 f31c9a8c13
			
		
	
	
	f31c9a8c13
	
	
	
		
			
			Large parts of the firmware initialization are shared between rt2800pci and rt2800usb. Move this code into rt2800lib. Signed-off-by: Ivo van Doorn <IvDoorn@gmail.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
		
			
				
	
	
		
			3067 lines
		
	
	
	
		
			98 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			3067 lines
		
	
	
	
		
			98 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
| 	Copyright (C) 2010 Ivo van Doorn <IvDoorn@gmail.com>
 | |
| 	Copyright (C) 2009 Bartlomiej Zolnierkiewicz <bzolnier@gmail.com>
 | |
| 	Copyright (C) 2009 Gertjan van Wingerde <gwingerde@gmail.com>
 | |
| 
 | |
| 	Based on the original rt2800pci.c and rt2800usb.c.
 | |
| 	  Copyright (C) 2009 Alban Browaeys <prahal@yahoo.com>
 | |
| 	  Copyright (C) 2009 Felix Fietkau <nbd@openwrt.org>
 | |
| 	  Copyright (C) 2009 Luis Correia <luis.f.correia@gmail.com>
 | |
| 	  Copyright (C) 2009 Mattias Nissler <mattias.nissler@gmx.de>
 | |
| 	  Copyright (C) 2009 Mark Asselstine <asselsm@gmail.com>
 | |
| 	  Copyright (C) 2009 Xose Vazquez Perez <xose.vazquez@gmail.com>
 | |
| 	  <http://rt2x00.serialmonkey.com>
 | |
| 
 | |
| 	This program is free software; you can redistribute it and/or modify
 | |
| 	it under the terms of the GNU General Public License as published by
 | |
| 	the Free Software Foundation; either version 2 of the License, or
 | |
| 	(at your option) any later version.
 | |
| 
 | |
| 	This program is distributed in the hope that it will be useful,
 | |
| 	but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
| 	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 | |
| 	GNU General Public License for more details.
 | |
| 
 | |
| 	You should have received a copy of the GNU General Public License
 | |
| 	along with this program; if not, write to the
 | |
| 	Free Software Foundation, Inc.,
 | |
| 	59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 | |
|  */
 | |
| 
 | |
| /*
 | |
| 	Module: rt2800lib
 | |
| 	Abstract: rt2800 generic device routines.
 | |
|  */
 | |
| 
 | |
| #include <linux/crc-ccitt.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/slab.h>
 | |
| 
 | |
| #include "rt2x00.h"
 | |
| #include "rt2800lib.h"
 | |
| #include "rt2800.h"
 | |
| 
 | |
| /*
 | |
|  * Register access.
 | |
|  * All access to the CSR registers will go through the methods
 | |
|  * rt2800_register_read and rt2800_register_write.
 | |
|  * BBP and RF register require indirect register access,
 | |
|  * and use the CSR registers BBPCSR and RFCSR to achieve this.
 | |
|  * These indirect registers work with busy bits,
 | |
|  * and we will try maximal REGISTER_BUSY_COUNT times to access
 | |
|  * the register while taking a REGISTER_BUSY_DELAY us delay
 | |
|  * between each attampt. When the busy bit is still set at that time,
 | |
|  * the access attempt is considered to have failed,
 | |
|  * and we will print an error.
 | |
|  * The _lock versions must be used if you already hold the csr_mutex
 | |
|  */
 | |
| #define WAIT_FOR_BBP(__dev, __reg) \
 | |
| 	rt2800_regbusy_read((__dev), BBP_CSR_CFG, BBP_CSR_CFG_BUSY, (__reg))
 | |
| #define WAIT_FOR_RFCSR(__dev, __reg) \
 | |
| 	rt2800_regbusy_read((__dev), RF_CSR_CFG, RF_CSR_CFG_BUSY, (__reg))
 | |
| #define WAIT_FOR_RF(__dev, __reg) \
 | |
| 	rt2800_regbusy_read((__dev), RF_CSR_CFG0, RF_CSR_CFG0_BUSY, (__reg))
 | |
| #define WAIT_FOR_MCU(__dev, __reg) \
 | |
| 	rt2800_regbusy_read((__dev), H2M_MAILBOX_CSR, \
 | |
| 			    H2M_MAILBOX_CSR_OWNER, (__reg))
 | |
| 
 | |
| static inline bool rt2800_is_305x_soc(struct rt2x00_dev *rt2x00dev)
 | |
| {
 | |
| 	/* check for rt2872 on SoC */
 | |
| 	if (!rt2x00_is_soc(rt2x00dev) ||
 | |
| 	    !rt2x00_rt(rt2x00dev, RT2872))
 | |
| 		return false;
 | |
| 
 | |
| 	/* we know for sure that these rf chipsets are used on rt305x boards */
 | |
| 	if (rt2x00_rf(rt2x00dev, RF3020) ||
 | |
| 	    rt2x00_rf(rt2x00dev, RF3021) ||
 | |
| 	    rt2x00_rf(rt2x00dev, RF3022))
 | |
| 		return true;
 | |
| 
 | |
| 	NOTICE(rt2x00dev, "Unknown RF chipset on rt305x\n");
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static void rt2800_bbp_write(struct rt2x00_dev *rt2x00dev,
 | |
| 			     const unsigned int word, const u8 value)
 | |
| {
 | |
| 	u32 reg;
 | |
| 
 | |
| 	mutex_lock(&rt2x00dev->csr_mutex);
 | |
| 
 | |
| 	/*
 | |
| 	 * Wait until the BBP becomes available, afterwards we
 | |
| 	 * can safely write the new data into the register.
 | |
| 	 */
 | |
| 	if (WAIT_FOR_BBP(rt2x00dev, ®)) {
 | |
| 		reg = 0;
 | |
| 		rt2x00_set_field32(®, BBP_CSR_CFG_VALUE, value);
 | |
| 		rt2x00_set_field32(®, BBP_CSR_CFG_REGNUM, word);
 | |
| 		rt2x00_set_field32(®, BBP_CSR_CFG_BUSY, 1);
 | |
| 		rt2x00_set_field32(®, BBP_CSR_CFG_READ_CONTROL, 0);
 | |
| 		rt2x00_set_field32(®, BBP_CSR_CFG_BBP_RW_MODE, 1);
 | |
| 
 | |
| 		rt2800_register_write_lock(rt2x00dev, BBP_CSR_CFG, reg);
 | |
| 	}
 | |
| 
 | |
| 	mutex_unlock(&rt2x00dev->csr_mutex);
 | |
| }
 | |
| 
 | |
| static void rt2800_bbp_read(struct rt2x00_dev *rt2x00dev,
 | |
| 			    const unsigned int word, u8 *value)
 | |
| {
 | |
| 	u32 reg;
 | |
| 
 | |
| 	mutex_lock(&rt2x00dev->csr_mutex);
 | |
| 
 | |
| 	/*
 | |
| 	 * Wait until the BBP becomes available, afterwards we
 | |
| 	 * can safely write the read request into the register.
 | |
| 	 * After the data has been written, we wait until hardware
 | |
| 	 * returns the correct value, if at any time the register
 | |
| 	 * doesn't become available in time, reg will be 0xffffffff
 | |
| 	 * which means we return 0xff to the caller.
