 e796643eaf
			
		
	
	
	e796643eaf
	
	
	
		
			
			All callback functions are gathered in rt2x00dev->ops except for the callback functions which are used in rt2800lib to acces rt2800pci/usb. Move the priv pointer from rt2x00dev to rt2x00dev->ops and rename it to drv to make it obvious that it is the driver callback structure. Signed-off-by: Ivo van Doorn <IvDoorn@gmail.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
		
			
				
	
	
		
			1194 lines
		
	
	
	
		
			35 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1194 lines
		
	
	
	
		
			35 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
| 	Copyright (C) 2009 Ivo van Doorn <IvDoorn@gmail.com>
 | |
| 	Copyright (C) 2009 Alban Browaeys <prahal@yahoo.com>
 | |
| 	Copyright (C) 2009 Felix Fietkau <nbd@openwrt.org>
 | |
| 	Copyright (C) 2009 Luis Correia <luis.f.correia@gmail.com>
 | |
| 	Copyright (C) 2009 Mattias Nissler <mattias.nissler@gmx.de>
 | |
| 	Copyright (C) 2009 Mark Asselstine <asselsm@gmail.com>
 | |
| 	Copyright (C) 2009 Xose Vazquez Perez <xose.vazquez@gmail.com>
 | |
| 	Copyright (C) 2009 Bart Zolnierkiewicz <bzolnier@gmail.com>
 | |
| 	<http://rt2x00.serialmonkey.com>
 | |
| 
 | |
| 	This program is free software; you can redistribute it and/or modify
 | |
| 	it under the terms of the GNU General Public License as published by
 | |
| 	the Free Software Foundation; either version 2 of the License, or
 | |
| 	(at your option) any later version.
 | |
| 
 | |
| 	This program is distributed in the hope that it will be useful,
 | |
| 	but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
| 	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 | |
| 	GNU General Public License for more details.
 | |
| 
 | |
| 	You should have received a copy of the GNU General Public License
 | |
| 	along with this program; if not, write to the
 | |
| 	Free Software Foundation, Inc.,
 | |
| 	59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 | |
|  */
 | |
| 
 | |
| /*
 | |
| 	Module: rt2800pci
 | |
| 	Abstract: rt2800pci device specific routines.
 | |
| 	Supported chipsets: RT2800E & RT2800ED.
 | |
|  */
 | |
| 
 | |
| #include <linux/delay.h>
 | |
| #include <linux/etherdevice.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/pci.h>
 | |
| #include <linux/platform_device.h>
 | |
| #include <linux/eeprom_93cx6.h>
 | |
| 
 | |
| #include "rt2x00.h"
 | |
| #include "rt2x00pci.h"
 | |
| #include "rt2x00soc.h"
 | |
| #include "rt2800lib.h"
 | |
| #include "rt2800.h"
 | |
| #include "rt2800pci.h"
 | |
| 
 | |
| /*
 | |
|  * Allow hardware encryption to be disabled.
 | |
|  */
 | |
| static int modparam_nohwcrypt = 0;
 | |
| module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
 | |
| MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
 | |
| 
 | |
| static void rt2800pci_mcu_status(struct rt2x00_dev *rt2x00dev, const u8 token)
 | |
| {
 | |
| 	unsigned int i;
 | |
| 	u32 reg;
 | |
| 
 | |
| 	/*
 | |
| 	 * SOC devices don't support MCU requests.
 | |
| 	 */
 | |
| 	if (rt2x00_is_soc(rt2x00dev))
 | |
| 		return;
 | |
| 
 | |
| 	for (i = 0; i < 200; i++) {
 | |
| 		rt2800_register_read(rt2x00dev, H2M_MAILBOX_CID, ®);
 | |
| 
 | |
| 		if ((rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD0) == token) ||
 | |
| 		    (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD1) == token) ||
 | |
| 		    (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD2) == token) ||
 | |
| 		    (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD3) == token))
 | |
| 			break;
 | |
| 
 | |
| 		udelay(REGISTER_BUSY_DELAY);
 | |
| 	}
 | |
| 
 | |
| 	if (i == 200)
 | |
| 		ERROR(rt2x00dev, "MCU request failed, no response from hardware\n");
 | |
| 
 | |
| 	rt2800_register_write(rt2x00dev, H2M_MAILBOX_STATUS, ~0);
 | |
| 	rt2800_register_write(rt2x00dev, H2M_MAILBOX_CID, ~0);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_RT2800PCI_SOC
 | |
| static void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
 | |
| {
 | |
| 	u32 *base_addr = (u32 *) KSEG1ADDR(0x1F040000); /* XXX for RT3052 */
 | |
| 
 | |
| 	memcpy_fromio(rt2x00dev->eeprom, base_addr, EEPROM_SIZE);
 | |
| }
 | |
| #else
 | |
| static inline void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
 | |
| {
 | |
| }
 | |
| #endif /* CONFIG_RT2800PCI_SOC */
 | |
| 
 | |
| #ifdef CONFIG_RT2800PCI_PCI
 | |
| static void rt2800pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
 | |
| {
 | |
| 	struct rt2x00_dev *rt2x00dev = eeprom->data;
 | |
| 	u32 reg;
 | |
| 
 | |
| 	rt2800_register_read(rt2x00dev, E2PROM_CSR, ®);
 | |
| 
 | |
| 	eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
 | |
| 	eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
 | |
| 	eeprom->reg_data_clock =
 | |
| 	    !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
 | |
| 	eeprom->reg_chip_select =
 | |
| 	    !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
 | |
| }
 | |
| 
 | |
| static void rt2800pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
 | |
| {
 | |
| 	struct rt2x00_dev *rt2x00dev = eeprom->data;
 | |
| 	u32 reg = 0;
 | |
| 
 | |
| 	rt2x00_set_field32(®, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
 | |
| 	rt2x00_set_field32(®, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
 | |
| 	rt2x00_set_field32(®, E2PROM_CSR_DATA_CLOCK,
 | |
| 			   !!eeprom->reg_data_clock);
 | |
| 	rt2x00_set_field32(®, E2PROM_CSR_CHIP_SELECT,
 | |
| 			   !!eeprom->reg_chip_select);
 | |
| 
 | |
| 	rt2800_register_write(rt2x00dev, E2PROM_CSR, reg);
 | |
| }
 | |
| 
 | |
| static void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
 | |
| {
 | |
| 	struct eeprom_93cx6 eeprom;
 | |
| 	u32 reg;
 | |
| 
 | |
| 	rt2800_register_read(rt2x00dev, E2PROM_CSR, ®);
 | |
| 
 | |
| 	eeprom.data = rt2x00dev;
 | |
| 	eeprom.register_read = rt2800pci_eepromregister_read;
 | |
| 	eeprom.register_write = rt2800pci_eepromregister_write;
 | |
| 	switch (rt2x00_get_field32(reg, E2PROM_CSR_TYPE))
 | |
| 	{
 | |
| 	case 0:
 | |
| 		eeprom.width = PCI_EEPROM_WIDTH_93C46;
 | |
| 		break;
 | |
| 	case 1:
 | |
| 		eeprom.width = PCI_EEPROM_WIDTH_93C66;
 | |
| 		break;
 | |
| 	default:
 | |
| 		eeprom.width = PCI_EEPROM_WIDTH_93C86;
 | |
| 		break;
 | |
| 	}
 | |
| 	eeprom.reg_data_in = 0;
 | |
| 	eeprom.reg_data_out = 0;
 | |
| 	eeprom.reg_data_clock = 0;
 | |
| 	eeprom.reg_chip_select = 0;
 | |
| 
 | |
| 	eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
 | |
| 			       EEPROM_SIZE / sizeof(u16));
 | |
| }
 | |
| 
 | |
| static int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev)
 | |
| {
 | |
| 	return rt2800_efuse_detect(rt2x00dev);
 | |
| }
 | |
| 
 | |
| static inline void rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
 | |
| {
 | |
| 	rt2800_read_eeprom_efuse(rt2x00dev);
 | |
| }
 | |
| #else
 | |
| static inline void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
 | |
| {
 | |
| }
 | |
| 
 | |
| static inline int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline void rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
 | |
| {
 | |
| }
 | |
| #endif /* CONFIG_RT2800PCI_PCI */
 | |
| 
 | |
| /*
 | |
|  * Firmware functions
 | |
|  */
 | |
| static char *rt2800pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
 | |
| {
 | |
| 	return FIRMWARE_RT2860;
 | |
| }
 | |
| 
 | |
| static int rt2800pci_write_firmware(struct rt2x00_dev *rt2x00dev,
 | |
| 				    const u8 *data, const size_t len)
 | |
| {
 | |
| 	u32 reg;
 | |
| 
 | |
| 	rt2800_register_write(rt2x00dev, AUTOWAKEUP_CFG, 0x00000000);
 | |
| 
 | |
| 	/*
 | |
| 	 * enable Host program ram write selection
 | |
| 	 */
 | |
| 	reg = 0;
 | |
| 	rt2x00_set_field32(®, PBF_SYS_CTRL_HOST_RAM_WRITE, 1);
 | |
| 	rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, reg);
 | |
| 
 | |
| 	/*
 | |
| 	 * Write firmware to device.
