the protocol through toggling of the 4 bits in the register.
 | |
| 	 */
 | |
| 	adapter->i2c_adap.owner = THIS_MODULE;
 | |
| 	adapter->i2c_algo = igb_i2c_algo;
 | |
| 	adapter->i2c_algo.data = adapter;
 | |
| 	adapter->i2c_adap.algo_data = &adapter->i2c_algo;
 | |
| 	adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
 | |
| 	strlcpy(adapter->i2c_adap.name, "igb BB",
 | |
| 		sizeof(adapter->i2c_adap.name));
 | |
| 	status = i2c_bit_add_bus(&adapter->i2c_adap);
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * igb_probe - Device Initialization Routine
 | |
|  * @pdev: PCI device information struct
 | |
|  * @ent: entry in igb_pci_tbl
 | |
|  *
 | |
|  * Returns 0 on success, negative on failure
 | |
|  *
 | |
|  * igb_probe initializes an adapter identified by a pci_dev structure.
 | |
|  * The OS initialization, configuring of the adapter private structure,
 | |
|  * and a hardware reset occur.
 | |
|  **/
 | |
| static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
 | |
| {
 | |
| 	struct net_device *netdev;
 | |
| 	struct igb_adapter *adapter;
 | |
| 	struct e1000_hw *hw;
 | |
| 	u16 eeprom_data = 0;
 | |
| 	s32 ret_val;
 | |
| 	static int global_quad_port_a; /* global quad port a indication */
 | |
| 	const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
 | |
| 	unsigned long mmio_start, mmio_len;
 | |
| 	int err, pci_using_dac;
 | |
| 	u8 part_str[E1000_PBANUM_LENGTH];
 | |
| 
 | |
| 	/* Catch broken hardware that put the wrong VF device ID in
 | |
| 	 * the PCIe SR-IOV capability.
 | |
| 	 */
 | |
| 	if (pdev->is_virtfn) {
 | |
| 		WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
 | |
| 			pci_name(pdev), pdev->vendor, pdev->device);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	err = pci_enable_device_mem(pdev);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	pci_using_dac = 0;
 | |
| 	err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
 | |
| 	if (!err) {
 | |
| 		err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
 | |
| 		if (!err)
 | |
| 			pci_using_dac = 1;
 | |
| 	} else {
 | |
| 		err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
 | |
| 		if (err) {
 | |
| 			err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
 | |
| 			if (err) {
 | |
| 				dev_err(&pdev->dev, "No usable DMA "
 | |
| 					"configuration, aborting\n");
 | |
| 				goto err_dma;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
 | |
| 	                                   IORESOURCE_MEM),
 | |
| 	                                   igb_driver_name);
 | |
| 	if (err)
 | |
| 		goto err_pci_reg;
 | |
| 
 | |
| 	pci_enable_pcie_error_reporting(pdev);
 | |
| 
 | |
| 	pci_set_master(pdev);
 | |
| 	pci_save_state(pdev);
 | |
| 
 | |
| 	err = -ENOMEM;
 | |
| 	netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
 | |
| 				   IGB_MAX_TX_QUEUES);
 | |
| 	if (!netdev)
 | |
| 		goto err_alloc_etherdev;
 | |
| 
 | |
| 	SET_NETDEV_DEV(netdev, &pdev->dev);
 | |
| 
 | |
| 	pci_set_drvdata(pdev, netdev);
 | |
| 	adapter = netdev_priv(netdev);
 | |
| 	adapter->netdev = netdev;
 | |
| 	adapter->pdev = pdev;
 | |
| 	hw = &adapter->hw;
 | |
| 	hw->back = adapter;
 | |
| 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
 | |
| 
 | |
| 	mmio_start = pci_resource_start(pdev, 0);
 | |
| 	mmio_len = pci_resource_len(pdev, 0);
 | |
| 
 | |
| 	err = -EIO;
 | |
| 	hw->hw_addr = ioremap(mmio_start, mmio_len);
 | |
| 	if (!hw->hw_addr)
 | |
| 		goto err_ioremap;
 | |
| 
 | |
| 	netdev->netdev_ops = &igb_netdev_ops;
 | |
| 	igb_set_ethtool_ops(netdev);
 | |
| 	netdev->watchdog_timeo = 5 * HZ;
 | |
| 
 | |
| 	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
 | |
| 
 | |
| 	netdev->mem_start = mmio_start;
 | |
| 	netdev->mem_end = mmio_start + mmio_len;
 | |
| 
 | |
| 	/* PCI config space info */
 | |
| 	hw->vendor_id = pdev->vendor;
 | |
| 	hw->device_id = pdev->device;
 | |
| 	hw->revision_id = pdev->revision;
 | |
| 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
 | |
| 	hw->subsystem_device_id = pdev->subsystem_device;
 | |
| 
 | |
| 	/* Copy the default MAC, PHY and NVM function pointers */
 | |
| 	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
 | |
| 	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
 | |
| 	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
 | |
| 	/* Initialize skew-specific constants */
 | |
| 	err = ei->get_invariants(hw);
 | |
| 	if (err)
 | |
| 		goto err_sw_init;
 | |
| 
 | |
| 	/* setup the private structure */
 | |
| 	err = igb_sw_init(adapter);
 | |
| 	if (err)
 | |
| 		goto err_sw_init;
 | |
| 
 | |
| 	igb_get_bus_info_pcie(hw);
 | |
| 
 | |
| 	hw->phy.autoneg_wait_to_complete = false;
 | |
| 
 | |
| 	/* Copper options */
 | |
| 	if (hw->phy.media_type == e1000_media_type_copper) {
 | |
| 		hw->phy.mdix = AUTO_ALL_MODES;
 | |
| 		hw->phy.disable_polarity_correction = false;
 | |
| 		hw->phy.ms_type = e1000_ms_hw_default;
 | |
| 	}
 | |
| 
 | |
| 	if (igb_check_reset_block(hw))
 | |
| 		dev_info(&pdev->dev,
 | |
| 			"PHY reset is blocked due to SOL/IDER session.\n");
 | |
| 
 | |
| 	/*
 | |
| 	 * features is initialized to 0 in allocation, it might have bits
 | |
| 	 * set by igb_sw_init so we should use an or instead of an
 | |
| 	 * assignment.
 | |
| 	 */
 | |
| 	netdev->features |= NETIF_F_SG |
 | |
| 			    NETIF_F_IP_CSUM |
 | |
| 			    NETIF_F_IPV6_CSUM |
 | |
| 			    NETIF_F_TSO |
 | |
| 			    NETIF_F_TSO6 |
 | |
| 			    NETIF_F_RXHASH |
 | |
| 			    NETIF_F_RXCSUM |
 | |
| 			    NETIF_F_HW_VLAN_RX |
 | |
| 			    NETIF_F_HW_VLAN_TX;
 | |
| 
 | |
| 	/* copy netdev features into list of user selectable features */
 | |
| 	netdev->hw_features |= netdev->features;
 | |
| 	netdev->hw_features |= NETIF_F_RXALL;
 | |
| 
 | |
| 	/* set this bit last since it cannot be part of hw_features */
 | |
| 	netdev->features |= NETIF_F_HW_VLAN_FILTER;
 | |
| 
 | |
| 	netdev->vlan_features |= NETIF_F_TSO |
 | |
| 				 NETIF_F_TSO6 |
 | |
| 				 NETIF_F_IP_CSUM |
 | |
| 				 NETIF_F_IPV6_CSUM |
 | |
| 				 NETIF_F_SG;
 | |
| 
 | |
| 	netdev->priv_flags |= IFF_SUPP_NOFCS;
 | |
| 
 | |
| 	if (pci_using_dac) {
 | |
| 		netdev->features |= NETIF_F_HIGHDMA;
 | |
| 		netdev->vlan_features |= NETIF_F_HIGHDMA;
 | |
| 	}
 | |
| 
 | |
| 	if (hw->mac.type >= e1000_82576) {
 | |
| 		netdev->hw_features |= NETIF_F_SCTP_CSUM;
 | |
| 		netdev->features |= NETIF_F_SCTP_CSUM;
 | |
| 	}
 | |
| 
 | |
| 	netdev->priv_flags |= IFF_UNICAST_FLT;
 | |
| 
 | |
| 	adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
 | |
| 
 | |
| 	/* before reading the NVM, reset the controller to put the device in a
 | |
| 	 * known good starting state */
 | |
| 	hw->mac.ops.reset_hw(hw);
 | |
| 
 | |
| 	/*
 | |
| 	 * make sure the NVM is good , i211 parts have special NVM that
 | |
| 	 * doesn't contain a checksum
 | |
| 	 */
 | |
| 	if (hw->mac.type != e1000_i211) {
 | |
| 		if (hw->nvm.ops.validate(hw) < 0) {
 | |
| 			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
 | |
| 			err = -EIO;
 | |
| 			goto err_eeprom;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* copy the MAC address out of the NVM */
 | |
| 	if (hw->mac.ops.read_mac_addr(hw))
 | |
| 		dev_err(&pdev->dev, "NVM Read Error\n");
 | |
| 
 | |
| 	memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
 | |
| 
 | |
| 	if (!is_valid_ether_addr(netdev->dev_addr)) {
 | |
| 		dev_err(&pdev->dev, "Invalid MAC Address\n");
 | |
| 		err = -EIO;
 | |
| 		goto err_eeprom;
 | |
| 	}
 | |
| 
 | |
| 	/* get firmware version for ethtool -i */
 | |
| 	igb_set_fw_version(adapter);
 | |
| 
 | |
| 	setup_timer(&adapter->watchdog_timer, igb_watchdog,
 | |
| 	            (unsigned long) adapter);
 | |
| 	setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
 | |
| 	            (unsigned long) adapter);
 | |
| 
 | |
| 	INIT_WORK(&adapter->reset_task, igb_reset_task);
 | |
| 	INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
 | |
| 
 | |
| 	/* Initialize link properties that are user-changeable */
 | |
| 	adapter->fc_autoneg = true;
 | |
| 	hw->mac.autoneg = true;
 | |
| 	hw->phy.autoneg_advertised = 0x2f;
 | |
| 
 | |
| 	hw->fc.requested_mode = e1000_fc_default;
 | |
| 	hw->fc.current_mode = e1000_fc_default;
 | |
| 
 | |
| 	igb_validate_mdi_setting(hw);
 | |
| 
 | |
| 	/* By default, support wake on port A */
 | |
| 	if (hw->bus.func == 0)
 | |
| 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
 | |
| 
 | |
| 	/* Check the NVM for wake support on non-port A ports */
 | |
| 	if (hw->mac.type >= e1000_82580)
 | |
| 		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
 | |
| 		                 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
 | |
| 		                 &eeprom_data);
 | |
| 	else if (hw->bus.func == 1)
 | |
| 		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
 | |
| 
 | |
| 	if (eeprom_data & IGB_EEPROM_APME)
 | |
| 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
 | |
| 
 | |
| 	/* now that we have the eeprom settings, apply the special cases where
 | |
| 	 * the eeprom may be wrong or the board simply won't support wake on
 | |
| 	 * lan on a particular port */
 | |
| 	switch (pdev->device) {
 | |
| 	case E1000_DEV_ID_82575GB_QUAD_COPPER:
 | |
| 		adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
 | |
| 		break;
 | |
| 	case E1000_DEV_ID_82575EB_FIBER_SERDES:
 | |
| 	case E1000_DEV_ID_82576_FIBER:
 | |
| 	case E1000_DEV_ID_82576_SERDES:
 | |
| 		/* Wake events only supported on port A for dual fiber
 | |
| 		 * regardless of eeprom setting */
 | |
| 		if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
 | |
| 			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
 | |
| 		break;
 | |
| 	case E1000_DEV_ID_82576_QUAD_COPPER:
 | |
| 	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
 | |
| 		/* if quad port adapter, disable WoL on all but port A */
 | |
| 		if (global_quad_port_a != 0)
 | |
| 			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
 | |
| 		else
 | |
| 			adapter->flags |= IGB_FLAG_QUAD_PORT_A;
 | |
| 		/* Reset for multiple quad port adapters */
 | |
| 		if (++global_quad_port_a == 4)
 | |
| 			global_quad_port_a = 0;
 | |
| 		break;
 | |
| 	default:
 | |
| 		/* If the device can't wake, don't set software support */
 | |
| 		if (!device_can_wakeup(&adapter->pdev->dev))
 | |
| 			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
 | |
| 	}
 | |
| 
 | |
| 	/* initialize the wol settings based on the eeprom settings */
 | |
| 	if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
 | |
| 		adapter->wol |= E1000_WUFC_MAG;
 | |
| 
 | |
| 	/* Some vendors want WoL disabled by default, but still supported */
 | |
| 	if ((hw->mac.type == e1000_i350) &&
 | |
| 	    (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
 | |
| 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
 | |
| 		adapter->wol = 0;
 | |
| 	}
 | |
| 
 | |
| 	device_set_wakeup_enable(&adapter->pdev->dev,
 | |
| 				 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
 | |
| 
 | |
| 	/* reset the hardware with the new settings */
 | |
| 	igb_reset(adapter);
 | |
| 
 | |
| 	/* Init the I2C interface */
 | |
| 	err = igb_init_i2c(adapter);
 | |
| 	if (err) {
 | |
| 		dev_err(&pdev->dev, "failed to init i2c interface\n");
 | |
| 		goto err_eeprom;
 | |
| 	}
 | |
| 
 | |
| 	/* let the f/w know that the h/w is now under the control of the
 | |
| 	 * driver. */
 | |
| 	igb_get_hw_control(adapter);
 | |
| 
 | |
| 	strcpy(netdev->name, "eth%d");
 | |
| 	err = register_netdev(netdev);
 | |
| 	if (err)
 | |
| 		goto err_register;
 | |
| 
 | |
| 	/* carrier off reporting is important to ethtool even BEFORE open */
 | |
| 	netif_carrier_off(netdev);
 | |
| 
 | |
| #ifdef CONFIG_IGB_DCA
 | |
| 	if (dca_add_requester(&pdev->dev) == 0) {
 | |
| 		adapter->flags |= IGB_FLAG_DCA_ENABLED;
 | |
| 		dev_info(&pdev->dev, "DCA enabled\n");
 | |
| 		igb_setup_dca(adapter);
 | |
| 	}
 | |
| 
 | |
| #endif
 | |
| #ifdef CONFIG_IGB_HWMON
 | |
| 	/* Initialize the thermal sensor on i350 devices. */
 | |
| 	if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
 | |
| 		u16 ets_word;
 | |
| 
 | |
| 		/*
 | |
| 		 * Read the NVM to determine if this i350 device supports an
 | |
| 		 * external thermal sensor.
 | |
| 		 */
 | |
| 		hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
 | |
| 		if (ets_word != 0x0000 && ets_word != 0xFFFF)
 | |
| 			adapter->ets = true;
 | |
| 		else
 | |
| 			adapter->ets = false;
 | |
| 		if (igb_sysfs_init(adapter))
 | |
| 			dev_err(&pdev->dev,
 | |
| 				"failed to allocate sysfs resources\n");
 | |
| 	} else {
 | |
| 		adapter->ets = false;
 | |
| 	}
 | |
| #endif
 | |
| 	/* do hw tstamp init after resetting */
 | |
| 	igb_ptp_init(adapter);
 | |
| 
 | |
| 	dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
 | |
| 	/* print bus type/speed/width info */
 | |
| 	dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
 | |
| 		 netdev->name,
 | |
| 		 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
 | |
| 		  (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
 | |
| 		                                            "unknown"),
 | |
| 		 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
 | |
| 		  (hw->bus.width == e1000_bus_width_pcie_x2) ? "Width x2" :
 | |
| 		  (hw->bus.width == e1000_bus_width_pcie_x1) ? "Width x1" :
 | |
| 		   "unknown"),
 | |
| 		 netdev->dev_addr);
 | |
| 
 | |
| 	ret_val = igb_read_part_string(hw, part_str, E1000_PBANUM_LENGTH);
 | |
| 	if (ret_val)
 | |
| 		strcpy(part_str, "Unknown");
 | |
| 	dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
 | |
| 	dev_info(&pdev->dev,
 | |
| 		"Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
 | |
| 		adapter->msix_entries ? "MSI-X" :
 | |
| 		(adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
 | |
| 		adapter->num_rx_queues, adapter->num_tx_queues);
 | |
| 	switch (hw->mac.type) {
 | |
| 	case e1000_i350:
 | |
| 	case e1000_i210:
 | |
| 	case e1000_i211:
 | |
| 		igb_set_eee_i350(hw);
 | |
| 		break;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	pm_runtime_put_noidle(&pdev->dev);
 | |
| 	return 0;
 | |
| 
 | |
| err_register:
 | |
| 	igb_release_hw_control(adapter);
 | |
| 	memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
 | |
| err_eeprom:
 | |
| 	if (!igb_check_reset_block(hw))
 | |
| 		igb_reset_phy(hw);
 | |
| 
 | |
| 	if (hw->flash_address)
 | |
| 		iounmap(hw->flash_address);
 | |
| err_sw_init:
 | |
| 	igb_clear_interrupt_scheme(adapter);
 | |
| 	iounmap(hw->hw_addr);
 | |
| err_ioremap:
 | |
| 	free_netdev(netdev);
 | |
| err_alloc_etherdev:
 | |
| 	pci_release_selected_regions(pdev,
 | |
| 	                             pci_select_bars(pdev, IORESOURCE_MEM));
 | |
| err_pci_reg:
 | |
| err_dma:
 | |
| 	pci_disable_device(pdev);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_PCI_IOV
 | |
| static int  igb_disable_sriov(struct pci_dev *pdev)
 | |
| {
 | |
| 	struct net_device *netdev = pci_get_drvdata(pdev);
 | |
| 	struct igb_adapter *adapter = netdev_priv(netdev);
 | |
| 	struct e1000_hw *hw = &adapter->hw;
 | |
| 
 | |
| 	/* reclaim resources allocated to VFs */
 | |
| 	if (adapter->vf_data) {
 | |
| 		/* disable iov and allow time for transactions to clear */
 | |
| 		if (igb_vfs_are_assigned(adapter)) {
 | |
| 			dev_warn(&pdev->dev,
 | |
| 				 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
 | |
| 			return -EPERM;
 | |
| 		} else {
 | |
| 			pci_disable_sriov(pdev);
 | |
| 			msleep(500);
 | |
| 		}
 | |
| 
 | |
| 		kfree(adapter->vf_data);
 | |
| 		adapter->vf_data = NULL;
 | |
| 		adapter->vfs_allocated_count = 0;
 | |
| 		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
 | |
| 		wrfl();
 | |
| 		msleep(100);
 | |
| 		dev_info(&pdev->dev, "IOV Disabled\n");
 | |
| 
 | |
| 		/* Re-enable DMA Coalescing flag since IOV is turned off */
 | |
| 		adapter->flags |= IGB_FLAG_DMAC;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
 | |
| {
 | |
| 	struct net_device *netdev = pci_get_drvdata(pdev);
 | |
| 	struct igb_adapter *adapter = netdev_priv(netdev);
 | |
| 	int old_vfs = pci_num_vf(pdev);
 | |
| 	int err = 0;
 | |
| 	int i;
 | |
| 
 | |
| 	if (!num_vfs)
 | |
| 		goto out;
 | |
| 	else if (old_vfs && old_vfs == num_vfs)
 | |
| 		goto out;
 | |
| 	else if (old_vfs && old_vfs != num_vfs)
 | |
| 		err = igb_disable_sriov(pdev);
 | |
| 
 | |
| 	if (err)
 | |
| 		goto out;
 | |
| 
 | |
| 	if (num_vfs > 7) {
 | |
| 		err = -EPERM;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	adapter->vfs_allocated_count = num_vfs;
 | |
| 
 | |
| 	adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
 | |
| 				sizeof(struct vf_data_storage), GFP_KERNEL);
 | |
| 
 | |
| 	/* if allocation failed then we do not support SR-IOV */
 | |
| 	if (!adapter->vf_data) {
 | |
| 		adapter->vfs_allocated_count = 0;
 | |
| 		dev_err(&pdev->dev,
 | |
| 			"Unable to allocate memory for VF Data Storage\n");
 | |
| 		err = -ENOMEM;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
 | |
| 	if (err)
 | |
| 		goto err_out;
 | |
| 
 | |
| 	dev_info(&pdev->dev, "%d VFs allocated\n",
 | |
| 		 adapter->vfs_allocated_count);
 | |
| 	for (i = 0; i < adapter->vfs_allocated_count; i++)
 | |
| 		igb_vf_configure(adapter, i);
 | |
| 
 | |
| 	/* DMA Coalescing is not supported in IOV mode. */
 | |
| 	adapter->flags &= ~IGB_FLAG_DMAC;
 | |
| 	goto out;
 | |
| 
 | |
| err_out:
 | |
| 	kfree(adapter->vf_data);
 | |
| 	adapter->vf_data = NULL;
 | |
| 	adapter->vfs_allocated_count = 0;
 | |
| out:
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| #endif
 | |
| /*
 | |
|  *  igb_remove_i2c - Cleanup  I2C interface
 | |
|  *  @adapter: pointer to adapter structure
 | |
|  *
 | |
|  */
 | |
| static void igb_remove_i2c(struct igb_adapter *adapter)
 | |
| {
 | |
| 
 | |
| 	/* free the adapter bus structure */
 | |
| 	i2c_del_adapter(&adapter->i2c_adap);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * igb_remove - Device Removal Routine
 | |
|  * @pdev: PCI device information struct
 | |
|  *
 | |
|  * igb_remove is called by the PCI subsystem to alert the driver
 | |
|  * that it should release a PCI device.  The could be caused by a
 | |
|  * Hot-Plug event, or because the driver is going to be removed from
 | |
|  * memory.
 | |
|  **/
 | |
| static void igb_remove(struct pci_dev *pdev)
 | |
| {
 | |
| 	struct net_device *netdev = pci_get_drvdata(pdev);
 | |
| 	struct igb_adapter *adapter = netdev_priv(netdev);
 | |
| 	struct e1000_hw *hw = &adapter->hw;
 | |
| 
 | |
| 	pm_runtime_get_noresume(&pdev->dev);
 | |
| #ifdef CONFIG_IGB_HWMON
 | |
| 	igb_sysfs_exit(adapter);
 | |
| #endif
 | |
| 	igb_remove_i2c(adapter);
 | |
| 	igb_ptp_stop(adapter);
 | |
| 	/*
 | |
| 	 * The watchdog timer may be rescheduled, so explicitly
 | |
| 	 * disable watchdog from being rescheduled.
 | |
| 	 */
 | |
| 	set_bit(__IGB_DOWN, &adapter->state);
 | |
| 	del_timer_sync(&adapter->watchdog_timer);
 | |
| 	del_timer_sync(&adapter->phy_info_timer);
 | |
| 
 | |
| 	cancel_work_sync(&adapter->reset_task);
 | |
| 	cancel_work_sync(&adapter->watchdog_task);
 | |
| 
 | |
| #ifdef CONFIG_IGB_DCA
 | |
| 	if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
 | |
| 		dev_info(&pdev->dev, "DCA disabled\n");
 | |
| 		dca_remove_requester(&pdev->dev);
 | |
| 		adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
 | |
| 		wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
 | |
| 	 * would have already happened in close and is redundant. */
 | |
| 	igb_release_hw_control(adapter);
 | |
| 
 | |
| 	unregister_netdev(netdev);
 | |
| 
 | |
| 	igb_clear_interrupt_scheme(adapter);
 | |
| 
 | |
| #ifdef CONFIG_PCI_IOV
 | |
| 	igb_disable_sriov(pdev);
 | |
| #endif
 | |
| 
 | |
| 	iounmap(hw->hw_addr);
 | |
| 	if (hw->flash_address)
 | |
| 		iounmap(hw->flash_address);
 | |
| 	pci_release_selected_regions(pdev,
 | |
| 	                             pci_select_bars(pdev, IORESOURCE_MEM));
 | |
| 
 | |
| 	kfree(adapter->shadow_vfta);
 | |
| 	free_netdev(netdev);
 | |
| 
 | |
| 	pci_disable_pcie_error_reporting(pdev);
 | |
| 
 | |
| 	pci_disable_device(pdev);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
 | |
|  * @adapter: board private structure to initialize
 | |
|  *
 | |
|  * This function initializes the vf specific data storage and then attempts to
 | |
|  * allocate the VFs.  The reason for ordering it this way is because it is much
 | |
|  * mor expensive time wise to disable SR-IOV than it is to allocate and free
 | |
|  * the memory for the VFs.
 | |
|  **/
 | |
| static void igb_probe_vfs(struct igb_adapter *adapter)
 | |
| {
 | |
| #ifdef CONFIG_PCI_IOV
 | |
| 	struct pci_dev *pdev = adapter->pdev;
 | |
| 	struct e1000_hw *hw = &adapter->hw;
 | |
| 
 | |
| 	/* Virtualization features not supported on i210 family. */
 | |
| 	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
 | |
| 		return;
 | |
| 
 | |
| 	igb_enable_sriov(pdev, max_vfs);
 | |
| 	pci_sriov_set_totalvfs(pdev, 7);
 | |
| 
 | |
| #endif /* CONFIG_PCI_IOV */
 | |
| }
 | |
| 
 | |
| static void igb_init_queue_configuration(struct igb_adapter *adapter)
 | |
| {
 | |
| 	struct e1000_hw *hw = &adapter->hw;
 | |
| 	u32 max_rss_queues;
 | |
| 
 | |
| 	/* Determine the maximum number of RSS queues supported. */
 | |
| 	switch (hw->mac.type) {
 | |
| 	case e1000_i211:
 | |
| 		max_rss_queues = IGB_MAX_RX_QUEUES_I211;
 | |
| 		break;
 | |
| 	case e1000_82575:
 | |
| 	case e1000_i210:
 | |
| 		max_rss_queues = IGB_MAX_RX_QUEUES_82575;
 | |
| 		break;
 | |
| 	case e1000_i350:
 | |
| 		/* I350 cannot do RSS and SR-IOV at the same time */
 | |
| 		if (!!adapter->vfs_allocated_count) {
 | |
| 			max_rss_queues = 1;
 | |
| 			break;
 | |
| 		}
 | |
| 		/* fall through */
 | |
| 	case e1000_82576:
 | |
| 		if (!!adapter->vfs_allocated_count) {
 | |
| 			max_rss_queues = 2;
 | |
| 			break;
 | |
| 		}
 | |
| 		/* fall through */
 | |
| 	case e1000_82580:
 | |
| 	default:
 | |
| 		max_rss_queues = IGB_MAX_RX_QUEUES;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
 | |
| 
 | |
| 	/* Determine if we need to pair queues. */
 | |
| 	switch (hw->mac.type) {
 | |
| 	case e1000_82575:
 | |
| 	case e1000_i211:
 | |
| 		/* Device supports enough interrupts without queue pairing. */
 | |
| 		break;
 | |
| 	case e1000_82576:
 | |
| 		/*
 | |
| 		 * If VFs are going to be allocated with RSS queues then we
 | |
| 		 * should pair the queues in order to conserve interrupts due
 | |
| 		 * to limited supply.
 | |
| 		 */
 | |
| 		if ((adapter->rss_queues > 1) &&
 | |
| 		    (adapter->vfs_allocated_count > 6))
 | |
| 			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
 | |
| 		/* fall through */
 | |
| 	case e1000_82580:
 | |
| 	case e1000_i350:
 | |
| 	case e1000_i210:
 | |
| 	default:
 | |
| 		/*
 | |
| 		 * If rss_queues > half of max_rss_queues, pair the queues in
 | |
| 		 * order to conserve interrupts due to limited supply.
 | |
| 		 */
 | |
| 		if (adapter->rss_queues > (max_rss_queues / 2))
 | |
| 			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
 | |
| 		break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * igb_sw_init - Initialize general software structures (struct igb_adapter)
 | |
|  * @adapter: board private structure to initialize
 | |
|  *
 | |
|  * igb_sw_init initializes the Adapter private data structure.
 | |
|  * Fields are initialized based on PCI device information and
 | |
|  * OS network device settings (MTU size).