 | |
| 	 */
 | |
| 	if (WAIT_FOR_BBP(rt2x00dev, ®)) {
 | |
| 		reg = 0;
 | |
| 		rt2x00_set_field32(®, BBP_CSR_CFG_REGNUM, word);
 | |
| 		rt2x00_set_field32(®, BBP_CSR_CFG_BUSY, 1);
 | |
| 		rt2x00_set_field32(®, BBP_CSR_CFG_READ_CONTROL, 1);
 | |
| 		rt2x00_set_field32(®, BBP_CSR_CFG_BBP_RW_MODE, 1);
 | |
| 
 | |
| 		rt2800_register_write_lock(rt2x00dev, BBP_CSR_CFG, reg);
 | |
| 
 | |
| 		WAIT_FOR_BBP(rt2x00dev, ®);
 | |
| 	}
 | |
| 
 | |
| 	*value = rt2x00_get_field32(reg, BBP_CSR_CFG_VALUE);
 | |
| 
 | |
| 	mutex_unlock(&rt2x00dev->csr_mutex);
 | |
| }
 | |
| 
 | |
| static void rt2800_rfcsr_write(struct rt2x00_dev *rt2x00dev,
 | |
| 			       const unsigned int word, const u8 value)
 | |
| {
 | |
| 	u32 reg;
 | |
| 
 | |
| 	mutex_lock(&rt2x00dev->csr_mutex);
 | |
| 
 | |
| 	/*
 | |
| 	 * Wait until the RFCSR becomes available, afterwards we
 | |
| 	 * can safely write the new data into the register.
 | |
| 	 */
 | |
| 	if (WAIT_FOR_RFCSR(rt2x00dev, ®)) {
 | |
| 		reg = 0;
 | |
| 		rt2x00_set_field32(®, RF_CSR_CFG_DATA, value);
 | |
| 		rt2x00_set_field32(®, RF_CSR_CFG_REGNUM, word);
 | |
| 		rt2x00_set_field32(®, RF_CSR_CFG_WRITE, 1);
 | |
| 		rt2x00_set_field32(®, RF_CSR_CFG_BUSY, 1);
 | |
| 
 | |
| 		rt2800_register_write_lock(rt2x00dev, RF_CSR_CFG, reg);
 | |
| 	}
 | |
| 
 | |
| 	mutex_unlock(&rt2x00dev->csr_mutex);
 | |
| }
 | |
| 
 | |
| static void rt2800_rfcsr_read(struct rt2x00_dev *rt2x00dev,
 | |
| 			      const unsigned int word, u8 *value)
 | |
| {
 | |
| 	u32 reg;
 | |
| 
 | |
| 	mutex_lock(&rt2x00dev->csr_mutex);
 | |
| 
 | |
| 	/*
 | |
| 	 * Wait until the RFCSR becomes available, afterwards we
 | |
| 	 * can safely write the read request into the register.
 | |
| 	 * After the data has been written, we wait until hardware
 | |
| 	 * returns the correct value, if at any time the register
 | |
| 	 * doesn't become available in time, reg will be 0xffffffff
 | |
| 	 * which means we return 0xff to the caller.
 | |
| 	 */
 | |
| 	if (WAIT_FOR_RFCSR(rt2x00dev, ®)) {
 | |
| 		reg = 0;
 | |
| 		rt2x00_set_field32(®, RF_CSR_CFG_REGNUM, word);
 | |
| 		rt2x00_set_field32(®, RF_CSR_CFG_WRITE, 0);
 | |
| 		rt2x00_set_field32(®, RF_CSR_CFG_BUSY, 1);
 | |
| 
 | |
| 		rt2800_register_write_lock(rt2x00dev, RF_CSR_CFG, reg);
 | |
| 
 | |
| 		WAIT_FOR_RFCSR(rt2x00dev, ®);
 | |
| 	}
 | |
| 
 | |
| 	*value = rt2x00_get_field32(reg, RF_CSR_CFG_DATA);
 | |
| 
 | |
| 	mutex_unlock(&rt2x00dev->csr_mutex);
 | |
| }
 | |
| 
 | |
| static void rt2800_rf_write(struct rt2x00_dev *rt2x00dev,
 | |
| 			    const unsigned int word, const u32 value)
 | |
| {
 | |
| 	u32 reg;
 | |
| 
 | |
| 	mutex_lock(&rt2x00dev->csr_mutex);
 | |
| 
 | |
| 	/*
 | |
| 	 * Wait until the RF becomes available, afterwards we
 | |
| 	 * can safely write the new data into the register.
 | |
| 	 */
 | |
| 	if (WAIT_FOR_RF(rt2x00dev, ®)) {
 | |
| 		reg = 0;
 | |
| 		rt2x00_set_field32(®, RF_CSR_CFG0_REG_VALUE_BW, value);
 | |
| 		rt2x00_set_field32(®, RF_CSR_CFG0_STANDBYMODE, 0);
 | |
| 		rt2x00_set_field32(®, RF_CSR_CFG0_SEL, 0);
 | |
| 		rt2x00_set_field32(®, RF_CSR_CFG0_BUSY, 1);
 | |
| 
 | |
| 		rt2800_register_write_lock(rt2x00dev, RF_CSR_CFG0, reg);
 | |
| 		rt2x00_rf_write(rt2x00dev, word, value);
 | |
| 	}
 | |
| 
 | |
| 	mutex_unlock(&rt2x00dev->csr_mutex);
 | |
| }
 | |
| 
 | |
| void rt2800_mcu_request(struct rt2x00_dev *rt2x00dev,
 | |
| 			const u8 command, const u8 token,
 | |
| 			const u8 arg0, const u8 arg1)
 | |
| {
 | |
| 	u32 reg;
 | |
| 
 | |
| 	/*
 | |
| 	 * SOC devices don't support MCU requests.
 | |
| 	 */
 | |
| 	if (rt2x00_is_soc(rt2x00dev))
 | |
| 		return;
 | |
| 
 | |
| 	mutex_lock(&rt2x00dev->csr_mutex);
 | |
| 
 | |
| 	/*
 | |
| 	 * Wait until the MCU becomes available, afterwards we
 | |
| 	 * can safely write the new data into the register.
 | |
| 	 */
 | |
| 	if (WAIT_FOR_MCU(rt2x00dev, ®)) {
 | |
| 		rt2x00_set_field32(®, H2M_MAILBOX_CSR_OWNER, 1);
 | |
| 		rt2x00_set_field32(®, H2M_MAILBOX_CSR_CMD_TOKEN, token);
 | |
| 		rt2x00_set_field32(®, H2M_MAILBOX_CSR_ARG0, arg0);
 | |
| 		rt2x00_set_field32(®, H2M_MAILBOX_CSR_ARG1, arg1);
 | |
| 		rt2800_register_write_lock(rt2x00dev, H2M_MAILBOX_CSR, reg);
 | |
| 
 | |
| 		reg = 0;
 | |
| 		rt2x00_set_field32(®, HOST_CMD_CSR_HOST_COMMAND, command);
 | |
| 		rt2800_register_write_lock(rt2x00dev, HOST_CMD_CSR, reg);
 | |
| 	}
 | |
| 
 | |
| 	mutex_unlock(&rt2x00dev->csr_mutex);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rt2800_mcu_request);
 | |
| 
 | |
| int rt2800_wait_wpdma_ready(struct rt2x00_dev *rt2x00dev)
 | |
| {
 | |
| 	unsigned int i;
 | |
| 	u32 reg;
 | |
| 
 | |
| 	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
 | |
| 		rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, ®);
 | |
| 		if (!rt2x00_get_field32(reg, WPDMA_GLO_CFG_TX_DMA_BUSY) &&
 | |
| 		    !rt2x00_get_field32(reg, WPDMA_GLO_CFG_RX_DMA_BUSY))
 | |
| 			return 0;
 | |
| 
 | |
| 		msleep(1);
 | |
| 	}
 | |
| 
 | |
| 	ERROR(rt2x00dev, "WPDMA TX/RX busy, aborting.\n");
 | |
| 	return -EACCES;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rt2800_wait_wpdma_ready);
 | |
| 
 | |
| static bool rt2800_check_firmware_crc(const u8 *data, const size_t len)
 | |
| {
 | |
| 	u16 fw_crc;
 | |
| 	u16 crc;
 | |
| 
 | |
| 	/*
 | |
| 	 * The last 2 bytes in the firmware array are the crc checksum itself,
 | |
| 	 * this means that we should never pass those 2 bytes to the crc
 | |
| 	 * algorithm.