 | |
| 	 */
 | |
| 	rt2800_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
 | |
| 				   data, len);
 | |
| 
 | |
| 	rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000);
 | |
| 	rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00001);
 | |
| 
 | |
| 	rt2800_register_write(rt2x00dev, H2M_BBP_AGENT, 0);
 | |
| 	rt2800_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Initialization functions.
 | |
|  */
 | |
| static bool rt2800pci_get_entry_state(struct queue_entry *entry)
 | |
| {
 | |
| 	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
 | |
| 	u32 word;
 | |
| 
 | |
| 	if (entry->queue->qid == QID_RX) {
 | |
| 		rt2x00_desc_read(entry_priv->desc, 1, &word);
 | |
| 
 | |
| 		return (!rt2x00_get_field32(word, RXD_W1_DMA_DONE));
 | |
| 	} else {
 | |
| 		rt2x00_desc_read(entry_priv->desc, 1, &word);
 | |
| 
 | |
| 		return (!rt2x00_get_field32(word, TXD_W1_DMA_DONE));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void rt2800pci_clear_entry(struct queue_entry *entry)
 | |
| {
 | |
| 	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
 | |
| 	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
 | |
| 	u32 word;
 | |
| 
 | |
| 	if (entry->queue->qid == QID_RX) {
 | |
| 		rt2x00_desc_read(entry_priv->desc, 0, &word);
 | |
| 		rt2x00_set_field32(&word, RXD_W0_SDP0, skbdesc->skb_dma);
 | |
| 		rt2x00_desc_write(entry_priv->desc, 0, word);
 | |
| 
 | |
| 		rt2x00_desc_read(entry_priv->desc, 1, &word);
 | |
| 		rt2x00_set_field32(&word, RXD_W1_DMA_DONE, 0);
 | |
| 		rt2x00_desc_write(entry_priv->desc, 1, word);
 | |
| 	} else {
 | |
| 		rt2x00_desc_read(entry_priv->desc, 1, &word);
 | |
| 		rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 1);
 | |
| 		rt2x00_desc_write(entry_priv->desc, 1, word);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int rt2800pci_init_queues(struct rt2x00_dev *rt2x00dev)
 | |
| {
 | |
| 	struct queue_entry_priv_pci *entry_priv;
 | |
| 	u32 reg;
 | |
| 
 | |
| 	/*
 | |
| 	 * Initialize registers.
 | |
| 	 */
 | |
| 	entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
 | |
| 	rt2800_register_write(rt2x00dev, TX_BASE_PTR0, entry_priv->desc_dma);
 | |
| 	rt2800_register_write(rt2x00dev, TX_MAX_CNT0, rt2x00dev->tx[0].limit);
 | |
| 	rt2800_register_write(rt2x00dev, TX_CTX_IDX0, 0);
 | |
| 	rt2800_register_write(rt2x00dev, TX_DTX_IDX0, 0);
 | |
| 
 | |
| 	entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
 | |
| 	rt2800_register_write(rt2x00dev, TX_BASE_PTR1, entry_priv->desc_dma);
 | |
| 	rt2800_register_write(rt2x00dev, TX_MAX_CNT1, rt2x00dev->tx[1].limit);
 | |
| 	rt2800_register_write(rt2x00dev, TX_CTX_IDX1, 0);
 | |
| 	rt2800_register_write(rt2x00dev, TX_DTX_IDX1, 0);
 | |
| 
 | |
| 	entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
 | |
| 	rt2800_register_write(rt2x00dev, TX_BASE_PTR2, entry_priv->desc_dma);
 | |
| 	rt2800_register_write(rt2x00dev, TX_MAX_CNT2, rt2x00dev->tx[2].limit);
 | |
| 	rt2800_register_write(rt2x00dev, TX_CTX_IDX2, 0);
 | |
| 	rt2800_register_write(rt2x00dev, TX_DTX_IDX2, 0);
 | |
| 
 | |
| 	entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
 | |
| 	rt2800_register_write(rt2x00dev, TX_BASE_PTR3, entry_priv->desc_dma);
 | |
| 	rt2800_register_write(rt2x00dev, TX_MAX_CNT3, rt2x00dev->tx[3].limit);
 | |
| 	rt2800_register_write(rt2x00dev, TX_CTX_IDX3, 0);
 | |
| 	rt2800_register_write(rt2x00dev, TX_DTX_IDX3, 0);
 | |
| 
 | |
| 	entry_priv = rt2x00dev->rx->entries[0].priv_data;
 | |
| 	rt2800_register_write(rt2x00dev, RX_BASE_PTR, entry_priv->desc_dma);
 | |
| 	rt2800_register_write(rt2x00dev, RX_MAX_CNT, rt2x00dev->rx[0].limit);
 | |
| 	rt2800_register_write(rt2x00dev, RX_CRX_IDX, rt2x00dev->rx[0].limit - 1);
 | |
| 	rt2800_register_write(rt2x00dev, RX_DRX_IDX, 0);
 | |
| 
 | |
| 	/*
 | |
| 	 * Enable global DMA configuration
 | |
| 	 */
 | |
| 	rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, ®);
 | |
| 	rt2x00_set_field32(®, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
 | |
| 	rt2x00_set_field32(®, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
 | |
| 	rt2x00_set_field32(®, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
 | |
| 	rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
 | |
| 
 | |
| 	rt2800_register_write(rt2x00dev, DELAY_INT_CFG, 0);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Device state switch handlers.
 | |
|  */
 | |
| static void rt2800pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
 | |
| 				enum dev_state state)
 | |
| {
 | |
| 	u32 reg;
 | |
| 
 | |
| 	rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, ®);
 | |
| 	rt2x00_set_field32(®, MAC_SYS_CTRL_ENABLE_RX,
 | |
| 			   (state == STATE_RADIO_RX_ON) ||
 | |
| 			   (state == STATE_RADIO_RX_ON_LINK));
 | |
| 	rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
 | |
| }
 | |
| 
 | |
| static void rt2800pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
 | |
| 				 enum dev_state state)
 | |
| {
 | |
| 	int mask = (state == STATE_RADIO_IRQ_ON) ||
 | |
| 		   (state == STATE_RADIO_IRQ_ON_ISR);
 | |
| 	u32 reg;
 | |
| 
 | |
| 	/*
 | |
| 	 * When interrupts are being enabled, the interrupt registers
 | |
| 	 * should clear the register to assure a clean state.