 | |
|  **/
 | |
| static int igb_sw_init(struct igb_adapter *adapter)
 | |
| {
 | |
| 	struct e1000_hw *hw = &adapter->hw;
 | |
| 	struct net_device *netdev = adapter->netdev;
 | |
| 	struct pci_dev *pdev = adapter->pdev;
 | |
| 
 | |
| 	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
 | |
| 
 | |
| 	/* set default ring sizes */
 | |
| 	adapter->tx_ring_count = IGB_DEFAULT_TXD;
 | |
| 	adapter->rx_ring_count = IGB_DEFAULT_RXD;
 | |
| 
 | |
| 	/* set default ITR values */
 | |
| 	adapter->rx_itr_setting = IGB_DEFAULT_ITR;
 | |
| 	adapter->tx_itr_setting = IGB_DEFAULT_ITR;
 | |
| 
 | |
| 	/* set default work limits */
 | |
| 	adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
 | |
| 
 | |
| 	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
 | |
| 				  VLAN_HLEN;
 | |
| 	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
 | |
| 
 | |
| 	spin_lock_init(&adapter->stats64_lock);
 | |
| #ifdef CONFIG_PCI_IOV
 | |
| 	switch (hw->mac.type) {
 | |
| 	case e1000_82576:
 | |
| 	case e1000_i350:
 | |
| 		if (max_vfs > 7) {
 | |
| 			dev_warn(&pdev->dev,
 | |
| 				 "Maximum of 7 VFs per PF, using max\n");
 | |
| 			adapter->vfs_allocated_count = 7;
 | |
| 		} else
 | |
| 			adapter->vfs_allocated_count = max_vfs;
 | |
| 		if (adapter->vfs_allocated_count)
 | |
| 			dev_warn(&pdev->dev,
 | |
| 				 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
 | |
| 		break;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| #endif /* CONFIG_PCI_IOV */
 | |
| 
 | |
| 	igb_init_queue_configuration(adapter);
 | |
| 
 | |
| 	/* Setup and initialize a copy of the hw vlan table array */
 | |
| 	adapter->shadow_vfta = kzalloc(sizeof(u32) *
 | |
| 				E1000_VLAN_FILTER_TBL_SIZE,
 | |
| 				GFP_ATOMIC);
 | |
| 
 | |
| 	/* This call may decrease the number of queues */
 | |
| 	if (igb_init_interrupt_scheme(adapter, true)) {
 | |
| 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	igb_probe_vfs(adapter);
 | |
| 
 | |
| 	/* Explicitly disable IRQ since the NIC can be in any state. */
 | |
| 	igb_irq_disable(adapter);
 | |
| 
 | |
| 	if (hw->mac.type >= e1000_i350)
 | |
| 		adapter->flags &= ~IGB_FLAG_DMAC;
 | |
| 
 | |
| 	set_bit(__IGB_DOWN, &adapter->state);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * igb_open - Called when a network interface is made active
 | |
|  * @netdev: network interface device structure
 | |
|  *
 | |
|  * Returns 0 on success, negative value on failure
 | |
|  *
 | |
|  * The open entry point is called when a network interface is made
 | |
|  * active by the system (IFF_UP).  At this point all resources needed
 | |
|  * for transmit and receive operations are allocated, the interrupt
 | |
|  * handler is registered with the OS, the watchdog timer is started,
 | |
|  * and the stack is notified that the interface is ready.
 | |
|  **/
 | |
| static int __igb_open(struct net_device *netdev, bool resuming)
 | |
| {
 | |
| 	struct igb_adapter *adapter = netdev_priv(netdev);
 | |
| 	struct e1000_hw *hw = &adapter->hw;
 | |
| 	struct pci_dev *pdev = adapter->pdev;
 | |
| 	int err;
 | |
| 	int i;
 | |
| 
 | |
| 	/* disallow open during test */
 | |
| 	if (test_bit(__IGB_TESTING, &adapter->state)) {
 | |
| 		WARN_ON(resuming);
 | |
| 		return -EBUSY;
 | |
| 	}
 | |
| 
 | |
| 	if (!resuming)
 | |
| 		pm_runtime_get_sync(&pdev->dev);
 | |
| 
 | |
| 	netif_carrier_off(netdev);
 | |
| 
 | |
| 	/* allocate transmit descriptors */
 | |
| 	err = igb_setup_all_tx_resources(adapter);
 | |
| 	if (err)
 | |
| 		goto err_setup_tx;
 | |
| 
 | |
| 	/* allocate receive descriptors */
 | |
| 	err = igb_setup_all_rx_resources(adapter);
 | |
| 	if (err)
 | |
| 		goto err_setup_rx;
 | |
| 
 | |
| 	igb_power_up_link(adapter);
 | |
| 
 | |
| 	/* before we allocate an interrupt, we must be ready to handle it.
 | |
| 	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
 | |
| 	 * as soon as we call pci_request_irq, so we have to setup our
 | |
| 	 * clean_rx handler before we do so.  */
 | |
| 	igb_configure(adapter);
 | |
| 
 | |
| 	err = igb_request_irq(adapter);
 | |
| 	if (err)
 | |
| 		goto err_req_irq;
 | |
| 
 | |
| 	/* Notify the stack of the actual queue counts. */
 | |
| 	err = netif_set_real_num_tx_queues(adapter->netdev,
 | |
| 					   adapter->num_tx_queues);
 | |
| 	if (err)
 | |
| 		goto err_set_queues;
 | |
| 
 | |
| 	err = netif_set_real_num_rx_queues(adapter->netdev,
 | |
| 					   adapter->num_rx_queues);
 | |
| 	if (err)
 | |
| 		goto err_set_queues;
 | |
| 
 | |
| 	/* From here on the code is the same as igb_up() */
 | |
| 	clear_bit(__IGB_DOWN, &adapter->state);
 | |
| 
 | |
| 	for (i = 0; i < adapter->num_q_vectors; i++)
 | |
| 		napi_enable(&(adapter->q_vector[i]->napi));
 | |
| 
 | |
| 	/* Clear any pending interrupts. */
 | |
| 	rd32(E1000_ICR);
 | |
| 
 | |
| 	igb_irq_enable(adapter);
 | |
| 
 | |
| 	/* notify VFs that reset has been completed */
 | |
| 	if (adapter->vfs_allocated_count) {
 | |
| 		u32 reg_data = rd32(E1000_CTRL_EXT);
 | |
| 		reg_data |= E1000_CTRL_EXT_PFRSTD;
 | |
| 		wr32(E1000_CTRL_EXT, reg_data);
 | |
| 	}
 | |
| 
 | |
| 	netif_tx_start_all_queues(netdev);
 | |
| 
 | |
| 	if (!resuming)
 | |
| 		pm_runtime_put(&pdev->dev);
 | |
| 
 | |
| 	/* start the watchdog. */
 | |
| 	hw->mac.get_link_status = 1;
 | |
| 	schedule_work(&adapter->watchdog_task);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| err_set_queues:
 | |
| 	igb_free_irq(adapter);
 | |
| err_req_irq:
 | |
| 	igb_release_hw_control(adapter);
 | |
| 	igb_power_down_link(adapter);
 | |
| 	igb_free_all_rx_resources(adapter);
 | |
| err_setup_rx:
 | |
| 	igb_free_all_tx_resources(adapter);
 | |
| err_setup_tx:
 | |
| 	igb_reset(adapter);
 | |
| 	if (!resuming)
 | |
| 		pm_runtime_put(&pdev->dev);
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static int igb_open(struct net_device *netdev)
 | |
| {
 | |
| 	return __igb_open(netdev, false);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * igb_close - Disables a network interface
 | |
|  * @netdev: network interface device structure
 | |
|  *
 | |
|  * Returns 0, this is not allowed to fail
 | |
|  *
 | |
|  * The close entry point is called when an interface is de-activated
 | |
|  * by the OS.  The hardware is still under the driver's control, but
 | |
|  * needs to be disabled.  A global MAC reset is issued to stop the
 | |
|  * hardware, and all transmit and receive resources are freed.
 | |
|  **/
 | |
| static int __igb_close(struct net_device *netdev, bool suspending)
 | |
| {
 | |
| 	struct igb_adapter *adapter = netdev_priv(netdev);
 | |
| 	struct pci_dev *pdev = adapter->pdev;
 | |
| 
 | |
| 	WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
 | |
| 
 | |
| 	if (!suspending)
 | |
| 		pm_runtime_get_sync(&pdev->dev);
 | |
| 
 | |
| 	igb_down(adapter);
 | |
| 	igb_free_irq(adapter);
 | |
| 
 | |
| 	igb_free_all_tx_resources(adapter);
 | |
| 	igb_free_all_rx_resources(adapter);
 | |
| 
 | |
| 	if (!suspending)
 | |
| 		pm_runtime_put_sync(&pdev->dev);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int igb_close(struct net_device *netdev)
 | |
| {
 | |
| 	return __igb_close(netdev, false);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * igb_setup_tx_resources - allocate Tx resources (Descriptors)
 | |
|  * @tx_ring: tx descriptor ring (for a specific queue) to setup
 | |
|  *
 | |
|  * Return 0 on success, negative on failure
 | |
|  **/
 | |
| int igb_setup_tx_resources(struct igb_ring *tx_ring)
 | |
| {
 | |
| 	struct device *dev = tx_ring->dev;
 | |
| 	int size;
 | |
| 
 | |
| 	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
 | |
| 
 | |
| 	tx_ring->tx_buffer_info = vzalloc(size);
 | |
| 	if (!tx_ring->tx_buffer_info)
 | |
| 		goto err;
 | |
| 
 | |
| 	/* round up to nearest 4K */
 | |
| 	tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
 | |
| 	tx_ring->size = ALIGN(tx_ring->size, 4096);
 | |
| 
 | |
| 	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
 | |
| 					   &tx_ring->dma, GFP_KERNEL);
 | |
| 	if (!tx_ring->desc)
 | |
| 		goto err;
 | |
| 
 | |
| 	tx_ring->next_to_use = 0;
 | |
| 	tx_ring->next_to_clean = 0;
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| err:
 | |
| 	vfree(tx_ring->tx_buffer_info);
 | |
| 	tx_ring->tx_buffer_info = NULL;
 | |
| 	dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * igb_setup_all_tx_resources - wrapper to allocate Tx resources
 | |
|  *				  (Descriptors) for all queues
 | |
|  * @adapter: board private structure
 | |
|  *
 | |
|  * Return 0 on success, negative on failure
 | |
|  **/
 | |
| static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
 | |
| {
 | |
| 	struct pci_dev *pdev = adapter->pdev;
 | |
| 	int i, err = 0;
 | |
| 
 | |
| 	for (i = 0; i < adapter->num_tx_queues; i++) {
 | |
| 		err = igb_setup_tx_resources(adapter->tx_ring[i]);
 | |
| 		if (err) {
 | |
| 			dev_err(&pdev->dev,
 | |
| 				"Allocation for Tx Queue %u failed\n", i);
 | |
| 			for (i--; i >= 0; i--)
 | |
| 				igb_free_tx_resources(adapter->tx_ring[i]);
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * igb_setup_tctl - configure the transmit control registers
 | |
|  * @adapter: Board private structure
 | |
|  **/
 | |
| void igb_setup_tctl(struct igb_adapter *adapter)
 | |
| {
 | |
| 	struct e1000_hw *hw = &adapter->hw;
 | |
| 	u32 tctl;
 | |
| 
 | |
| 	/* disable queue 0 which is enabled by default on 82575 and 82576 */
 | |
| 	wr32(E1000_TXDCTL(0), 0);
 | |
| 
 | |
| 	/* Program the Transmit Control Register */
 | |
| 	tctl = rd32(E1000_TCTL);
 | |
| 	tctl &= ~E1000_TCTL_CT;
 | |
| 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
 | |
| 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
 | |
| 
 | |
| 	igb_config_collision_dist(hw);
 | |
| 
 | |
| 	/* Enable transmits */
 | |
| 	tctl |= E1000_TCTL_EN;
 | |
| 
 | |
| 	wr32(E1000_TCTL, tctl);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * igb_configure_tx_ring - Configure transmit ring after Reset
 | |
|  * @adapter: board private structure
 | |
|  * @ring: tx ring to configure
 | |
|  *
 | |
|  * Configure a transmit ring after a reset.
 | |
|  **/
 | |
| void igb_configure_tx_ring(struct igb_adapter *adapter,
 | |
|                            struct igb_ring *ring)
 | |
| {
 | |
| 	struct e1000_hw *hw = &adapter->hw;
 | |
| 	u32 txdctl = 0;
 | |
| 	u64 tdba = ring->dma;
 | |
| 	int reg_idx = ring->reg_idx;
 | |
| 
 | |
| 	/* disable the queue */
 | |
| 	wr32(E1000_TXDCTL(reg_idx), 0);
 | |
| 	wrfl();
 | |
| 	mdelay(10);
 | |
| 
 | |
| 	wr32(E1000_TDLEN(reg_idx),
 | |
| 	                ring->count * sizeof(union e1000_adv_tx_desc));
 | |
| 	wr32(E1000_TDBAL(reg_idx),
 | |
| 	                tdba & 0x00000000ffffffffULL);
 | |
| 	wr32(E1000_TDBAH(reg_idx), tdba >> 32);
 | |
| 
 | |
| 	ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
 | |
| 	wr32(E1000_TDH(reg_idx), 0);
 | |
| 	writel(0, ring->tail);
 | |
| 
 | |
| 	txdctl |= IGB_TX_PTHRESH;
 | |
| 	txdctl |= IGB_TX_HTHRESH << 8;
 | |
| 	txdctl |= IGB_TX_WTHRESH << 16;
 | |
| 
 | |
| 	txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
 | |
| 	wr32(E1000_TXDCTL(reg_idx), txdctl);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * igb_configure_tx - Configure transmit Unit after Reset
 | |
|  * @adapter: board private structure
 | |
|  *
 | |
|  * Configure the Tx unit of the MAC after a reset.
 | |
|  **/
 | |
| static void igb_configure_tx(struct igb_adapter *adapter)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < adapter->num_tx_queues; i++)
 | |
| 		igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * igb_setup_rx_resources - allocate Rx resources (Descriptors)
 | |
|  * @rx_ring:    rx descriptor ring (for a specific queue) to setup
 | |
|  *
 | |
|  * Returns 0 on success, negative on failure
 | |
|  **/
 | |
| int igb_setup_rx_resources(struct igb_ring *rx_ring)
 | |
| {
 | |
| 	struct device *dev = rx_ring->dev;
 | |
| 	int size;
 | |
| 
 | |
| 	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
 | |
| 
 | |
| 	rx_ring->rx_buffer_info = vzalloc(size);
 | |
| 	if (!rx_ring->rx_buffer_info)
 | |
| 		goto err;
 | |
| 
 | |
| 	/* Round up to nearest 4K */
 | |
| 	rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
 | |
| 	rx_ring->size = ALIGN(rx_ring->size, 4096);
 | |
| 
 | |
| 	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
 | |
| 					   &rx_ring->dma, GFP_KERNEL);
 | |
| 	if (!rx_ring->desc)
 | |
| 		goto err;
 | |
| 
 | |
| 	rx_ring->next_to_alloc = 0;
 | |
| 	rx_ring->next_to_clean = 0;
 | |
| 	rx_ring->next_to_use = 0;
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| err:
 | |
| 	vfree(rx_ring->rx_buffer_info);
 | |
| 	rx_ring->rx_buffer_info = NULL;
 | |
| 	dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * igb_setup_all_rx_resources - wrapper to allocate Rx resources
 | |
|  *				  (Descriptors) for all queues
 | |
|  * @adapter: board private structure
 | |
|  *
 | |
|  * Return 0 on success, negative on failure
 | |
|  **/
 | |
| static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
 | |
| {
 | |
| 	struct pci_dev *pdev = adapter->pdev;
 | |
| 	int i, err = 0;
 | |
| 
 | |
| 	for (i = 0; i < adapter->num_rx_queues; i++) {
 | |
| 		err = igb_setup_rx_resources(adapter->rx_ring[i]);
 | |
| 		if (err) {
 | |
| 			dev_err(&pdev->dev,
 | |
| 				"Allocation for Rx Queue %u failed\n", i);
 | |
| 			for (i--; i >= 0; i--)
 | |
| 				igb_free_rx_resources(adapter->rx_ring[i]);
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * igb_setup_mrqc - configure the multiple receive queue control registers
 | |
|  * @adapter: Board private structure
 | |
|  **/
 | |
| static void igb_setup_mrqc(struct igb_adapter *adapter)
 | |
| {
 | |
| 	struct e1000_hw *hw = &adapter->hw;
 | |
| 	u32 mrqc, rxcsum;
 | |
| 	u32 j, num_rx_queues, shift = 0;
 | |
| 	static const u32 rsskey[10] = { 0xDA565A6D, 0xC20E5B25, 0x3D256741,
 | |
| 					0xB08FA343, 0xCB2BCAD0, 0xB4307BAE,
 | |
| 					0xA32DCB77, 0x0CF23080, 0x3BB7426A,
 | |
| 					0xFA01ACBE };
 | |
| 
 | |
| 	/* Fill out hash function seeds */
 | |
| 	for (j = 0; j < 10; j++)
 | |
| 		wr32(E1000_RSSRK(j), rsskey[j]);
 | |
| 
 | |
| 	num_rx_queues = adapter->rss_queues;
 | |
| 
 | |
| 	switch (hw->mac.type) {
 | |
| 	case e1000_82575:
 | |
| 		shift = 6;
 | |
| 		break;
 | |
| 	case e1000_82576:
 | |
| 		/* 82576 supports 2 RSS queues for SR-IOV */
 | |
| 		if (adapter->vfs_allocated_count) {
 | |
| 			shift = 3;
 | |
| 			num_rx_queues = 2;
 | |
| 		}
 | |
| 		break;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Populate the indirection table 4 entries at a time.  To do this
 | |
| 	 * we are generating the results for n and n+2 and then interleaving
 | |
| 	 * those with the results with n+1 and n+3.
 | |
| 	 */
 | |
| 	for (j = 0; j < 32; j++) {
 | |
| 		/* first pass generates n and n+2 */
 | |
| 		u32 base = ((j * 0x00040004) + 0x00020000) * num_rx_queues;
 | |
| 		u32 reta = (base & 0x07800780) >> (7 - shift);
 | |
| 
 | |
| 		/* second pass generates n+1 and n+3 */
 | |
| 		base += 0x00010001 * num_rx_queues;
 | |
| 		reta |= (base & 0x07800780) << (1 + shift);
 | |
| 
 | |
| 		wr32(E1000_RETA(j), reta);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Disable raw packet checksumming so that RSS hash is placed in
 | |
| 	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
 | |
| 	 * offloads as they are enabled by default
 | |
| 	 */
 | |
| 	rxcsum = rd32(E1000_RXCSUM);
 | |
| 	rxcsum |= E1000_RXCSUM_PCSD;
 | |
| 
 | |
| 	if (adapter->hw.mac.type >= e1000_82576)
 | |
| 		/* Enable Receive Checksum Offload for SCTP */
 | |
| 		rxcsum |= E1000_RXCSUM_CRCOFL;
 | |
| 
 | |
| 	/* Don't need to set TUOFL or IPOFL, they default to 1 */
 | |
| 	wr32(E1000_RXCSUM, rxcsum);
 | |
| 
 | |
| 	/* Generate RSS hash based on packet types, TCP/UDP
 | |
| 	 * port numbers and/or IPv4/v6 src and dst addresses
 | |
| 	 */
 | |
| 	mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
 | |
| 	       E1000_MRQC_RSS_FIELD_IPV4_TCP |
 | |
| 	       E1000_MRQC_RSS_FIELD_IPV6 |
 | |
| 	       E1000_MRQC_RSS_FIELD_IPV6_TCP |
 | |
| 	       E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
 | |
| 
 | |
| 	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
 | |
| 		mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
 | |
| 	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
 | |
| 		mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
 | |
| 
 | |
| 	/* If VMDq is enabled then we set the appropriate mode for that, else
 | |
| 	 * we default to RSS so that an RSS hash is calculated per packet even
 | |
| 	 * if we are only using one queue */
 | |
| 	if (adapter->vfs_allocated_count) {
 | |
| 		if (hw->mac.type > e1000_82575) {
 | |
| 			/* Set the default pool for the PF's first queue */
 | |
| 			u32 vtctl = rd32(E1000_VT_CTL);
 | |
| 			vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
 | |
| 				   E1000_VT_CTL_DISABLE_DEF_POOL);
 | |
| 			vtctl |= adapter->vfs_allocated_count <<
 | |
| 				E1000_VT_CTL_DEFAULT_POOL_SHIFT;
 | |
| 			wr32(E1000_VT_CTL, vtctl);
 | |
| 		}
 | |
| 		if (adapter->rss_queues > 1)
 | |
| 			mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
 | |
| 		else
 | |
| 			mrqc |= E1000_MRQC_ENABLE_VMDQ;
 | |
| 	} else {
 | |
| 		if (hw->mac.type != e1000_i211)
 | |
| 			mrqc |= E1000_MRQC_ENABLE_RSS_4Q;
 | |
| 	}
 | |
| 	igb_vmm_control(adapter);
 | |
| 
 | |
| 	wr32(E1000_MRQC, mrqc);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * igb_setup_rctl - configure the receive control registers
 | |
|  * @adapter: Board private structure
 | |
|  **/
 | |
| void igb_setup_rctl(struct igb_adapter *adapter)
 | |
| {
 | |
| 	struct e1000_hw *hw = &adapter->hw;
 | |
| 	u32 rctl;
 | |
| 
 | |
| 	rctl = rd32(E1000_RCTL);
 | |
| 
 | |
| 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
 | |
| 	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
 | |
| 
 | |
| 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
 | |
| 		(hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
 | |
| 
 | |
| 	/*
 | |
| 	 * enable stripping of CRC. It's unlikely this will break BMC
 | |
| 	 * redirection as it did with e1000. Newer features require
 | |
| 	 * that the HW strips the CRC.
 | |
| 	 */
 | |
| 	rctl |= E1000_RCTL_SECRC;
 | |
| 
 | |
| 	/* disable store bad packets and clear size bits. */
 | |
| 	rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
 | |
| 
 | |
| 	/* enable LPE to prevent packets larger than max_frame_size */
 | |
| 	rctl |= E1000_RCTL_LPE;
 | |
| 
 | |
| 	/* disable queue 0 to prevent tail write w/o re-config */
 | |
| 	wr32(E1000_RXDCTL(0), 0);
 | |
| 
 | |
| 	/* Attention!!!  For SR-IOV PF driver operations you must enable
 | |
| 	 * queue drop for all VF and PF queues to prevent head of line blocking
 | |
| 	 * if an un-trusted VF does not provide descriptors to hardware.
 | |
| 	 */
 | |
| 	if (adapter->vfs_allocated_count) {
 | |
| 		/* set all queue drop enable bits */
 | |
| 		wr32(E1000_QDE, ALL_QUEUES);
 | |
| 	}
 | |
| 
 | |
| 	/* This is useful for sniffing bad packets. */
 | |
| 	if (adapter->netdev->features & NETIF_F_RXALL) {
 | |
| 		/* UPE and MPE will be handled by normal PROMISC logic
 | |
| 		 * in e1000e_set_rx_mode */
 | |
| 		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
 | |
| 			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
 | |
| 			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
 | |
| 
 | |
| 		rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
 | |
| 			  E1000_RCTL_DPF | /* Allow filtered pause */
 | |
| 			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
 | |
| 		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
 | |
| 		 * and that breaks VLANs.
 | |
| 		 */
 | |
| 	}
 | |
| 
 | |
| 	wr32(E1000_RCTL, rctl);
 | |
| }
 | |
| 
 | |
| static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
 | |
|                                    int vfn)
 | |
| {
 | |
| 	struct e1000_hw *hw = &adapter->hw;
 | |
| 	u32 vmolr;
 | |
| 
 | |
| 	/* if it isn't the PF check to see if VFs are enabled and
 | |
| 	 * increase the size to support vlan tags */
 | |
| 	if (vfn < adapter->vfs_allocated_count &&
 | |
| 	    adapter->vf_data[vfn].vlans_enabled)
 | |
| 		size += VLAN_TAG_SIZE;
 | |
| 
 | |
| 	vmolr = rd32(E1000_VMOLR(vfn));
 | |
| 	vmolr &= ~E1000_VMOLR_RLPML_MASK;
 | |
| 	vmolr |= size | E1000_VMOLR_LPE;
 | |
| 	wr32(E1000_VMOLR(vfn), vmolr);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * igb_rlpml_set - set maximum receive packet size
 | |
|  * @adapter: board private structure
 | |
|  *
 | |
|  * Configure maximum receivable packet size.
 | |
|  **/
 | |
| static void igb_rlpml_set(struct igb_adapter *adapter)
 | |
| {
 | |
| 	u32 max_frame_size = adapter->max_frame_size;
 | |
| 	struct e1000_hw *hw = &adapter->hw;
 | |
| 	u16 pf_id = adapter->vfs_allocated_count;
 | |
| 
 | |
| 	if (pf_id) {
 | |
| 		igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
 | |
| 		/*
 | |
| 		 * If we're in VMDQ or SR-IOV mode, then set global RLPML
 | |
| 		 * to our max jumbo frame size, in case we need to enable
 | |
| 		 * jumbo frames on one of the rings later.
 | |
| 		 * This will not pass over-length frames into the default
 | |
| 		 * queue because it's gated by the VMOLR.RLPML.
 | |
| 		 */
 | |
| 		max_frame_size = MAX_JUMBO_FRAME_SIZE;
 | |
| 	}
 | |
| 
 | |
| 	wr32(E1000_RLPML, max_frame_size);
 | |
| }
 | |
| 
 | |
| static inline void igb_set_vmolr(struct igb_adapter *adapter,
 | |
| 				 int vfn, bool aupe)
 | |
| {
 | |
| 	struct e1000_hw *hw = &adapter->hw;
 | |
| 	u32 vmolr;
 | |
| 
 | |
| 	/*
 | |
| 	 * This register exists only on 82576 and newer so if we are older then
 | |
| 	 * we should exit and do nothing
 | |
| 	 */
 | |
| 	if (hw->mac.type < e1000_82576)
 | |
| 		return;
 | |
| 
 | |
| 	vmolr = rd32(E1000_VMOLR(vfn));
 | |
| 	vmolr |= E1000_VMOLR_STRVLAN;      /* Strip vlan tags */
 | |
| 	if (aupe)
 | |
| 		vmolr |= E1000_VMOLR_AUPE;        /* Accept untagged packets */
 | |
| 	else
 | |
| 		vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
 | |
| 
 | |
| 	/* clear all bits that might not be set */
 | |
| 	vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
 | |
| 
 | |
| 	if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
 | |
| 		vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
 | |
| 	/*
 | |
| 	 * for VMDq only allow the VFs and pool 0 to accept broadcast and
 | |
| 	 * multicast packets
 | |
| 	 */
 | |
| 	if (vfn <= adapter->vfs_allocated_count)
 | |
| 		vmolr |= E1000_VMOLR_BAM;	   /* Accept broadcast */
 | |
| 
 | |
| 	wr32(E1000_VMOLR(vfn), vmolr);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * igb_configure_rx_ring - Configure a receive ring after Reset
 | |
|  * @adapter: board private structure
 | |
|  * @ring: receive ring to be configured
 | |
|  *
 | |
|  * Configure the Rx unit of the MAC after a reset.
 | |
|  **/
 | |
| void igb_configure_rx_ring(struct igb_adapter *adapter,
 | |
|                            struct igb_ring *ring)
 | |
| {
 | |
| 	struct e1000_hw *hw = &adapter->hw;
 | |
| 	u64 rdba = ring->dma;
 | |
| 	int reg_idx = ring->reg_idx;
 | |
| 	u32 srrctl = 0, rxdctl = 0;
 | |
| 
 | |
| 	/* disable the queue */
 | |
| 	wr32(E1000_RXDCTL(reg_idx), 0);
 | |
| 
 | |
| 	/* Set DMA base address registers */
 | |
| 	wr32(E1000_RDBAL(reg_idx),
 | |
| 	     rdba & 0x00000000ffffffffULL);
 | |
| 	wr32(E1000_RDBAH(reg_idx), rdba >> 32);
 | |
| 	wr32(E1000_RDLEN(reg_idx),
 | |
| 	               ring->count * sizeof(union e1000_adv_rx_desc));
 | |
| 
 | |
| 	/* initialize head and tail */
 | |
| 	ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
 | |
| 	wr32(E1000_RDH(reg_idx), 0);
 | |
| 	writel(0, ring->tail);
 | |
| 
 | |
| 	/* set descriptor configuration */
 | |
| 	srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
 | |
| 	srrctl |= IGB_RX_BUFSZ >> E1000_SRRCTL_BSIZEPKT_SHIFT;
 | |
| 	srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
 | |
| 	if (hw->mac.type >= e1000_82580)
 | |
| 		srrctl |= E1000_SRRCTL_TIMESTAMP;
 | |
| 	/* Only set Drop Enable if we are supporting multiple queues */
 | |
| 	if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
 | |
| 		srrctl |= E1000_SRRCTL_DROP_EN;
 | |
| 
 | |
| 	wr32(E1000_SRRCTL(reg_idx), srrctl);
 | |
| 
 | |
| 	/* set filtering for VMDQ pools */
 | |
| 	igb_set_vmolr(adapter, reg_idx & 0x7, true);
 | |
| 
 | |
| 	rxdctl |= IGB_RX_PTHRESH;
 | |
| 	rxdctl |= IGB_RX_HTHRESH << 8;
 | |
| 	rxdctl |= IGB_RX_WTHRESH << 16;
 | |
| 
 | |
| 	/* enable receive descriptor fetching */
 | |
| 	rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
 | |
| 	wr32(E1000_RXDCTL(reg_idx), rxdctl);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * igb_configure_rx - Configure receive Unit after Reset
 | |
|  * @adapter: board private structure
 | |
|  *
 | |
|  * Configure the Rx unit of the MAC after a reset.