 | |
| 	 */
 | |
| 	fw_crc = (data[len - 2] << 8 | data[len - 1]);
 | |
| 
 | |
| 	/*
 | |
| 	 * Use the crc ccitt algorithm.
 | |
| 	 * This will return the same value as the legacy driver which
 | |
| 	 * used bit ordering reversion on the both the firmware bytes
 | |
| 	 * before input input as well as on the final output.
 | |
| 	 * Obviously using crc ccitt directly is much more efficient.
 | |
| 	 */
 | |
| 	crc = crc_ccitt(~0, data, len - 2);
 | |
| 
 | |
| 	/*
 | |
| 	 * There is a small difference between the crc-itu-t + bitrev and
 | |
| 	 * the crc-ccitt crc calculation. In the latter method the 2 bytes
 | |
| 	 * will be swapped, use swab16 to convert the crc to the correct
 | |
| 	 * value.
 | |
| 	 */
 | |
| 	crc = swab16(crc);
 | |
| 
 | |
| 	return fw_crc == crc;
 | |
| }
 | |
| 
 | |
| int rt2800_check_firmware(struct rt2x00_dev *rt2x00dev,
 | |
| 			  const u8 *data, const size_t len)
 | |
| {
 | |
| 	size_t offset = 0;
 | |
| 	size_t fw_len;
 | |
| 	bool multiple;
 | |
| 
 | |
| 	/*
 | |
| 	 * PCI(e) & SOC devices require firmware with a length
 | |
| 	 * of 8kb. USB devices require firmware files with a length
 | |
| 	 * of 4kb. Certain USB chipsets however require different firmware,
 | |
| 	 * which Ralink only provides attached to the original firmware
 | |
| 	 * file. Thus for USB devices, firmware files have a length
 | |
| 	 * which is a multiple of 4kb.
 | |
| 	 */
 | |
| 	if (rt2x00_is_usb(rt2x00dev)) {
 | |
| 		fw_len = 4096;
 | |
| 		multiple = true;
 | |
| 	} else {
 | |
| 		fw_len = 8192;
 | |
| 		multiple = true;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Validate the firmware length
 | |
| 	 */
 | |
| 	if (len != fw_len && (!multiple || (len % fw_len) != 0))
 | |
| 		return FW_BAD_LENGTH;
 | |
| 
 | |
| 	/*
 | |
| 	 * Check if the chipset requires one of the upper parts
 | |
| 	 * of the firmware.
 | |
| 	 */
 | |
| 	if (rt2x00_is_usb(rt2x00dev) &&
 | |
| 	    !rt2x00_rt(rt2x00dev, RT2860) &&
 | |
| 	    !rt2x00_rt(rt2x00dev, RT2872) &&
 | |
| 	    !rt2x00_rt(rt2x00dev, RT3070) &&
 | |
| 	    ((len / fw_len) == 1))
 | |
| 		return FW_BAD_VERSION;
 | |
| 
 | |
| 	/*
 | |
| 	 * 8kb firmware files must be checked as if it were
 | |
| 	 * 2 separate firmware files.
 | |
| 	 */
 | |
| 	while (offset < len) {
 | |
| 		if (!rt2800_check_firmware_crc(data + offset, fw_len))
 | |
| 			return FW_BAD_CRC;
 | |
| 
 | |
| 		offset += fw_len;
 | |
| 	}
 | |
| 
 | |
| 	return FW_OK;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rt2800_check_firmware);
 | |
| 
 | |
| int rt2800_load_firmware(struct rt2x00_dev *rt2x00dev,
 | |
| 			 const u8 *data, const size_t len)
 | |
| {
 | |
| 	unsigned int i;
 | |
| 	u32 reg;
 | |
| 
 | |
| 	/*
 | |
| 	 * Wait for stable hardware.
 | |
| 	 */
 | |
| 	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
 | |
| 		rt2800_register_read(rt2x00dev, MAC_CSR0, ®);
 | |
| 		if (reg && reg != ~0)
 | |
| 			break;
 | |
| 		msleep(1);
 | |
| 	}
 | |
| 
 | |
| 	if (i == REGISTER_BUSY_COUNT) {
 | |
| 		ERROR(rt2x00dev, "Unstable hardware.\n");
 | |
| 		return -EBUSY;
 | |
| 	}
 | |
| 
 | |
| 	if (rt2x00_is_pci(rt2x00dev))
 | |
| 		rt2800_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000002);
 | |
| 
 | |
| 	/*
 | |
| 	 * Disable DMA, will be reenabled later when enabling
 | |
| 	 * the radio.
 | |
| 	 */
 | |
| 	rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, ®);
 | |
| 	rt2x00_set_field32(®, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
 | |
| 	rt2x00_set_field32(®, WPDMA_GLO_CFG_TX_DMA_BUSY, 0);
 | |
| 	rt2x00_set_field32(®, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
 | |
| 	rt2x00_set_field32(®, WPDMA_GLO_CFG_RX_DMA_BUSY, 0);
 | |
| 	rt2x00_set_field32(®, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
 | |
| 	rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
 | |
| 
 | |
| 	/*
 | |
| 	 * Write firmware to the device.
 | |
| 	 */
 | |
| 	rt2800_drv_write_firmware(rt2x00dev, data, len);
 | |
| 
 | |
| 	/*
 | |
| 	 * Wait for device to stabilize.
 | |
| 	 */
 | |
| 	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
 | |
| 		rt2800_register_read(rt2x00dev, PBF_SYS_CTRL, ®);
 | |
| 		if (rt2x00_get_field32(reg, PBF_SYS_CTRL_READY))
 | |
| 			break;
 | |
| 		msleep(1);
 | |
| 	}
 | |
| 
 | |
| 	if (i == REGISTER_BUSY_COUNT) {
 | |
| 		ERROR(rt2x00dev, "PBF system register not ready.\n");
 | |
| 		return -EBUSY;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Initialize firmware.