 | |
| 	 */
 | |
| 	if (state == STATE_RADIO_IRQ_ON) {
 | |
| 		rt2800_register_read(rt2x00dev, INT_SOURCE_CSR, ®);
 | |
| 		rt2800_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
 | |
| 	}
 | |
| 
 | |
| 	rt2800_register_read(rt2x00dev, INT_MASK_CSR, ®);
 | |
| 	rt2x00_set_field32(®, INT_MASK_CSR_RXDELAYINT, mask);
 | |
| 	rt2x00_set_field32(®, INT_MASK_CSR_TXDELAYINT, mask);
 | |
| 	rt2x00_set_field32(®, INT_MASK_CSR_RX_DONE, mask);
 | |
| 	rt2x00_set_field32(®, INT_MASK_CSR_AC0_DMA_DONE, mask);
 | |
| 	rt2x00_set_field32(®, INT_MASK_CSR_AC1_DMA_DONE, mask);
 | |
| 	rt2x00_set_field32(®, INT_MASK_CSR_AC2_DMA_DONE, mask);
 | |
| 	rt2x00_set_field32(®, INT_MASK_CSR_AC3_DMA_DONE, mask);
 | |
| 	rt2x00_set_field32(®, INT_MASK_CSR_HCCA_DMA_DONE, mask);
 | |
| 	rt2x00_set_field32(®, INT_MASK_CSR_MGMT_DMA_DONE, mask);
 | |
| 	rt2x00_set_field32(®, INT_MASK_CSR_MCU_COMMAND, mask);
 | |
| 	rt2x00_set_field32(®, INT_MASK_CSR_RXTX_COHERENT, mask);
 | |
| 	rt2x00_set_field32(®, INT_MASK_CSR_TBTT, mask);
 | |
| 	rt2x00_set_field32(®, INT_MASK_CSR_PRE_TBTT, mask);
 | |
| 	rt2x00_set_field32(®, INT_MASK_CSR_TX_FIFO_STATUS, mask);
 | |
| 	rt2x00_set_field32(®, INT_MASK_CSR_AUTO_WAKEUP, mask);
 | |
| 	rt2x00_set_field32(®, INT_MASK_CSR_GPTIMER, mask);
 | |
| 	rt2x00_set_field32(®, INT_MASK_CSR_RX_COHERENT, mask);
 | |
| 	rt2x00_set_field32(®, INT_MASK_CSR_TX_COHERENT, mask);
 | |
| 	rt2800_register_write(rt2x00dev, INT_MASK_CSR, reg);
 | |
| }
 | |
| 
 | |
| static int rt2800pci_init_registers(struct rt2x00_dev *rt2x00dev)
 | |
| {
 | |
| 	u32 reg;
 | |
| 
 | |
| 	/*
 | |
| 	 * Reset DMA indexes
 | |
| 	 */
 | |
| 	rt2800_register_read(rt2x00dev, WPDMA_RST_IDX, ®);
 | |
| 	rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX0, 1);
 | |
| 	rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX1, 1);
 | |
| 	rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX2, 1);
 | |
| 	rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX3, 1);
 | |
| 	rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX4, 1);
 | |
| 	rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX5, 1);
 | |
| 	rt2x00_set_field32(®, WPDMA_RST_IDX_DRX_IDX0, 1);
 | |
| 	rt2800_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
 | |
| 
 | |
| 	rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f);
 | |
| 	rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00);
 | |
| 
 | |
| 	rt2800_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000003);
 | |
| 
 | |
| 	rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, ®);
 | |
| 	rt2x00_set_field32(®, MAC_SYS_CTRL_RESET_CSR, 1);
 | |
| 	rt2x00_set_field32(®, MAC_SYS_CTRL_RESET_BBP, 1);
 | |
| 	rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
 | |
| 
 | |
| 	rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, 0x00000000);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int rt2800pci_enable_radio(struct rt2x00_dev *rt2x00dev)
 | |
| {
 | |
| 	u32 reg;
 | |
| 	u16 word;
 | |
| 
 | |
| 	/*
 | |
| 	 * Initialize all registers.
 | |
| 	 */
 | |
| 	if (unlikely(rt2800_wait_wpdma_ready(rt2x00dev) ||
 | |
| 		     rt2800pci_init_queues(rt2x00dev) ||
 | |
| 		     rt2800_init_registers(rt2x00dev) ||
 | |
| 		     rt2800_wait_wpdma_ready(rt2x00dev) ||
 | |
| 		     rt2800_init_bbp(rt2x00dev) ||
 | |
| 		     rt2800_init_rfcsr(rt2x00dev)))
 | |
| 		return -EIO;
 | |
| 
 | |
| 	/*
 | |
| 	 * Send signal to firmware during boot time.
 | |
| 	 */
 | |
| 	rt2800_mcu_request(rt2x00dev, MCU_BOOT_SIGNAL, 0, 0, 0);
 | |
| 
 | |
| 	/*
 | |
| 	 * Enable RX.
 | |
| 	 */
 | |
| 	rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, ®);
 | |
| 	rt2x00_set_field32(®, MAC_SYS_CTRL_ENABLE_TX, 1);
 | |
| 	rt2x00_set_field32(®, MAC_SYS_CTRL_ENABLE_RX, 0);
 | |
| 	rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
 | |
| 
 | |
| 	rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, ®);
 | |
| 	rt2x00_set_field32(®, WPDMA_GLO_CFG_ENABLE_TX_DMA, 1);
 | |
| 	rt2x00_set_field32(®, WPDMA_GLO_CFG_ENABLE_RX_DMA, 1);
 | |
| 	rt2x00_set_field32(®, WPDMA_GLO_CFG_WP_DMA_BURST_SIZE, 2);
 | |
| 	rt2x00_set_field32(®, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
 | |
| 	rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
 | |
| 
 | |
| 	rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, ®);
 | |
| 	rt2x00_set_field32(®, MAC_SYS_CTRL_ENABLE_TX, 1);
 | |
| 	rt2x00_set_field32(®, MAC_SYS_CTRL_ENABLE_RX, 1);
 | |
| 	rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
 | |
| 
 | |
| 	/*
 | |
| 	 * Initialize LED control
 | |
| 	 */
 | |
| 	rt2x00_eeprom_read(rt2x00dev, EEPROM_LED1, &word);
 | |
| 	rt2800_mcu_request(rt2x00dev, MCU_LED_1, 0xff,
 | |
| 			      word & 0xff, (word >> 8) & 0xff);
 | |
| 
 | |
| 	rt2x00_eeprom_read(rt2x00dev, EEPROM_LED2, &word);
 | |
| 	rt2800_mcu_request(rt2x00dev, MCU_LED_2, 0xff,
 | |
| 			      word & 0xff, (word >> 8) & 0xff);
 | |
| 
 | |
| 	rt2x00_eeprom_read(rt2x00dev, EEPROM_LED3, &word);
 | |
| 	rt2800_mcu_request(rt2x00dev, MCU_LED_3, 0xff,
 | |
| 			      word & 0xff, (word >> 8) & 0xff);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void rt2800pci_disable_radio(struct rt2x00_dev *rt2x00dev)
 | |
| {
 | |
| 	u32 reg;
 | |
| 
 | |
| 	rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, ®);
 | |
| 	rt2x00_set_field32(®, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
 | |
| 	rt2x00_set_field32(®, WPDMA_GLO_CFG_TX_DMA_BUSY, 0);
 | |
| 	rt2x00_set_field32(®, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
 | |
| 	rt2x00_set_field32(®, WPDMA_GLO_CFG_RX_DMA_BUSY, 0);
 | |
| 	rt2x00_set_field32(®, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
 | |
| 	rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
 | |
| 
 | |
| 	rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, 0);
 | |
| 	rt2800_register_write(rt2x00dev, PWR_PIN_CFG, 0);
 | |
| 	rt2800_register_write(rt2x00dev, TX_PIN_CFG, 0);
 | |
| 
 | |
| 	rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00001280);
 | |
| 
 | |
| 	rt2800_register_read(rt2x00dev, WPDMA_RST_IDX, ®);
 | |
| 	rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX0, 1);
 | |
| 	rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX1, 1);
 | |
| 	rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX2, 1);
 | |
| 	rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX3, 1);
 | |
| 	rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX4, 1);
 | |
| 	rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX5, 1);
 | |
| 	rt2x00_set_field32(®, WPDMA_RST_IDX_DRX_IDX0, 1);
 | |
| 	rt2800_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
 | |
| 
 | |
| 	rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f);
 | |
| 	rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00);
 | |
| 
 | |
| 	/* Wait for DMA, ignore error */
 | |
| 	rt2800_wait_wpdma_ready(rt2x00dev);
 | |
| }
 | |
| 
 | |
| static int rt2800pci_set_state(struct rt2x00_dev *rt2x00dev,
 | |
| 			       enum dev_state state)
 | |
| {
 | |
| 	/*
 | |
| 	 * Always put the device to sleep (even when we intend to wakeup!)