 | |
|  **/
 | |
| static void igb_configure_rx(struct igb_adapter *adapter)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	/* set UTA to appropriate mode */
 | |
| 	igb_set_uta(adapter);
 | |
| 
 | |
| 	/* set the correct pool for the PF default MAC address in entry 0 */
 | |
| 	igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
 | |
| 	                 adapter->vfs_allocated_count);
 | |
| 
 | |
| 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
 | |
| 	 * the Base and Length of the Rx Descriptor Ring */
 | |
| 	for (i = 0; i < adapter->num_rx_queues; i++)
 | |
| 		igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * igb_free_tx_resources - Free Tx Resources per Queue
 | |
|  * @tx_ring: Tx descriptor ring for a specific queue
 | |
|  *
 | |
|  * Free all transmit software resources
 | |
|  **/
 | |
| void igb_free_tx_resources(struct igb_ring *tx_ring)
 | |
| {
 | |
| 	igb_clean_tx_ring(tx_ring);
 | |
| 
 | |
| 	vfree(tx_ring->tx_buffer_info);
 | |
| 	tx_ring->tx_buffer_info = NULL;
 | |
| 
 | |
| 	/* if not set, then don't free */
 | |
| 	if (!tx_ring->desc)
 | |
| 		return;
 | |
| 
 | |
| 	dma_free_coherent(tx_ring->dev, tx_ring->size,
 | |
| 			  tx_ring->desc, tx_ring->dma);
 | |
| 
 | |
| 	tx_ring->desc = NULL;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * igb_free_all_tx_resources - Free Tx Resources for All Queues
 | |
|  * @adapter: board private structure
 | |
|  *
 | |
|  * Free all transmit software resources
 | |
|  **/
 | |
| static void igb_free_all_tx_resources(struct igb_adapter *adapter)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < adapter->num_tx_queues; i++)
 | |
| 		igb_free_tx_resources(adapter->tx_ring[i]);
 | |
| }
 | |
| 
 | |
| void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
 | |
| 				    struct igb_tx_buffer *tx_buffer)
 | |
| {
 | |
| 	if (tx_buffer->skb) {
 | |
| 		dev_kfree_skb_any(tx_buffer->skb);
 | |
| 		if (dma_unmap_len(tx_buffer, len))
 | |
| 			dma_unmap_single(ring->dev,
 | |
| 					 dma_unmap_addr(tx_buffer, dma),
 | |
| 					 dma_unmap_len(tx_buffer, len),
 | |
| 					 DMA_TO_DEVICE);
 | |
| 	} else if (dma_unmap_len(tx_buffer, len)) {
 | |
| 		dma_unmap_page(ring->dev,
 | |
| 			       dma_unmap_addr(tx_buffer, dma),
 | |
| 			       dma_unmap_len(tx_buffer, len),
 | |
| 			       DMA_TO_DEVICE);
 | |
| 	}
 | |
| 	tx_buffer->next_to_watch = NULL;
 | |
| 	tx_buffer->skb = NULL;
 | |
| 	dma_unmap_len_set(tx_buffer, len, 0);
 | |
| 	/* buffer_info must be completely set up in the transmit path */
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * igb_clean_tx_ring - Free Tx Buffers
 | |
|  * @tx_ring: ring to be cleaned
 | |
|  **/
 | |
| static void igb_clean_tx_ring(struct igb_ring *tx_ring)
 | |
| {
 | |
| 	struct igb_tx_buffer *buffer_info;
 | |
| 	unsigned long size;
 | |
| 	u16 i;
 | |
| 
 | |
| 	if (!tx_ring->tx_buffer_info)
 | |
| 		return;
 | |
| 	/* Free all the Tx ring sk_buffs */
 | |
| 
 | |
| 	for (i = 0; i < tx_ring->count; i++) {
 | |
| 		buffer_info = &tx_ring->tx_buffer_info[i];
 | |
| 		igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
 | |
| 	}
 | |
| 
 | |
| 	netdev_tx_reset_queue(txring_txq(tx_ring));
 | |
| 
 | |
| 	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
 | |
| 	memset(tx_ring->tx_buffer_info, 0, size);
 | |
| 
 | |
| 	/* Zero out the descriptor ring */
 | |
| 	memset(tx_ring->desc, 0, tx_ring->size);
 | |
| 
 | |
| 	tx_ring->next_to_use = 0;
 | |
| 	tx_ring->next_to_clean = 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * igb_clean_all_tx_rings - Free Tx Buffers for all queues
 | |
|  * @adapter: board private structure
 | |
|  **/
 | |
| static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < adapter->num_tx_queues; i++)
 | |
| 		igb_clean_tx_ring(adapter->tx_ring[i]);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * igb_free_rx_resources - Free Rx Resources
 | |
|  * @rx_ring: ring to clean the resources from
 | |
|  *
 | |
|  * Free all receive software resources
 | |
|  **/
 | |
| void igb_free_rx_resources(struct igb_ring *rx_ring)
 | |
| {
 | |
| 	igb_clean_rx_ring(rx_ring);
 | |
| 
 | |
| 	vfree(rx_ring->rx_buffer_info);
 | |
| 	rx_ring->rx_buffer_info = NULL;
 | |
| 
 | |
| 	/* if not set, then don't free */
 | |
| 	if (!rx_ring->desc)
 | |
| 		return;
 | |
| 
 | |
| 	dma_free_coherent(rx_ring->dev, rx_ring->size,
 | |
| 			  rx_ring->desc, rx_ring->dma);
 | |
| 
 | |
| 	rx_ring->desc = NULL;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * igb_free_all_rx_resources - Free Rx Resources for All Queues
 | |
|  * @adapter: board private structure
 | |
|  *
 | |
|  * Free all receive software resources
 | |
|  **/
 | |
| static void igb_free_all_rx_resources(struct igb_adapter *adapter)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < adapter->num_rx_queues; i++)
 | |
| 		igb_free_rx_resources(adapter->rx_ring[i]);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * igb_clean_rx_ring - Free Rx Buffers per Queue
 | |
|  * @rx_ring: ring to free buffers from
 | |
|  **/
 | |
| static void igb_clean_rx_ring(struct igb_ring *rx_ring)
 | |
| {
 | |
| 	unsigned long size;
 | |
| 	u16 i;
 | |
| 
 | |
| 	if (rx_ring->skb)
 | |
| 		dev_kfree_skb(rx_ring->skb);
 | |
| 	rx_ring->skb = NULL;
 | |
| 
 | |
| 	if (!rx_ring->rx_buffer_info)
 | |
| 		return;
 | |
| 
 | |
| 	/* Free all the Rx ring sk_buffs */
 | |
| 	for (i = 0; i < rx_ring->count; i++) {
 | |
| 		struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
 | |
| 
 | |
| 		if (!buffer_info->page)
 | |
| 			continue;
 | |
| 
 | |
| 		dma_unmap_page(rx_ring->dev,
 | |
| 			       buffer_info->dma,
 | |
| 			       PAGE_SIZE,
 | |
| 			       DMA_FROM_DEVICE);
 | |
| 		__free_page(buffer_info->page);
 | |
| 
 | |
| 		buffer_info->page = NULL;
 | |
| 	}
 | |
| 
 | |
| 	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
 | |
| 	memset(rx_ring->rx_buffer_info, 0, size);
 | |
| 
 | |
| 	/* Zero out the descriptor ring */
 | |
| 	memset(rx_ring->desc, 0, rx_ring->size);
 | |
| 
 | |
| 	rx_ring->next_to_alloc = 0;
 | |
| 	rx_ring->next_to_clean = 0;
 | |
| 	rx_ring->next_to_use = 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * igb_clean_all_rx_rings - Free Rx Buffers for all queues
 | |
|  * @adapter: board private structure
 | |
|  **/
 | |
| static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < adapter->num_rx_queues; i++)
 | |
| 		igb_clean_rx_ring(adapter->rx_ring[i]);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * igb_set_mac - Change the Ethernet Address of the NIC
 | |
|  * @netdev: network interface device structure
 | |
|  * @p: pointer to an address structure
 | |
|  *
 | |
|  * Returns 0 on success, negative on failure
 | |
|  **/
 | |
| static int igb_set_mac(struct net_device *netdev, void *p)
 | |
| {
 | |
| 	struct igb_adapter *adapter = netdev_priv(netdev);
 | |
| 	struct e1000_hw *hw = &adapter->hw;
 | |
| 	struct sockaddr *addr = p;
 | |
| 
 | |
| 	if (!is_valid_ether_addr(addr->sa_data))
 | |
| 		return -EADDRNOTAVAIL;
 | |
| 
 | |
| 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
 | |
| 	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
 | |
| 
 | |
| 	/* set the correct pool for the new PF MAC address in entry 0 */
 | |
| 	igb_rar_set_qsel(adapter, hw->mac.addr, 0,
 | |
| 	                 adapter->vfs_allocated_count);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * igb_write_mc_addr_list - write multicast addresses to MTA
 | |
|  * @netdev: network interface device structure
 | |
|  *
 | |
|  * Writes multicast address list to the MTA hash table.
 | |
|  * Returns: -ENOMEM on failure
 | |
|  *                0 on no addresses written
 | |
|  *                X on writing X addresses to MTA
 | |
|  **/
 | |
| static int igb_write_mc_addr_list(struct net_device *netdev)
 | |
| {
 | |
| 	struct igb_adapter *adapter = netdev_priv(netdev);
 | |
| 	struct e1000_hw *hw = &adapter->hw;
 | |
| 	struct netdev_hw_addr *ha;
 | |
| 	u8  *mta_list;
 | |
| 	int i;
 | |
| 
 | |
| 	if (netdev_mc_empty(netdev)) {
 | |
| 		/* nothing to program, so clear mc list */
 | |
| 		igb_update_mc_addr_list(hw, NULL, 0);
 | |
| 		igb_restore_vf_multicasts(adapter);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
 | |
| 	if (!mta_list)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	/* The shared function expects a packed array of only addresses. */
 | |
| 	i = 0;
 | |
| 	netdev_for_each_mc_addr(ha, netdev)
 | |
| 		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
 | |
| 
 | |
| 	igb_update_mc_addr_list(hw, mta_list, i);
 | |
| 	kfree(mta_list);
 | |
| 
 | |
| 	return netdev_mc_count(netdev);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * igb_write_uc_addr_list - write unicast addresses to RAR table
 | |
|  * @netdev: network interface device structure
 | |
|  *
 | |
|  * Writes unicast address list to the RAR table.
 | |
|  * Returns: -ENOMEM on failure/insufficient address space
 | |
|  *                0 on no addresses written
 | |
|  *                X on writing X addresses to the RAR table
 | |
|  **/
 | |
| static int igb_write_uc_addr_list(struct net_device *netdev)
 | |
| {
 | |
| 	struct igb_adapter *adapter = netdev_priv(netdev);
 | |
| 	struct e1000_hw *hw = &adapter->hw;
 | |
| 	unsigned int vfn = adapter->vfs_allocated_count;
 | |
| 	unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
 | |
| 	int count = 0;
 | |
| 
 | |
| 	/* return ENOMEM indicating insufficient memory for addresses */
 | |
| 	if (netdev_uc_count(netdev) > rar_entries)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	if (!netdev_uc_empty(netdev) && rar_entries) {
 | |
| 		struct netdev_hw_addr *ha;
 | |
| 
 | |
| 		netdev_for_each_uc_addr(ha, netdev) {
 | |
| 			if (!rar_entries)
 | |
| 				break;
 | |
| 			igb_rar_set_qsel(adapter, ha->addr,
 | |
| 			                 rar_entries--,
 | |
| 			                 vfn);
 | |
| 			count++;
 | |
| 		}
 | |
| 	}
 | |
| 	/* write the addresses in reverse order to avoid write combining */
 | |
| 	for (; rar_entries > 0 ; rar_entries--) {
 | |
| 		wr32(E1000_RAH(rar_entries), 0);
 | |
| 		wr32(E1000_RAL(rar_entries), 0);
 | |
| 	}
 | |
| 	wrfl();
 | |
| 
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
 | |
|  * @netdev: network interface device structure
 | |
|  *
 | |
|  * The set_rx_mode entry point is called whenever the unicast or multicast
 | |
|  * address lists or the network interface flags are updated.  This routine is
 | |
|  * responsible for configuring the hardware for proper unicast, multicast,
 | |
|  * promiscuous mode, and all-multi behavior.
 | |
|  **/
 | |
| static void igb_set_rx_mode(struct net_device *netdev)
 | |
| {
 | |
| 	struct igb_adapter *adapter = netdev_priv(netdev);
 | |
| 	struct e1000_hw *hw = &adapter->hw;
 | |
| 	unsigned int vfn = adapter->vfs_allocated_count;
 | |
| 	u32 rctl, vmolr = 0;
 | |
| 	int count;
 | |
| 
 | |
| 	/* Check for Promiscuous and All Multicast modes */
 | |
| 	rctl = rd32(E1000_RCTL);
 | |
| 
 | |
| 	/* clear the effected bits */
 | |
| 	rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
 | |
| 
 | |
| 	if (netdev->flags & IFF_PROMISC) {
 | |
| 		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
 | |
| 		vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
 | |
| 	} else {
 | |
| 		if (netdev->flags & IFF_ALLMULTI) {
 | |
| 			rctl |= E1000_RCTL_MPE;
 | |
| 			vmolr |= E1000_VMOLR_MPME;
 | |
| 		} else {
 | |
| 			/*
 | |
| 			 * Write addresses to the MTA, if the attempt fails
 | |
| 			 * then we should just turn on promiscuous mode so
 | |
| 			 * that we can at least receive multicast traffic
 | |
| 			 */
 | |
| 			count = igb_write_mc_addr_list(netdev);
 | |
| 			if (count < 0) {
 | |
| 				rctl |= E1000_RCTL_MPE;
 | |
| 				vmolr |= E1000_VMOLR_MPME;
 | |
| 			} else if (count) {
 | |
| 				vmolr |= E1000_VMOLR_ROMPE;
 | |
| 			}
 | |
| 		}
 | |
| 		/*
 | |
| 		 * Write addresses to available RAR registers, if there is not
 | |
| 		 * sufficient space to store all the addresses then enable
 | |
| 		 * unicast promiscuous mode
 | |
| 		 */
 | |
| 		count = igb_write_uc_addr_list(netdev);
 | |
| 		if (count < 0) {
 | |
| 			rctl |= E1000_RCTL_UPE;
 | |
| 			vmolr |= E1000_VMOLR_ROPE;
 | |
| 		}
 | |
| 		rctl |= E1000_RCTL_VFE;
 | |
| 	}
 | |
| 	wr32(E1000_RCTL, rctl);
 | |
| 
 | |
| 	/*
 | |
| 	 * In order to support SR-IOV and eventually VMDq it is necessary to set
 | |
| 	 * the VMOLR to enable the appropriate modes.  Without this workaround
 | |
| 	 * we will have issues with VLAN tag stripping not being done for frames
 | |
| 	 * that are only arriving because we are the default pool
 | |
| 	 */
 | |
| 	if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
 | |
| 		return;
 | |
| 
 | |
| 	vmolr |= rd32(E1000_VMOLR(vfn)) &
 | |
| 	         ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
 | |
| 	wr32(E1000_VMOLR(vfn), vmolr);
 | |
| 	igb_restore_vf_multicasts(adapter);
 | |
| }
 | |
| 
 | |
| static void igb_check_wvbr(struct igb_adapter *adapter)
 | |
| {
 | |
| 	struct e1000_hw *hw = &adapter->hw;
 | |
| 	u32 wvbr = 0;
 | |
| 
 | |
| 	switch (hw->mac.type) {
 | |
| 	case e1000_82576:
 | |
| 	case e1000_i350:
 | |
| 		if (!(wvbr = rd32(E1000_WVBR)))
 | |
| 			return;
 | |
| 		break;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	adapter->wvbr |= wvbr;
 | |
| }
 | |
| 
 | |
| #define IGB_STAGGERED_QUEUE_OFFSET 8
 | |
| 
 | |
| static void igb_spoof_check(struct igb_adapter *adapter)
 | |
| {
 | |
| 	int j;
 | |
| 
 | |
| 	if (!adapter->wvbr)
 | |
| 		return;
 | |
| 
 | |
| 	for(j = 0; j < adapter->vfs_allocated_count; j++) {
 | |
| 		if (adapter->wvbr & (1 << j) ||
 | |
| 		    adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
 | |
| 			dev_warn(&adapter->pdev->dev,
 | |
| 				"Spoof event(s) detected on VF %d\n", j);
 | |
| 			adapter->wvbr &=
 | |
| 				~((1 << j) |
 | |
| 				  (1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Need to wait a few seconds after link up to get diagnostic information from
 | |
|  * the phy */
 | |
| static void igb_update_phy_info(unsigned long data)
 | |
| {
 | |
| 	struct igb_adapter *adapter = (struct igb_adapter *) data;
 | |
| 	igb_get_phy_info(&adapter->hw);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * igb_has_link - check shared code for link and determine up/down
 | |
|  * @adapter: pointer to driver private info
 | |
|  **/
 | |
| bool igb_has_link(struct igb_adapter *adapter)
 | |
| {
 | |
| 	struct e1000_hw *hw = &adapter->hw;
 | |
| 	bool link_active = false;
 | |
| 	s32 ret_val = 0;
 | |
| 
 | |
| 	/* get_link_status is set on LSC (link status) interrupt or
 | |
| 	 * rx sequence error interrupt.  get_link_status will stay
 | |
| 	 * false until the e1000_check_for_link establishes link
 | |
| 	 * for copper adapters ONLY
 | |
| 	 */
 | |
| 	switch (hw->phy.media_type) {
 | |
| 	case e1000_media_type_copper:
 | |
| 		if (hw->mac.get_link_status) {
 | |
| 			ret_val = hw->mac.ops.check_for_link(hw);
 | |
| 			link_active = !hw->mac.get_link_status;
 | |
| 		} else {
 | |
| 			link_active = true;
 | |
| 		}
 | |
| 		break;
 | |
| 	case e1000_media_type_internal_serdes:
 | |
| 		ret_val = hw->mac.ops.check_for_link(hw);
 | |
| 		link_active = hw->mac.serdes_has_link;
 | |
| 		break;
 | |
| 	default:
 | |
| 	case e1000_media_type_unknown:
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return link_active;
 | |
| }
 | |
| 
 | |
| static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
 | |
| {
 | |
| 	bool ret = false;
 | |
| 	u32 ctrl_ext, thstat;
 | |
| 
 | |
| 	/* check for thermal sensor event on i350 copper only */
 | |
| 	if (hw->mac.type == e1000_i350) {
 | |
| 		thstat = rd32(E1000_THSTAT);
 | |
| 		ctrl_ext = rd32(E1000_CTRL_EXT);
 | |
| 
 | |
| 		if ((hw->phy.media_type == e1000_media_type_copper) &&
 | |
| 		    !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII)) {
 | |
| 			ret = !!(thstat & event);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * igb_watchdog - Timer Call-back
 | |
|  * @data: pointer to adapter cast into an unsigned long
 | |
|  **/
 | |
| static void igb_watchdog(unsigned long data)
 | |
| {
 | |
| 	struct igb_adapter *adapter = (struct igb_adapter *)data;
 | |
| 	/* Do the rest outside of interrupt context */
 | |
| 	schedule_work(&adapter->watchdog_task);
 | |
| }
 | |
| 
 | |
| static void igb_watchdog_task(struct work_struct *work)
 | |
| {
 | |
| 	struct igb_adapter *adapter = container_of(work,
 | |
| 	                                           struct igb_adapter,
 | |
|                                                    watchdog_task);
 | |
| 	struct e1000_hw *hw = &adapter->hw;
 | |
| 	struct net_device *netdev = adapter->netdev;
 | |
| 	u32 link;
 | |
| 	int i;
 | |
| 
 | |
| 	link = igb_has_link(adapter);
 | |
| 	if (link) {
 | |
| 		/* Cancel scheduled suspend requests. */
 | |
| 		pm_runtime_resume(netdev->dev.parent);
 | |
| 
 | |
| 		if (!netif_carrier_ok(netdev)) {
 | |
| 			u32 ctrl;
 | |
| 			hw->mac.ops.get_speed_and_duplex(hw,
 | |
| 			                                 &adapter->link_speed,
 | |
| 			                                 &adapter->link_duplex);
 | |
| 
 | |
| 			ctrl = rd32(E1000_CTRL);
 | |
| 			/* Links status message must follow this format */
 | |
| 			printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s "
 | |
| 			       "Duplex, Flow Control: %s\n",
 | |
| 			       netdev->name,
 | |
| 			       adapter->link_speed,
 | |
| 			       adapter->link_duplex == FULL_DUPLEX ?
 | |
| 			       "Full" : "Half",
 | |
| 			       (ctrl & E1000_CTRL_TFCE) &&
 | |
| 			       (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
 | |
| 			       (ctrl & E1000_CTRL_RFCE) ?  "RX" :
 | |
| 			       (ctrl & E1000_CTRL_TFCE) ?  "TX" : "None");
 | |
| 
 | |
| 			/* check for thermal sensor event */
 | |
| 			if (igb_thermal_sensor_event(hw,
 | |
| 			    E1000_THSTAT_LINK_THROTTLE)) {
 | |
| 				netdev_info(netdev, "The network adapter link "
 | |
| 					    "speed was downshifted because it "
 | |
| 					    "overheated\n");
 | |
| 			}
 | |
| 
 | |
| 			/* adjust timeout factor according to speed/duplex */
 | |
| 			adapter->tx_timeout_factor = 1;
 | |
| 			switch (adapter->link_speed) {
 | |
| 			case SPEED_10:
 | |
| 				adapter->tx_timeout_factor = 14;
 | |
| 				break;
 | |
| 			case SPEED_100:
 | |
| 				/* maybe add some timeout factor ? */
 | |
| 				break;
 | |
| 			}
 | |
| 
 | |
| 			netif_carrier_on(netdev);
 | |
| 
 | |
| 			igb_ping_all_vfs(adapter);
 | |
| 			igb_check_vf_rate_limit(adapter);
 | |
| 
 | |
| 			/* link state has changed, schedule phy info update */
 | |
| 			if (!test_bit(__IGB_DOWN, &adapter->state))
 | |
| 				mod_timer(&adapter->phy_info_timer,
 | |
| 					  round_jiffies(jiffies + 2 * HZ));
 | |
| 		}
 | |
| 	} else {
 | |
| 		if (netif_carrier_ok(netdev)) {
 | |
| 			adapter->link_speed = 0;
 | |
| 			adapter->link_duplex = 0;
 | |
| 
 | |
| 			/* check for thermal sensor event */
 | |
| 			if (igb_thermal_sensor_event(hw,
 | |
| 			    E1000_THSTAT_PWR_DOWN)) {
 | |
| 				netdev_err(netdev, "The network adapter was "
 | |
| 					   "stopped because it overheated\n");
 | |
| 			}
 | |
| 
 | |
| 			/* Links status message must follow this format */
 | |
| 			printk(KERN_INFO "igb: %s NIC Link is Down\n",
 | |
| 			       netdev->name);
 | |
| 			netif_carrier_off(netdev);
 | |
| 
 | |
| 			igb_ping_all_vfs(adapter);
 | |
| 
 | |
| 			/* link state has changed, schedule phy info update */
 | |
| 			if (!test_bit(__IGB_DOWN, &adapter->state))
 | |
| 				mod_timer(&adapter->phy_info_timer,
 | |
| 					  round_jiffies(jiffies + 2 * HZ));
 | |
| 
 | |
| 			pm_schedule_suspend(netdev->dev.parent,
 | |
| 					    MSEC_PER_SEC * 5);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	spin_lock(&adapter->stats64_lock);
 | |
| 	igb_update_stats(adapter, &adapter->stats64);
 | |
| 	spin_unlock(&adapter->stats64_lock);
 | |
| 
 | |
| 	for (i = 0; i < adapter->num_tx_queues; i++) {
 | |
| 		struct igb_ring *tx_ring = adapter->tx_ring[i];
 | |
| 		if (!netif_carrier_ok(netdev)) {
 | |
| 			/* We've lost link, so the controller stops DMA,
 | |
| 			 * but we've got queued Tx work that's never going
 | |
| 			 * to get done, so reset controller to flush Tx.
 | |
| 			 * (Do the reset outside of interrupt context). */
 | |
| 			if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
 | |
| 				adapter->tx_timeout_count++;
 | |
| 				schedule_work(&adapter->reset_task);
 | |
| 				/* return immediately since reset is imminent */
 | |
| 				return;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/* Force detection of hung controller every watchdog period */
 | |
| 		set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
 | |
| 	}
 | |
| 
 | |
| 	/* Cause software interrupt to ensure rx ring is cleaned */
 | |
| 	if (adapter->msix_entries) {
 | |
| 		u32 eics = 0;
 | |
| 		for (i = 0; i < adapter->num_q_vectors; i++)
 | |
| 			eics |= adapter->q_vector[i]->eims_value;
 | |
| 		wr32(E1000_EICS, eics);
 | |
| 	} else {
 | |
| 		wr32(E1000_ICS, E1000_ICS_RXDMT0);
 | |
| 	}
 | |
| 
 | |
| 	igb_spoof_check(adapter);
 | |
| 	igb_ptp_rx_hang(adapter);
 | |
| 
 | |
| 	/* Reset the timer */
 | |
| 	if (!test_bit(__IGB_DOWN, &adapter->state))
 | |
| 		mod_timer(&adapter->watchdog_timer,
 | |
| 			  round_jiffies(jiffies + 2 * HZ));
 | |
| }
 | |
| 
 | |
| enum latency_range {
 | |
| 	lowest_latency = 0,
 | |
| 	low_latency = 1,
 | |
| 	bulk_latency = 2,
 | |
| 	latency_invalid = 255
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * igb_update_ring_itr - update the dynamic ITR value based on packet size
 | |
|  *
 | |
|  *      Stores a new ITR value based on strictly on packet size.  This
 | |
|  *      algorithm is less sophisticated than that used in igb_update_itr,
 | |
|  *      due to the difficulty of synchronizing statistics across multiple
 | |
|  *      receive rings.  The divisors and thresholds used by this function
 | |
|  *      were determined based on theoretical maximum wire speed and testing
 | |
|  *      data, in order to minimize response time while increasing bulk
 | |
|  *      throughput.
 | |
|  *      This functionality is controlled by the InterruptThrottleRate module
 | |
|  *      parameter (see igb_param.c)
 | |
|  *      NOTE:  This function is called only when operating in a multiqueue
 | |
|  *             receive environment.
 | |
|  * @q_vector: pointer to q_vector
 | |
|  **/
 | |
| static void igb_update_ring_itr(struct igb_q_vector *q_vector)
 | |
| {
 | |
| 	int new_val = q_vector->itr_val;
 | |
| 	int avg_wire_size = 0;
 | |
| 	struct igb_adapter *adapter = q_vector->adapter;
 | |
| 	unsigned int packets;
 | |
| 
 | |
| 	/* For non-gigabit speeds, just fix the interrupt rate at 4000
 | |
| 	 * ints/sec - ITR timer value of 120 ticks.
 | |
| 	 */
 | |
| 	if (adapter->link_speed != SPEED_1000) {
 | |
| 		new_val = IGB_4K_ITR;
 | |
| 		goto set_itr_val;
 | |
| 	}
 | |
| 
 | |
| 	packets = q_vector->rx.total_packets;
 | |
| 	if (packets)
 | |
| 		avg_wire_size = q_vector->rx.total_bytes / packets;
 | |
| 
 | |
| 	packets = q_vector->tx.total_packets;
 | |
| 	if (packets)
 | |
| 		avg_wire_size = max_t(u32, avg_wire_size,
 | |
| 				      q_vector->tx.total_bytes / packets);
 | |
| 
 | |
| 	/* if avg_wire_size isn't set no work was done */
 | |
| 	if (!avg_wire_size)
 | |
| 		goto clear_counts;
 | |
| 
 | |
| 	/* Add 24 bytes to size to account for CRC, preamble, and gap */
 | |
| 	avg_wire_size += 24;
 | |
| 
 | |
| 	/* Don't starve jumbo frames */
 | |
| 	avg_wire_size = min(avg_wire_size, 3000);
 | |
| 
 | |
| 	/* Give a little boost to mid-size frames */
 | |
| 	if ((avg_wire_size > 300) && (avg_wire_size < 1200))
 | |
| 		new_val = avg_wire_size / 3;
 | |
| 	else
 | |
| 		new_val = avg_wire_size / 2;
 | |
| 
 | |
| 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
 | |
| 	if (new_val < IGB_20K_ITR &&
 | |
| 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
 | |
| 	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
 | |
| 		new_val = IGB_20K_ITR;
 | |
| 
 | |
| set_itr_val:
 | |
| 	if (new_val != q_vector->itr_val) {
 | |
| 		q_vector->itr_val = new_val;
 | |
| 		q_vector->set_itr = 1;
 | |
| 	}
 | |
| clear_counts:
 | |
| 	q_vector->rx.total_bytes = 0;
 | |
| 	q_vector->rx.total_packets = 0;
 | |
| 	q_vector->tx.total_bytes = 0;
 | |
| 	q_vector->tx.total_packets = 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * igb_update_itr - update the dynamic ITR value based on statistics
 | |
|  *      Stores a new ITR value based on packets and byte
 | |
|  *      counts during the last interrupt.  The advantage of per interrupt
 | |
|  *      computation is faster updates and more accurate ITR for the current
 | |
|  *      traffic pattern.  Constants in this function were computed
 | |
|  *      based on theoretical maximum wire speed and thresholds were set based
 | |
|  *      on testing data as well as attempting to minimize response time
 | |
|  *      while increasing bulk throughput.
 | |
|  *      this functionality is controlled by the InterruptThrottleRate module
 | |
|  *      parameter (see igb_param.c)
 | |
|  *      NOTE:  These calculations are only valid when operating in a single-
 | |
|  *             queue environment.