 | |
| 	 */
 | |
| 	rt2800_register_write(rt2x00dev, H2M_BBP_AGENT, 0);
 | |
| 	rt2800_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
 | |
| 	msleep(1);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rt2800_load_firmware);
 | |
| 
 | |
| void rt2800_write_txwi(__le32 *txwi, struct txentry_desc *txdesc)
 | |
| {
 | |
| 	u32 word;
 | |
| 
 | |
| 	/*
 | |
| 	 * Initialize TX Info descriptor
 | |
| 	 */
 | |
| 	rt2x00_desc_read(txwi, 0, &word);
 | |
| 	rt2x00_set_field32(&word, TXWI_W0_FRAG,
 | |
| 			   test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
 | |
| 	rt2x00_set_field32(&word, TXWI_W0_MIMO_PS, 0);
 | |
| 	rt2x00_set_field32(&word, TXWI_W0_CF_ACK, 0);
 | |
| 	rt2x00_set_field32(&word, TXWI_W0_TS,
 | |
| 			   test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
 | |
| 	rt2x00_set_field32(&word, TXWI_W0_AMPDU,
 | |
| 			   test_bit(ENTRY_TXD_HT_AMPDU, &txdesc->flags));
 | |
| 	rt2x00_set_field32(&word, TXWI_W0_MPDU_DENSITY, txdesc->mpdu_density);
 | |
| 	rt2x00_set_field32(&word, TXWI_W0_TX_OP, txdesc->txop);
 | |
| 	rt2x00_set_field32(&word, TXWI_W0_MCS, txdesc->mcs);
 | |
| 	rt2x00_set_field32(&word, TXWI_W0_BW,
 | |
| 			   test_bit(ENTRY_TXD_HT_BW_40, &txdesc->flags));
 | |
| 	rt2x00_set_field32(&word, TXWI_W0_SHORT_GI,
 | |
| 			   test_bit(ENTRY_TXD_HT_SHORT_GI, &txdesc->flags));
 | |
| 	rt2x00_set_field32(&word, TXWI_W0_STBC, txdesc->stbc);
 | |
| 	rt2x00_set_field32(&word, TXWI_W0_PHYMODE, txdesc->rate_mode);
 | |
| 	rt2x00_desc_write(txwi, 0, word);
 | |
| 
 | |
| 	rt2x00_desc_read(txwi, 1, &word);
 | |
| 	rt2x00_set_field32(&word, TXWI_W1_ACK,
 | |
| 			   test_bit(ENTRY_TXD_ACK, &txdesc->flags));
 | |
| 	rt2x00_set_field32(&word, TXWI_W1_NSEQ,
 | |
| 			   test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags));
 | |
| 	rt2x00_set_field32(&word, TXWI_W1_BW_WIN_SIZE, txdesc->ba_size);
 | |
| 	rt2x00_set_field32(&word, TXWI_W1_WIRELESS_CLI_ID,
 | |
| 			   test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags) ?
 | |
| 			   txdesc->key_idx : 0xff);
 | |
| 	rt2x00_set_field32(&word, TXWI_W1_MPDU_TOTAL_BYTE_COUNT,
 | |
| 			   txdesc->length);
 | |
| 	rt2x00_set_field32(&word, TXWI_W1_PACKETID, txdesc->queue + 1);
 | |
| 	rt2x00_desc_write(txwi, 1, word);
 | |
| 
 | |
| 	/*
 | |
| 	 * Always write 0 to IV/EIV fields, hardware will insert the IV
 | |
| 	 * from the IVEIV register when TXD_W3_WIV is set to 0.
 | |
| 	 * When TXD_W3_WIV is set to 1 it will use the IV data
 | |
| 	 * from the descriptor. The TXWI_W1_WIRELESS_CLI_ID indicates which
 | |
| 	 * crypto entry in the registers should be used to encrypt the frame.
 | |
| 	 */
 | |
| 	_rt2x00_desc_write(txwi, 2, 0 /* skbdesc->iv[0] */);
 | |
| 	_rt2x00_desc_write(txwi, 3, 0 /* skbdesc->iv[1] */);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rt2800_write_txwi);
 | |
| 
 | |
| static int rt2800_agc_to_rssi(struct rt2x00_dev *rt2x00dev, int rxwi_w2)
 | |
| {
 | |
| 	int rssi0 = rt2x00_get_field32(rxwi_w2, RXWI_W2_RSSI0);
 | |
| 	int rssi1 = rt2x00_get_field32(rxwi_w2, RXWI_W2_RSSI1);
 | |
| 	int rssi2 = rt2x00_get_field32(rxwi_w2, RXWI_W2_RSSI2);
 | |
| 	u16 eeprom;
 | |
| 	u8 offset0;
 | |
| 	u8 offset1;
 | |
| 	u8 offset2;
 | |
| 
 | |
| 	if (rt2x00dev->rx_status.band == IEEE80211_BAND_2GHZ) {
 | |
| 		rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_BG, &eeprom);
 | |
| 		offset0 = rt2x00_get_field16(eeprom, EEPROM_RSSI_BG_OFFSET0);
 | |
| 		offset1 = rt2x00_get_field16(eeprom, EEPROM_RSSI_BG_OFFSET1);
 | |
| 		rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_BG2, &eeprom);
 | |
| 		offset2 = rt2x00_get_field16(eeprom, EEPROM_RSSI_BG2_OFFSET2);
 | |
| 	} else {
 | |
| 		rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_A, &eeprom);
 | |
| 		offset0 = rt2x00_get_field16(eeprom, EEPROM_RSSI_A_OFFSET0);
 | |
| 		offset1 = rt2x00_get_field16(eeprom, EEPROM_RSSI_A_OFFSET1);
 | |
| 		rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_A2, &eeprom);
 | |
| 		offset2 = rt2x00_get_field16(eeprom, EEPROM_RSSI_A2_OFFSET2);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Convert the value from the descriptor into the RSSI value
 | |
| 	 * If the value in the descriptor is 0, it is considered invalid
 | |
| 	 * and the default (extremely low) rssi value is assumed
 | |
| 	 */
 | |
| 	rssi0 = (rssi0) ? (-12 - offset0 - rt2x00dev->lna_gain - rssi0) : -128;
 | |
| 	rssi1 = (rssi1) ? (-12 - offset1 - rt2x00dev->lna_gain - rssi1) : -128;
 | |
| 	rssi2 = (rssi2) ? (-12 - offset2 - rt2x00dev->lna_gain - rssi2) : -128;
 | |
| 
 | |
| 	/*
 | |
| 	 * mac80211 only accepts a single RSSI value. Calculating the
 | |
| 	 * average doesn't deliver a fair answer either since -60:-60 would
 | |
| 	 * be considered equally good as -50:-70 while the second is the one
 | |
| 	 * which gives less energy...
 | |
| 	 */
 | |
| 	rssi0 = max(rssi0, rssi1);
 | |
| 	return max(rssi0, rssi2);
 | |
| }
 | |
| 
 | |
| void rt2800_process_rxwi(struct queue_entry *entry,
 | |
| 			 struct rxdone_entry_desc *rxdesc)
 | |
| {
 | |
| 	__le32 *rxwi = (__le32 *) entry->skb->data;
 | |
| 	u32 word;
 | |
| 
 | |
| 	rt2x00_desc_read(rxwi, 0, &word);
 | |
| 
 | |
| 	rxdesc->cipher = rt2x00_get_field32(word, RXWI_W0_UDF);
 | |
| 	rxdesc->size = rt2x00_get_field32(word, RXWI_W0_MPDU_TOTAL_BYTE_COUNT);
 | |
| 
 | |
| 	rt2x00_desc_read(rxwi, 1, &word);
 | |
| 
 | |
| 	if (rt2x00_get_field32(word, RXWI_W1_SHORT_GI))
 | |
| 		rxdesc->flags |= RX_FLAG_SHORT_GI;
 | |
| 
 | |
| 	if (rt2x00_get_field32(word, RXWI_W1_BW))
 | |
| 		rxdesc->flags |= RX_FLAG_40MHZ;
 | |
| 
 | |
| 	/*
 | |
| 	 * Detect RX rate, always use MCS as signal type.