 | |
| 	 * if the device is booting and wasn't asleep it will return
 | |
| 	 * failure when attempting to wakeup.
 | |
| 	 */
 | |
| 	rt2800_mcu_request(rt2x00dev, MCU_SLEEP, 0xff, 0, 2);
 | |
| 
 | |
| 	if (state == STATE_AWAKE) {
 | |
| 		rt2800_mcu_request(rt2x00dev, MCU_WAKEUP, TOKEN_WAKUP, 0, 0);
 | |
| 		rt2800pci_mcu_status(rt2x00dev, TOKEN_WAKUP);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int rt2800pci_set_device_state(struct rt2x00_dev *rt2x00dev,
 | |
| 				      enum dev_state state)
 | |
| {
 | |
| 	int retval = 0;
 | |
| 
 | |
| 	switch (state) {
 | |
| 	case STATE_RADIO_ON:
 | |
| 		/*
 | |
| 		 * Before the radio can be enabled, the device first has
 | |
| 		 * to be woken up. After that it needs a bit of time
 | |
| 		 * to be fully awake and then the radio can be enabled.
 | |
| 		 */
 | |
| 		rt2800pci_set_state(rt2x00dev, STATE_AWAKE);
 | |
| 		msleep(1);
 | |
| 		retval = rt2800pci_enable_radio(rt2x00dev);
 | |
| 		break;
 | |
| 	case STATE_RADIO_OFF:
 | |
| 		/*
 | |
| 		 * After the radio has been disabled, the device should
 | |
| 		 * be put to sleep for powersaving.
 | |
| 		 */
 | |
| 		rt2800pci_disable_radio(rt2x00dev);
 | |
| 		rt2800pci_set_state(rt2x00dev, STATE_SLEEP);
 | |
| 		break;
 | |
| 	case STATE_RADIO_RX_ON:
 | |
| 	case STATE_RADIO_RX_ON_LINK:
 | |
| 	case STATE_RADIO_RX_OFF:
 | |
| 	case STATE_RADIO_RX_OFF_LINK:
 | |
| 		rt2800pci_toggle_rx(rt2x00dev, state);
 | |
| 		break;
 | |
| 	case STATE_RADIO_IRQ_ON:
 | |
| 	case STATE_RADIO_IRQ_ON_ISR:
 | |
| 	case STATE_RADIO_IRQ_OFF:
 | |
| 	case STATE_RADIO_IRQ_OFF_ISR:
 | |
| 		rt2800pci_toggle_irq(rt2x00dev, state);
 | |
| 		break;
 | |
| 	case STATE_DEEP_SLEEP:
 | |
| 	case STATE_SLEEP:
 | |
| 	case STATE_STANDBY:
 | |
| 	case STATE_AWAKE:
 | |
| 		retval = rt2800pci_set_state(rt2x00dev, state);
 | |
| 		break;
 | |
| 	default:
 | |
| 		retval = -ENOTSUPP;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(retval))
 | |
| 		ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
 | |
| 		      state, retval);
 | |
| 
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * TX descriptor initialization
 | |
|  */
 | |
| static void rt2800pci_write_tx_data(struct queue_entry* entry,
 | |
| 				    struct txentry_desc *txdesc)
 | |
| {
 | |
| 	__le32 *txwi = (__le32 *) entry->skb->data;
 | |
| 
 | |
| 	rt2800_write_txwi(txwi, txdesc);
 | |
| }
 | |
| 
 | |
| 
 | |
| static void rt2800pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
 | |
| 				    struct sk_buff *skb,
 | |
| 				    struct txentry_desc *txdesc)
 | |
| {
 | |
| 	struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
 | |
| 	struct queue_entry_priv_pci *entry_priv = skbdesc->entry->priv_data;
 | |
| 	__le32 *txd = entry_priv->desc;
 | |
| 	u32 word;
 | |
| 
 | |
| 	/*
 | |
| 	 * The buffers pointed by SD_PTR0/SD_LEN0 and SD_PTR1/SD_LEN1
 | |
| 	 * must contains a TXWI structure + 802.11 header + padding + 802.11
 | |
| 	 * data. We choose to have SD_PTR0/SD_LEN0 only contains TXWI and
 | |
| 	 * SD_PTR1/SD_LEN1 contains 802.11 header + padding + 802.11
 | |
| 	 * data. It means that LAST_SEC0 is always 0.
 | |
| 	 */
 | |
| 
 | |
| 	/*
 | |
| 	 * Initialize TX descriptor
 | |
| 	 */
 | |
| 	rt2x00_desc_read(txd, 0, &word);
 | |
| 	rt2x00_set_field32(&word, TXD_W0_SD_PTR0, skbdesc->skb_dma);
 | |
| 	rt2x00_desc_write(txd, 0, word);
 | |
| 
 | |
| 	rt2x00_desc_read(txd, 1, &word);
 | |
| 	rt2x00_set_field32(&word, TXD_W1_SD_LEN1, skb->len);
 | |
| 	rt2x00_set_field32(&word, TXD_W1_LAST_SEC1,
 | |
| 			   !test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
 | |
| 	rt2x00_set_field32(&word, TXD_W1_BURST,
 | |
| 			   test_bit(ENTRY_TXD_BURST, &txdesc->flags));
 | |
| 	rt2x00_set_field32(&word, TXD_W1_SD_LEN0, TXWI_DESC_SIZE);
 | |
| 	rt2x00_set_field32(&word, TXD_W1_LAST_SEC0, 0);
 | |
| 	rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 0);
 | |
| 	rt2x00_desc_write(txd, 1, word);
 | |
| 
 | |
| 	rt2x00_desc_read(txd, 2, &word);
 | |
| 	rt2x00_set_field32(&word, TXD_W2_SD_PTR1,
 | |
| 			   skbdesc->skb_dma + TXWI_DESC_SIZE);
 | |
| 	rt2x00_desc_write(txd, 2, word);
 | |
| 
 | |
| 	rt2x00_desc_read(txd, 3, &word);
 | |
| 	rt2x00_set_field32(&word, TXD_W3_WIV,
 | |
| 			   !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc->flags));
 | |
| 	rt2x00_set_field32(&word, TXD_W3_QSEL, 2);
 | |
| 	rt2x00_desc_write(txd, 3, word);
 | |
| 
 | |
| 	/*
 | |
| 	 * Register descriptor details in skb frame descriptor.