 | |
|  * @q_vector: pointer to q_vector
 | |
|  * @ring_container: ring info to update the itr for
 | |
|  **/
 | |
| static void igb_update_itr(struct igb_q_vector *q_vector,
 | |
| 			   struct igb_ring_container *ring_container)
 | |
| {
 | |
| 	unsigned int packets = ring_container->total_packets;
 | |
| 	unsigned int bytes = ring_container->total_bytes;
 | |
| 	u8 itrval = ring_container->itr;
 | |
| 
 | |
| 	/* no packets, exit with status unchanged */
 | |
| 	if (packets == 0)
 | |
| 		return;
 | |
| 
 | |
| 	switch (itrval) {
 | |
| 	case lowest_latency:
 | |
| 		/* handle TSO and jumbo frames */
 | |
| 		if (bytes/packets > 8000)
 | |
| 			itrval = bulk_latency;
 | |
| 		else if ((packets < 5) && (bytes > 512))
 | |
| 			itrval = low_latency;
 | |
| 		break;
 | |
| 	case low_latency:  /* 50 usec aka 20000 ints/s */
 | |
| 		if (bytes > 10000) {
 | |
| 			/* this if handles the TSO accounting */
 | |
| 			if (bytes/packets > 8000) {
 | |
| 				itrval = bulk_latency;
 | |
| 			} else if ((packets < 10) || ((bytes/packets) > 1200)) {
 | |
| 				itrval = bulk_latency;
 | |
| 			} else if ((packets > 35)) {
 | |
| 				itrval = lowest_latency;
 | |
| 			}
 | |
| 		} else if (bytes/packets > 2000) {
 | |
| 			itrval = bulk_latency;
 | |
| 		} else if (packets <= 2 && bytes < 512) {
 | |
| 			itrval = lowest_latency;
 | |
| 		}
 | |
| 		break;
 | |
| 	case bulk_latency: /* 250 usec aka 4000 ints/s */
 | |
| 		if (bytes > 25000) {
 | |
| 			if (packets > 35)
 | |
| 				itrval = low_latency;
 | |
| 		} else if (bytes < 1500) {
 | |
| 			itrval = low_latency;
 | |
| 		}
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	/* clear work counters since we have the values we need */
 | |
| 	ring_container->total_bytes = 0;
 | |
| 	ring_container->total_packets = 0;
 | |
| 
 | |
| 	/* write updated itr to ring container */
 | |
| 	ring_container->itr = itrval;
 | |
| }
 | |
| 
 | |
| static void igb_set_itr(struct igb_q_vector *q_vector)
 | |
| {
 | |
| 	struct igb_adapter *adapter = q_vector->adapter;
 | |
| 	u32 new_itr = q_vector->itr_val;
 | |
| 	u8 current_itr = 0;
 | |
| 
 | |
| 	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
 | |
| 	if (adapter->link_speed != SPEED_1000) {
 | |
| 		current_itr = 0;
 | |
| 		new_itr = IGB_4K_ITR;
 | |
| 		goto set_itr_now;
 | |
| 	}
 | |
| 
 | |
| 	igb_update_itr(q_vector, &q_vector->tx);
 | |
| 	igb_update_itr(q_vector, &q_vector->rx);
 | |
| 
 | |
| 	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
 | |
| 
 | |
| 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
 | |
| 	if (current_itr == lowest_latency &&
 | |
| 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
 | |
| 	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
 | |
| 		current_itr = low_latency;
 | |
| 
 | |
| 	switch (current_itr) {
 | |
| 	/* counts and packets in update_itr are dependent on these numbers */
 | |
| 	case lowest_latency:
 | |
| 		new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
 | |
| 		break;
 | |
| 	case low_latency:
 | |
| 		new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
 | |
| 		break;
 | |
| 	case bulk_latency:
 | |
| 		new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
 | |
| 		break;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| set_itr_now:
 | |
| 	if (new_itr != q_vector->itr_val) {
 | |
| 		/* this attempts to bias the interrupt rate towards Bulk
 | |
| 		 * by adding intermediate steps when interrupt rate is
 | |
| 		 * increasing */
 | |
| 		new_itr = new_itr > q_vector->itr_val ?
 | |
| 		             max((new_itr * q_vector->itr_val) /
 | |
| 		                 (new_itr + (q_vector->itr_val >> 2)),
 | |
| 				 new_itr) :
 | |
| 			     new_itr;
 | |
| 		/* Don't write the value here; it resets the adapter's
 | |
| 		 * internal timer, and causes us to delay far longer than
 | |
| 		 * we should between interrupts.  Instead, we write the ITR
 | |
| 		 * value at the beginning of the next interrupt so the timing
 | |
| 		 * ends up being correct.
 | |
| 		 */
 | |
| 		q_vector->itr_val = new_itr;
 | |
| 		q_vector->set_itr = 1;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
 | |
| 			    u32 type_tucmd, u32 mss_l4len_idx)
 | |
| {
 | |
| 	struct e1000_adv_tx_context_desc *context_desc;
 | |
| 	u16 i = tx_ring->next_to_use;
 | |
| 
 | |
| 	context_desc = IGB_TX_CTXTDESC(tx_ring, i);
 | |
| 
 | |
| 	i++;
 | |
| 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
 | |
| 
 | |
| 	/* set bits to identify this as an advanced context descriptor */
 | |
| 	type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
 | |
| 
 | |
| 	/* For 82575, context index must be unique per ring. */
 | |
| 	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
 | |
| 		mss_l4len_idx |= tx_ring->reg_idx << 4;
 | |
| 
 | |
| 	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
 | |
| 	context_desc->seqnum_seed	= 0;
 | |
| 	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
 | |
| 	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
 | |
| }
 | |
| 
 | |
| static int igb_tso(struct igb_ring *tx_ring,
 | |
| 		   struct igb_tx_buffer *first,
 | |
| 		   u8 *hdr_len)
 | |
| {
 | |
| 	struct sk_buff *skb = first->skb;
 | |
| 	u32 vlan_macip_lens, type_tucmd;
 | |
| 	u32 mss_l4len_idx, l4len;
 | |
| 
 | |
| 	if (skb->ip_summed != CHECKSUM_PARTIAL)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (!skb_is_gso(skb))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (skb_header_cloned(skb)) {
 | |
| 		int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 	}
 | |
| 
 | |
| 	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
 | |
| 	type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
 | |
| 
 | |
| 	if (first->protocol == __constant_htons(ETH_P_IP)) {
 | |
| 		struct iphdr *iph = ip_hdr(skb);
 | |
| 		iph->tot_len = 0;
 | |
| 		iph->check = 0;
 | |
| 		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
 | |
| 							 iph->daddr, 0,
 | |
| 							 IPPROTO_TCP,
 | |
| 							 0);
 | |
| 		type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
 | |
| 		first->tx_flags |= IGB_TX_FLAGS_TSO |
 | |
| 				   IGB_TX_FLAGS_CSUM |
 | |
| 				   IGB_TX_FLAGS_IPV4;
 | |
| 	} else if (skb_is_gso_v6(skb)) {
 | |
| 		ipv6_hdr(skb)->payload_len = 0;
 | |
| 		tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
 | |
| 						       &ipv6_hdr(skb)->daddr,
 | |
| 						       0, IPPROTO_TCP, 0);
 | |
| 		first->tx_flags |= IGB_TX_FLAGS_TSO |
 | |
| 				   IGB_TX_FLAGS_CSUM;
 | |
| 	}
 | |
| 
 | |
| 	/* compute header lengths */
 | |
| 	l4len = tcp_hdrlen(skb);
 | |
| 	*hdr_len = skb_transport_offset(skb) + l4len;
 | |
| 
 | |
| 	/* update gso size and bytecount with header size */
 | |
| 	first->gso_segs = skb_shinfo(skb)->gso_segs;
 | |
| 	first->bytecount += (first->gso_segs - 1) * *hdr_len;
 | |
| 
 | |
| 	/* MSS L4LEN IDX */
 | |
| 	mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT;
 | |
| 	mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
 | |
| 
 | |
| 	/* VLAN MACLEN IPLEN */
 | |
| 	vlan_macip_lens = skb_network_header_len(skb);
 | |
| 	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
 | |
| 	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
 | |
| 
 | |
| 	igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
 | |
| {
 | |
| 	struct sk_buff *skb = first->skb;
 | |
| 	u32 vlan_macip_lens = 0;
 | |
| 	u32 mss_l4len_idx = 0;
 | |
| 	u32 type_tucmd = 0;
 | |
| 
 | |
| 	if (skb->ip_summed != CHECKSUM_PARTIAL) {
 | |
| 		if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
 | |
| 			return;
 | |
| 	} else {
 | |
| 		u8 l4_hdr = 0;
 | |
| 		switch (first->protocol) {
 | |
| 		case __constant_htons(ETH_P_IP):
 | |
| 			vlan_macip_lens |= skb_network_header_len(skb);
 | |
| 			type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
 | |
| 			l4_hdr = ip_hdr(skb)->protocol;
 | |
| 			break;
 | |
| 		case __constant_htons(ETH_P_IPV6):
 | |
| 			vlan_macip_lens |= skb_network_header_len(skb);
 | |
| 			l4_hdr = ipv6_hdr(skb)->nexthdr;
 | |
| 			break;
 | |
| 		default:
 | |
| 			if (unlikely(net_ratelimit())) {
 | |
| 				dev_warn(tx_ring->dev,
 | |
| 				 "partial checksum but proto=%x!\n",
 | |
| 				 first->protocol);
 | |
| 			}
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		switch (l4_hdr) {
 | |
| 		case IPPROTO_TCP:
 | |
| 			type_tucmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
 | |
| 			mss_l4len_idx = tcp_hdrlen(skb) <<
 | |
| 					E1000_ADVTXD_L4LEN_SHIFT;
 | |
| 			break;
 | |
| 		case IPPROTO_SCTP:
 | |
| 			type_tucmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
 | |
| 			mss_l4len_idx = sizeof(struct sctphdr) <<
 | |
| 					E1000_ADVTXD_L4LEN_SHIFT;
 | |
| 			break;
 | |
| 		case IPPROTO_UDP:
 | |
| 			mss_l4len_idx = sizeof(struct udphdr) <<
 | |
| 					E1000_ADVTXD_L4LEN_SHIFT;
 | |
| 			break;
 | |
| 		default:
 | |
| 			if (unlikely(net_ratelimit())) {
 | |
| 				dev_warn(tx_ring->dev,
 | |
| 				 "partial checksum but l4 proto=%x!\n",
 | |
| 				 l4_hdr);
 | |
| 			}
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		/* update TX checksum flag */
 | |
| 		first->tx_flags |= IGB_TX_FLAGS_CSUM;
 | |
| 	}
 | |
| 
 | |
| 	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
 | |
| 	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
 | |
| 
 | |
| 	igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
 | |
| }
 | |
| 
 | |
| #define IGB_SET_FLAG(_input, _flag, _result) \
 | |
| 	((_flag <= _result) ? \
 | |
| 	 ((u32)(_input & _flag) * (_result / _flag)) : \
 | |
| 	 ((u32)(_input & _flag) / (_flag / _result)))
 | |
| 
 | |
| static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
 | |
| {
 | |
| 	/* set type for advanced descriptor with frame checksum insertion */
 | |
| 	u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
 | |
| 		       E1000_ADVTXD_DCMD_DEXT |
 | |
| 		       E1000_ADVTXD_DCMD_IFCS;
 | |
| 
 | |
| 	/* set HW vlan bit if vlan is present */
 | |
| 	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
 | |
| 				 (E1000_ADVTXD_DCMD_VLE));
 | |
| 
 | |
| 	/* set segmentation bits for TSO */
 | |
| 	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
 | |
| 				 (E1000_ADVTXD_DCMD_TSE));
 | |
| 
 | |
| 	/* set timestamp bit if present */
 | |
| 	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
 | |
| 				 (E1000_ADVTXD_MAC_TSTAMP));
 | |
| 
 | |
| 	/* insert frame checksum */
 | |
| 	cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
 | |
| 
 | |
| 	return cmd_type;
 | |
| }
 | |
| 
 | |
| static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
 | |
| 				 union e1000_adv_tx_desc *tx_desc,
 | |
| 				 u32 tx_flags, unsigned int paylen)
 | |
| {
 | |
| 	u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
 | |
| 
 | |
| 	/* 82575 requires a unique index per ring */
 | |
| 	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
 | |
| 		olinfo_status |= tx_ring->reg_idx << 4;
 | |
| 
 | |
| 	/* insert L4 checksum */
 | |
| 	olinfo_status |= IGB_SET_FLAG(tx_flags,
 | |
| 				      IGB_TX_FLAGS_CSUM,
 | |
| 				      (E1000_TXD_POPTS_TXSM << 8));
 | |
| 
 | |
| 	/* insert IPv4 checksum */
 | |
| 	olinfo_status |= IGB_SET_FLAG(tx_flags,
 | |
| 				      IGB_TX_FLAGS_IPV4,
 | |
| 				      (E1000_TXD_POPTS_IXSM << 8));
 | |
| 
 | |
| 	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The largest size we can write to the descriptor is 65535.  In order to
 | |
|  * maintain a power of two alignment we have to limit ourselves to 32K.
 | |
|  */
 | |
| #define IGB_MAX_TXD_PWR	15
 | |
| #define IGB_MAX_DATA_PER_TXD	(1<<IGB_MAX_TXD_PWR)
 | |
| 
 | |
| static void igb_tx_map(struct igb_ring *tx_ring,
 | |
| 		       struct igb_tx_buffer *first,
 | |
| 		       const u8 hdr_len)
 | |
| {
 | |
| 	struct sk_buff *skb = first->skb;
 | |
| 	struct igb_tx_buffer *tx_buffer;
 | |
| 	union e1000_adv_tx_desc *tx_desc;
 | |
| 	struct skb_frag_struct *frag;
 | |
| 	dma_addr_t dma;
 | |
| 	unsigned int data_len, size;
 | |
| 	u32 tx_flags = first->tx_flags;
 | |
| 	u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
 | |
| 	u16 i = tx_ring->next_to_use;
 | |
| 
 | |
| 	tx_desc = IGB_TX_DESC(tx_ring, i);
 | |
| 
 | |
| 	igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
 | |
| 
 | |
| 	size = skb_headlen(skb);
 | |
| 	data_len = skb->data_len;
 | |
| 
 | |
| 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
 | |
| 
 | |
| 	tx_buffer = first;
 | |
| 
 | |
| 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
 | |
| 		if (dma_mapping_error(tx_ring->dev, dma))
 | |
| 			goto dma_error;
 | |
| 
 | |
| 		/* record length, and DMA address */
 | |
| 		dma_unmap_len_set(tx_buffer, len, size);
 | |
| 		dma_unmap_addr_set(tx_buffer, dma, dma);
 | |
| 
 | |
| 		tx_desc->read.buffer_addr = cpu_to_le64(dma);
 | |
| 
 | |
| 		while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
 | |
| 			tx_desc->read.cmd_type_len =
 | |
| 				cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
 | |
| 
 | |
| 			i++;
 | |
| 			tx_desc++;
 | |
| 			if (i == tx_ring->count) {
 | |
| 				tx_desc = IGB_TX_DESC(tx_ring, 0);
 | |
| 				i = 0;
 | |
| 			}
 | |
| 			tx_desc->read.olinfo_status = 0;
 | |
| 
 | |
| 			dma += IGB_MAX_DATA_PER_TXD;
 | |
| 			size -= IGB_MAX_DATA_PER_TXD;
 | |
| 
 | |
| 			tx_desc->read.buffer_addr = cpu_to_le64(dma);
 | |
| 		}
 | |
| 
 | |
| 		if (likely(!data_len))
 | |
| 			break;
 | |
| 
 | |
| 		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
 | |
| 
 | |
| 		i++;
 | |
| 		tx_desc++;
 | |
| 		if (i == tx_ring->count) {
 | |
| 			tx_desc = IGB_TX_DESC(tx_ring, 0);
 | |
| 			i = 0;
 | |
| 		}
 | |
| 		tx_desc->read.olinfo_status = 0;
 | |
| 
 | |
| 		size = skb_frag_size(frag);
 | |
| 		data_len -= size;
 | |
| 
 | |
| 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
 | |
| 				       size, DMA_TO_DEVICE);
 | |
| 
 | |
| 		tx_buffer = &tx_ring->tx_buffer_info[i];
 | |
| 	}
 | |
| 
 | |
| 	/* write last descriptor with RS and EOP bits */
 | |
| 	cmd_type |= size | IGB_TXD_DCMD;
 | |
| 	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
 | |
| 
 | |
| 	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
 | |
| 
 | |
| 	/* set the timestamp */
 | |
| 	first->time_stamp = jiffies;
 | |
| 
 | |
| 	/*
 | |
| 	 * Force memory writes to complete before letting h/w know there
 | |
| 	 * are new descriptors to fetch.  (Only applicable for weak-ordered
 | |
| 	 * memory model archs, such as IA-64).
 | |
| 	 *
 | |
| 	 * We also need this memory barrier to make certain all of the
 | |
| 	 * status bits have been updated before next_to_watch is written.
 | |
| 	 */
 | |
| 	wmb();
 | |
| 
 | |
| 	/* set next_to_watch value indicating a packet is present */
 | |
| 	first->next_to_watch = tx_desc;
 | |
| 
 | |
| 	i++;
 | |
| 	if (i == tx_ring->count)
 | |
| 		i = 0;
 | |
| 
 | |
| 	tx_ring->next_to_use = i;
 | |
| 
 | |
| 	writel(i, tx_ring->tail);
 | |
| 
 | |
| 	/* we need this if more than one processor can write to our tail
 | |
| 	 * at a time, it syncronizes IO on IA64/Altix systems */
 | |
| 	mmiowb();
 | |
| 
 | |
| 	return;
 | |
| 
 | |
| dma_error:
 | |
| 	dev_err(tx_ring->dev, "TX DMA map failed\n");
 | |
| 
 | |
| 	/* clear dma mappings for failed tx_buffer_info map */
 | |
| 	for (;;) {
 | |
| 		tx_buffer = &tx_ring->tx_buffer_info[i];
 | |
| 		igb_unmap_and_free_tx_resource(tx_ring, tx_buffer);
 | |
| 		if (tx_buffer == first)
 | |
| 			break;
 | |
| 		if (i == 0)
 | |
| 			i = tx_ring->count;
 | |
| 		i--;
 | |
| 	}
 | |
| 
 | |
| 	tx_ring->next_to_use = i;
 | |
| }
 | |
| 
 | |
| static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
 | |
| {
 | |
| 	struct net_device *netdev = tx_ring->netdev;
 | |
| 
 | |
| 	netif_stop_subqueue(netdev, tx_ring->queue_index);
 | |
| 
 | |
| 	/* Herbert's original patch had:
 | |
| 	 *  smp_mb__after_netif_stop_queue();
 | |
| 	 * but since that doesn't exist yet, just open code it. */
 | |
| 	smp_mb();
 | |
| 
 | |
| 	/* We need to check again in a case another CPU has just
 | |
| 	 * made room available. */
 | |
| 	if (igb_desc_unused(tx_ring) < size)
 | |
| 		return -EBUSY;
 | |
| 
 | |
| 	/* A reprieve! */
 | |
| 	netif_wake_subqueue(netdev, tx_ring->queue_index);
 | |
| 
 | |
| 	u64_stats_update_begin(&tx_ring->tx_syncp2);
 | |
| 	tx_ring->tx_stats.restart_queue2++;
 | |
| 	u64_stats_update_end(&tx_ring->tx_syncp2);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
 | |
| {
 | |
| 	if (igb_desc_unused(tx_ring) >= size)
 | |
| 		return 0;
 | |
| 	return __igb_maybe_stop_tx(tx_ring, size);
 | |
| }
 | |
| 
 | |
| netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
 | |
| 				struct igb_ring *tx_ring)
 | |
| {
 | |
| 	struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
 | |
| 	struct igb_tx_buffer *first;
 | |
| 	int tso;
 | |
| 	u32 tx_flags = 0;
 | |
| 	__be16 protocol = vlan_get_protocol(skb);
 | |
| 	u8 hdr_len = 0;
 | |
| 
 | |
| 	/* need: 1 descriptor per page,
 | |
| 	 *       + 2 desc gap to keep tail from touching head,
 | |
| 	 *       + 1 desc for skb->data,
 | |
| 	 *       + 1 desc for context descriptor,
 | |
| 	 * otherwise try next time */
 | |
| 	if (igb_maybe_stop_tx(tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
 | |
| 		/* this is a hard error */
 | |
| 		return NETDEV_TX_BUSY;
 | |
| 	}
 | |
| 
 | |
| 	/* record the location of the first descriptor for this packet */
 | |
| 	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
 | |
| 	first->skb = skb;
 | |
| 	first->bytecount = skb->len;
 | |
| 	first->gso_segs = 1;
 | |
| 
 | |
| 	skb_tx_timestamp(skb);
 | |
| 
 | |
| 	if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
 | |
| 		     !(adapter->ptp_tx_skb))) {
 | |
| 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
 | |
| 		tx_flags |= IGB_TX_FLAGS_TSTAMP;
 | |
| 
 | |
| 		adapter->ptp_tx_skb = skb_get(skb);
 | |
| 		adapter->ptp_tx_start = jiffies;
 | |
| 		if (adapter->hw.mac.type == e1000_82576)
 | |
| 			schedule_work(&adapter->ptp_tx_work);
 | |
| 	}
 | |
| 
 | |
| 	if (vlan_tx_tag_present(skb)) {
 | |
| 		tx_flags |= IGB_TX_FLAGS_VLAN;
 | |
| 		tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
 | |
| 	}
 | |
| 
 | |
| 	/* record initial flags and protocol */
 | |
| 	first->tx_flags = tx_flags;
 | |
| 	first->protocol = protocol;
 | |
| 
 | |
| 	tso = igb_tso(tx_ring, first, &hdr_len);
 | |
| 	if (tso < 0)
 | |
| 		goto out_drop;
 | |
| 	else if (!tso)
 | |
| 		igb_tx_csum(tx_ring, first);
 | |
| 
 | |
| 	igb_tx_map(tx_ring, first, hdr_len);
 | |
| 
 | |
| 	/* Make sure there is space in the ring for the next send. */
 | |
| 	igb_maybe_stop_tx(tx_ring, MAX_SKB_FRAGS + 4);
 | |
| 
 | |
| 	return NETDEV_TX_OK;
 | |
| 
 | |
| out_drop:
 | |
| 	igb_unmap_and_free_tx_resource(tx_ring, first);
 | |
| 
 | |
| 	return NETDEV_TX_OK;
 | |
| }
 | |
| 
 | |
| static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
 | |
| 						    struct sk_buff *skb)
 | |
| {
 | |
| 	unsigned int r_idx = skb->queue_mapping;
 | |
| 
 | |
| 	if (r_idx >= adapter->num_tx_queues)
 | |
| 		r_idx = r_idx % adapter->num_tx_queues;
 | |
| 
 | |
| 	return adapter->tx_ring[r_idx];
 | |
| }
 | |
| 
 | |
| static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
 | |
| 				  struct net_device *netdev)
 | |
| {
 | |
| 	struct igb_adapter *adapter = netdev_priv(netdev);
 | |
| 
 | |
| 	if (test_bit(__IGB_DOWN, &adapter->state)) {
 | |
| 		dev_kfree_skb_any(skb);
 | |
| 		return NETDEV_TX_OK;
 | |
| 	}
 | |
| 
 | |
| 	if (skb->len <= 0) {
 | |
| 		dev_kfree_skb_any(skb);
 | |
| 		return NETDEV_TX_OK;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * The minimum packet size with TCTL.PSP set is 17 so pad the skb
 | |
| 	 * in order to meet this minimum size requirement.
 | |
| 	 */
 | |
| 	if (unlikely(skb->len < 17)) {
 | |
| 		if (skb_pad(skb, 17 - skb->len))
 | |
| 			return NETDEV_TX_OK;
 | |
| 		skb->len = 17;
 | |
| 		skb_set_tail_pointer(skb, 17);
 | |
| 	}
 | |
| 
 | |
| 	return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * igb_tx_timeout - Respond to a Tx Hang
 | |
|  * @netdev: network interface device structure
 | |
|  **/
 | |
| static void igb_tx_timeout(struct net_device *netdev)
 | |
| {
 | |
| 	struct igb_adapter *adapter = netdev_priv(netdev);
 | |
| 	struct e1000_hw *hw = &adapter->hw;
 | |
| 
 | |
| 	/* Do the reset outside of interrupt context */
 | |
| 	adapter->tx_timeout_count++;
 | |
| 
 | |
| 	if (hw->mac.type >= e1000_82580)
 | |
| 		hw->dev_spec._82575.global_device_reset = true;
 | |
| 
 | |
| 	schedule_work(&adapter->reset_task);
 | |
| 	wr32(E1000_EICS,
 | |
| 	     (adapter->eims_enable_mask & ~adapter->eims_other));
 | |
| }
 | |
| 
 | |
| static void igb_reset_task(struct work_struct *work)
 | |
| {
 | |
| 	struct igb_adapter *adapter;
 | |
| 	adapter = container_of(work, struct igb_adapter, reset_task);
 | |
| 
 | |
| 	igb_dump(adapter);
 | |
| 	netdev_err(adapter->netdev, "Reset adapter\n");
 | |
| 	igb_reinit_locked(adapter);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * igb_get_stats64 - Get System Network Statistics
 | |
|  * @netdev: network interface device structure
 | |
|  * @stats: rtnl_link_stats64 pointer
 | |
|  *
 | |
|  **/
 | |
| static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
 | |
| 						 struct rtnl_link_stats64 *stats)
 | |
| {
 | |
| 	struct igb_adapter *adapter = netdev_priv(netdev);
 | |
| 
 | |
| 	spin_lock(&adapter->stats64_lock);
 | |
| 	igb_update_stats(adapter, &adapter->stats64);
 | |
| 	memcpy(stats, &adapter->stats64, sizeof(*stats));
 | |
| 	spin_unlock(&adapter->stats64_lock);
 | |
| 
 | |
| 	return stats;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * igb_change_mtu - Change the Maximum Transfer Unit
 | |
|  * @netdev: network interface device structure
 | |
|  * @new_mtu: new value for maximum frame size
 | |
|  *
 | |
|  * Returns 0 on success, negative on failure
 | |
|  **/
 | |
| static int igb_change_mtu(struct net_device *netdev, int new_mtu)
 | |
| {
 | |
| 	struct igb_adapter *adapter = netdev_priv(netdev);
 | |
| 	struct pci_dev *pdev = adapter->pdev;
 | |
| 	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
 | |
| 
 | |
| 	if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
 | |
| 		dev_err(&pdev->dev, "Invalid MTU setting\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| #define MAX_STD_JUMBO_FRAME_SIZE 9238
 | |
| 	if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
 | |
| 		dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
 | |
| 		msleep(1);
 | |
| 
 | |
| 	/* igb_down has a dependency on max_frame_size */
 | |
| 	adapter->max_frame_size = max_frame;
 | |
| 
 | |
| 	if (netif_running(netdev))
 | |
| 		igb_down(adapter);
 | |
| 
 | |
| 	dev_info(&pdev->dev, "changing MTU from %d to %d\n",
 | |
| 		 netdev->mtu, new_mtu);
 | |
| 	netdev->mtu = new_mtu;
 | |
| 
 | |
| 	if (netif_running(netdev))
 | |
| 		igb_up(adapter);
 | |
| 	else
 | |
| 		igb_reset(adapter);
 | |
| 
 | |
| 	clear_bit(__IGB_RESETTING, &adapter->state);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * igb_update_stats - Update the board statistics counters
 | |
|  * @adapter: board private structure
 | |
|  **/
 | |
| 
 | |
| void igb_update_stats(struct igb_adapter *adapter,
 | |
| 		      struct rtnl_link_stats64 *net_stats)
 | |
| {
 | |
| 	struct e1000_hw *hw = &adapter->hw;
 | |
| 	struct pci_dev *pdev = adapter->pdev;
 | |
| 	u32 reg, mpc;
 | |
| 	u16 phy_tmp;
 | |
| 	int i;
 | |
| 	u64 bytes, packets;
 | |
| 	unsigned int start;
 | |
| 	u64 _bytes, _packets;
 | |
| 
 | |
| #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
 | |
| 
 | |
| 	/*
 | |
| 	 * Prevent stats update while adapter is being reset, or if the pci
 | |
| 	 * connection is down.