 | |
| 	 */
 | |
| 	rxdesc->dev_flags |= RXDONE_SIGNAL_MCS;
 | |
| 	rxdesc->signal = rt2x00_get_field32(word, RXWI_W1_MCS);
 | |
| 	rxdesc->rate_mode = rt2x00_get_field32(word, RXWI_W1_PHYMODE);
 | |
| 
 | |
| 	/*
 | |
| 	 * Mask of 0x8 bit to remove the short preamble flag.
 | |
| 	 */
 | |
| 	if (rxdesc->rate_mode == RATE_MODE_CCK)
 | |
| 		rxdesc->signal &= ~0x8;
 | |
| 
 | |
| 	rt2x00_desc_read(rxwi, 2, &word);
 | |
| 
 | |
| 	/*
 | |
| 	 * Convert descriptor AGC value to RSSI value.
 | |
| 	 */
 | |
| 	rxdesc->rssi = rt2800_agc_to_rssi(entry->queue->rt2x00dev, word);
 | |
| 
 | |
| 	/*
 | |
| 	 * Remove RXWI descriptor from start of buffer.
 | |
| 	 */
 | |
| 	skb_pull(entry->skb, RXWI_DESC_SIZE);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rt2800_process_rxwi);
 | |
| 
 | |
| void rt2800_write_beacon(struct queue_entry *entry, struct txentry_desc *txdesc)
 | |
| {
 | |
| 	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
 | |
| 	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
 | |
| 	unsigned int beacon_base;
 | |
| 	u32 reg;
 | |
| 
 | |
| 	/*
 | |
| 	 * Disable beaconing while we are reloading the beacon data,
 | |
| 	 * otherwise we might be sending out invalid data.
 | |
| 	 */
 | |
| 	rt2800_register_read(rt2x00dev, BCN_TIME_CFG, ®);
 | |
| 	rt2x00_set_field32(®, BCN_TIME_CFG_BEACON_GEN, 0);
 | |
| 	rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg);
 | |
| 
 | |
| 	/*
 | |
| 	 * Add space for the TXWI in front of the skb.
 | |
| 	 */
 | |
| 	skb_push(entry->skb, TXWI_DESC_SIZE);
 | |
| 	memset(entry->skb, 0, TXWI_DESC_SIZE);
 | |
| 
 | |
| 	/*
 | |
| 	 * Register descriptor details in skb frame descriptor.
 | |
| 	 */
 | |
| 	skbdesc->flags |= SKBDESC_DESC_IN_SKB;
 | |
| 	skbdesc->desc = entry->skb->data;
 | |
| 	skbdesc->desc_len = TXWI_DESC_SIZE;
 | |
| 
 | |
| 	/*
 | |
| 	 * Add the TXWI for the beacon to the skb.
 | |
| 	 */
 | |
| 	rt2800_write_txwi((__le32 *)entry->skb->data, txdesc);
 | |
| 
 | |
| 	/*
 | |
| 	 * Dump beacon to userspace through debugfs.
 | |
| 	 */
 | |
| 	rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb);
 | |
| 
 | |
| 	/*
 | |
| 	 * Write entire beacon with TXWI to register.
 | |
| 	 */
 | |
| 	beacon_base = HW_BEACON_OFFSET(entry->entry_idx);
 | |
| 	rt2800_register_multiwrite(rt2x00dev, beacon_base,
 | |
| 				   entry->skb->data, entry->skb->len);
 | |
| 
 | |
| 	/*
 | |
| 	 * Enable beaconing again.
 | |
| 	 */
 | |
| 	rt2x00_set_field32(®, BCN_TIME_CFG_TSF_TICKING, 1);
 | |
| 	rt2x00_set_field32(®, BCN_TIME_CFG_TBTT_ENABLE, 1);
 | |
| 	rt2x00_set_field32(®, BCN_TIME_CFG_BEACON_GEN, 1);
 | |
| 	rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg);
 | |
| 
 | |
| 	/*
 | |
| 	 * Clean up beacon skb.
 | |
| 	 */
 | |
| 	dev_kfree_skb_any(entry->skb);
 | |
| 	entry->skb = NULL;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rt2800_write_beacon);
 | |
| 
 | |
| static void inline rt2800_clear_beacon(struct rt2x00_dev *rt2x00dev,
 | |
| 				       unsigned int beacon_base)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	/*
 | |
| 	 * For the Beacon base registers we only need to clear
 | |
| 	 * the whole TXWI which (when set to 0) will invalidate
 | |
| 	 * the entire beacon.
 | |
| 	 */
 | |
| 	for (i = 0; i < TXWI_DESC_SIZE; i += sizeof(__le32))
 | |
| 		rt2800_register_write(rt2x00dev, beacon_base + i, 0);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_RT2X00_LIB_DEBUGFS
 | |
| const struct rt2x00debug rt2800_rt2x00debug = {
 | |
| 	.owner	= THIS_MODULE,
 | |
| 	.csr	= {
 | |
| 		.read		= rt2800_register_read,
 | |
| 		.write		= rt2800_register_write,
 | |
| 		.flags		= RT2X00DEBUGFS_OFFSET,
 | |
| 		.word_base	= CSR_REG_BASE,
 | |
| 		.word_size	= sizeof(u32),
 | |
| 		.word_count	= CSR_REG_SIZE / sizeof(u32),
 | |
| 	},
 | |
| 	.eeprom	= {
 | |
| 		.read		= rt2x00_eeprom_read,
 | |
| 		.write		= rt2x00_eeprom_write,
 | |
| 		.word_base	= EEPROM_BASE,
 | |
| 		.word_size	= sizeof(u16),
 | |
| 		.word_count	= EEPROM_SIZE / sizeof(u16),
 | |
| 	},
 | |
| 	.bbp	= {
 | |
| 		.read		= rt2800_bbp_read,
 | |
| 		.write		= rt2800_bbp_write,
 | |
| 		.word_base	= BBP_BASE,
 | |
| 		.word_size	= sizeof(u8),
 | |
| 		.word_count	= BBP_SIZE / sizeof(u8),
 | |
| 	},
 | |
| 	.rf	= {
 | |
| 		.read		= rt2x00_rf_read,
 | |
| 		.write		= rt2800_rf_write,
 | |
| 		.word_base	= RF_BASE,
 | |
| 		.word_size	= sizeof(u32),
 | |
| 		.word_count	= RF_SIZE / sizeof(u32),
 | |
| 	},
 | |
| };
 | |
| EXPORT_SYMBOL_GPL(rt2800_rt2x00debug);
 | |
| #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
 | |
| 
 | |
| int rt2800_rfkill_poll(struct rt2x00_dev *rt2x00dev)
 | |
| {
 | |
| 	u32 reg;
 | |
| 
 | |
| 	rt2800_register_read(rt2x00dev, GPIO_CTRL_CFG, ®);
 | |
| 	return rt2x00_get_field32(reg, GPIO_CTRL_CFG_BIT2);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rt2800_rfkill_poll);
 | |
| 
 | |
| #ifdef CONFIG_RT2X00_LIB_LEDS
 | |
| static void rt2800_brightness_set(struct led_classdev *led_cdev,
 | |
| 				  enum led_brightness brightness)
 | |
| {
 | |
| 	struct rt2x00_led *led =
 | |
| 	    container_of(led_cdev, struct rt2x00_led, led_dev);
 | |
| 	unsigned int enabled = brightness != LED_OFF;
 | |
| 	unsigned int bg_mode =
 | |
| 	    (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
 | |
| 	unsigned int polarity =
 | |
| 		rt2x00_get_field16(led->rt2x00dev->led_mcu_reg,