 | |
| 	 */
 | |
| 	skbdesc->desc = txd;
 | |
| 	skbdesc->desc_len = TXD_DESC_SIZE;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * TX data initialization
 | |
|  */
 | |
| static void rt2800pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
 | |
| 				    const enum data_queue_qid queue_idx)
 | |
| {
 | |
| 	struct data_queue *queue;
 | |
| 	unsigned int idx, qidx = 0;
 | |
| 
 | |
| 	if (queue_idx > QID_HCCA && queue_idx != QID_MGMT)
 | |
| 		return;
 | |
| 
 | |
| 	queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
 | |
| 	idx = queue->index[Q_INDEX];
 | |
| 
 | |
| 	if (queue_idx == QID_MGMT)
 | |
| 		qidx = 5;
 | |
| 	else
 | |
| 		qidx = queue_idx;
 | |
| 
 | |
| 	rt2800_register_write(rt2x00dev, TX_CTX_IDX(qidx), idx);
 | |
| }
 | |
| 
 | |
| static void rt2800pci_kill_tx_queue(struct rt2x00_dev *rt2x00dev,
 | |
| 				    const enum data_queue_qid qid)
 | |
| {
 | |
| 	u32 reg;
 | |
| 
 | |
| 	if (qid == QID_BEACON) {
 | |
| 		rt2800_register_write(rt2x00dev, BCN_TIME_CFG, 0);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	rt2800_register_read(rt2x00dev, WPDMA_RST_IDX, ®);
 | |
| 	rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX0, (qid == QID_AC_BE));
 | |
| 	rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX1, (qid == QID_AC_BK));
 | |
| 	rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX2, (qid == QID_AC_VI));
 | |
| 	rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX3, (qid == QID_AC_VO));
 | |
| 	rt2800_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * RX control handlers
 | |
|  */
 | |
| static void rt2800pci_fill_rxdone(struct queue_entry *entry,
 | |
| 				  struct rxdone_entry_desc *rxdesc)
 | |
| {
 | |
| 	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
 | |
| 	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
 | |
| 	__le32 *rxd = entry_priv->desc;
 | |
| 	u32 word;
 | |
| 
 | |
| 	rt2x00_desc_read(rxd, 3, &word);
 | |
| 
 | |
| 	if (rt2x00_get_field32(word, RXD_W3_CRC_ERROR))
 | |
| 		rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
 | |
| 
 | |
| 	/*
 | |
| 	 * Unfortunately we don't know the cipher type used during
 | |
| 	 * decryption. This prevents us from correct providing
 | |
| 	 * correct statistics through debugfs.
 | |
| 	 */
 | |
| 	rxdesc->cipher_status = rt2x00_get_field32(word, RXD_W3_CIPHER_ERROR);
 | |
| 
 | |
| 	if (rt2x00_get_field32(word, RXD_W3_DECRYPTED)) {
 | |
| 		/*
 | |
| 		 * Hardware has stripped IV/EIV data from 802.11 frame during
 | |
| 		 * decryption. Unfortunately the descriptor doesn't contain
 | |
| 		 * any fields with the EIV/IV data either, so they can't
 | |
| 		 * be restored by rt2x00lib.
 | |
| 		 */
 | |
| 		rxdesc->flags |= RX_FLAG_IV_STRIPPED;
 | |
| 
 | |
| 		if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
 | |
| 			rxdesc->flags |= RX_FLAG_DECRYPTED;
 | |
| 		else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
 | |
| 			rxdesc->flags |= RX_FLAG_MMIC_ERROR;
 | |
| 	}
 | |
| 
 | |
| 	if (rt2x00_get_field32(word, RXD_W3_MY_BSS))
 | |
| 		rxdesc->dev_flags |= RXDONE_MY_BSS;
 | |
| 
 | |
| 	if (rt2x00_get_field32(word, RXD_W3_L2PAD))
 | |
| 		rxdesc->dev_flags |= RXDONE_L2PAD;
 | |
| 
 | |
| 	/*
 | |
| 	 * Process the RXWI structure that is at the start of the buffer.
 | |
| 	 */
 | |
| 	rt2800_process_rxwi(entry, rxdesc);
 | |
| 
 | |
| 	/*
 | |
| 	 * Set RX IDX in register to inform hardware that we have handled
 | |
| 	 * this entry and it is available for reuse again.
 | |
| 	 */
 | |
| 	rt2800_register_write(rt2x00dev, RX_CRX_IDX, entry->entry_idx);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Interrupt functions.
 | |
|  */
 | |
| static void rt2800pci_txdone(struct rt2x00_dev *rt2x00dev)
 | |
| {
 | |
| 	struct data_queue *queue;
 | |
| 	struct queue_entry *entry;
 | |
| 	__le32 *txwi;
 | |
| 	struct txdone_entry_desc txdesc;
 | |
| 	u32 word;
 | |
| 	u32 reg;
 | |
| 	int wcid, ack, pid, tx_wcid, tx_ack, tx_pid;
 | |
| 	u16 mcs, real_mcs;
 | |
| 	int i;
 | |
| 
 | |
| 	/*
 | |
| 	 * TX_STA_FIFO is a stack of X entries, hence read TX_STA_FIFO
 | |
| 	 * at most X times and also stop processing once the TX_STA_FIFO_VALID
 | |
| 	 * flag is not set anymore.
 | |
| 	 *
 | |
| 	 * The legacy drivers use X=TX_RING_SIZE but state in a comment
 | |
| 	 * that the TX_STA_FIFO stack has a size of 16. We stick to our
 | |
| 	 * tx ring size for now.
 | |
| 	 */
 | |
| 	for (i = 0; i < TX_ENTRIES; i++) {
 | |
| 		rt2800_register_read(rt2x00dev, TX_STA_FIFO, ®);
 | |
| 		if (!rt2x00_get_field32(reg, TX_STA_FIFO_VALID))
 | |
| 			break;
 | |
| 
 | |
| 		wcid    = rt2x00_get_field32(reg, TX_STA_FIFO_WCID);
 | |
| 		ack     = rt2x00_get_field32(reg, TX_STA_FIFO_TX_ACK_REQUIRED);
 | |
| 		pid     = rt2x00_get_field32(reg, TX_STA_FIFO_PID_TYPE);
 | |
| 
 | |
| 		/*
 | |
| 		 * Skip this entry when it contains an invalid
 | |
| 		 * queue identication number.
 | |
| 		 */
 | |
| 		if (pid <= 0 || pid > QID_RX)
 | |
| 			continue;
 | |
| 
 | |
| 		queue = rt2x00queue_get_queue(rt2x00dev, pid - 1);
 | |
| 		if (unlikely(!queue))
 | |
| 			continue;
 | |
| 
 | |
| 		/*
 | |
| 		 * Inside each queue, we process each entry in a chronological
 | |
| 		 * order. We first check that the queue is not empty.