 | |
| 	 */
 | |
| 	if (adapter->link_speed == 0)
 | |
| 		return;
 | |
| 	if (pci_channel_offline(pdev))
 | |
| 		return;
 | |
| 
 | |
| 	bytes = 0;
 | |
| 	packets = 0;
 | |
| 	for (i = 0; i < adapter->num_rx_queues; i++) {
 | |
| 		u32 rqdpc = rd32(E1000_RQDPC(i));
 | |
| 		struct igb_ring *ring = adapter->rx_ring[i];
 | |
| 
 | |
| 		if (rqdpc) {
 | |
| 			ring->rx_stats.drops += rqdpc;
 | |
| 			net_stats->rx_fifo_errors += rqdpc;
 | |
| 		}
 | |
| 
 | |
| 		do {
 | |
| 			start = u64_stats_fetch_begin_bh(&ring->rx_syncp);
 | |
| 			_bytes = ring->rx_stats.bytes;
 | |
| 			_packets = ring->rx_stats.packets;
 | |
| 		} while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start));
 | |
| 		bytes += _bytes;
 | |
| 		packets += _packets;
 | |
| 	}
 | |
| 
 | |
| 	net_stats->rx_bytes = bytes;
 | |
| 	net_stats->rx_packets = packets;
 | |
| 
 | |
| 	bytes = 0;
 | |
| 	packets = 0;
 | |
| 	for (i = 0; i < adapter->num_tx_queues; i++) {
 | |
| 		struct igb_ring *ring = adapter->tx_ring[i];
 | |
| 		do {
 | |
| 			start = u64_stats_fetch_begin_bh(&ring->tx_syncp);
 | |
| 			_bytes = ring->tx_stats.bytes;
 | |
| 			_packets = ring->tx_stats.packets;
 | |
| 		} while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start));
 | |
| 		bytes += _bytes;
 | |
| 		packets += _packets;
 | |
| 	}
 | |
| 	net_stats->tx_bytes = bytes;
 | |
| 	net_stats->tx_packets = packets;
 | |
| 
 | |
| 	/* read stats registers */
 | |
| 	adapter->stats.crcerrs += rd32(E1000_CRCERRS);
 | |
| 	adapter->stats.gprc += rd32(E1000_GPRC);
 | |
| 	adapter->stats.gorc += rd32(E1000_GORCL);
 | |
| 	rd32(E1000_GORCH); /* clear GORCL */
 | |
| 	adapter->stats.bprc += rd32(E1000_BPRC);
 | |
| 	adapter->stats.mprc += rd32(E1000_MPRC);
 | |
| 	adapter->stats.roc += rd32(E1000_ROC);
 | |
| 
 | |
| 	adapter->stats.prc64 += rd32(E1000_PRC64);
 | |
| 	adapter->stats.prc127 += rd32(E1000_PRC127);
 | |
| 	adapter->stats.prc255 += rd32(E1000_PRC255);
 | |
| 	adapter->stats.prc511 += rd32(E1000_PRC511);
 | |
| 	adapter->stats.prc1023 += rd32(E1000_PRC1023);
 | |
| 	adapter->stats.prc1522 += rd32(E1000_PRC1522);
 | |
| 	adapter->stats.symerrs += rd32(E1000_SYMERRS);
 | |
| 	adapter->stats.sec += rd32(E1000_SEC);
 | |
| 
 | |
| 	mpc = rd32(E1000_MPC);
 | |
| 	adapter->stats.mpc += mpc;
 | |
| 	net_stats->rx_fifo_errors += mpc;
 | |
| 	adapter->stats.scc += rd32(E1000_SCC);
 | |
| 	adapter->stats.ecol += rd32(E1000_ECOL);
 | |
| 	adapter->stats.mcc += rd32(E1000_MCC);
 | |
| 	adapter->stats.latecol += rd32(E1000_LATECOL);
 | |
| 	adapter->stats.dc += rd32(E1000_DC);
 | |
| 	adapter->stats.rlec += rd32(E1000_RLEC);
 | |
| 	adapter->stats.xonrxc += rd32(E1000_XONRXC);
 | |
| 	adapter->stats.xontxc += rd32(E1000_XONTXC);
 | |
| 	adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
 | |
| 	adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
 | |
| 	adapter->stats.fcruc += rd32(E1000_FCRUC);
 | |
| 	adapter->stats.gptc += rd32(E1000_GPTC);
 | |
| 	adapter->stats.gotc += rd32(E1000_GOTCL);
 | |
| 	rd32(E1000_GOTCH); /* clear GOTCL */
 | |
| 	adapter->stats.rnbc += rd32(E1000_RNBC);
 | |
| 	adapter->stats.ruc += rd32(E1000_RUC);
 | |
| 	adapter->stats.rfc += rd32(E1000_RFC);
 | |
| 	adapter->stats.rjc += rd32(E1000_RJC);
 | |
| 	adapter->stats.tor += rd32(E1000_TORH);
 | |
| 	adapter->stats.tot += rd32(E1000_TOTH);
 | |
| 	adapter->stats.tpr += rd32(E1000_TPR);
 | |
| 
 | |
| 	adapter->stats.ptc64 += rd32(E1000_PTC64);
 | |
| 	adapter->stats.ptc127 += rd32(E1000_PTC127);
 | |
| 	adapter->stats.ptc255 += rd32(E1000_PTC255);
 | |
| 	adapter->stats.ptc511 += rd32(E1000_PTC511);
 | |
| 	adapter->stats.ptc1023 += rd32(E1000_PTC1023);
 | |
| 	adapter->stats.ptc1522 += rd32(E1000_PTC1522);
 | |
| 
 | |
| 	adapter->stats.mptc += rd32(E1000_MPTC);
 | |
| 	adapter->stats.bptc += rd32(E1000_BPTC);
 | |
| 
 | |
| 	adapter->stats.tpt += rd32(E1000_TPT);
 | |
| 	adapter->stats.colc += rd32(E1000_COLC);
 | |
| 
 | |
| 	adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
 | |
| 	/* read internal phy specific stats */
 | |
| 	reg = rd32(E1000_CTRL_EXT);
 | |
| 	if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
 | |
| 		adapter->stats.rxerrc += rd32(E1000_RXERRC);
 | |
| 
 | |
| 		/* this stat has invalid values on i210/i211 */
 | |
| 		if ((hw->mac.type != e1000_i210) &&
 | |
| 		    (hw->mac.type != e1000_i211))
 | |
| 			adapter->stats.tncrs += rd32(E1000_TNCRS);
 | |
| 	}
 | |
| 
 | |
| 	adapter->stats.tsctc += rd32(E1000_TSCTC);
 | |
| 	adapter->stats.tsctfc += rd32(E1000_TSCTFC);
 | |
| 
 | |
| 	adapter->stats.iac += rd32(E1000_IAC);
 | |
| 	adapter->stats.icrxoc += rd32(E1000_ICRXOC);
 | |
| 	adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
 | |
| 	adapter->stats.icrxatc += rd32(E1000_ICRXATC);
 | |
| 	adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
 | |
| 	adapter->stats.ictxatc += rd32(E1000_ICTXATC);
 | |
| 	adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
 | |
| 	adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
 | |
| 	adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
 | |
| 
 | |
| 	/* Fill out the OS statistics structure */
 | |
| 	net_stats->multicast = adapter->stats.mprc;
 | |
| 	net_stats->collisions = adapter->stats.colc;
 | |
| 
 | |
| 	/* Rx Errors */
 | |
| 
 | |
| 	/* RLEC on some newer hardware can be incorrect so build
 | |
| 	 * our own version based on RUC and ROC */
 | |
| 	net_stats->rx_errors = adapter->stats.rxerrc +
 | |
| 		adapter->stats.crcerrs + adapter->stats.algnerrc +
 | |
| 		adapter->stats.ruc + adapter->stats.roc +
 | |
| 		adapter->stats.cexterr;
 | |
| 	net_stats->rx_length_errors = adapter->stats.ruc +
 | |
| 				      adapter->stats.roc;
 | |
| 	net_stats->rx_crc_errors = adapter->stats.crcerrs;
 | |
| 	net_stats->rx_frame_errors = adapter->stats.algnerrc;
 | |
| 	net_stats->rx_missed_errors = adapter->stats.mpc;
 | |
| 
 | |
| 	/* Tx Errors */
 | |
| 	net_stats->tx_errors = adapter->stats.ecol +
 | |
| 			       adapter->stats.latecol;
 | |
| 	net_stats->tx_aborted_errors = adapter->stats.ecol;
 | |
| 	net_stats->tx_window_errors = adapter->stats.latecol;
 | |
| 	net_stats->tx_carrier_errors = adapter->stats.tncrs;
 | |
| 
 | |
| 	/* Tx Dropped needs to be maintained elsewhere */
 | |
| 
 | |
| 	/* Phy Stats */
 | |
| 	if (hw->phy.media_type == e1000_media_type_copper) {
 | |
| 		if ((adapter->link_speed == SPEED_1000) &&
 | |
| 		   (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
 | |
| 			phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
 | |
| 			adapter->phy_stats.idle_errors += phy_tmp;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Management Stats */
 | |
| 	adapter->stats.mgptc += rd32(E1000_MGTPTC);
 | |
| 	adapter->stats.mgprc += rd32(E1000_MGTPRC);
 | |
| 	adapter->stats.mgpdc += rd32(E1000_MGTPDC);
 | |
| 
 | |
| 	/* OS2BMC Stats */
 | |
| 	reg = rd32(E1000_MANC);
 | |
| 	if (reg & E1000_MANC_EN_BMC2OS) {
 | |
| 		adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
 | |
| 		adapter->stats.o2bspc += rd32(E1000_O2BSPC);
 | |
| 		adapter->stats.b2ospc += rd32(E1000_B2OSPC);
 | |
| 		adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static irqreturn_t igb_msix_other(int irq, void *data)
 | |
| {
 | |
| 	struct igb_adapter *adapter = data;
 | |
| 	struct e1000_hw *hw = &adapter->hw;
 | |
| 	u32 icr = rd32(E1000_ICR);
 | |
| 	/* reading ICR causes bit 31 of EICR to be cleared */
 | |
| 
 | |
| 	if (icr & E1000_ICR_DRSTA)
 | |
| 		schedule_work(&adapter->reset_task);
 | |
| 
 | |
| 	if (icr & E1000_ICR_DOUTSYNC) {
 | |
| 		/* HW is reporting DMA is out of sync */
 | |
| 		adapter->stats.doosync++;
 | |
| 		/* The DMA Out of Sync is also indication of a spoof event
 | |
| 		 * in IOV mode. Check the Wrong VM Behavior register to
 | |
| 		 * see if it is really a spoof event. */
 | |
| 		igb_check_wvbr(adapter);
 | |
| 	}
 | |
| 
 | |
| 	/* Check for a mailbox event */
 | |
| 	if (icr & E1000_ICR_VMMB)
 | |
| 		igb_msg_task(adapter);
 | |
| 
 | |
| 	if (icr & E1000_ICR_LSC) {
 | |
| 		hw->mac.get_link_status = 1;
 | |
| 		/* guard against interrupt when we're going down */
 | |
| 		if (!test_bit(__IGB_DOWN, &adapter->state))
 | |
| 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
 | |
| 	}
 | |
| 
 | |
| 	if (icr & E1000_ICR_TS) {
 | |
| 		u32 tsicr = rd32(E1000_TSICR);
 | |
| 
 | |
| 		if (tsicr & E1000_TSICR_TXTS) {
 | |
| 			/* acknowledge the interrupt */
 | |
| 			wr32(E1000_TSICR, E1000_TSICR_TXTS);
 | |
| 			/* retrieve hardware timestamp */
 | |
| 			schedule_work(&adapter->ptp_tx_work);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	wr32(E1000_EIMS, adapter->eims_other);
 | |
| 
 | |
| 	return IRQ_HANDLED;
 | |
| }
 | |
| 
 | |
| static void igb_write_itr(struct igb_q_vector *q_vector)
 | |
| {
 | |
| 	struct igb_adapter *adapter = q_vector->adapter;
 | |
| 	u32 itr_val = q_vector->itr_val & 0x7FFC;
 | |
| 
 | |
| 	if (!q_vector->set_itr)
 | |
| 		return;
 | |
| 
 | |
| 	if (!itr_val)
 | |
| 		itr_val = 0x4;
 | |
| 
 | |
| 	if (adapter->hw.mac.type == e1000_82575)
 | |
| 		itr_val |= itr_val << 16;
 | |
| 	else
 | |
| 		itr_val |= E1000_EITR_CNT_IGNR;
 | |
| 
 | |
| 	writel(itr_val, q_vector->itr_register);
 | |
| 	q_vector->set_itr = 0;
 | |
| }
 | |
| 
 | |
| static irqreturn_t igb_msix_ring(int irq, void *data)
 | |
| {
 | |
| 	struct igb_q_vector *q_vector = data;
 | |
| 
 | |
| 	/* Write the ITR value calculated from the previous interrupt. */
 | |
| 	igb_write_itr(q_vector);
 | |
| 
 | |
| 	napi_schedule(&q_vector->napi);
 | |
| 
 | |
| 	return IRQ_HANDLED;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_IGB_DCA
 | |
| static void igb_update_tx_dca(struct igb_adapter *adapter,
 | |
| 			      struct igb_ring *tx_ring,
 | |
| 			      int cpu)
 | |
| {
 | |
| 	struct e1000_hw *hw = &adapter->hw;
 | |
| 	u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
 | |
| 
 | |
| 	if (hw->mac.type != e1000_82575)
 | |
| 		txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
 | |
| 
 | |
| 	/*
 | |
| 	 * We can enable relaxed ordering for reads, but not writes when
 | |
| 	 * DCA is enabled.  This is due to a known issue in some chipsets
 | |
| 	 * which will cause the DCA tag to be cleared.
 | |
| 	 */
 | |
| 	txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
 | |
| 		  E1000_DCA_TXCTRL_DATA_RRO_EN |
 | |
| 		  E1000_DCA_TXCTRL_DESC_DCA_EN;
 | |
| 
 | |
| 	wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
 | |
| }
 | |
| 
 | |
| static void igb_update_rx_dca(struct igb_adapter *adapter,
 | |
| 			      struct igb_ring *rx_ring,
 | |
| 			      int cpu)
 | |
| {
 | |
| 	struct e1000_hw *hw = &adapter->hw;
 | |
| 	u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
 | |
| 
 | |
| 	if (hw->mac.type != e1000_82575)
 | |
| 		rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
 | |
| 
 | |
| 	/*
 | |
| 	 * We can enable relaxed ordering for reads, but not writes when
 | |
| 	 * DCA is enabled.  This is due to a known issue in some chipsets
 | |
| 	 * which will cause the DCA tag to be cleared.
 | |
| 	 */
 | |
| 	rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
 | |
| 		  E1000_DCA_RXCTRL_DESC_DCA_EN;
 | |
| 
 | |
| 	wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
 | |
| }
 | |
| 
 | |
| static void igb_update_dca(struct igb_q_vector *q_vector)
 | |
| {
 | |
| 	struct igb_adapter *adapter = q_vector->adapter;
 | |
| 	int cpu = get_cpu();
 | |
| 
 | |
| 	if (q_vector->cpu == cpu)
 | |
| 		goto out_no_update;
 | |
| 
 | |
| 	if (q_vector->tx.ring)
 | |
| 		igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
 | |
| 
 | |
| 	if (q_vector->rx.ring)
 | |
| 		igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
 | |
| 
 | |
| 	q_vector->cpu = cpu;
 | |
| out_no_update:
 | |
| 	put_cpu();
 | |
| }
 | |
| 
 | |
| static void igb_setup_dca(struct igb_adapter *adapter)
 | |
| {
 | |
| 	struct e1000_hw *hw = &adapter->hw;
 | |
| 	int i;
 | |
| 
 | |
| 	if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
 | |
| 		return;
 | |
| 
 | |
| 	/* Always use CB2 mode, difference is masked in the CB driver. */
 | |
| 	wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
 | |
| 
 | |
| 	for (i = 0; i < adapter->num_q_vectors; i++) {
 | |
| 		adapter->q_vector[i]->cpu = -1;
 | |
| 		igb_update_dca(adapter->q_vector[i]);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int __igb_notify_dca(struct device *dev, void *data)
 | |
| {
 | |
| 	struct net_device *netdev = dev_get_drvdata(dev);
 | |
| 	struct igb_adapter *adapter = netdev_priv(netdev);
 | |
| 	struct pci_dev *pdev = adapter->pdev;
 | |
| 	struct e1000_hw *hw = &adapter->hw;
 | |
| 	unsigned long event = *(unsigned long *)data;
 | |
| 
 | |
| 	switch (event) {
 | |
| 	case DCA_PROVIDER_ADD:
 | |
| 		/* if already enabled, don't do it again */
 | |
| 		if (adapter->flags & IGB_FLAG_DCA_ENABLED)
 | |
| 			break;
 | |
| 		if (dca_add_requester(dev) == 0) {
 | |
| 			adapter->flags |= IGB_FLAG_DCA_ENABLED;
 | |
| 			dev_info(&pdev->dev, "DCA enabled\n");
 | |
| 			igb_setup_dca(adapter);
 | |
| 			break;
 | |
| 		}
 | |
| 		/* Fall Through since DCA is disabled. */
 | |
| 	case DCA_PROVIDER_REMOVE:
 | |
| 		if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
 | |
| 			/* without this a class_device is left
 | |
| 			 * hanging around in the sysfs model */
 | |
| 			dca_remove_requester(dev);
 | |
| 			dev_info(&pdev->dev, "DCA disabled\n");
 | |
| 			adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
 | |
| 			wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
 | |
| 		}
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
 | |
|                           void *p)
 | |
| {
 | |
| 	int ret_val;
 | |
| 
 | |
| 	ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
 | |
| 	                                 __igb_notify_dca);
 | |
| 
 | |
| 	return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
 | |
| }
 | |
| #endif /* CONFIG_IGB_DCA */
 | |
| 
 | |
| #ifdef CONFIG_PCI_IOV
 | |
| static int igb_vf_configure(struct igb_adapter *adapter, int vf)
 | |
| {
 | |
| 	unsigned char mac_addr[ETH_ALEN];
 | |
| 
 | |
| 	eth_random_addr(mac_addr);
 | |
| 	igb_set_vf_mac(adapter, vf, mac_addr);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static bool igb_vfs_are_assigned(struct igb_adapter *adapter)
 | |
| {
 | |
| 	struct pci_dev *pdev = adapter->pdev;
 | |
| 	struct pci_dev *vfdev;
 | |
| 	int dev_id;
 | |
| 
 | |
| 	switch (adapter->hw.mac.type) {
 | |
| 	case e1000_82576:
 | |
| 		dev_id = IGB_82576_VF_DEV_ID;
 | |
| 		break;
 | |
| 	case e1000_i350:
 | |
| 		dev_id = IGB_I350_VF_DEV_ID;
 | |
| 		break;
 | |
| 	default:
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	/* loop through all the VFs to see if we own any that are assigned */
 | |
| 	vfdev = pci_get_device(PCI_VENDOR_ID_INTEL, dev_id, NULL);
 | |
| 	while (vfdev) {
 | |
| 		/* if we don't own it we don't care */
 | |
| 		if (vfdev->is_virtfn && vfdev->physfn == pdev) {
 | |
| 			/* if it is assigned we cannot release it */
 | |
| 			if (vfdev->dev_flags & PCI_DEV_FLAGS_ASSIGNED)
 | |
| 				return true;
 | |
| 		}
 | |
| 
 | |
| 		vfdev = pci_get_device(PCI_VENDOR_ID_INTEL, dev_id, vfdev);
 | |
| 	}
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| #endif
 | |
| static void igb_ping_all_vfs(struct igb_adapter *adapter)
 | |
| {
 | |
| 	struct e1000_hw *hw = &adapter->hw;
 | |
| 	u32 ping;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
 | |
| 		ping = E1000_PF_CONTROL_MSG;
 | |
| 		if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
 | |
| 			ping |= E1000_VT_MSGTYPE_CTS;
 | |
| 		igb_write_mbx(hw, &ping, 1, i);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
 | |
| {
 | |
| 	struct e1000_hw *hw = &adapter->hw;
 | |
| 	u32 vmolr = rd32(E1000_VMOLR(vf));
 | |
| 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
 | |
| 
 | |
| 	vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
 | |
| 	                    IGB_VF_FLAG_MULTI_PROMISC);
 | |
| 	vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
 | |
| 
 | |
| 	if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
 | |
| 		vmolr |= E1000_VMOLR_MPME;
 | |
| 		vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
 | |
| 		*msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * if we have hashes and we are clearing a multicast promisc
 | |
| 		 * flag we need to write the hashes to the MTA as this step
 | |
| 		 * was previously skipped
 | |
| 		 */
 | |
| 		if (vf_data->num_vf_mc_hashes > 30) {
 | |
| 			vmolr |= E1000_VMOLR_MPME;
 | |
| 		} else if (vf_data->num_vf_mc_hashes) {
 | |
| 			int j;
 | |
| 			vmolr |= E1000_VMOLR_ROMPE;
 | |
| 			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
 | |
| 				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	wr32(E1000_VMOLR(vf), vmolr);
 | |
| 
 | |
| 	/* there are flags left unprocessed, likely not supported */
 | |
| 	if (*msgbuf & E1000_VT_MSGINFO_MASK)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| }
 | |
| 
 | |
| static int igb_set_vf_multicasts(struct igb_adapter *adapter,
 | |
| 				  u32 *msgbuf, u32 vf)
 | |
| {
 | |
| 	int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
 | |
| 	u16 *hash_list = (u16 *)&msgbuf[1];
 | |
| 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
 | |
| 	int i;
 | |
| 
 | |
| 	/* salt away the number of multicast addresses assigned
 | |
| 	 * to this VF for later use to restore when the PF multi cast
 | |
| 	 * list changes
 | |
| 	 */
 | |
| 	vf_data->num_vf_mc_hashes = n;
 | |
| 
 | |
| 	/* only up to 30 hash values supported */
 | |
| 	if (n > 30)
 | |
| 		n = 30;
 | |
| 
 | |
| 	/* store the hashes for later use */
 | |
| 	for (i = 0; i < n; i++)
 | |
| 		vf_data->vf_mc_hashes[i] = hash_list[i];
 | |
| 
 | |
| 	/* Flush and reset the mta with the new values */
 | |
| 	igb_set_rx_mode(adapter->netdev);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
 | |
| {
 | |
| 	struct e1000_hw *hw = &adapter->hw;
 | |
| 	struct vf_data_storage *vf_data;
 | |
| 	int i, j;
 | |
| 
 | |
| 	for (i = 0; i < adapter->vfs_allocated_count; i++) {
 | |
| 		u32 vmolr = rd32(E1000_VMOLR(i));
 | |
| 		vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
 | |
| 
 | |
| 		vf_data = &adapter->vf_data[i];
 | |
| 
 | |
| 		if ((vf_data->num_vf_mc_hashes > 30) ||
 | |
| 		    (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
 | |
| 			vmolr |= E1000_VMOLR_MPME;
 | |
| 		} else if (vf_data->num_vf_mc_hashes) {
 | |
| 			vmolr |= E1000_VMOLR_ROMPE;
 | |
| 			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
 | |
| 				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
 | |
| 		}
 | |
| 		wr32(E1000_VMOLR(i), vmolr);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
 | |
| {
 | |
| 	struct e1000_hw *hw = &adapter->hw;
 | |
| 	u32 pool_mask, reg, vid;
 | |
| 	int i;
 | |
| 
 | |
| 	pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
 | |
| 
 | |
| 	/* Find the vlan filter for this id */
 | |
| 	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
 | |
| 		reg = rd32(E1000_VLVF(i));
 | |
| 
 | |
| 		/* remove the vf from the pool */
 | |
| 		reg &= ~pool_mask;
 | |
| 
 | |
| 		/* if pool is empty then remove entry from vfta */
 | |
| 		if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
 | |
| 		    (reg & E1000_VLVF_VLANID_ENABLE)) {
 | |
| 			reg = 0;
 | |
| 			vid = reg & E1000_VLVF_VLANID_MASK;
 | |
| 			igb_vfta_set(hw, vid, false);
 | |
| 		}
 | |
| 
 | |
| 		wr32(E1000_VLVF(i), reg);
 | |
| 	}
 | |
| 
 | |
| 	adapter->vf_data[vf].vlans_enabled = 0;
 | |
| }
 | |
| 
 | |
| static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
 | |
| {
 | |
| 	struct e1000_hw *hw = &adapter->hw;
 | |
| 	u32 reg, i;
 | |
| 
 | |
| 	/* The vlvf table only exists on 82576 hardware and newer */
 | |
| 	if (hw->mac.type < e1000_82576)
 | |
| 		return -1;
 | |
| 
 | |
| 	/* we only need to do this if VMDq is enabled */
 | |
| 	if (!adapter->vfs_allocated_count)
 | |
| 		return -1;
 | |
| 
 | |
| 	/* Find the vlan filter for this id */
 | |
| 	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
 | |
| 		reg = rd32(E1000_VLVF(i));
 | |
| 		if ((reg & E1000_VLVF_VLANID_ENABLE) &&
 | |
| 		    vid == (reg & E1000_VLVF_VLANID_MASK))
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	if (add) {
 | |
| 		if (i == E1000_VLVF_ARRAY_SIZE) {
 | |
| 			/* Did not find a matching VLAN ID entry that was
 | |
| 			 * enabled.  Search for a free filter entry, i.e.
 | |
| 			 * one without the enable bit set
 | |
| 			 */
 | |
| 			for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
 | |
| 				reg = rd32(E1000_VLVF(i));
 | |
| 				if (!(reg & E1000_VLVF_VLANID_ENABLE))
 | |
| 					break;
 | |
| 			}
 | |
| 		}
 | |
| 		if (i < E1000_VLVF_ARRAY_SIZE) {
 | |
| 			/* Found an enabled/available entry */
 | |
| 			reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
 | |
| 
 | |
| 			/* if !enabled we need to set this up in vfta */
 | |
| 			if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
 | |
| 				/* add VID to filter table */
 | |
| 				igb_vfta_set(hw, vid, true);
 | |
| 				reg |= E1000_VLVF_VLANID_ENABLE;
 | |
| 			}
 | |
| 			reg &= ~E1000_VLVF_VLANID_MASK;
 | |
| 			reg |= vid;
 | |
| 			wr32(E1000_VLVF(i), reg);
 | |
| 
 | |
| 			/* do not modify RLPML for PF devices */
 | |
| 			if (vf >= adapter->vfs_allocated_count)
 | |
| 				return 0;
 | |
| 
 | |
| 			if (!adapter->vf_data[vf].vlans_enabled) {
 | |
| 				u32 size;
 | |
| 				reg = rd32(E1000_VMOLR(vf));
 | |
| 				size = reg & E1000_VMOLR_RLPML_MASK;
 | |
| 				size += 4;
 | |
| 				reg &= ~E1000_VMOLR_RLPML_MASK;
 | |
| 				reg |= size;
 | |
| 				wr32(E1000_VMOLR(vf), reg);
 | |
| 			}
 | |
| 
 | |
| 			adapter->vf_data[vf].vlans_enabled++;
 | |
| 		}
 | |
| 	} else {
 | |
| 		if (i < E1000_VLVF_ARRAY_SIZE) {
 | |
| 			/* remove vf from the pool */
 | |
| 			reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
 | |
| 			/* if pool is empty then remove entry from vfta */
 | |
| 			if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
 | |
| 				reg = 0;
 | |
| 				igb_vfta_set(hw, vid, false);
 | |
| 			}
 | |
| 			wr32(E1000_VLVF(i), reg);
 | |
| 
 | |
| 			/* do not modify RLPML for PF devices */
 | |
| 			if (vf >= adapter->vfs_allocated_count)
 | |
| 				return 0;
 | |
| 
 | |
| 			adapter->vf_data[vf].vlans_enabled--;
 | |
| 			if (!adapter->vf_data[vf].vlans_enabled) {
 | |
| 				u32 size;
 | |
| 				reg = rd32(E1000_VMOLR(vf));
 | |
| 				size = reg & E1000_VMOLR_RLPML_MASK;
 | |
| 				size -= 4;
 | |
| 				reg &= ~E1000_VMOLR_RLPML_MASK;
 | |
| 				reg |= size;
 | |
| 				wr32(E1000_VMOLR(vf), reg);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
 | |
| {
 | |
| 	struct e1000_hw *hw = &adapter->hw;
 | |
| 
 | |
| 	if (vid)
 | |
| 		wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
 | |
| 	else
 | |
| 		wr32(E1000_VMVIR(vf), 0);
 | |
| }
 | |
| 
 | |
| static int igb_ndo_set_vf_vlan(struct net_device *netdev,
 | |
| 			       int vf, u16 vlan, u8 qos)
 | |
| {
 | |
| 	int err = 0;
 | |
| 	struct igb_adapter *adapter = netdev_priv(netdev);
 | |
| 
 | |
| 	if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
 | |
| 		return -EINVAL;
 | |
| 	if (vlan || qos) {
 | |
| 		err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
 | |
| 		if (err)
 | |
| 			goto out;
 | |
| 		igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
 | |
| 		igb_set_vmolr(adapter, vf, !vlan);
 | |
| 		adapter->vf_data[vf].pf_vlan = vlan;
 | |
| 		adapter->vf_data[vf].pf_qos = qos;
 | |
| 		dev_info(&adapter->pdev->dev,
 | |
| 			 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
 | |
| 		if (test_bit(__IGB_DOWN, &adapter->state)) {
 | |
| 			dev_warn(&adapter->pdev->dev,
 | |
| 				 "The VF VLAN has been set,"
 | |
| 				 " but the PF device is not up.\n");
 | |
| 			dev_warn(&adapter->pdev->dev,
 | |
| 				 "Bring the PF device up before"
 | |
| 				 " attempting to use the VF device.\n");
 | |
| 		}
 | |
| 	} else {
 | |
| 		igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
 | |
| 				   false, vf);
 | |
| 		igb_set_vmvir(adapter, vlan, vf);
 | |
| 		igb_set_vmolr(adapter, vf, true);
 | |
| 		adapter->vf_data[vf].pf_vlan = 0;
 | |
| 		adapter->vf_data[vf].pf_qos = 0;
 | |
|        }
 | |
| out:
 | |
|        return err;
 | |
| }
 | |
| 
 | |
| static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
 | |
| {
 | |
| 	int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
 | |
| 	int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
 | |
| 
 | |
| 	return igb_vlvf_set(adapter, vid, add, vf);
 | |
| }
 | |
| 
 | |
| static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
 | |
| {
 | |
| 	/* clear flags - except flag that indicates PF has set the MAC */
 | |
| 	adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC;
 | |
| 	adapter->vf_data[vf].last_nack = jiffies;
 | |
| 
 | |
| 	/* reset offloads to defaults */
 | |
| 	igb_set_vmolr(adapter, vf, true);
 | |
| 
 | |
| 	/* reset vlans for device */
 | |
| 	igb_clear_vf_vfta(adapter, vf);
 | |
| 	if (adapter->vf_data[vf].pf_vlan)
 | |
| 		igb_ndo_set_vf_vlan(adapter->netdev, vf,
 | |
| 				    adapter->vf_data[vf].pf_vlan,
 | |
| 				    adapter->vf_data[vf].pf_qos);
 | |
| 	else
 | |
| 		igb_clear_vf_vfta(adapter, vf);
 | |
| 
 | |
| 	/* reset multicast table array for vf */
 | |
| 	adapter->vf_data[vf].num_vf_mc_hashes = 0;
 | |
| 
 | |
| 	/* Flush and reset the mta with the new values */
 | |
| 	igb_set_rx_mode(adapter->netdev);
 | |
| }
 | |
| 
 | |
| static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
 | |
| {
 | |
| 	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
 | |
| 
 | |
| 	/* generate a new mac address as we were hotplug removed/added */
 | |
| 	if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
 | |
| 		eth_random_addr(vf_mac);
 | |
| 
 | |
| 	/* process remaining reset events */
 | |
| 	igb_vf_reset(adapter, vf);
 | |
| }
 | |
| 
 | |
| static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
 | |
| {
 | |
| 	struct e1000_hw *hw = &adapter->hw;
 | |
| 	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
 | |
| 	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
 | |
| 	u32 reg, msgbuf[3];
 | |
| 	u8 *addr = (u8 *)(&msgbuf[1]);
 | |
| 
 | |
| 	/* process all the same items cleared in a function level reset */
 | |
| 	igb_vf_reset(adapter, vf);
 | |
| 
 | |
| 	/* set vf mac address */
 | |
| 	igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
 | |
| 
 | |
| 	/* enable transmit and receive for vf */
 | |
| 	reg = rd32(E1000_VFTE);
 | |
| 	wr32(E1000_VFTE, reg | (1 << vf));
 | |
| 	reg = rd32(E1000_VFRE);
 | |
| 	wr32(E1000_VFRE, reg | (1 << vf));
 | |
| 
 | |
| 	adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
 | |
| 
 | |
| 	/* reply to reset with ack and vf mac address */
 | |
| 	msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
 | |
| 	memcpy(addr, vf_mac, 6);
 | |
| 	igb_write_mbx(hw, msgbuf, 3, vf);
 | |
| }
 | |
| 
 | |
| static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
 | |
| {
 | |
| 	/*
 | |
| 	 * The VF MAC Address is stored in a packed array of bytes
 | |
| 	 * starting at the second 32 bit word of the msg array
 | |
| 	 */
 | |
| 	unsigned char *addr = (char *)&msg[1];
 | |
| 	int err = -1;
 | |
| 
 | |
| 	if (is_valid_ether_addr(addr))
 | |
| 		err = igb_set_vf_mac(adapter, vf, addr);
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
 | |
| {
 | |
| 	struct e1000_hw *hw = &adapter->hw;
 | |
| 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
 | |
| 	u32 msg = E1000_VT_MSGTYPE_NACK;
 | |
| 
 | |
| 	/* if device isn't clear to send it shouldn't be reading either */
 | |
| 	if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
 | |
| 	    time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
 | |
| 		igb_write_mbx(hw, &msg, 1, vf);
 | |
| 		vf_data->last_nack = jiffies;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
 | |
| {
 | |
| 	struct pci_dev *pdev = adapter->pdev;
 | |
| 	u32 msgbuf[E1000_VFMAILBOX_SIZE];
 | |
| 	struct e1000_hw *hw = &adapter->hw;
 | |
| 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
 | |
| 	s32 retval;
 | |
| 
 | |
| 	retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
 | |
| 
 | |
| 	if (retval) {
 | |
| 		/* if receive failed revoke VF CTS stats and restart init */
 | |
| 		dev_err(&pdev->dev, "Error receiving message from VF\n");
 | |
| 		vf_data->flags &= ~IGB_VF_FLAG_CTS;
 | |
| 		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
 | |
| 			return;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/* this is a message we already processed, do nothing */
 | |
| 	if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * until the vf completes a reset it should not be
 | |
| 	 * allowed to start any configuration.