 | |
| 				   EEPROM_FREQ_LED_POLARITY);
 | |
| 	unsigned int ledmode =
 | |
| 		rt2x00_get_field16(led->rt2x00dev->led_mcu_reg,
 | |
| 				   EEPROM_FREQ_LED_MODE);
 | |
| 
 | |
| 	if (led->type == LED_TYPE_RADIO) {
 | |
| 		rt2800_mcu_request(led->rt2x00dev, MCU_LED, 0xff, ledmode,
 | |
| 				      enabled ? 0x20 : 0);
 | |
| 	} else if (led->type == LED_TYPE_ASSOC) {
 | |
| 		rt2800_mcu_request(led->rt2x00dev, MCU_LED, 0xff, ledmode,
 | |
| 				      enabled ? (bg_mode ? 0x60 : 0xa0) : 0x20);
 | |
| 	} else if (led->type == LED_TYPE_QUALITY) {
 | |
| 		/*
 | |
| 		 * The brightness is divided into 6 levels (0 - 5),
 | |
| 		 * The specs tell us the following levels:
 | |
| 		 *	0, 1 ,3, 7, 15, 31
 | |
| 		 * to determine the level in a simple way we can simply
 | |
| 		 * work with bitshifting:
 | |
| 		 *	(1 << level) - 1
 | |
| 		 */
 | |
| 		rt2800_mcu_request(led->rt2x00dev, MCU_LED_STRENGTH, 0xff,
 | |
| 				      (1 << brightness / (LED_FULL / 6)) - 1,
 | |
| 				      polarity);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int rt2800_blink_set(struct led_classdev *led_cdev,
 | |
| 			    unsigned long *delay_on, unsigned long *delay_off)
 | |
| {
 | |
| 	struct rt2x00_led *led =
 | |
| 	    container_of(led_cdev, struct rt2x00_led, led_dev);
 | |
| 	u32 reg;
 | |
| 
 | |
| 	rt2800_register_read(led->rt2x00dev, LED_CFG, ®);
 | |
| 	rt2x00_set_field32(®, LED_CFG_ON_PERIOD, *delay_on);
 | |
| 	rt2x00_set_field32(®, LED_CFG_OFF_PERIOD, *delay_off);
 | |
| 	rt2800_register_write(led->rt2x00dev, LED_CFG, reg);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void rt2800_init_led(struct rt2x00_dev *rt2x00dev,
 | |
| 		     struct rt2x00_led *led, enum led_type type)
 | |
| {
 | |
| 	led->rt2x00dev = rt2x00dev;
 | |
| 	led->type = type;
 | |
| 	led->led_dev.brightness_set = rt2800_brightness_set;
 | |
| 	led->led_dev.blink_set = rt2800_blink_set;
 | |
| 	led->flags = LED_INITIALIZED;
 | |
| }
 | |
| #endif /* CONFIG_RT2X00_LIB_LEDS */
 | |
| 
 | |
| /*
 | |
|  * Configuration handlers.
 | |
|  */
 | |
| static void rt2800_config_wcid_attr(struct rt2x00_dev *rt2x00dev,
 | |
| 				    struct rt2x00lib_crypto *crypto,
 | |
| 				    struct ieee80211_key_conf *key)
 | |
| {
 | |
| 	struct mac_wcid_entry wcid_entry;
 | |
| 	struct mac_iveiv_entry iveiv_entry;
 | |
| 	u32 offset;
 | |
| 	u32 reg;
 | |
| 
 | |
| 	offset = MAC_WCID_ATTR_ENTRY(key->hw_key_idx);
 | |
| 
 | |
| 	if (crypto->cmd == SET_KEY) {
 | |
| 		rt2800_register_read(rt2x00dev, offset, ®);
 | |
| 		rt2x00_set_field32(®, MAC_WCID_ATTRIBUTE_KEYTAB,
 | |
| 				   !!(key->flags & IEEE80211_KEY_FLAG_PAIRWISE));
 | |
| 		/*
 | |
| 		 * Both the cipher as the BSS Idx numbers are split in a main
 | |
| 		 * value of 3 bits, and a extended field for adding one additional
 | |
| 		 * bit to the value.
 | |
| 		 */
 | |
| 		rt2x00_set_field32(®, MAC_WCID_ATTRIBUTE_CIPHER,
 | |
| 				   (crypto->cipher & 0x7));
 | |
| 		rt2x00_set_field32(®, MAC_WCID_ATTRIBUTE_CIPHER_EXT,
 | |
| 				   (crypto->cipher & 0x8) >> 3);
 | |
| 		rt2x00_set_field32(®, MAC_WCID_ATTRIBUTE_BSS_IDX,
 | |
| 				   (crypto->bssidx & 0x7));
 | |
| 		rt2x00_set_field32(®, MAC_WCID_ATTRIBUTE_BSS_IDX_EXT,
 | |
| 				   (crypto->bssidx & 0x8) >> 3);
 | |
| 		rt2x00_set_field32(®, MAC_WCID_ATTRIBUTE_RX_WIUDF, crypto->cipher);
 | |
| 		rt2800_register_write(rt2x00dev, offset, reg);
 | |
| 	} else {
 | |
| 		rt2800_register_write(rt2x00dev, offset, 0);
 | |
| 	}
 | |
| 
 | |
| 	offset = MAC_IVEIV_ENTRY(key->hw_key_idx);
 | |
| 
 | |
| 	memset(&iveiv_entry, 0, sizeof(iveiv_entry));
 | |
| 	if ((crypto->cipher == CIPHER_TKIP) ||
 | |
| 	    (crypto->cipher == CIPHER_TKIP_NO_MIC) ||
 | |
| 	    (crypto->cipher == CIPHER_AES))
 | |
| 		iveiv_entry.iv[3] |= 0x20;
 | |
| 	iveiv_entry.iv[3] |= key->keyidx << 6;
 | |
| 	rt2800_register_multiwrite(rt2x00dev, offset,
 | |
| 				      &iveiv_entry, sizeof(iveiv_entry));
 | |
| 
 | |
| 	offset = MAC_WCID_ENTRY(key->hw_key_idx);
 | |
| 
 | |
| 	memset(&wcid_entry, 0, sizeof(wcid_entry));
 | |
| 	if (crypto->cmd == SET_KEY)
 | |
| 		memcpy(&wcid_entry, crypto->address, ETH_ALEN);
 | |
| 	rt2800_register_multiwrite(rt2x00dev, offset,
 | |
| 				      &wcid_entry, sizeof(wcid_entry));
 | |
| }
 | |
| 
 | |
| int rt2800_config_shared_key(struct rt2x00_dev *rt2x00dev,
 | |
| 			     struct rt2x00lib_crypto *crypto,
 | |
| 			     struct ieee80211_key_conf *key)
 | |
| {
 | |
| 	struct hw_key_entry key_entry;
 | |
| 	struct rt2x00_field32 field;
 | |
| 	u32 offset;
 | |
| 	u32 reg;
 | |
| 
 | |
| 	if (crypto->cmd == SET_KEY) {
 | |
| 		key->hw_key_idx = (4 * crypto->bssidx) + key->keyidx;
 | |
| 
 | |
| 		memcpy(key_entry.key, crypto->key,
 | |
| 		       sizeof(key_entry.key));
 | |
| 		memcpy(key_entry.tx_mic, crypto->tx_mic,
 | |
| 		       sizeof(key_entry.tx_mic));
 | |
| 		memcpy(key_entry.rx_mic, crypto->rx_mic,
 | |
| 		       sizeof(key_entry.rx_mic));
 | |
| 
 | |
| 		offset = SHARED_KEY_ENTRY(key->hw_key_idx);
 | |
| 		rt2800_register_multiwrite(rt2x00dev, offset,
 | |
| 					      &key_entry, sizeof(key_entry));
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * The cipher types are stored over multiple registers
 | |
| 	 * starting with SHARED_KEY_MODE_BASE each word will have
 | |
| 	 * 32 bits and contains the cipher types for 2 bssidx each.