 | |
| 		 */
 | |
| 		if (rt2x00queue_empty(queue))
 | |
| 			continue;
 | |
| 		entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
 | |
| 
 | |
| 		/* Check if we got a match by looking at WCID/ACK/PID
 | |
| 		 * fields */
 | |
| 		txwi = (__le32 *) entry->skb->data;
 | |
| 
 | |
| 		rt2x00_desc_read(txwi, 1, &word);
 | |
| 		tx_wcid = rt2x00_get_field32(word, TXWI_W1_WIRELESS_CLI_ID);
 | |
| 		tx_ack  = rt2x00_get_field32(word, TXWI_W1_ACK);
 | |
| 		tx_pid  = rt2x00_get_field32(word, TXWI_W1_PACKETID);
 | |
| 
 | |
| 		if ((wcid != tx_wcid) || (ack != tx_ack) || (pid != tx_pid))
 | |
| 			WARNING(rt2x00dev, "invalid TX_STA_FIFO content\n");
 | |
| 
 | |
| 		/*
 | |
| 		 * Obtain the status about this packet.
 | |
| 		 */
 | |
| 		txdesc.flags = 0;
 | |
| 		rt2x00_desc_read(txwi, 0, &word);
 | |
| 		mcs = rt2x00_get_field32(word, TXWI_W0_MCS);
 | |
| 		real_mcs = rt2x00_get_field32(reg, TX_STA_FIFO_MCS);
 | |
| 
 | |
| 		/*
 | |
| 		 * Ralink has a retry mechanism using a global fallback
 | |
| 		 * table. We setup this fallback table to try the immediate
 | |
| 		 * lower rate for all rates. In the TX_STA_FIFO, the MCS field
 | |
| 		 * always contains the MCS used for the last transmission, be
 | |
| 		 * it successful or not.
 | |
| 		 */
 | |
| 		if (rt2x00_get_field32(reg, TX_STA_FIFO_TX_SUCCESS)) {
 | |
| 			/*
 | |
| 			 * Transmission succeeded. The number of retries is
 | |
| 			 * mcs - real_mcs
 | |
| 			 */
 | |
| 			__set_bit(TXDONE_SUCCESS, &txdesc.flags);
 | |
| 			txdesc.retry = ((mcs > real_mcs) ? mcs - real_mcs : 0);
 | |
| 		} else {
 | |
| 			/*
 | |
| 			 * Transmission failed. The number of retries is
 | |
| 			 * always 7 in this case (for a total number of 8
 | |
| 			 * frames sent).
 | |
| 			 */
 | |
| 			__set_bit(TXDONE_FAILURE, &txdesc.flags);
 | |
| 			txdesc.retry = 7;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * the frame was retried at least once
 | |
| 		 * -> hw used fallback rates
 | |
| 		 */
 | |
| 		if (txdesc.retry)
 | |
| 			__set_bit(TXDONE_FALLBACK, &txdesc.flags);
 | |
| 
 | |
| 		rt2x00lib_txdone(entry, &txdesc);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void rt2800pci_wakeup(struct rt2x00_dev *rt2x00dev)
 | |
| {
 | |
| 	struct ieee80211_conf conf = { .flags = 0 };
 | |
| 	struct rt2x00lib_conf libconf = { .conf = &conf };
 | |
| 
 | |
| 	rt2800_config(rt2x00dev, &libconf, IEEE80211_CONF_CHANGE_PS);
 | |
| }
 | |
| 
 | |
| static irqreturn_t rt2800pci_interrupt_thread(int irq, void *dev_instance)
 | |
| {
 | |
| 	struct rt2x00_dev *rt2x00dev = dev_instance;
 | |
| 	u32 reg = rt2x00dev->irqvalue[0];
 | |
| 
 | |
| 	/*
 | |
| 	 * 1 - Pre TBTT interrupt.
 | |
| 	 */
 | |
| 	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_PRE_TBTT))
 | |
| 		rt2x00lib_pretbtt(rt2x00dev);
 | |
| 
 | |
| 	/*
 | |
| 	 * 2 - Beacondone interrupt.
 | |
| 	 */
 | |
| 	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TBTT))
 | |
| 		rt2x00lib_beacondone(rt2x00dev);
 | |
| 
 | |
| 	/*
 | |
| 	 * 3 - Rx ring done interrupt.
 | |
| 	 */
 | |
| 	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RX_DONE))
 | |
| 		rt2x00pci_rxdone(rt2x00dev);
 | |
| 
 | |
| 	/*
 | |
| 	 * 4 - Tx done interrupt.
 | |
| 	 */
 | |
| 	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TX_FIFO_STATUS))
 | |
| 		rt2800pci_txdone(rt2x00dev);
 | |
| 
 | |
| 	/*
 | |
| 	 * 5 - Auto wakeup interrupt.
 | |
| 	 */
 | |
| 	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_AUTO_WAKEUP))
 | |
| 		rt2800pci_wakeup(rt2x00dev);
 | |
| 
 | |
| 	/* Enable interrupts again. */
 | |
| 	rt2x00dev->ops->lib->set_device_state(rt2x00dev,
 | |
| 					      STATE_RADIO_IRQ_ON_ISR);
 | |
| 
 | |
| 	return IRQ_HANDLED;
 | |
| }
 | |
| 
 | |
| static irqreturn_t rt2800pci_interrupt(int irq, void *dev_instance)
 | |
| {
 | |
| 	struct rt2x00_dev *rt2x00dev = dev_instance;
 | |
| 	u32 reg;
 | |
| 
 | |
| 	/* Read status and ACK all interrupts */
 | |
| 	rt2800_register_read(rt2x00dev, INT_SOURCE_CSR, ®);
 | |
| 	rt2800_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
 | |
| 
 | |
| 	if (!reg)
 | |
| 		return IRQ_NONE;
 | |
| 
 | |
| 	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
 | |
| 		return IRQ_HANDLED;
 | |
| 
 | |
| 	/* Store irqvalue for use in the interrupt thread. */
 | |
| 	rt2x00dev->irqvalue[0] = reg;
 | |
| 
 | |
| 	/* Disable interrupts, will be enabled again in the interrupt thread. */
 | |
| 	rt2x00dev->ops->lib->set_device_state(rt2x00dev,
 | |
| 					      STATE_RADIO_IRQ_OFF_ISR);
 | |
| 
 | |
| 
 | |
| 	return IRQ_WAKE_THREAD;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Device probe functions.
 | |
|  */
 | |
| static int rt2800pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
 | |
| {
 | |
| 	/*
 | |
| 	 * Read EEPROM into buffer
 | |
| 	 */
 | |
| 	if (rt2x00_is_soc(rt2x00dev))
 | |
| 		rt2800pci_read_eeprom_soc(rt2x00dev);
 | |
| 	else if (rt2800pci_efuse_detect(rt2x00dev))
 | |
| 		rt2800pci_read_eeprom_efuse(rt2x00dev);
 | |
| 	else
 | |
| 		rt2800pci_read_eeprom_pci(rt2x00dev);
 | |
| 
 | |
| 	return rt2800_validate_eeprom(rt2x00dev);
 | |
| }
 | |
| 
 | |
| static int rt2800pci_probe_hw(struct rt2x00_dev *rt2x00dev)
 | |
| {
 | |
| 	int retval;
 | |
| 
 | |
| 	/*
 | |
| 	 * Allocate eeprom data.
 | |
| 	 */
 | |
| 	retval = rt2800pci_validate_eeprom(rt2x00dev);
 | |
| 	if (retval)
 | |
| 		return retval;
 | |
| 
 | |
| 	retval = rt2800_init_eeprom(rt2x00dev);
 | |
| 	if (retval)
 | |
| 		return retval;
 | |
| 
 | |
| 	/*
 | |
| 	 * Initialize hw specifications.