 | |
| 	 */
 | |
| 
 | |
| 	if (msgbuf[0] == E1000_VF_RESET) {
 | |
| 		igb_vf_reset_msg(adapter, vf);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
 | |
| 		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
 | |
| 			return;
 | |
| 		retval = -1;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	switch ((msgbuf[0] & 0xFFFF)) {
 | |
| 	case E1000_VF_SET_MAC_ADDR:
 | |
| 		retval = -EINVAL;
 | |
| 		if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
 | |
| 			retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
 | |
| 		else
 | |
| 			dev_warn(&pdev->dev,
 | |
| 				 "VF %d attempted to override administratively "
 | |
| 				 "set MAC address\nReload the VF driver to "
 | |
| 				 "resume operations\n", vf);
 | |
| 		break;
 | |
| 	case E1000_VF_SET_PROMISC:
 | |
| 		retval = igb_set_vf_promisc(adapter, msgbuf, vf);
 | |
| 		break;
 | |
| 	case E1000_VF_SET_MULTICAST:
 | |
| 		retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
 | |
| 		break;
 | |
| 	case E1000_VF_SET_LPE:
 | |
| 		retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
 | |
| 		break;
 | |
| 	case E1000_VF_SET_VLAN:
 | |
| 		retval = -1;
 | |
| 		if (vf_data->pf_vlan)
 | |
| 			dev_warn(&pdev->dev,
 | |
| 				 "VF %d attempted to override administratively "
 | |
| 				 "set VLAN tag\nReload the VF driver to "
 | |
| 				 "resume operations\n", vf);
 | |
| 		else
 | |
| 			retval = igb_set_vf_vlan(adapter, msgbuf, vf);
 | |
| 		break;
 | |
| 	default:
 | |
| 		dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
 | |
| 		retval = -1;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
 | |
| out:
 | |
| 	/* notify the VF of the results of what it sent us */
 | |
| 	if (retval)
 | |
| 		msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
 | |
| 	else
 | |
| 		msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
 | |
| 
 | |
| 	igb_write_mbx(hw, msgbuf, 1, vf);
 | |
| }
 | |
| 
 | |
| static void igb_msg_task(struct igb_adapter *adapter)
 | |
| {
 | |
| 	struct e1000_hw *hw = &adapter->hw;
 | |
| 	u32 vf;
 | |
| 
 | |
| 	for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
 | |
| 		/* process any reset requests */
 | |
| 		if (!igb_check_for_rst(hw, vf))
 | |
| 			igb_vf_reset_event(adapter, vf);
 | |
| 
 | |
| 		/* process any messages pending */
 | |
| 		if (!igb_check_for_msg(hw, vf))
 | |
| 			igb_rcv_msg_from_vf(adapter, vf);
 | |
| 
 | |
| 		/* process any acks */
 | |
| 		if (!igb_check_for_ack(hw, vf))
 | |
| 			igb_rcv_ack_from_vf(adapter, vf);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  igb_set_uta - Set unicast filter table address
 | |
|  *  @adapter: board private structure
 | |
|  *
 | |
|  *  The unicast table address is a register array of 32-bit registers.
 | |
|  *  The table is meant to be used in a way similar to how the MTA is used
 | |
|  *  however due to certain limitations in the hardware it is necessary to
 | |
|  *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
 | |
|  *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
 | |
|  **/
 | |
| static void igb_set_uta(struct igb_adapter *adapter)
 | |
| {
 | |
| 	struct e1000_hw *hw = &adapter->hw;
 | |
| 	int i;
 | |
| 
 | |
| 	/* The UTA table only exists on 82576 hardware and newer */
 | |
| 	if (hw->mac.type < e1000_82576)
 | |
| 		return;
 | |
| 
 | |
| 	/* we only need to do this if VMDq is enabled */
 | |
| 	if (!adapter->vfs_allocated_count)
 | |
| 		return;
 | |
| 
 | |
| 	for (i = 0; i < hw->mac.uta_reg_count; i++)
 | |
| 		array_wr32(E1000_UTA, i, ~0);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * igb_intr_msi - Interrupt Handler
 | |
|  * @irq: interrupt number
 | |
|  * @data: pointer to a network interface device structure
 | |
|  **/
 | |
| static irqreturn_t igb_intr_msi(int irq, void *data)
 | |
| {
 | |
| 	struct igb_adapter *adapter = data;
 | |
| 	struct igb_q_vector *q_vector = adapter->q_vector[0];
 | |
| 	struct e1000_hw *hw = &adapter->hw;
 | |
| 	/* read ICR disables interrupts using IAM */
 | |
| 	u32 icr = rd32(E1000_ICR);
 | |
| 
 | |
| 	igb_write_itr(q_vector);
 | |
| 
 | |
| 	if (icr & E1000_ICR_DRSTA)
 | |
| 		schedule_work(&adapter->reset_task);
 | |
| 
 | |
| 	if (icr & E1000_ICR_DOUTSYNC) {
 | |
| 		/* HW is reporting DMA is out of sync */
 | |
| 		adapter->stats.doosync++;
 | |
| 	}
 | |
| 
 | |
| 	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
 | |
| 		hw->mac.get_link_status = 1;
 | |
| 		if (!test_bit(__IGB_DOWN, &adapter->state))
 | |
| 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
 | |
| 	}
 | |
| 
 | |
| 	if (icr & E1000_ICR_TS) {
 | |
| 		u32 tsicr = rd32(E1000_TSICR);
 | |
| 
 | |
| 		if (tsicr & E1000_TSICR_TXTS) {
 | |
| 			/* acknowledge the interrupt */
 | |
| 			wr32(E1000_TSICR, E1000_TSICR_TXTS);
 | |
| 			/* retrieve hardware timestamp */
 | |
| 			schedule_work(&adapter->ptp_tx_work);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	napi_schedule(&q_vector->napi);
 | |
| 
 | |
| 	return IRQ_HANDLED;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * igb_intr - Legacy Interrupt Handler
 | |
|  * @irq: interrupt number
 | |
|  * @data: pointer to a network interface device structure
 | |
|  **/
 | |
| static irqreturn_t igb_intr(int irq, void *data)
 | |
| {
 | |
| 	struct igb_adapter *adapter = data;
 | |
| 	struct igb_q_vector *q_vector = adapter->q_vector[0];
 | |
| 	struct e1000_hw *hw = &adapter->hw;
 | |
| 	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
 | |
| 	 * need for the IMC write */
 | |
| 	u32 icr = rd32(E1000_ICR);
 | |
| 
 | |
| 	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
 | |
| 	 * not set, then the adapter didn't send an interrupt */
 | |
| 	if (!(icr & E1000_ICR_INT_ASSERTED))
 | |
| 		return IRQ_NONE;
 | |
| 
 | |
| 	igb_write_itr(q_vector);
 | |
| 
 | |
| 	if (icr & E1000_ICR_DRSTA)
 | |
| 		schedule_work(&adapter->reset_task);
 | |
| 
 | |
| 	if (icr & E1000_ICR_DOUTSYNC) {
 | |
| 		/* HW is reporting DMA is out of sync */
 | |
| 		adapter->stats.doosync++;
 | |
| 	}
 | |
| 
 | |
| 	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
 | |
| 		hw->mac.get_link_status = 1;
 | |
| 		/* guard against interrupt when we're going down */
 | |
| 		if (!test_bit(__IGB_DOWN, &adapter->state))
 | |
| 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
 | |
| 	}
 | |
| 
 | |
| 	if (icr & E1000_ICR_TS) {
 | |
| 		u32 tsicr = rd32(E1000_TSICR);
 | |
| 
 | |
| 		if (tsicr & E1000_TSICR_TXTS) {
 | |
| 			/* acknowledge the interrupt */
 | |
| 			wr32(E1000_TSICR, E1000_TSICR_TXTS);
 | |
| 			/* retrieve hardware timestamp */
 | |
| 			schedule_work(&adapter->ptp_tx_work);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	napi_schedule(&q_vector->napi);
 | |
| 
 | |
| 	return IRQ_HANDLED;
 | |
| }
 | |
| 
 | |
| static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
 | |
| {
 | |
| 	struct igb_adapter *adapter = q_vector->adapter;
 | |
| 	struct e1000_hw *hw = &adapter->hw;
 | |
| 
 | |
| 	if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
 | |
| 	    (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
 | |
| 		if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
 | |
| 			igb_set_itr(q_vector);
 | |
| 		else
 | |
| 			igb_update_ring_itr(q_vector);
 | |
| 	}
 | |
| 
 | |
| 	if (!test_bit(__IGB_DOWN, &adapter->state)) {
 | |
| 		if (adapter->msix_entries)
 | |
| 			wr32(E1000_EIMS, q_vector->eims_value);
 | |
| 		else
 | |
| 			igb_irq_enable(adapter);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * igb_poll - NAPI Rx polling callback
 | |
|  * @napi: napi polling structure
 | |
|  * @budget: count of how many packets we should handle
 | |
|  **/
 | |
| static int igb_poll(struct napi_struct *napi, int budget)
 | |
| {
 | |
| 	struct igb_q_vector *q_vector = container_of(napi,
 | |
| 	                                             struct igb_q_vector,
 | |
| 	                                             napi);
 | |
| 	bool clean_complete = true;
 | |
| 
 | |
| #ifdef CONFIG_IGB_DCA
 | |
| 	if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
 | |
| 		igb_update_dca(q_vector);
 | |
| #endif
 | |
| 	if (q_vector->tx.ring)
 | |
| 		clean_complete = igb_clean_tx_irq(q_vector);
 | |
| 
 | |
| 	if (q_vector->rx.ring)
 | |
| 		clean_complete &= igb_clean_rx_irq(q_vector, budget);
 | |
| 
 | |
| 	/* If all work not completed, return budget and keep polling */
 | |
| 	if (!clean_complete)
 | |
| 		return budget;
 | |
| 
 | |
| 	/* If not enough Rx work done, exit the polling mode */
 | |
| 	napi_complete(napi);
 | |
| 	igb_ring_irq_enable(q_vector);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * igb_clean_tx_irq - Reclaim resources after transmit completes
 | |
|  * @q_vector: pointer to q_vector containing needed info
 | |
|  *
 | |
|  * returns true if ring is completely cleaned
 | |
|  **/
 | |
| static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
 | |
| {
 | |
| 	struct igb_adapter *adapter = q_vector->adapter;
 | |
| 	struct igb_ring *tx_ring = q_vector->tx.ring;
 | |
| 	struct igb_tx_buffer *tx_buffer;
 | |
| 	union e1000_adv_tx_desc *tx_desc;
 | |
| 	unsigned int total_bytes = 0, total_packets = 0;
 | |
| 	unsigned int budget = q_vector->tx.work_limit;
 | |
| 	unsigned int i = tx_ring->next_to_clean;
 | |
| 
 | |
| 	if (test_bit(__IGB_DOWN, &adapter->state))
 | |
| 		return true;
 | |
| 
 | |
| 	tx_buffer = &tx_ring->tx_buffer_info[i];
 | |
| 	tx_desc = IGB_TX_DESC(tx_ring, i);
 | |
| 	i -= tx_ring->count;
 | |
| 
 | |
| 	do {
 | |
| 		union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
 | |
| 
 | |
| 		/* if next_to_watch is not set then there is no work pending */
 | |
| 		if (!eop_desc)
 | |
| 			break;
 | |
| 
 | |
| 		/* prevent any other reads prior to eop_desc */
 | |
| 		read_barrier_depends();
 | |
| 
 | |
| 		/* if DD is not set pending work has not been completed */
 | |
| 		if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
 | |
| 			break;
 | |
| 
 | |
| 		/* clear next_to_watch to prevent false hangs */
 | |
| 		tx_buffer->next_to_watch = NULL;
 | |
| 
 | |
| 		/* update the statistics for this packet */
 | |
| 		total_bytes += tx_buffer->bytecount;
 | |
| 		total_packets += tx_buffer->gso_segs;
 | |
| 
 | |
| 		/* free the skb */
 | |
| 		dev_kfree_skb_any(tx_buffer->skb);
 | |
| 
 | |
| 		/* unmap skb header data */
 | |
| 		dma_unmap_single(tx_ring->dev,
 | |
| 				 dma_unmap_addr(tx_buffer, dma),
 | |
| 				 dma_unmap_len(tx_buffer, len),
 | |
| 				 DMA_TO_DEVICE);
 | |
| 
 | |
| 		/* clear tx_buffer data */
 | |
| 		tx_buffer->skb = NULL;
 | |
| 		dma_unmap_len_set(tx_buffer, len, 0);
 | |
| 
 | |
| 		/* clear last DMA location and unmap remaining buffers */
 | |
| 		while (tx_desc != eop_desc) {
 | |
| 			tx_buffer++;
 | |
| 			tx_desc++;
 | |
| 			i++;
 | |
| 			if (unlikely(!i)) {
 | |
| 				i -= tx_ring->count;
 | |
| 				tx_buffer = tx_ring->tx_buffer_info;
 | |
| 				tx_desc = IGB_TX_DESC(tx_ring, 0);
 | |
| 			}
 | |
| 
 | |
| 			/* unmap any remaining paged data */
 | |
| 			if (dma_unmap_len(tx_buffer, len)) {
 | |
| 				dma_unmap_page(tx_ring->dev,
 | |
| 					       dma_unmap_addr(tx_buffer, dma),
 | |
| 					       dma_unmap_len(tx_buffer, len),
 | |
| 					       DMA_TO_DEVICE);
 | |
| 				dma_unmap_len_set(tx_buffer, len, 0);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/* move us one more past the eop_desc for start of next pkt */
 | |
| 		tx_buffer++;
 | |
| 		tx_desc++;
 | |
| 		i++;
 | |
| 		if (unlikely(!i)) {
 | |
| 			i -= tx_ring->count;
 | |
| 			tx_buffer = tx_ring->tx_buffer_info;
 | |
| 			tx_desc = IGB_TX_DESC(tx_ring, 0);
 | |
| 		}
 | |
| 
 | |
| 		/* issue prefetch for next Tx descriptor */
 | |
| 		prefetch(tx_desc);
 | |
| 
 | |
| 		/* update budget accounting */
 | |
| 		budget--;
 | |
| 	} while (likely(budget));
 | |
| 
 | |
| 	netdev_tx_completed_queue(txring_txq(tx_ring),
 | |
| 				  total_packets, total_bytes);
 | |
| 	i += tx_ring->count;
 | |
| 	tx_ring->next_to_clean = i;
 | |
| 	u64_stats_update_begin(&tx_ring->tx_syncp);
 | |
| 	tx_ring->tx_stats.bytes += total_bytes;
 | |
| 	tx_ring->tx_stats.packets += total_packets;
 | |
| 	u64_stats_update_end(&tx_ring->tx_syncp);
 | |
| 	q_vector->tx.total_bytes += total_bytes;
 | |
| 	q_vector->tx.total_packets += total_packets;
 | |
| 
 | |
| 	if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
 | |
| 		struct e1000_hw *hw = &adapter->hw;
 | |
| 
 | |
| 		/* Detect a transmit hang in hardware, this serializes the
 | |
| 		 * check with the clearing of time_stamp and movement of i */
 | |
| 		clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
 | |
| 		if (tx_buffer->next_to_watch &&
 | |
| 		    time_after(jiffies, tx_buffer->time_stamp +
 | |
| 			       (adapter->tx_timeout_factor * HZ)) &&
 | |
| 		    !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
 | |
| 
 | |
| 			/* detected Tx unit hang */
 | |
| 			dev_err(tx_ring->dev,
 | |
| 				"Detected Tx Unit Hang\n"
 | |
| 				"  Tx Queue             <%d>\n"
 | |
| 				"  TDH                  <%x>\n"
 | |
| 				"  TDT                  <%x>\n"
 | |
| 				"  next_to_use          <%x>\n"
 | |
| 				"  next_to_clean        <%x>\n"
 | |
| 				"buffer_info[next_to_clean]\n"
 | |
| 				"  time_stamp           <%lx>\n"
 | |
| 				"  next_to_watch        <%p>\n"
 | |
| 				"  jiffies              <%lx>\n"
 | |
| 				"  desc.status          <%x>\n",
 | |
| 				tx_ring->queue_index,
 | |
| 				rd32(E1000_TDH(tx_ring->reg_idx)),
 | |
| 				readl(tx_ring->tail),
 | |
| 				tx_ring->next_to_use,
 | |
| 				tx_ring->next_to_clean,
 | |
| 				tx_buffer->time_stamp,
 | |
| 				tx_buffer->next_to_watch,
 | |
| 				jiffies,
 | |
| 				tx_buffer->next_to_watch->wb.status);
 | |
| 			netif_stop_subqueue(tx_ring->netdev,
 | |
| 					    tx_ring->queue_index);
 | |
| 
 | |
| 			/* we are about to reset, no point in enabling stuff */
 | |
| 			return true;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(total_packets &&
 | |
| 		     netif_carrier_ok(tx_ring->netdev) &&
 | |
| 		     igb_desc_unused(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
 | |
| 		/* Make sure that anybody stopping the queue after this
 | |
| 		 * sees the new next_to_clean.
 | |
| 		 */
 | |
| 		smp_mb();
 | |
| 		if (__netif_subqueue_stopped(tx_ring->netdev,
 | |
| 					     tx_ring->queue_index) &&
 | |
| 		    !(test_bit(__IGB_DOWN, &adapter->state))) {
 | |
| 			netif_wake_subqueue(tx_ring->netdev,
 | |
| 					    tx_ring->queue_index);
 | |
| 
 | |
| 			u64_stats_update_begin(&tx_ring->tx_syncp);
 | |
| 			tx_ring->tx_stats.restart_queue++;
 | |
| 			u64_stats_update_end(&tx_ring->tx_syncp);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return !!budget;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * igb_reuse_rx_page - page flip buffer and store it back on the ring
 | |
|  * @rx_ring: rx descriptor ring to store buffers on
 | |
|  * @old_buff: donor buffer to have page reused
 | |
|  *
 | |
|  * Synchronizes page for reuse by the adapter
 | |
|  **/
 | |
| static void igb_reuse_rx_page(struct igb_ring *rx_ring,
 | |
| 			      struct igb_rx_buffer *old_buff)
 | |
| {
 | |
| 	struct igb_rx_buffer *new_buff;
 | |
| 	u16 nta = rx_ring->next_to_alloc;
 | |
| 
 | |
| 	new_buff = &rx_ring->rx_buffer_info[nta];
 | |
| 
 | |
| 	/* update, and store next to alloc */
 | |
| 	nta++;
 | |
| 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
 | |
| 
 | |
| 	/* transfer page from old buffer to new buffer */
 | |
| 	memcpy(new_buff, old_buff, sizeof(struct igb_rx_buffer));
 | |
| 
 | |
| 	/* sync the buffer for use by the device */
 | |
| 	dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
 | |
| 					 old_buff->page_offset,
 | |
| 					 IGB_RX_BUFSZ,
 | |
| 					 DMA_FROM_DEVICE);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * igb_add_rx_frag - Add contents of Rx buffer to sk_buff
 | |
|  * @rx_ring: rx descriptor ring to transact packets on
 | |
|  * @rx_buffer: buffer containing page to add
 | |
|  * @rx_desc: descriptor containing length of buffer written by hardware
 | |
|  * @skb: sk_buff to place the data into
 | |
|  *
 | |
|  * This function will add the data contained in rx_buffer->page to the skb.
 | |
|  * This is done either through a direct copy if the data in the buffer is
 | |
|  * less than the skb header size, otherwise it will just attach the page as
 | |
|  * a frag to the skb.
 | |
|  *
 | |
|  * The function will then update the page offset if necessary and return
 | |
|  * true if the buffer can be reused by the adapter.
 | |
|  **/
 | |
| static bool igb_add_rx_frag(struct igb_ring *rx_ring,
 | |
| 			    struct igb_rx_buffer *rx_buffer,
 | |
| 			    union e1000_adv_rx_desc *rx_desc,
 | |
| 			    struct sk_buff *skb)
 | |
| {
 | |
| 	struct page *page = rx_buffer->page;
 | |
| 	unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
 | |
| 
 | |
| 	if ((size <= IGB_RX_HDR_LEN) && !skb_is_nonlinear(skb)) {
 | |
| 		unsigned char *va = page_address(page) + rx_buffer->page_offset;
 | |
| 
 | |
| 		if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
 | |
| 			igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
 | |
| 			va += IGB_TS_HDR_LEN;
 | |
| 			size -= IGB_TS_HDR_LEN;
 | |
| 		}
 | |
| 
 | |
| 		memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
 | |
| 
 | |
| 		/* we can reuse buffer as-is, just make sure it is local */
 | |
| 		if (likely(page_to_nid(page) == numa_node_id()))
 | |
| 			return true;
 | |
| 
 | |
| 		/* this page cannot be reused so discard it */
 | |
| 		put_page(page);
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
 | |
| 			rx_buffer->page_offset, size, IGB_RX_BUFSZ);
 | |
| 
 | |
| 	/* avoid re-using remote pages */
 | |
| 	if (unlikely(page_to_nid(page) != numa_node_id()))
 | |
| 		return false;
 | |
| 
 | |
| #if (PAGE_SIZE < 8192)
 | |
| 	/* if we are only owner of page we can reuse it */
 | |
| 	if (unlikely(page_count(page) != 1))
 | |
| 		return false;
 | |
| 
 | |
| 	/* flip page offset to other buffer */
 | |
| 	rx_buffer->page_offset ^= IGB_RX_BUFSZ;
 | |
| 
 | |
| 	/*
 | |
| 	 * since we are the only owner of the page and we need to
 | |
| 	 * increment it, just set the value to 2 in order to avoid
 | |
| 	 * an unnecessary locked operation
 | |
| 	 */
 | |
| 	atomic_set(&page->_count, 2);
 | |
| #else
 | |
| 	/* move offset up to the next cache line */
 | |
| 	rx_buffer->page_offset += SKB_DATA_ALIGN(size);
 | |
| 
 | |
| 	if (rx_buffer->page_offset > (PAGE_SIZE - IGB_RX_BUFSZ))
 | |
| 		return false;
 | |
| 
 | |
| 	/* bump ref count on page before it is given to the stack */
 | |
| 	get_page(page);
 | |
| #endif
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static struct sk_buff *igb_fetch_rx_buffer(struct igb_ring *rx_ring,
 | |
| 					   union e1000_adv_rx_desc *rx_desc,
 | |
| 					   struct sk_buff *skb)
 | |
| {
 | |
| 	struct igb_rx_buffer *rx_buffer;
 | |
| 	struct page *page;
 | |
| 
 | |
| 	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
 | |
| 
 | |
| 	/*
 | |
| 	 * This memory barrier is needed to keep us from reading
 | |
| 	 * any other fields out of the rx_desc until we know the
 | |
| 	 * RXD_STAT_DD bit is set
 | |
| 	 */
 | |
| 	rmb();
 | |
| 
 | |
| 	page = rx_buffer->page;
 | |
| 	prefetchw(page);
 | |
| 
 | |
| 	if (likely(!skb)) {
 | |
| 		void *page_addr = page_address(page) +
 | |
| 				  rx_buffer->page_offset;
 | |
| 
 | |
| 		/* prefetch first cache line of first page */
 | |
| 		prefetch(page_addr);
 | |
| #if L1_CACHE_BYTES < 128
 | |
| 		prefetch(page_addr + L1_CACHE_BYTES);
 | |
| #endif
 | |
| 
 | |
| 		/* allocate a skb to store the frags */
 | |
| 		skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
 | |
| 						IGB_RX_HDR_LEN);
 | |
| 		if (unlikely(!skb)) {
 | |
| 			rx_ring->rx_stats.alloc_failed++;
 | |
| 			return NULL;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * we will be copying header into skb->data in
 | |
| 		 * pskb_may_pull so it is in our interest to prefetch
 | |
| 		 * it now to avoid a possible cache miss
 | |
| 		 */
 | |
| 		prefetchw(skb->data);
 | |
| 	}
 | |
| 
 | |
| 	/* we are reusing so sync this buffer for CPU use */
 | |
| 	dma_sync_single_range_for_cpu(rx_ring->dev,
 | |
| 				      rx_buffer->dma,
 | |
| 				      rx_buffer->page_offset,
 | |
| 				      IGB_RX_BUFSZ,
 | |
| 				      DMA_FROM_DEVICE);
 | |
| 
 | |
| 	/* pull page into skb */
 | |
| 	if (igb_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
 | |
| 		/* hand second half of page back to the ring */
 | |
| 		igb_reuse_rx_page(rx_ring, rx_buffer);
 | |
| 	} else {
 | |
| 		/* we are not reusing the buffer so unmap it */
 | |
| 		dma_unmap_page(rx_ring->dev, rx_buffer->dma,
 | |
| 			       PAGE_SIZE, DMA_FROM_DEVICE);
 | |
| 	}
 | |
| 
 | |
| 	/* clear contents of rx_buffer */
 | |
| 	rx_buffer->page = NULL;
 | |
| 
 | |
| 	return skb;
 | |
| }
 | |
| 
 | |
| static inline void igb_rx_checksum(struct igb_ring *ring,
 | |
| 				   union e1000_adv_rx_desc *rx_desc,
 | |
| 				   struct sk_buff *skb)
 | |
| {
 | |
| 	skb_checksum_none_assert(skb);
 | |
| 
 | |
| 	/* Ignore Checksum bit is set */
 | |
| 	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
 | |
| 		return;
 | |
| 
 | |
| 	/* Rx checksum disabled via ethtool */
 | |
| 	if (!(ring->netdev->features & NETIF_F_RXCSUM))
 | |
| 		return;
 | |
| 
 | |
| 	/* TCP/UDP checksum error bit is set */
 | |
| 	if (igb_test_staterr(rx_desc,
 | |
| 			     E1000_RXDEXT_STATERR_TCPE |
 | |
| 			     E1000_RXDEXT_STATERR_IPE)) {
 | |
| 		/*
 | |
| 		 * work around errata with sctp packets where the TCPE aka
 | |
| 		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
 | |
| 		 * packets, (aka let the stack check the crc32c)
 | |
| 		 */
 | |
| 		if (!((skb->len == 60) &&
 | |
| 		      test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
 | |
| 			u64_stats_update_begin(&ring->rx_syncp);
 | |
| 			ring->rx_stats.csum_err++;
 | |
| 			u64_stats_update_end(&ring->rx_syncp);
 | |
| 		}
 | |
| 		/* let the stack verify checksum errors */
 | |
| 		return;
 | |
| 	}
 | |
| 	/* It must be a TCP or UDP packet with a valid checksum */
 | |
| 	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
 | |
| 				      E1000_RXD_STAT_UDPCS))
 | |
| 		skb->ip_summed = CHECKSUM_UNNECESSARY;
 | |
| 
 | |
| 	dev_dbg(ring->dev, "cksum success: bits %08X\n",
 | |
| 		le32_to_cpu(rx_desc->wb.upper.status_error));
 | |
| }
 | |
| 
 | |
| static inline void igb_rx_hash(struct igb_ring *ring,
 | |
| 			       union e1000_adv_rx_desc *rx_desc,
 | |
| 			       struct sk_buff *skb)
 | |
| {
 | |
| 	if (ring->netdev->features & NETIF_F_RXHASH)
 | |
| 		skb->rxhash = le32_to_cpu(rx_desc->wb.lower.hi_dword.rss);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * igb_is_non_eop - process handling of non-EOP buffers
 | |
|  * @rx_ring: Rx ring being processed
 | |
|  * @rx_desc: Rx descriptor for current buffer
 | |
|  * @skb: current socket buffer containing buffer in progress
 | |
|  *
 | |
|  * This function updates next to clean.  If the buffer is an EOP buffer
 | |
|  * this function exits returning false, otherwise it will place the
 | |
|  * sk_buff in the next buffer to be chained and return true indicating
 | |
|  * that this is in fact a non-EOP buffer.