 | |
| 	 * Using the correct defines correctly will cause overhead,
 | |
| 	 * so just calculate the correct offset.
 | |
| 	 */
 | |
| 	field.bit_offset = 4 * (key->hw_key_idx % 8);
 | |
| 	field.bit_mask = 0x7 << field.bit_offset;
 | |
| 
 | |
| 	offset = SHARED_KEY_MODE_ENTRY(key->hw_key_idx / 8);
 | |
| 
 | |
| 	rt2800_register_read(rt2x00dev, offset, ®);
 | |
| 	rt2x00_set_field32(®, field,
 | |
| 			   (crypto->cmd == SET_KEY) * crypto->cipher);
 | |
| 	rt2800_register_write(rt2x00dev, offset, reg);
 | |
| 
 | |
| 	/*
 | |
| 	 * Update WCID information
 | |
| 	 */
 | |
| 	rt2800_config_wcid_attr(rt2x00dev, crypto, key);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rt2800_config_shared_key);
 | |
| 
 | |
| int rt2800_config_pairwise_key(struct rt2x00_dev *rt2x00dev,
 | |
| 			       struct rt2x00lib_crypto *crypto,
 | |
| 			       struct ieee80211_key_conf *key)
 | |
| {
 | |
| 	struct hw_key_entry key_entry;
 | |
| 	u32 offset;
 | |
| 
 | |
| 	if (crypto->cmd == SET_KEY) {
 | |
| 		/*
 | |
| 		 * 1 pairwise key is possible per AID, this means that the AID
 | |
| 		 * equals our hw_key_idx. Make sure the WCID starts _after_ the
 | |
| 		 * last possible shared key entry.
 | |
| 		 */
 | |
| 		if (crypto->aid > (256 - 32))
 | |
| 			return -ENOSPC;
 | |
| 
 | |
| 		key->hw_key_idx = 32 + crypto->aid;
 | |
| 
 | |
| 		memcpy(key_entry.key, crypto->key,
 | |
| 		       sizeof(key_entry.key));
 | |
| 		memcpy(key_entry.tx_mic, crypto->tx_mic,
 | |
| 		       sizeof(key_entry.tx_mic));
 | |
| 		memcpy(key_entry.rx_mic, crypto->rx_mic,
 | |
| 		       sizeof(key_entry.rx_mic));
 | |
| 
 | |
| 		offset = PAIRWISE_KEY_ENTRY(key->hw_key_idx);
 | |
| 		rt2800_register_multiwrite(rt2x00dev, offset,
 | |
| 					      &key_entry, sizeof(key_entry));
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Update WCID information
 | |
| 	 */
 | |
| 	rt2800_config_wcid_attr(rt2x00dev, crypto, key);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rt2800_config_pairwise_key);
 | |
| 
 | |
| void rt2800_config_filter(struct rt2x00_dev *rt2x00dev,
 | |
| 			  const unsigned int filter_flags)
 | |
| {
 | |
| 	u32 reg;
 | |
| 
 | |
| 	/*
 | |
| 	 * Start configuration steps.
 | |
| 	 * Note that the version error will always be dropped
 | |
| 	 * and broadcast frames will always be accepted since
 | |
| 	 * there is no filter for it at this time.
 | |
| 	 */
 | |
| 	rt2800_register_read(rt2x00dev, RX_FILTER_CFG, ®);
 | |
| 	rt2x00_set_field32(®, RX_FILTER_CFG_DROP_CRC_ERROR,
 | |
| 			   !(filter_flags & FIF_FCSFAIL));
 | |
| 	rt2x00_set_field32(®, RX_FILTER_CFG_DROP_PHY_ERROR,
 | |
| 			   !(filter_flags & FIF_PLCPFAIL));
 | |
| 	rt2x00_set_field32(®, RX_FILTER_CFG_DROP_NOT_TO_ME,
 | |
| 			   !(filter_flags & FIF_PROMISC_IN_BSS));
 | |
| 	rt2x00_set_field32(®, RX_FILTER_CFG_DROP_NOT_MY_BSSD, 0);
 | |
| 	rt2x00_set_field32(®, RX_FILTER_CFG_DROP_VER_ERROR, 1);
 | |
| 	rt2x00_set_field32(®, RX_FILTER_CFG_DROP_MULTICAST,
 | |
| 			   !(filter_flags & FIF_ALLMULTI));
 | |
| 	rt2x00_set_field32(®, RX_FILTER_CFG_DROP_BROADCAST, 0);
 | |
| 	rt2x00_set_field32(®, RX_FILTER_CFG_DROP_DUPLICATE, 1);
 | |
| 	rt2x00_set_field32(®, RX_FILTER_CFG_DROP_CF_END_ACK,
 | |
| 			   !(filter_flags & FIF_CONTROL));
 | |
| 	rt2x00_set_field32(®, RX_FILTER_CFG_DROP_CF_END,
 | |
| 			   !(filter_flags & FIF_CONTROL));
 | |
| 	rt2x00_set_field32(®, RX_FILTER_CFG_DROP_ACK,
 | |
| 			   !(filter_flags & FIF_CONTROL));
 | |
| 	rt2x00_set_field32(®, RX_FILTER_CFG_DROP_CTS,
 | |
| 			   !(filter_flags & FIF_CONTROL));
 | |
| 	rt2x00_set_field32(®, RX_FILTER_CFG_DROP_RTS,
 | |
| 			   !(filter_flags & FIF_CONTROL));
 | |
| 	rt2x00_set_field32(®, RX_FILTER_CFG_DROP_PSPOLL,
 | |
| 			   !(filter_flags & FIF_PSPOLL));
 | |
| 	rt2x00_set_field32(®, RX_FILTER_CFG_DROP_BA, 1);
 | |
| 	rt2x00_set_field32(®, RX_FILTER_CFG_DROP_BAR, 0);
 | |
| 	rt2x00_set_field32(®, RX_FILTER_CFG_DROP_CNTL,
 | |
| 			   !(filter_flags & FIF_CONTROL));
 | |
| 	rt2800_register_write(rt2x00dev, RX_FILTER_CFG, reg);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rt2800_config_filter);
 | |
| 
 | |
| void rt2800_config_intf(struct rt2x00_dev *rt2x00dev, struct rt2x00_intf *intf,
 | |
| 			struct rt2x00intf_conf *conf, const unsigned int flags)
 | |
| {
 | |
| 	u32 reg;
 | |
| 
 | |
| 	if (flags & CONFIG_UPDATE_TYPE) {
 | |
| 		/*
 | |
| 		 * Clear current synchronisation setup.