 | |
| 	 */
 | |
| 	retval = rt2800_probe_hw_mode(rt2x00dev);
 | |
| 	if (retval)
 | |
| 		return retval;
 | |
| 
 | |
| 	/*
 | |
| 	 * This device has multiple filters for control frames
 | |
| 	 * and has a separate filter for PS Poll frames.
 | |
| 	 */
 | |
| 	__set_bit(DRIVER_SUPPORT_CONTROL_FILTERS, &rt2x00dev->flags);
 | |
| 	__set_bit(DRIVER_SUPPORT_CONTROL_FILTER_PSPOLL, &rt2x00dev->flags);
 | |
| 
 | |
| 	/*
 | |
| 	 * This device has a pre tbtt interrupt and thus fetches
 | |
| 	 * a new beacon directly prior to transmission.
 | |
| 	 */
 | |
| 	__set_bit(DRIVER_SUPPORT_PRE_TBTT_INTERRUPT, &rt2x00dev->flags);
 | |
| 
 | |
| 	/*
 | |
| 	 * This device requires firmware.
 | |
| 	 */
 | |
| 	if (!rt2x00_is_soc(rt2x00dev))
 | |
| 		__set_bit(DRIVER_REQUIRE_FIRMWARE, &rt2x00dev->flags);
 | |
| 	__set_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags);
 | |
| 	__set_bit(DRIVER_REQUIRE_L2PAD, &rt2x00dev->flags);
 | |
| 	if (!modparam_nohwcrypt)
 | |
| 		__set_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags);
 | |
| 	__set_bit(DRIVER_SUPPORT_LINK_TUNING, &rt2x00dev->flags);
 | |
| 
 | |
| 	/*
 | |
| 	 * Set the rssi offset.
 | |
| 	 */
 | |
| 	rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static const struct ieee80211_ops rt2800pci_mac80211_ops = {
 | |
| 	.tx			= rt2x00mac_tx,
 | |
| 	.start			= rt2x00mac_start,
 | |
| 	.stop			= rt2x00mac_stop,
 | |
| 	.add_interface		= rt2x00mac_add_interface,
 | |
| 	.remove_interface	= rt2x00mac_remove_interface,
 | |
| 	.config			= rt2x00mac_config,
 | |
| 	.configure_filter	= rt2x00mac_configure_filter,
 | |
| 	.set_key		= rt2x00mac_set_key,
 | |
| 	.sw_scan_start		= rt2x00mac_sw_scan_start,
 | |
| 	.sw_scan_complete	= rt2x00mac_sw_scan_complete,
 | |
| 	.get_stats		= rt2x00mac_get_stats,
 | |
| 	.get_tkip_seq		= rt2800_get_tkip_seq,
 | |
| 	.set_rts_threshold	= rt2800_set_rts_threshold,
 | |
| 	.bss_info_changed	= rt2x00mac_bss_info_changed,
 | |
| 	.conf_tx		= rt2800_conf_tx,
 | |
| 	.get_tsf		= rt2800_get_tsf,
 | |
| 	.rfkill_poll		= rt2x00mac_rfkill_poll,
 | |
| 	.ampdu_action		= rt2800_ampdu_action,
 | |
| };
 | |
| 
 | |
| static const struct rt2800_ops rt2800pci_rt2800_ops = {
 | |
| 	.register_read		= rt2x00pci_register_read,
 | |
| 	.register_read_lock	= rt2x00pci_register_read, /* same for PCI */
 | |
| 	.register_write		= rt2x00pci_register_write,
 | |
| 	.register_write_lock	= rt2x00pci_register_write, /* same for PCI */
 | |
| 	.register_multiread	= rt2x00pci_register_multiread,
 | |
| 	.register_multiwrite	= rt2x00pci_register_multiwrite,
 | |
| 	.regbusy_read		= rt2x00pci_regbusy_read,
 | |
| 	.drv_write_firmware	= rt2800pci_write_firmware,
 | |
| 	.drv_init_registers	= rt2800pci_init_registers,
 | |
| };
 | |
| 
 | |
| static const struct rt2x00lib_ops rt2800pci_rt2x00_ops = {
 | |
| 	.irq_handler		= rt2800pci_interrupt,
 | |
| 	.irq_handler_thread	= rt2800pci_interrupt_thread,
 | |
| 	.probe_hw		= rt2800pci_probe_hw,
 | |
| 	.get_firmware_name	= rt2800pci_get_firmware_name,
 | |
| 	.check_firmware		= rt2800_check_firmware,
 | |
| 	.load_firmware		= rt2800_load_firmware,
 | |
| 	.initialize		= rt2x00pci_initialize,
 | |
| 	.uninitialize		= rt2x00pci_uninitialize,
 | |
| 	.get_entry_state	= rt2800pci_get_entry_state,
 | |
| 	.clear_entry		= rt2800pci_clear_entry,
 | |
| 	.set_device_state	= rt2800pci_set_device_state,
 | |
| 	.rfkill_poll		= rt2800_rfkill_poll,
 | |
| 	.link_stats		= rt2800_link_stats,
 | |
| 	.reset_tuner		= rt2800_reset_tuner,
 | |
| 	.link_tuner		= rt2800_link_tuner,
 | |
| 	.write_tx_desc		= rt2800pci_write_tx_desc,
 | |
| 	.write_tx_data		= rt2800pci_write_tx_data,
 | |
| 	.write_beacon		= rt2800_write_beacon,
 | |
| 	.kick_tx_queue		= rt2800pci_kick_tx_queue,
 | |
| 	.kill_tx_queue		= rt2800pci_kill_tx_queue,
 | |
| 	.fill_rxdone		= rt2800pci_fill_rxdone,
 | |
| 	.config_shared_key	= rt2800_config_shared_key,
 | |
| 	.config_pairwise_key	= rt2800_config_pairwise_key,
 | |
| 	.config_filter		= rt2800_config_filter,
 | |
| 	.config_intf		= rt2800_config_intf,
 | |
| 	.config_erp		= rt2800_config_erp,
 | |
| 	.config_ant		= rt2800_config_ant,
 | |
| 	.config			= rt2800_config,
 | |
| };
 | |
| 
 | |
| static const struct data_queue_desc rt2800pci_queue_rx = {
 | |
| 	.entry_num		= RX_ENTRIES,
 | |
| 	.data_size		= AGGREGATION_SIZE,
 | |
| 	.desc_size		= RXD_DESC_SIZE,
 | |
| 	.priv_size		= sizeof(struct queue_entry_priv_pci),
 | |
| };
 | |
| 
 | |
| static const struct data_queue_desc rt2800pci_queue_tx = {
 | |
| 	.entry_num		= TX_ENTRIES,
 | |
| 	.data_size		= AGGREGATION_SIZE,
 | |
| 	.desc_size		= TXD_DESC_SIZE,
 | |
| 	.priv_size		= sizeof(struct queue_entry_priv_pci),
 | |
| };
 | |
| 
 | |
| static const struct data_queue_desc rt2800pci_queue_bcn = {
 | |
| 	.entry_num		= 8 * BEACON_ENTRIES,
 | |
| 	.data_size		= 0, /* No DMA required for beacons */
 | |
| 	.desc_size		= TXWI_DESC_SIZE,
 | |
| 	.priv_size		= sizeof(struct queue_entry_priv_pci),
 | |
| };
 | |
| 
 | |
| static const struct rt2x00_ops rt2800pci_ops = {
 | |
| 	.name			= KBUILD_MODNAME,
 | |
| 	.max_sta_intf		= 1,
 | |
| 	.max_ap_intf		= 8,
 | |
| 	.eeprom_size		= EEPROM_SIZE,
 | |
| 	.rf_size		= RF_SIZE,
 | |
| 	.tx_queues		= NUM_TX_QUEUES,
 | |
| 	.extra_tx_headroom	= TXWI_DESC_SIZE,
 | |
| 	.rx			= &rt2800pci_queue_rx,
 | |
| 	.tx			= &rt2800pci_queue_tx,
 | |
| 	.bcn			= &rt2800pci_queue_bcn,
 | |
| 	.lib			= &rt2800pci_rt2x00_ops,
 | |
| 	.drv			= &rt2800pci_rt2800_ops,
 | |
| 	.hw			= &rt2800pci_mac80211_ops,
 | |
| #ifdef CONFIG_RT2X00_LIB_DEBUGFS
 | |
| 	.debugfs		= &rt2800_rt2x00debug,
 | |
| #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * RT2800pci module information.