 | |
|  **/
 | |
| static bool igb_is_non_eop(struct igb_ring *rx_ring,
 | |
| 			   union e1000_adv_rx_desc *rx_desc)
 | |
| {
 | |
| 	u32 ntc = rx_ring->next_to_clean + 1;
 | |
| 
 | |
| 	/* fetch, update, and store next to clean */
 | |
| 	ntc = (ntc < rx_ring->count) ? ntc : 0;
 | |
| 	rx_ring->next_to_clean = ntc;
 | |
| 
 | |
| 	prefetch(IGB_RX_DESC(rx_ring, ntc));
 | |
| 
 | |
| 	if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
 | |
| 		return false;
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * igb_get_headlen - determine size of header for LRO/GRO
 | |
|  * @data: pointer to the start of the headers
 | |
|  * @max_len: total length of section to find headers in
 | |
|  *
 | |
|  * This function is meant to determine the length of headers that will
 | |
|  * be recognized by hardware for LRO, and GRO offloads.  The main
 | |
|  * motivation of doing this is to only perform one pull for IPv4 TCP
 | |
|  * packets so that we can do basic things like calculating the gso_size
 | |
|  * based on the average data per packet.
 | |
|  **/
 | |
| static unsigned int igb_get_headlen(unsigned char *data,
 | |
| 				    unsigned int max_len)
 | |
| {
 | |
| 	union {
 | |
| 		unsigned char *network;
 | |
| 		/* l2 headers */
 | |
| 		struct ethhdr *eth;
 | |
| 		struct vlan_hdr *vlan;
 | |
| 		/* l3 headers */
 | |
| 		struct iphdr *ipv4;
 | |
| 		struct ipv6hdr *ipv6;
 | |
| 	} hdr;
 | |
| 	__be16 protocol;
 | |
| 	u8 nexthdr = 0;	/* default to not TCP */
 | |
| 	u8 hlen;
 | |
| 
 | |
| 	/* this should never happen, but better safe than sorry */
 | |
| 	if (max_len < ETH_HLEN)
 | |
| 		return max_len;
 | |
| 
 | |
| 	/* initialize network frame pointer */
 | |
| 	hdr.network = data;
 | |
| 
 | |
| 	/* set first protocol and move network header forward */
 | |
| 	protocol = hdr.eth->h_proto;
 | |
| 	hdr.network += ETH_HLEN;
 | |
| 
 | |
| 	/* handle any vlan tag if present */
 | |
| 	if (protocol == __constant_htons(ETH_P_8021Q)) {
 | |
| 		if ((hdr.network - data) > (max_len - VLAN_HLEN))
 | |
| 			return max_len;
 | |
| 
 | |
| 		protocol = hdr.vlan->h_vlan_encapsulated_proto;
 | |
| 		hdr.network += VLAN_HLEN;
 | |
| 	}
 | |
| 
 | |
| 	/* handle L3 protocols */
 | |
| 	if (protocol == __constant_htons(ETH_P_IP)) {
 | |
| 		if ((hdr.network - data) > (max_len - sizeof(struct iphdr)))
 | |
| 			return max_len;
 | |
| 
 | |
| 		/* access ihl as a u8 to avoid unaligned access on ia64 */
 | |
| 		hlen = (hdr.network[0] & 0x0F) << 2;
 | |
| 
 | |
| 		/* verify hlen meets minimum size requirements */
 | |
| 		if (hlen < sizeof(struct iphdr))
 | |
| 			return hdr.network - data;
 | |
| 
 | |
| 		/* record next protocol if header is present */
 | |
| 		if (!hdr.ipv4->frag_off)
 | |
| 			nexthdr = hdr.ipv4->protocol;
 | |
| 	} else if (protocol == __constant_htons(ETH_P_IPV6)) {
 | |
| 		if ((hdr.network - data) > (max_len - sizeof(struct ipv6hdr)))
 | |
| 			return max_len;
 | |
| 
 | |
| 		/* record next protocol */
 | |
| 		nexthdr = hdr.ipv6->nexthdr;
 | |
| 		hlen = sizeof(struct ipv6hdr);
 | |
| 	} else {
 | |
| 		return hdr.network - data;
 | |
| 	}
 | |
| 
 | |
| 	/* relocate pointer to start of L4 header */
 | |
| 	hdr.network += hlen;
 | |
| 
 | |
| 	/* finally sort out TCP */
 | |
| 	if (nexthdr == IPPROTO_TCP) {
 | |
| 		if ((hdr.network - data) > (max_len - sizeof(struct tcphdr)))
 | |
| 			return max_len;
 | |
| 
 | |
| 		/* access doff as a u8 to avoid unaligned access on ia64 */
 | |
| 		hlen = (hdr.network[12] & 0xF0) >> 2;
 | |
| 
 | |
| 		/* verify hlen meets minimum size requirements */
 | |
| 		if (hlen < sizeof(struct tcphdr))
 | |
| 			return hdr.network - data;
 | |
| 
 | |
| 		hdr.network += hlen;
 | |
| 	} else if (nexthdr == IPPROTO_UDP) {
 | |
| 		if ((hdr.network - data) > (max_len - sizeof(struct udphdr)))
 | |
| 			return max_len;
 | |
| 
 | |
| 		hdr.network += sizeof(struct udphdr);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If everything has gone correctly hdr.network should be the
 | |
| 	 * data section of the packet and will be the end of the header.
 | |
| 	 * If not then it probably represents the end of the last recognized
 | |
| 	 * header.
 | |
| 	 */
 | |
| 	if ((hdr.network - data) < max_len)
 | |
| 		return hdr.network - data;
 | |
| 	else
 | |
| 		return max_len;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * igb_pull_tail - igb specific version of skb_pull_tail
 | |
|  * @rx_ring: rx descriptor ring packet is being transacted on
 | |
|  * @rx_desc: pointer to the EOP Rx descriptor
 | |
|  * @skb: pointer to current skb being adjusted
 | |
|  *
 | |
|  * This function is an igb specific version of __pskb_pull_tail.  The
 | |
|  * main difference between this version and the original function is that
 | |
|  * this function can make several assumptions about the state of things
 | |
|  * that allow for significant optimizations versus the standard function.
 | |
|  * As a result we can do things like drop a frag and maintain an accurate
 | |
|  * truesize for the skb.
 | |
|  */
 | |
| static void igb_pull_tail(struct igb_ring *rx_ring,
 | |
| 			  union e1000_adv_rx_desc *rx_desc,
 | |
| 			  struct sk_buff *skb)
 | |
| {
 | |
| 	struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
 | |
| 	unsigned char *va;
 | |
| 	unsigned int pull_len;
 | |
| 
 | |
| 	/*
 | |
| 	 * it is valid to use page_address instead of kmap since we are
 | |
| 	 * working with pages allocated out of the lomem pool per
 | |
| 	 * alloc_page(GFP_ATOMIC)
 | |
| 	 */
 | |
| 	va = skb_frag_address(frag);
 | |
| 
 | |
| 	if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
 | |
| 		/* retrieve timestamp from buffer */
 | |
| 		igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
 | |
| 
 | |
| 		/* update pointers to remove timestamp header */
 | |
| 		skb_frag_size_sub(frag, IGB_TS_HDR_LEN);
 | |
| 		frag->page_offset += IGB_TS_HDR_LEN;
 | |
| 		skb->data_len -= IGB_TS_HDR_LEN;
 | |
| 		skb->len -= IGB_TS_HDR_LEN;
 | |
| 
 | |
| 		/* move va to start of packet data */
 | |
| 		va += IGB_TS_HDR_LEN;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * we need the header to contain the greater of either ETH_HLEN or
 | |
| 	 * 60 bytes if the skb->len is less than 60 for skb_pad.
 | |
| 	 */
 | |
| 	pull_len = igb_get_headlen(va, IGB_RX_HDR_LEN);
 | |
| 
 | |
| 	/* align pull length to size of long to optimize memcpy performance */
 | |
| 	skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));
 | |
| 
 | |
| 	/* update all of the pointers */
 | |
| 	skb_frag_size_sub(frag, pull_len);
 | |
| 	frag->page_offset += pull_len;
 | |
| 	skb->data_len -= pull_len;
 | |
| 	skb->tail += pull_len;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * igb_cleanup_headers - Correct corrupted or empty headers
 | |
|  * @rx_ring: rx descriptor ring packet is being transacted on
 | |
|  * @rx_desc: pointer to the EOP Rx descriptor
 | |
|  * @skb: pointer to current skb being fixed
 | |
|  *
 | |
|  * Address the case where we are pulling data in on pages only
 | |
|  * and as such no data is present in the skb header.
 | |
|  *
 | |
|  * In addition if skb is not at least 60 bytes we need to pad it so that
 | |
|  * it is large enough to qualify as a valid Ethernet frame.
 | |
|  *
 | |
|  * Returns true if an error was encountered and skb was freed.
 | |
|  **/
 | |
| static bool igb_cleanup_headers(struct igb_ring *rx_ring,
 | |
| 				union e1000_adv_rx_desc *rx_desc,
 | |
| 				struct sk_buff *skb)
 | |
| {
 | |
| 
 | |
| 	if (unlikely((igb_test_staterr(rx_desc,
 | |
| 				       E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
 | |
| 		struct net_device *netdev = rx_ring->netdev;
 | |
| 		if (!(netdev->features & NETIF_F_RXALL)) {
 | |
| 			dev_kfree_skb_any(skb);
 | |
| 			return true;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* place header in linear portion of buffer */
 | |
| 	if (skb_is_nonlinear(skb))
 | |
| 		igb_pull_tail(rx_ring, rx_desc, skb);
 | |
| 
 | |
| 	/* if skb_pad returns an error the skb was freed */
 | |
| 	if (unlikely(skb->len < 60)) {
 | |
| 		int pad_len = 60 - skb->len;
 | |
| 
 | |
| 		if (skb_pad(skb, pad_len))
 | |
| 			return true;
 | |
| 		__skb_put(skb, pad_len);
 | |
| 	}
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * igb_process_skb_fields - Populate skb header fields from Rx descriptor
 | |
|  * @rx_ring: rx descriptor ring packet is being transacted on
 | |
|  * @rx_desc: pointer to the EOP Rx descriptor
 | |
|  * @skb: pointer to current skb being populated
 | |
|  *
 | |
|  * This function checks the ring, descriptor, and packet information in
 | |
|  * order to populate the hash, checksum, VLAN, timestamp, protocol, and
 | |
|  * other fields within the skb.
 | |
|  **/
 | |
| static void igb_process_skb_fields(struct igb_ring *rx_ring,
 | |
| 				   union e1000_adv_rx_desc *rx_desc,
 | |
| 				   struct sk_buff *skb)
 | |
| {
 | |
| 	struct net_device *dev = rx_ring->netdev;
 | |
| 
 | |
| 	igb_rx_hash(rx_ring, rx_desc, skb);
 | |
| 
 | |
| 	igb_rx_checksum(rx_ring, rx_desc, skb);
 | |
| 
 | |
| 	igb_ptp_rx_hwtstamp(rx_ring->q_vector, rx_desc, skb);
 | |
| 
 | |
| 	if ((dev->features & NETIF_F_HW_VLAN_RX) &&
 | |
| 	    igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
 | |
| 		u16 vid;
 | |
| 		if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
 | |
| 		    test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
 | |
| 			vid = be16_to_cpu(rx_desc->wb.upper.vlan);
 | |
| 		else
 | |
| 			vid = le16_to_cpu(rx_desc->wb.upper.vlan);
 | |
| 
 | |
| 		__vlan_hwaccel_put_tag(skb, vid);
 | |
| 	}
 | |
| 
 | |
| 	skb_record_rx_queue(skb, rx_ring->queue_index);
 | |
| 
 | |
| 	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
 | |
| }
 | |
| 
 | |
| static bool igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
 | |
| {
 | |
| 	struct igb_ring *rx_ring = q_vector->rx.ring;
 | |
| 	struct sk_buff *skb = rx_ring->skb;
 | |
| 	unsigned int total_bytes = 0, total_packets = 0;
 | |
| 	u16 cleaned_count = igb_desc_unused(rx_ring);
 | |
| 
 | |
| 	do {
 | |
| 		union e1000_adv_rx_desc *rx_desc;
 | |
| 
 | |
| 		/* return some buffers to hardware, one at a time is too slow */
 | |
| 		if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
 | |
| 			igb_alloc_rx_buffers(rx_ring, cleaned_count);
 | |
| 			cleaned_count = 0;
 | |
| 		}
 | |
| 
 | |
| 		rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
 | |
| 
 | |
| 		if (!igb_test_staterr(rx_desc, E1000_RXD_STAT_DD))
 | |
| 			break;
 | |
| 
 | |
| 		/* retrieve a buffer from the ring */
 | |
| 		skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb);
 | |
| 
 | |
| 		/* exit if we failed to retrieve a buffer */
 | |
| 		if (!skb)
 | |
| 			break;
 | |
| 
 | |
| 		cleaned_count++;
 | |
| 
 | |
| 		/* fetch next buffer in frame if non-eop */
 | |
| 		if (igb_is_non_eop(rx_ring, rx_desc))
 | |
| 			continue;
 | |
| 
 | |
| 		/* verify the packet layout is correct */
 | |
| 		if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
 | |
| 			skb = NULL;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/* probably a little skewed due to removing CRC */
 | |
| 		total_bytes += skb->len;
 | |
| 
 | |
| 		/* populate checksum, timestamp, VLAN, and protocol */
 | |
| 		igb_process_skb_fields(rx_ring, rx_desc, skb);
 | |
| 
 | |
| 		napi_gro_receive(&q_vector->napi, skb);
 | |
| 
 | |
| 		/* reset skb pointer */
 | |
| 		skb = NULL;
 | |
| 
 | |
| 		/* update budget accounting */
 | |
| 		total_packets++;
 | |
| 	} while (likely(total_packets < budget));
 | |
| 
 | |
| 	/* place incomplete frames back on ring for completion */
 | |
| 	rx_ring->skb = skb;
 | |
| 
 | |
| 	u64_stats_update_begin(&rx_ring->rx_syncp);
 | |
| 	rx_ring->rx_stats.packets += total_packets;
 | |
| 	rx_ring->rx_stats.bytes += total_bytes;
 | |
| 	u64_stats_update_end(&rx_ring->rx_syncp);
 | |
| 	q_vector->rx.total_packets += total_packets;
 | |
| 	q_vector->rx.total_bytes += total_bytes;
 | |
| 
 | |
| 	if (cleaned_count)
 | |
| 		igb_alloc_rx_buffers(rx_ring, cleaned_count);
 | |
| 
 | |
| 	return (total_packets < budget);
 | |
| }
 | |
| 
 | |
| static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
 | |
| 				  struct igb_rx_buffer *bi)
 | |
| {
 | |
| 	struct page *page = bi->page;
 | |
| 	dma_addr_t dma;
 | |
| 
 | |
| 	/* since we are recycling buffers we should seldom need to alloc */
 | |
| 	if (likely(page))
 | |
| 		return true;
 | |
| 
 | |
| 	/* alloc new page for storage */
 | |
| 	page = __skb_alloc_page(GFP_ATOMIC | __GFP_COLD, NULL);
 | |
| 	if (unlikely(!page)) {
 | |
| 		rx_ring->rx_stats.alloc_failed++;
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	/* map page for use */
 | |
| 	dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
 | |
| 
 | |
| 	/*
 | |
| 	 * if mapping failed free memory back to system since
 | |
| 	 * there isn't much point in holding memory we can't use
 | |
| 	 */
 | |
| 	if (dma_mapping_error(rx_ring->dev, dma)) {
 | |
| 		__free_page(page);
 | |
| 
 | |
| 		rx_ring->rx_stats.alloc_failed++;
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	bi->dma = dma;
 | |
| 	bi->page = page;
 | |
| 	bi->page_offset = 0;
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * igb_alloc_rx_buffers - Replace used receive buffers; packet split
 | |
|  * @adapter: address of board private structure
 | |
|  **/
 | |
| void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
 | |
| {
 | |
| 	union e1000_adv_rx_desc *rx_desc;
 | |
| 	struct igb_rx_buffer *bi;
 | |
| 	u16 i = rx_ring->next_to_use;
 | |
| 
 | |
| 	/* nothing to do */
 | |
| 	if (!cleaned_count)
 | |
| 		return;
 | |
| 
 | |
| 	rx_desc = IGB_RX_DESC(rx_ring, i);
 | |
| 	bi = &rx_ring->rx_buffer_info[i];
 | |
| 	i -= rx_ring->count;
 | |
| 
 | |
| 	do {
 | |
| 		if (!igb_alloc_mapped_page(rx_ring, bi))
 | |
| 			break;
 | |
| 
 | |
| 		/*
 | |
| 		 * Refresh the desc even if buffer_addrs didn't change
 | |
| 		 * because each write-back erases this info.
 | |
| 		 */
 | |
| 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
 | |
| 
 | |
| 		rx_desc++;
 | |
| 		bi++;
 | |
| 		i++;
 | |
| 		if (unlikely(!i)) {
 | |
| 			rx_desc = IGB_RX_DESC(rx_ring, 0);
 | |
| 			bi = rx_ring->rx_buffer_info;
 | |
| 			i -= rx_ring->count;
 | |
| 		}
 | |
| 
 | |
| 		/* clear the hdr_addr for the next_to_use descriptor */
 | |
| 		rx_desc->read.hdr_addr = 0;
 | |
| 
 | |
| 		cleaned_count--;
 | |
| 	} while (cleaned_count);
 | |
| 
 | |
| 	i += rx_ring->count;
 | |
| 
 | |
| 	if (rx_ring->next_to_use != i) {
 | |
| 		/* record the next descriptor to use */
 | |
| 		rx_ring->next_to_use = i;
 | |
| 
 | |
| 		/* update next to alloc since we have filled the ring */
 | |
| 		rx_ring->next_to_alloc = i;
 | |
| 
 | |
| 		/*
 | |
| 		 * Force memory writes to complete before letting h/w
 | |
| 		 * know there are new descriptors to fetch.  (Only
 | |
| 		 * applicable for weak-ordered memory model archs,
 | |
| 		 * such as IA-64).
 | |
| 		 */
 | |
| 		wmb();
 | |
| 		writel(i, rx_ring->tail);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * igb_mii_ioctl -
 | |
|  * @netdev:
 | |
|  * @ifreq:
 | |
|  * @cmd:
 | |
|  **/
 | |
| static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
 | |
| {
 | |
| 	struct igb_adapter *adapter = netdev_priv(netdev);
 | |
| 	struct mii_ioctl_data *data = if_mii(ifr);
 | |
| 
 | |
| 	if (adapter->hw.phy.media_type != e1000_media_type_copper)
 | |
| 		return -EOPNOTSUPP;
 | |
| 
 | |
| 	switch (cmd) {
 | |
| 	case SIOCGMIIPHY:
 | |
| 		data->phy_id = adapter->hw.phy.addr;
 | |
| 		break;
 | |
| 	case SIOCGMIIREG:
 | |
| 		if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
 | |
| 		                     &data->val_out))
 | |
| 			return -EIO;
 | |
| 		break;
 | |
| 	case SIOCSMIIREG:
 | |
| 	default:
 | |
| 		return -EOPNOTSUPP;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * igb_ioctl -
 | |
|  * @netdev:
 | |
|  * @ifreq:
 | |
|  * @cmd:
 | |
|  **/
 | |
| static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
 | |
| {
 | |
| 	switch (cmd) {
 | |
| 	case SIOCGMIIPHY:
 | |
| 	case SIOCGMIIREG:
 | |
| 	case SIOCSMIIREG:
 | |
| 		return igb_mii_ioctl(netdev, ifr, cmd);
 | |
| 	case SIOCSHWTSTAMP:
 | |
| 		return igb_ptp_hwtstamp_ioctl(netdev, ifr, cmd);
 | |
| 	default:
 | |
| 		return -EOPNOTSUPP;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
 | |
| {
 | |
| 	struct igb_adapter *adapter = hw->back;
 | |
| 
 | |
| 	if (pcie_capability_read_word(adapter->pdev, reg, value))
 | |
| 		return -E1000_ERR_CONFIG;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
 | |
| {
 | |
| 	struct igb_adapter *adapter = hw->back;
 | |
| 
 | |
| 	if (pcie_capability_write_word(adapter->pdev, reg, *value))
 | |
| 		return -E1000_ERR_CONFIG;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
 | |
| {
 | |
| 	struct igb_adapter *adapter = netdev_priv(netdev);
 | |
| 	struct e1000_hw *hw = &adapter->hw;
 | |
| 	u32 ctrl, rctl;
 | |
| 	bool enable = !!(features & NETIF_F_HW_VLAN_RX);
 | |
| 
 | |
| 	if (enable) {
 | |
| 		/* enable VLAN tag insert/strip */
 | |
| 		ctrl = rd32(E1000_CTRL);
 | |
| 		ctrl |= E1000_CTRL_VME;
 | |
| 		wr32(E1000_CTRL, ctrl);
 | |
| 
 | |
| 		/* Disable CFI check */
 | |
| 		rctl = rd32(E1000_RCTL);
 | |
| 		rctl &= ~E1000_RCTL_CFIEN;
 | |
| 		wr32(E1000_RCTL, rctl);
 | |
| 	} else {
 | |
| 		/* disable VLAN tag insert/strip */
 | |
| 		ctrl = rd32(E1000_CTRL);
 | |
| 		ctrl &= ~E1000_CTRL_VME;
 | |
| 		wr32(E1000_CTRL, ctrl);
 | |
| 	}
 | |
| 
 | |
| 	igb_rlpml_set(adapter);
 | |
| }
 | |
| 
 | |
| static int igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
 | |
| {
 | |
| 	struct igb_adapter *adapter = netdev_priv(netdev);
 | |
| 	struct e1000_hw *hw = &adapter->hw;
 | |
| 	int pf_id = adapter->vfs_allocated_count;
 | |
| 
 | |
| 	/* attempt to add filter to vlvf array */
 | |
| 	igb_vlvf_set(adapter, vid, true, pf_id);
 | |
| 
 | |
| 	/* add the filter since PF can receive vlans w/o entry in vlvf */
 | |
| 	igb_vfta_set(hw, vid, true);
 | |
| 
 | |
| 	set_bit(vid, adapter->active_vlans);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
 | |
| {
 | |
| 	struct igb_adapter *adapter = netdev_priv(netdev);
 | |
| 	struct e1000_hw *hw = &adapter->hw;
 | |
| 	int pf_id = adapter->vfs_allocated_count;
 | |
| 	s32 err;
 | |
| 
 | |
| 	/* remove vlan from VLVF table array */
 | |
| 	err = igb_vlvf_set(adapter, vid, false, pf_id);
 | |
| 
 | |
| 	/* if vid was not present in VLVF just remove it from table */
 | |
| 	if (err)
 | |
| 		igb_vfta_set(hw, vid, false);
 | |
| 
 | |
| 	clear_bit(vid, adapter->active_vlans);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void igb_restore_vlan(struct igb_adapter *adapter)
 | |
| {
 | |
| 	u16 vid;
 | |
| 
 | |
| 	igb_vlan_mode(adapter->netdev, adapter->netdev->features);
 | |
| 
 | |
| 	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
 | |
| 		igb_vlan_rx_add_vid(adapter->netdev, vid);
 | |
| }
 | |
| 
 | |
| int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
 | |
| {
 | |
| 	struct pci_dev *pdev = adapter->pdev;
 | |
| 	struct e1000_mac_info *mac = &adapter->hw.mac;
 | |
| 
 | |
| 	mac->autoneg = 0;
 | |
| 
 | |
| 	/* Make sure dplx is at most 1 bit and lsb of speed is not set
 | |
| 	 * for the switch() below to work */
 | |
| 	if ((spd & 1) || (dplx & ~1))
 | |
| 		goto err_inval;
 | |
| 
 | |
| 	/* Fiber NIC's only allow 1000 Gbps Full duplex */
 | |
| 	if ((adapter->hw.phy.media_type == e1000_media_type_internal_serdes) &&
 | |
| 	    spd != SPEED_1000 &&
 | |
| 	    dplx != DUPLEX_FULL)
 | |
| 		goto err_inval;
 | |
| 
 | |
| 	switch (spd + dplx) {
 | |
| 	case SPEED_10 + DUPLEX_HALF:
 | |
| 		mac->forced_speed_duplex = ADVERTISE_10_HALF;
 | |
| 		break;
 | |
| 	case SPEED_10 + DUPLEX_FULL:
 | |
| 		mac->forced_speed_duplex = ADVERTISE_10_FULL;
 | |
| 		break;
 | |
| 	case SPEED_100 + DUPLEX_HALF:
 | |
| 		mac->forced_speed_duplex = ADVERTISE_100_HALF;
 | |
| 		break;
 | |
| 	case SPEED_100 + DUPLEX_FULL:
 | |
| 		mac->forced_speed_duplex = ADVERTISE_100_FULL;
 | |
| 		break;
 | |
| 	case SPEED_1000 + DUPLEX_FULL:
 | |
| 		mac->autoneg = 1;
 | |
| 		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
 | |
| 		break;
 | |
| 	case SPEED_1000 + DUPLEX_HALF: /* not supported */
 | |
| 	default:
 | |
| 		goto err_inval;
 | |
| 	}
 | |
| 
 | |
| 	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
 | |
| 	adapter->hw.phy.mdix = AUTO_ALL_MODES;
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| err_inval:
 | |
| 	dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
 | |
| 	return -EINVAL;
 | |
| }
 | |
| 
 | |
| static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
 | |
| 			  bool runtime)
 | |
| {
 | |
| 	struct net_device *netdev = pci_get_drvdata(pdev);
 | |
| 	struct igb_adapter *adapter = netdev_priv(netdev);
 | |
| 	struct e1000_hw *hw = &adapter->hw;
 | |
| 	u32 ctrl, rctl, status;
 | |
| 	u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
 | |
| #ifdef CONFIG_PM
 | |
| 	int retval = 0;
 | |
| #endif
 | |
| 
 | |
| 	netif_device_detach(netdev);
 | |
| 
 | |
| 	if (netif_running(netdev))
 | |
| 		__igb_close(netdev, true);
 | |
| 
 | |
| 	igb_clear_interrupt_scheme(adapter);
 | |
| 
 | |
| #ifdef CONFIG_PM
 | |
| 	retval = pci_save_state(pdev);
 | |
| 	if (retval)
 | |
| 		return retval;
 | |
| #endif
 | |
| 
 | |
| 	status = rd32(E1000_STATUS);
 | |
| 	if (status & E1000_STATUS_LU)
 | |
| 		wufc &= ~E1000_WUFC_LNKC;
 | |
| 
 | |
| 	if (wufc) {
 | |
| 		igb_setup_rctl(adapter);
 | |
| 		igb_set_rx_mode(netdev);
 | |
| 
 | |
| 		/* turn on all-multi mode if wake on multicast is enabled */
 | |
| 		if (wufc & E1000_WUFC_MC) {
 | |
| 			rctl = rd32(E1000_RCTL);
 | |
| 			rctl |= E1000_RCTL_MPE;
 | |
| 			wr32(E1000_RCTL, rctl);
 | |
| 		}
 | |
| 
 | |
| 		ctrl = rd32(E1000_CTRL);
 | |
| 		/* advertise wake from D3Cold */
 | |
| 		#define E1000_CTRL_ADVD3WUC 0x00100000
 | |
| 		/* phy power management enable */
 | |
| 		#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
 | |
| 		ctrl |= E1000_CTRL_ADVD3WUC;
 | |
| 		wr32(E1000_CTRL, ctrl);
 | |
| 
 | |
| 		/* Allow time for pending master requests to run */
 | |
| 		igb_disable_pcie_master(hw);
 | |
| 
 | |
| 		wr32(E1000_WUC, E1000_WUC_PME_EN);
 | |
| 		wr32(E1000_WUFC, wufc);
 | |
| 	} else {
 | |
| 		wr32(E1000_WUC, 0);
 | |
| 		wr32(E1000_WUFC, 0);
 | |
| 	}
 | |
| 
 | |
| 	*enable_wake = wufc || adapter->en_mng_pt;
 | |
| 	if (!*enable_wake)
 | |
| 		igb_power_down_link(adapter);
 | |
| 	else
 | |
| 		igb_power_up_link(adapter);
 | |
| 
 | |
| 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
 | |
| 	 * would have already happened in close and is redundant. */
 | |
| 	igb_release_hw_control(adapter);
 | |
| 
 | |
| 	pci_disable_device(pdev);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_PM
 | |
| #ifdef CONFIG_PM_SLEEP
 | |
| static int igb_suspend(struct device *dev)
 | |
| {
 | |
| 	int retval;
 | |
| 	bool wake;
 | |
| 	struct pci_dev *pdev = to_pci_dev(dev);
 | |
| 
 | |
| 	retval = __igb_shutdown(pdev, &wake, 0);
 | |
| 	if (retval)
 | |
| 		return retval;
 | |
| 
 | |
| 	if (wake) {
 | |
| 		pci_prepare_to_sleep(pdev);
 | |
| 	} else {
 | |
| 		pci_wake_from_d3(pdev, false);
 | |
| 		pci_set_power_state(pdev, PCI_D3hot);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| #endif /* CONFIG_PM_SLEEP */
 | |
| 
 | |
| static int igb_resume(struct device *dev)
 | |
| {
 | |
| 	struct pci_dev *pdev = to_pci_dev(dev);
 | |
| 	struct net_device *netdev = pci_get_drvdata(pdev);
 | |
| 	struct igb_adapter *adapter = netdev_priv(netdev);
 | |
| 	struct e1000_hw *hw = &adapter->hw;
 | |
| 	u32 err;
 | |
| 
 | |
| 	pci_set_power_state(pdev, PCI_D0);
 | |
| 	pci_restore_state(pdev);
 | |
| 	pci_save_state(pdev);
 | |
| 
 | |
| 	err = pci_enable_device_mem(pdev);
 | |
| 	if (err) {
 | |
| 		dev_err(&pdev->dev,
 | |
| 			"igb: Cannot enable PCI device from suspend\n");
 | |
| 		return err;
 | |
| 	}
 | |
| 	pci_set_master(pdev);
 | |
| 
 | |
| 	pci_enable_wake(pdev, PCI_D3hot, 0);
 | |
| 	pci_enable_wake(pdev, PCI_D3cold, 0);
 | |
| 
 | |
| 	if (igb_init_interrupt_scheme(adapter, true)) {
 | |
| 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	igb_reset(adapter);
 | |
| 
 | |
| 	/* let the f/w know that the h/w is now under the control of the
 | |
| 	 * driver. */
 | |
| 	igb_get_hw_control(adapter);
 | |
| 
 | |
| 	wr32(E1000_WUS, ~0);
 | |
| 
 | |
| 	if (netdev->flags & IFF_UP) {
 | |
| 		rtnl_lock();
 | |
| 		err = __igb_open(netdev, true);
 | |
| 		rtnl_unlock();
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 	}
 | |
| 
 | |
| 	netif_device_attach(netdev);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_PM_RUNTIME
 | |
| static int igb_runtime_idle(struct device *dev)
 | |
| {
 | |
| 	struct pci_dev *pdev = to_pci_dev(dev);
 | |
| 	struct net_device *netdev = pci_get_drvdata(pdev);
 | |
| 	struct igb_adapter *adapter = netdev_priv(netdev);
 | |
| 
 | |
| 	if (!igb_has_link(adapter))
 | |
| 		pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
 | |
| 
 | |
| 	return -EBUSY;
 | |
| }
 | |
| 
 | |
| static int igb_runtime_suspend(struct device *dev)
 | |
| {
 | |
| 	struct pci_dev *pdev = to_pci_dev(dev);
 | |
| 	int retval;
 | |
| 	bool wake;
 | |
| 
 | |
| 	retval = __igb_shutdown(pdev, &wake, 1);
 | |
| 	if (retval)
 | |
| 		return retval;
 | |
| 
 | |
| 	if (wake) {
 | |
| 		pci_prepare_to_sleep(pdev);
 | |
| 	} else {
 | |
| 		pci_wake_from_d3(pdev, false);
 | |
| 		pci_set_power_state(pdev, PCI_D3hot);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int igb_runtime_resume(struct device *dev)
 | |
| {
 | |
| 	return igb_resume(dev);
 | |
| }
 | |
| #endif /* CONFIG_PM_RUNTIME */
 | |
| #endif
 | |
| 
 | |
| static void igb_shutdown(struct pci_dev *pdev)
 | |
| {
 | |
| 	bool wake;
 | |
| 
 | |
| 	__igb_shutdown(pdev, &wake, 0);
 | |
| 
 | |
| 	if (system_state == SYSTEM_POWER_OFF) {
 | |
| 		pci_wake_from_d3(pdev, wake);
 | |
| 		pci_set_power_state(pdev, PCI_D3hot);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_PCI_IOV
 | |
| static int igb_sriov_reinit(struct pci_dev *dev)
 | |
| {
 | |
| 	struct net_device *netdev = pci_get_drvdata(dev);
 | |
| 	struct igb_adapter *adapter = netdev_priv(netdev);
 | |
| 	struct pci_dev *pdev = adapter->pdev;
 | |
| 
 | |
| 	rtnl_lock();
 | |
| 
 | |
| 	if (netif_running(netdev))
 | |
| 		igb_close(netdev);
 | |
| 
 | |
| 	igb_clear_interrupt_scheme(adapter);
 | |
| 
 | |
| 	igb_init_queue_configuration(adapter);
 | |
| 
 | |
| 	if (igb_init_interrupt_scheme(adapter, true)) {
 | |
| 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	if (netif_running(netdev))
 | |
| 		igb_open(netdev);
 | |
| 
 | |
| 	rtnl_unlock();
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int igb_pci_disable_sriov(struct pci_dev *dev)
 | |
| {
 | |
| 	int err = igb_disable_sriov(dev);
 | |
| 
 | |
| 	if (!err)
 | |
| 		err = igb_sriov_reinit(dev);
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
 | |
| {
 | |
| 	int err = igb_enable_sriov(dev, num_vfs);
 | |
| 
 | |
| 	if (err)
 | |
| 		goto out;
 | |
| 
 | |
| 	err = igb_sriov_reinit(dev);
 | |
| 	if (!err)
 | |
| 		return num_vfs;
 | |
| 
 | |
| out:
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| #endif
 | |
| static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
 | |
| {
 | |
| #ifdef CONFIG_PCI_IOV
 | |
| 	if (num_vfs == 0)
 | |
| 		return igb_pci_disable_sriov(dev);
 | |
| 	else
 | |
| 		return igb_pci_enable_sriov(dev, num_vfs);
 | |
| #endif
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_NET_POLL_CONTROLLER
 | |
| /*
 | |
|  * Polling 'interrupt' - used by things like netconsole to send skbs
 | |
|  * without having to re-enable interrupts. It's not called while
 | |
|  * the interrupt routine is executing.
 | |
|  */
 | |
| static void igb_netpoll(struct net_device *netdev)
 | |
| {
 | |
| 	struct igb_adapter *adapter = netdev_priv(netdev);
 | |
| 	struct e1000_hw *hw = &adapter->hw;
 | |
| 	struct igb_q_vector *q_vector;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < adapter->num_q_vectors; i++) {
 | |
| 		q_vector = adapter->q_vector[i];
 | |
| 		if (adapter->msix_entries)
 | |
| 			wr32(E1000_EIMC, q_vector->eims_value);
 | |
| 		else
 | |
| 			igb_irq_disable(adapter);
 | |
| 		napi_schedule(&q_vector->napi);
 | |
| 	}
 | |
| }
 | |
| #endif /* CONFIG_NET_POLL_CONTROLLER */
 | |
| 
 | |
| /**
 | |
|  * igb_io_error_detected - called when PCI error is detected
 | |
|  * @pdev: Pointer to PCI device
 | |
|  * @state: The current pci connection state
 | |
|  *
 | |
|  * This function is called after a PCI bus error affecting
 | |
|  * this device has been detected.
 | |
|  */
 | |
| static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
 | |
| 					      pci_channel_state_t state)
 | |
| {
 | |
| 	struct net_device *netdev = pci_get_drvdata(pdev);
 | |
| 	struct igb_adapter *adapter = netdev_priv(netdev);
 | |
| 
 | |
| 	netif_device_detach(netdev);
 | |
| 
 | |
| 	if (state == pci_channel_io_perm_failure)
 | |
| 		return PCI_ERS_RESULT_DISCONNECT;
 | |
| 
 | |
| 	if (netif_running(netdev))
 | |
| 		igb_down(adapter);
 | |
| 	pci_disable_device(pdev);
 | |
| 
 | |
| 	/* Request a slot slot reset. */
 | |
| 	return PCI_ERS_RESULT_NEED_RESET;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * igb_io_slot_reset - called after the pci bus has been reset.
 | |
|  * @pdev: Pointer to PCI device
 | |
|  *
 | |
|  * Restart the card from scratch, as if from a cold-boot. Implementation
 | |
|  * resembles the first-half of the igb_resume routine.
 | |
|  */
 | |
| static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
 | |
| {
 | |
| 	struct net_device *netdev = pci_get_drvdata(pdev);
 | |
| 	struct igb_adapter *adapter = netdev_priv(netdev);
 | |
| 	struct e1000_hw *hw = &adapter->hw;
 | |
| 	pci_ers_result_t result;
 | |
| 	int err;
 | |
| 
 | |
| 	if (pci_enable_device_mem(pdev)) {
 | |
| 		dev_err(&pdev->dev,
 | |
| 			"Cannot re-enable PCI device after reset.\n");
 | |
| 		result = PCI_ERS_RESULT_DISCONNECT;
 | |
| 	} else {
 | |
| 		pci_set_master(pdev);
 | |
| 		pci_restore_state(pdev);
 | |
| 		pci_save_state(pdev);
 | |
| 
 | |
| 		pci_enable_wake(pdev, PCI_D3hot, 0);
 | |
| 		pci_enable_wake(pdev, PCI_D3cold, 0);
 | |
| 
 | |
| 		igb_reset(adapter);
 | |
| 		wr32(E1000_WUS, ~0);
 | |
| 		result = PCI_ERS_RESULT_RECOVERED;
 | |
| 	}
 | |
| 
 | |
| 	err = pci_cleanup_aer_uncorrect_error_status(pdev);
 | |
| 	if (err) {
 | |
| 		dev_err(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status "
 | |
| 		        "failed 0x%0x\n", err);
 | |
| 		/* non-fatal, continue */
 | |
| 	}
 | |
| 
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * igb_io_resume - called when traffic can start flowing again.
 | |
|  * @pdev: Pointer to PCI device
 | |
|  *
 | |
|  * This callback is called when the error recovery driver tells us that
 | |
|  * its OK to resume normal operation. Implementation resembles the
 | |
|  * second-half of the igb_resume routine.
 | |
|  */
 | |
| static void igb_io_resume(struct pci_dev *pdev)
 | |
| {
 | |
| 	struct net_device *netdev = pci_get_drvdata(pdev);
 | |
| 	struct igb_adapter *adapter = netdev_priv(netdev);
 | |
| 
 | |
| 	if (netif_running(netdev)) {
 | |
| 		if (igb_up(adapter)) {
 | |
| 			dev_err(&pdev->dev, "igb_up failed after reset\n");
 | |
| 			return;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	netif_device_attach(netdev);
 | |
| 
 | |
| 	/* let the f/w know that the h/w is now under the control of the
 | |
| 	 * driver. */
 | |
| 	igb_get_hw_control(adapter);
 | |
| }
 | |
| 
 | |
| static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
 | |
|                              u8 qsel)
 | |
| {
 | |
| 	u32 rar_low, rar_high;
 | |
| 	struct e1000_hw *hw = &adapter->hw;
 | |
| 
 | |
| 	/* HW expects these in little endian so we reverse the byte order
 | |
| 	 * from network order (big endian) to little endian
 | |
| 	 */
 | |
| 	rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
 | |
| 	          ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
 | |
| 	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
 | |
| 
 | |
| 	/* Indicate to hardware the Address is Valid. */
 | |
| 	rar_high |= E1000_RAH_AV;
 | |
| 
 | |
| 	if (hw->mac.type == e1000_82575)
 | |
| 		rar_high |= E1000_RAH_POOL_1 * qsel;
 | |
| 	else
 | |
| 		rar_high |= E1000_RAH_POOL_1 << qsel;
 | |
| 
 | |
| 	wr32(E1000_RAL(index), rar_low);
 | |
| 	wrfl();
 | |
| 	wr32(E1000_RAH(index), rar_high);
 | |
| 	wrfl();
 | |
| }
 | |
| 
 | |
| static int igb_set_vf_mac(struct igb_adapter *adapter,
 | |
|                           int vf, unsigned char *mac_addr)
 | |
| {
 | |
| 	struct e1000_hw *hw = &adapter->hw;
 | |
| 	/* VF MAC addresses start at end of receive addresses and moves
 | |
| 	 * torwards the first, as a result a collision should not be possible */
 | |
| 	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
 | |
| 
 | |
| 	memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
 | |
| 
 | |
| 	igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
 | |
| {
 | |
| 	struct igb_adapter *adapter = netdev_priv(netdev);
 | |
| 	if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
 | |
| 		return -EINVAL;
 | |
| 	adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
 | |
| 	dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
 | |
| 	dev_info(&adapter->pdev->dev, "Reload the VF driver to make this"
 | |
| 				      " change effective.");
 | |
| 	if (test_bit(__IGB_DOWN, &adapter->state)) {
 | |
| 		dev_warn(&adapter->pdev->dev, "The VF MAC address has been set,"
 | |
| 			 " but the PF device is not up.\n");
 | |
| 		dev_warn(&adapter->pdev->dev, "Bring the PF device up before"
 | |
| 			 " attempting to use the VF device.\n");
 | |
| 	}
 | |
| 	return igb_set_vf_mac(adapter, vf, mac);
 | |
| }
 | |
| 
 | |
| static int igb_link_mbps(int internal_link_speed)
 | |
| {
 | |
| 	switch (internal_link_speed) {
 | |
| 	case SPEED_100:
 | |
| 		return 100;
 | |
| 	case SPEED_1000:
 | |
| 		return 1000;
 | |
| 	default:
 | |
| 		return 0;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
 | |
| 				  int link_speed)
 | |
| {
 | |
| 	int rf_dec, rf_int;
 | |
| 	u32 bcnrc_val;
 | |
| 
 | |
| 	if (tx_rate != 0) {
 | |
| 		/* Calculate the rate factor values to set */
 | |
| 		rf_int = link_speed / tx_rate;
 | |
| 		rf_dec = (link_speed - (rf_int * tx_rate));
 | |
| 		rf_dec = (rf_dec * (1<<E1000_RTTBCNRC_RF_INT_SHIFT)) / tx_rate;
 | |
| 
 | |
| 		bcnrc_val = E1000_RTTBCNRC_RS_ENA;
 | |
| 		bcnrc_val |= ((rf_int<<E1000_RTTBCNRC_RF_INT_SHIFT) &
 | |
| 		               E1000_RTTBCNRC_RF_INT_MASK);
 | |
| 		bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
 | |
| 	} else {
 | |
| 		bcnrc_val = 0;
 | |
| 	}
 | |
| 
 | |
| 	wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
 | |
| 	/*
 | |
| 	 * Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
 | |
| 	 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
 | |
| 	 */
 | |
| 	wr32(E1000_RTTBCNRM, 0x14);
 | |
| 	wr32(E1000_RTTBCNRC, bcnrc_val);
 | |
| }
 | |
| 
 | |
| static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
 | |
| {
 | |
| 	int actual_link_speed, i;
 | |
| 	bool reset_rate = false;
 | |
| 
 | |
| 	/* VF TX rate limit was not set or not supported */
 | |
| 	if ((adapter->vf_rate_link_speed == 0) ||
 | |
| 	    (adapter->hw.mac.type != e1000_82576))
 | |
| 		return;
 | |
| 
 | |
| 	actual_link_speed = igb_link_mbps(adapter->link_speed);
 | |
| 	if (actual_link_speed != adapter->vf_rate_link_speed) {
 | |
| 		reset_rate = true;
 | |
| 		adapter->vf_rate_link_speed = 0;
 | |
| 		dev_info(&adapter->pdev->dev,
 | |
| 		         "Link speed has been changed. VF Transmit "
 | |
| 		         "rate is disabled\n");
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < adapter->vfs_allocated_count; i++) {
 | |
| 		if (reset_rate)
 | |
| 			adapter->vf_data[i].tx_rate = 0;
 | |
| 
 | |
| 		igb_set_vf_rate_limit(&adapter->hw, i,
 | |
| 		                      adapter->vf_data[i].tx_rate,
 | |
| 		                      actual_link_speed);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate)
 | |
| {
 | |
| 	struct igb_adapter *adapter = netdev_priv(netdev);
 | |
| 	struct e1000_hw *hw = &adapter->hw;
 | |
| 	int actual_link_speed;
 | |
| 
 | |
| 	if (hw->mac.type != e1000_82576)
 | |
| 		return -EOPNOTSUPP;
 | |
| 
 | |
| 	actual_link_speed = igb_link_mbps(adapter->link_speed);
 | |
| 	if ((vf >= adapter->vfs_allocated_count) ||
 | |
| 	    (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
 | |
| 	    (tx_rate < 0) || (tx_rate > actual_link_speed))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	adapter->vf_rate_link_speed = actual_link_speed;
 | |
| 	adapter->vf_data[vf].tx_rate = (u16)tx_rate;
 | |
| 	igb_set_vf_rate_limit(hw, vf, tx_rate, actual_link_speed);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int igb_ndo_get_vf_config(struct net_device *netdev,
 | |
| 				 int vf, struct ifla_vf_info *ivi)
 | |
| {
 | |
| 	struct igb_adapter *adapter = netdev_priv(netdev);
 | |
| 	if (vf >= adapter->vfs_allocated_count)
 | |
| 		return -EINVAL;
 | |
| 	ivi->vf = vf;
 | |
| 	memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
 | |
| 	ivi->tx_rate = adapter->vf_data[vf].tx_rate;
 | |
| 	ivi->vlan = adapter->vf_data[vf].pf_vlan;
 | |
| 	ivi->qos = adapter->vf_data[vf].pf_qos;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void igb_vmm_control(struct igb_adapter *adapter)
 | |
| {
 | |
| 	struct e1000_hw *hw = &adapter->hw;
 | |
| 	u32 reg;
 | |
| 
 | |
| 	switch (hw->mac.type) {
 | |
| 	case e1000_82575:
 | |
| 	case e1000_i210:
 | |
| 	case e1000_i211:
 | |
| 	default:
 | |
| 		/* replication is not supported for 82575 */
 | |
| 		return;
 | |
| 	case e1000_82576:
 | |
| 		/* notify HW that the MAC is adding vlan tags */
 | |
| 		reg = rd32(E1000_DTXCTL);
 | |
| 		reg |= E1000_DTXCTL_VLAN_ADDED;
 | |
| 		wr32(E1000_DTXCTL, reg);
 | |
| 	case e1000_82580:
 | |
| 		/* enable replication vlan tag stripping */
 | |
| 		reg = rd32(E1000_RPLOLR);
 | |
| 		reg |= E1000_RPLOLR_STRVLAN;
 | |
| 		wr32(E1000_RPLOLR, reg);
 | |
| 	case e1000_i350:
 | |
| 		/* none of the above registers are supported by i350 */
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	if (adapter->vfs_allocated_count) {
 | |
| 		igb_vmdq_set_loopback_pf(hw, true);
 | |
| 		igb_vmdq_set_replication_pf(hw, true);
 | |
| 		igb_vmdq_set_anti_spoofing_pf(hw, true,
 | |
| 						adapter->vfs_allocated_count);
 | |
| 	} else {
 | |
| 		igb_vmdq_set_loopback_pf(hw, false);
 | |
| 		igb_vmdq_set_replication_pf(hw, false);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
 | |
| {
 | |
| 	struct e1000_hw *hw = &adapter->hw;
 | |
| 	u32 dmac_thr;
 | |
| 	u16 hwm;
 | |
| 
 | |
| 	if (hw->mac.type > e1000_82580) {
 | |
| 		if (adapter->flags & IGB_FLAG_DMAC) {
 | |
| 			u32 reg;
 | |
| 
 | |
| 			/* force threshold to 0. */
 | |
| 			wr32(E1000_DMCTXTH, 0);
 | |
| 
 | |
| 			/*
 | |
| 			 * DMA Coalescing high water mark needs to be greater
 | |
| 			 * than the Rx threshold. Set hwm to PBA - max frame
 | |
| 			 * size in 16B units, capping it at PBA - 6KB.
 | |
| 			 */
 | |
| 			hwm = 64 * pba - adapter->max_frame_size / 16;
 | |
| 			if (hwm < 64 * (pba - 6))
 | |
| 				hwm = 64 * (pba - 6);
 | |
| 			reg = rd32(E1000_FCRTC);
 | |
| 			reg &= ~E1000_FCRTC_RTH_COAL_MASK;
 | |
| 			reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
 | |
| 				& E1000_FCRTC_RTH_COAL_MASK);
 | |
| 			wr32(E1000_FCRTC, reg);
 | |
| 
 | |
| 			/*
 | |
| 			 * Set the DMA Coalescing Rx threshold to PBA - 2 * max
 | |
| 			 * frame size, capping it at PBA - 10KB.
 | |
| 			 */
 | |
| 			dmac_thr = pba - adapter->max_frame_size / 512;
 | |
| 			if (dmac_thr < pba - 10)
 | |
| 				dmac_thr = pba - 10;
 | |
| 			reg = rd32(E1000_DMACR);
 | |
| 			reg &= ~E1000_DMACR_DMACTHR_MASK;
 | |
| 			reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
 | |
| 				& E1000_DMACR_DMACTHR_MASK);
 | |
| 
 | |
| 			/* transition to L0x or L1 if available..*/
 | |
| 			reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
 | |
| 
 | |
| 			/* watchdog timer= +-1000 usec in 32usec intervals */
 | |
| 			reg |= (1000 >> 5);
 | |
| 
 | |
| 			/* Disable BMC-to-OS Watchdog Enable */
 | |
| 			reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
 | |
| 			wr32(E1000_DMACR, reg);
 | |
| 
 | |
| 			/*
 | |
| 			 * no lower threshold to disable
 | |
| 			 * coalescing(smart fifb)-UTRESH=0
 | |
| 			 */
 | |
| 			wr32(E1000_DMCRTRH, 0);
 | |
| 
 | |
| 			reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
 | |
| 
 | |
| 			wr32(E1000_DMCTLX, reg);
 | |
| 
 | |
| 			/*
 | |
| 			 * free space in tx packet buffer to wake from
 | |
| 			 * DMA coal
 | |
| 			 */
 | |
| 			wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
 | |
| 			     (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
 | |
| 
 | |
| 			/*
 | |
| 			 * make low power state decision controlled
 | |
| 			 * by DMA coal
 | |
| 			 */
 | |
| 			reg = rd32(E1000_PCIEMISC);
 | |
| 			reg &= ~E1000_PCIEMISC_LX_DECISION;
 | |
| 			wr32(E1000_PCIEMISC, reg);
 | |
| 		} /* endif adapter->dmac is not disabled */
 | |
| 	} else if (hw->mac.type == e1000_82580) {
 | |
| 		u32 reg = rd32(E1000_PCIEMISC);
 | |
| 		wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
 | |
| 		wr32(E1000_DMACR, 0);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static DEFINE_SPINLOCK(i2c_clients_lock);
 | |
| 
 | |
| /*  igb_get_i2c_client - returns matching client
 | |
|  *  in adapters's client list.
 | |
|  *  @adapter: adapter struct
 | |
|  *  @dev_addr: device address of i2c needed.
 | |
|  */
 | |
| struct i2c_client *
 | |
| igb_get_i2c_client(struct igb_adapter *adapter, u8 dev_addr)
 | |
| {
 | |
| 	ulong flags;
 | |
| 	struct igb_i2c_client_list *client_list;
 | |
| 	struct i2c_client *client = NULL;
 | |
| 	struct i2c_board_info client_info = {
 | |
| 		I2C_BOARD_INFO("igb", 0x00),
 | |
| 	};
 | |
| 
 | |
| 	spin_lock_irqsave(&i2c_clients_lock, flags);
 | |
| 	client_list = adapter->i2c_clients;
 | |
| 
 | |
| 	/* See if we already have an i2c_client */
 | |
| 	while (client_list) {
 | |
| 		if (client_list->client->addr == (dev_addr >> 1)) {
 | |
| 			client = client_list->client;
 | |
| 			goto exit;
 | |
| 		} else {
 | |
| 			client_list = client_list->next;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* no client_list found, create a new one as long as
 | |
| 	 * irqs are not disabled
 | |
| 	 */
 | |
| 	if (unlikely(irqs_disabled()))
 | |
| 		goto exit;
 | |
| 
 | |
| 	client_list = kzalloc(sizeof(*client_list), GFP_KERNEL);
 | |
| 	if (client_list == NULL)
 | |
| 		goto exit;
 | |
| 
 | |
| 	/* dev_addr passed to us is left-shifted by 1 bit
 | |
| 	 * i2c_new_device call expects it to be flush to the right.
 | |
| 	 */
 | |
| 	client_info.addr = dev_addr >> 1;
 | |
| 	client_info.platform_data = adapter;
 | |
| 	client_list->client = i2c_new_device(&adapter->i2c_adap, &client_info);
 | |
| 	if (client_list->client == NULL) {
 | |
| 		dev_info(&adapter->pdev->dev,
 | |
| 			"Failed to create new i2c device..\n");
 | |
| 		goto err_no_client;
 | |
| 	}
 | |
| 
 | |
| 	/* insert new client at head of list */
 | |
| 	client_list->next = adapter->i2c_clients;
 | |
| 	adapter->i2c_clients = client_list;
 | |
| 
 | |
| 	client = client_list->client;
 | |
| 	goto exit;
 | |
| 
 | |
| err_no_client:
 | |
| 	kfree(client_list);
 | |
| exit:
 | |
| 	spin_unlock_irqrestore(&i2c_clients_lock, flags);
 | |
| 	return client;
 | |
| }
 | |
| 
 | |
| /*  igb_read_i2c_byte - Reads 8 bit word over I2C
 | |
|  *  @hw: pointer to hardware structure
 | |
|  *  @byte_offset: byte offset to read
 | |
|  *  @dev_addr: device address
 | |
|  *  @data: value read
 | |
|  *
 | |
|  *  Performs byte read operation over I2C interface at
 | |
|  *  a specified device address.
 | |
|  */
 | |
| s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
 | |
| 				u8 dev_addr, u8 *data)
 | |
| {
 | |
| 	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
 | |
| 	struct i2c_client *this_client = igb_get_i2c_client(adapter, dev_addr);
 | |
| 	s32 status;
 | |
| 	u16 swfw_mask = 0;
 | |
| 
 | |
| 	if (!this_client)
 | |
| 		return E1000_ERR_I2C;
 | |
| 
 | |
| 	swfw_mask = E1000_SWFW_PHY0_SM;
 | |
| 
 | |
| 	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask)
 | |
| 	    != E1000_SUCCESS)
 | |
| 		return E1000_ERR_SWFW_SYNC;
 | |
| 
 | |
| 	status = i2c_smbus_read_byte_data(this_client, byte_offset);
 | |
| 	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
 | |
| 
 | |
| 	if (status < 0)
 | |
| 		return E1000_ERR_I2C;
 | |
| 	else {
 | |
| 		*data = status;
 | |
| 		return E1000_SUCCESS;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*  igb_write_i2c_byte - Writes 8 bit word over I2C
 | |
|  *  @hw: pointer to hardware structure
 | |
|  *  @byte_offset: byte offset to write
 | |
|  *  @dev_addr: device address
 | |
|  *  @data: value to write
 | |
|  *
 | |
|  *  Performs byte write operation over I2C interface at
 | |
|  *  a specified device address.
 | |
|  */
 | |
| s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
 | |
| 				 u8 dev_addr, u8 data)
 | |
| {
 | |
| 	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
 | |
| 	struct i2c_client *this_client = igb_get_i2c_client(adapter, dev_addr);
 | |
| 	s32 status;
 | |
| 	u16 swfw_mask = E1000_SWFW_PHY0_SM;
 | |
| 
 | |
| 	if (!this_client)
 | |
| 		return E1000_ERR_I2C;
 | |
| 
 | |
| 	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask) != E1000_SUCCESS)
 | |
| 		return E1000_ERR_SWFW_SYNC;
 | |
| 	status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
 | |
| 	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
 | |
| 
 | |
| 	if (status)
 | |
| 		return E1000_ERR_I2C;
 | |
| 	else
 | |
| 		return E1000_SUCCESS;
 | |
| 
 | |
| }
 | |
| /* igb_main.c */
 |