 | |
|  */
 | |
| #ifdef CONFIG_RT2800PCI_PCI
 | |
| static DEFINE_PCI_DEVICE_TABLE(rt2800pci_device_table) = {
 | |
| 	{ PCI_DEVICE(0x1814, 0x0601), PCI_DEVICE_DATA(&rt2800pci_ops) },
 | |
| 	{ PCI_DEVICE(0x1814, 0x0681), PCI_DEVICE_DATA(&rt2800pci_ops) },
 | |
| 	{ PCI_DEVICE(0x1814, 0x0701), PCI_DEVICE_DATA(&rt2800pci_ops) },
 | |
| 	{ PCI_DEVICE(0x1814, 0x0781), PCI_DEVICE_DATA(&rt2800pci_ops) },
 | |
| 	{ PCI_DEVICE(0x1432, 0x7708), PCI_DEVICE_DATA(&rt2800pci_ops) },
 | |
| 	{ PCI_DEVICE(0x1432, 0x7727), PCI_DEVICE_DATA(&rt2800pci_ops) },
 | |
| 	{ PCI_DEVICE(0x1432, 0x7728), PCI_DEVICE_DATA(&rt2800pci_ops) },
 | |
| 	{ PCI_DEVICE(0x1432, 0x7738), PCI_DEVICE_DATA(&rt2800pci_ops) },
 | |
| 	{ PCI_DEVICE(0x1432, 0x7748), PCI_DEVICE_DATA(&rt2800pci_ops) },
 | |
| 	{ PCI_DEVICE(0x1432, 0x7758), PCI_DEVICE_DATA(&rt2800pci_ops) },
 | |
| 	{ PCI_DEVICE(0x1432, 0x7768), PCI_DEVICE_DATA(&rt2800pci_ops) },
 | |
| 	{ PCI_DEVICE(0x1a3b, 0x1059), PCI_DEVICE_DATA(&rt2800pci_ops) },
 | |
| #ifdef CONFIG_RT2800PCI_RT30XX
 | |
| 	{ PCI_DEVICE(0x1814, 0x3090), PCI_DEVICE_DATA(&rt2800pci_ops) },
 | |
| 	{ PCI_DEVICE(0x1814, 0x3091), PCI_DEVICE_DATA(&rt2800pci_ops) },
 | |
| 	{ PCI_DEVICE(0x1814, 0x3092), PCI_DEVICE_DATA(&rt2800pci_ops) },
 | |
| 	{ PCI_DEVICE(0x1462, 0x891a), PCI_DEVICE_DATA(&rt2800pci_ops) },
 | |
| #endif
 | |
| #ifdef CONFIG_RT2800PCI_RT35XX
 | |
| 	{ PCI_DEVICE(0x1814, 0x3060), PCI_DEVICE_DATA(&rt2800pci_ops) },
 | |
| 	{ PCI_DEVICE(0x1814, 0x3062), PCI_DEVICE_DATA(&rt2800pci_ops) },
 | |
| 	{ PCI_DEVICE(0x1814, 0x3562), PCI_DEVICE_DATA(&rt2800pci_ops) },
 | |
| 	{ PCI_DEVICE(0x1814, 0x3592), PCI_DEVICE_DATA(&rt2800pci_ops) },
 | |
| 	{ PCI_DEVICE(0x1814, 0x3593), PCI_DEVICE_DATA(&rt2800pci_ops) },
 | |
| #endif
 | |
| 	{ 0, }
 | |
| };
 | |
| #endif /* CONFIG_RT2800PCI_PCI */
 | |
| 
 | |
| MODULE_AUTHOR(DRV_PROJECT);
 | |
| MODULE_VERSION(DRV_VERSION);
 | |
| MODULE_DESCRIPTION("Ralink RT2800 PCI & PCMCIA Wireless LAN driver.");
 | |
| MODULE_SUPPORTED_DEVICE("Ralink RT2860 PCI & PCMCIA chipset based cards");
 | |
| #ifdef CONFIG_RT2800PCI_PCI
 | |
| MODULE_FIRMWARE(FIRMWARE_RT2860);
 | |
| MODULE_DEVICE_TABLE(pci, rt2800pci_device_table);
 | |
| #endif /* CONFIG_RT2800PCI_PCI */
 | |
| MODULE_LICENSE("GPL");
 | |
| 
 | |
| #ifdef CONFIG_RT2800PCI_SOC
 | |
| static int rt2800soc_probe(struct platform_device *pdev)
 | |
| {
 | |
| 	return rt2x00soc_probe(pdev, &rt2800pci_ops);
 | |
| }
 | |
| 
 | |
| static struct platform_driver rt2800soc_driver = {
 | |
| 	.driver		= {
 | |
| 		.name		= "rt2800_wmac",
 | |
| 		.owner		= THIS_MODULE,
 | |
| 		.mod_name	= KBUILD_MODNAME,
 | |
| 	},
 | |
| 	.probe		= rt2800soc_probe,
 | |
| 	.remove		= __devexit_p(rt2x00soc_remove),
 | |
| 	.suspend	= rt2x00soc_suspend,
 | |
| 	.resume		= rt2x00soc_resume,
 | |
| };
 | |
| #endif /* CONFIG_RT2800PCI_SOC */
 | |
| 
 | |
| #ifdef CONFIG_RT2800PCI_PCI
 | |
| static struct pci_driver rt2800pci_driver = {
 | |
| 	.name		= KBUILD_MODNAME,
 | |
| 	.id_table	= rt2800pci_device_table,
 | |
| 	.probe		= rt2x00pci_probe,
 | |
| 	.remove		= __devexit_p(rt2x00pci_remove),
 | |
| 	.suspend	= rt2x00pci_suspend,
 | |
| 	.resume		= rt2x00pci_resume,
 | |
| };
 | |
| #endif /* CONFIG_RT2800PCI_PCI */
 | |
| 
 | |
| static int __init rt2800pci_init(void)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 
 | |
| #ifdef CONFIG_RT2800PCI_SOC
 | |
| 	ret = platform_driver_register(&rt2800soc_driver);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| #endif
 | |
| #ifdef CONFIG_RT2800PCI_PCI
 | |
| 	ret = pci_register_driver(&rt2800pci_driver);
 | |
| 	if (ret) {
 | |
| #ifdef CONFIG_RT2800PCI_SOC
 | |
| 		platform_driver_unregister(&rt2800soc_driver);
 | |
| #endif
 | |
| 		return ret;
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void __exit rt2800pci_exit(void)
 | |
| {
 | |
| #ifdef CONFIG_RT2800PCI_PCI
 | |
| 	pci_unregister_driver(&rt2800pci_driver);
 | |
| #endif
 | |
| #ifdef CONFIG_RT2800PCI_SOC
 | |
| 	platform_driver_unregister(&rt2800soc_driver);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| module_init(rt2800pci_init);
 | |
| module_exit(rt2800pci_exit);
 |