 | |
| 		 */
 | |
| 		rt2800_clear_beacon(rt2x00dev,
 | |
| 				    HW_BEACON_OFFSET(intf->beacon->entry_idx));
 | |
| 		/*
 | |
| 		 * Enable synchronisation.
 | |
| 		 */
 | |
| 		rt2800_register_read(rt2x00dev, BCN_TIME_CFG, ®);
 | |
| 		rt2x00_set_field32(®, BCN_TIME_CFG_TSF_TICKING, 1);
 | |
| 		rt2x00_set_field32(®, BCN_TIME_CFG_TSF_SYNC, conf->sync);
 | |
| 		rt2x00_set_field32(®, BCN_TIME_CFG_TBTT_ENABLE,
 | |
| 				   (conf->sync == TSF_SYNC_ADHOC ||
 | |
| 				    conf->sync == TSF_SYNC_AP_NONE));
 | |
| 		rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg);
 | |
| 
 | |
| 		/*
 | |
| 		 * Enable pre tbtt interrupt for beaconing modes
 | |
| 		 */
 | |
| 		rt2800_register_read(rt2x00dev, INT_TIMER_EN, ®);
 | |
| 		rt2x00_set_field32(®, INT_TIMER_EN_PRE_TBTT_TIMER,
 | |
| 				   (conf->sync == TSF_SYNC_AP_NONE));
 | |
| 		rt2800_register_write(rt2x00dev, INT_TIMER_EN, reg);
 | |
| 
 | |
| 	}
 | |
| 
 | |
| 	if (flags & CONFIG_UPDATE_MAC) {
 | |
| 		reg = le32_to_cpu(conf->mac[1]);
 | |
| 		rt2x00_set_field32(®, MAC_ADDR_DW1_UNICAST_TO_ME_MASK, 0xff);
 | |
| 		conf->mac[1] = cpu_to_le32(reg);
 | |
| 
 | |
| 		rt2800_register_multiwrite(rt2x00dev, MAC_ADDR_DW0,
 | |
| 					      conf->mac, sizeof(conf->mac));
 | |
| 	}
 | |
| 
 | |
| 	if (flags & CONFIG_UPDATE_BSSID) {
 | |
| 		reg = le32_to_cpu(conf->bssid[1]);
 | |
| 		rt2x00_set_field32(®, MAC_BSSID_DW1_BSS_ID_MASK, 3);
 | |
| 		rt2x00_set_field32(®, MAC_BSSID_DW1_BSS_BCN_NUM, 7);
 | |
| 		conf->bssid[1] = cpu_to_le32(reg);
 | |
| 
 | |
| 		rt2800_register_multiwrite(rt2x00dev, MAC_BSSID_DW0,
 | |
| 					      conf->bssid, sizeof(conf->bssid));
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rt2800_config_intf);
 | |
| 
 | |
| void rt2800_config_erp(struct rt2x00_dev *rt2x00dev, struct rt2x00lib_erp *erp)
 | |
| {
 | |
| 	u32 reg;
 | |
| 
 | |
| 	rt2800_register_read(rt2x00dev, AUTO_RSP_CFG, ®);
 | |
| 	rt2x00_set_field32(®, AUTO_RSP_CFG_BAC_ACK_POLICY,
 | |
| 			   !!erp->short_preamble);
 | |
| 	rt2x00_set_field32(®, AUTO_RSP_CFG_AR_PREAMBLE,
 | |
| 			   !!erp->short_preamble);
 | |
| 	rt2800_register_write(rt2x00dev, AUTO_RSP_CFG, reg);
 | |
| 
 | |
| 	rt2800_register_read(rt2x00dev, OFDM_PROT_CFG, ®);
 | |
| 	rt2x00_set_field32(®, OFDM_PROT_CFG_PROTECT_CTRL,
 | |
| 			   erp->cts_protection ? 2 : 0);
 | |
| 	rt2800_register_write(rt2x00dev, OFDM_PROT_CFG, reg);
 | |
| 
 | |
| 	rt2800_register_write(rt2x00dev, LEGACY_BASIC_RATE,
 | |
| 				 erp->basic_rates);
 | |
| 	rt2800_register_write(rt2x00dev, HT_BASIC_RATE, 0x00008003);
 | |
| 
 | |
| 	rt2800_register_read(rt2x00dev, BKOFF_SLOT_CFG, ®);
 | |
| 	rt2x00_set_field32(®, BKOFF_SLOT_CFG_SLOT_TIME, erp->slot_time);
 | |
| 	rt2800_register_write(rt2x00dev, BKOFF_SLOT_CFG, reg);
 | |
| 
 | |
| 	rt2800_register_read(rt2x00dev, XIFS_TIME_CFG, ®);
 | |
| 	rt2x00_set_field32(®, XIFS_TIME_CFG_EIFS, erp->eifs);
 | |
| 	rt2800_register_write(rt2x00dev, XIFS_TIME_CFG, reg);
 | |
| 
 | |
| 	rt2800_register_read(rt2x00dev, BCN_TIME_CFG, ®);
 | |
| 	rt2x00_set_field32(®, BCN_TIME_CFG_BEACON_INTERVAL,
 | |
| 			   erp->beacon_int * 16);
 | |
| 	rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rt2800_config_erp);
 | |
| 
 | |
| void rt2800_config_ant(struct rt2x00_dev *rt2x00dev, struct antenna_setup *ant)
 | |
| {
 | |
| 	u8 r1;
 | |
| 	u8 r3;
 | |
| 
 | |
| 	rt2800_bbp_read(rt2x00dev, 1, &r1);
 | |
| 	rt2800_bbp_read(rt2x00dev, 3, &r3);
 | |
| 
 | |
| 	/*
 | |
| 	 * Configure the TX antenna.
 | |
| 	 */
 | |
| 	switch ((int)ant->tx) {
 | |
| 	case 1:
 | |
| 		rt2x00_set_field8(&r1, BBP1_TX_ANTENNA, 0);
 | |
| 		break;
 | |
| 	case 2:
 | |
| 		rt2x00_set_field8(&r1, BBP1_TX_ANTENNA, 2);
 | |
| 		break;
 | |
| 	case 3:
 | |
| 		rt2x00_set_field8(&r1, BBP1_TX_ANTENNA, 0);
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Configure the RX antenna.
 | |
| 	 */
 | |
| 	switch ((int)ant->rx) {
 | |
| 	case 1:
 | |
| 		rt2x00_set_field8(&r3, BBP3_RX_ANTENNA, 0);
 | |
| 		break;
 | |
| 	case 2:
 | |
| 		rt2x00_set_field8(&r3, BBP3_RX_ANTENNA, 1);
 | |
| 		break;
 | |
| 	case 3:
 | |
| 		rt2x00_set_field8(&r3, BBP3_RX_ANTENNA, 2);
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	rt2800_bbp_write(rt2x00dev, 3, r3);
 | |
| 	rt2800_bbp_write(rt2x00dev, 1, r1);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rt2800_config_ant);
 | |
| 
 | |
| static void rt2800_config_lna_gain(struct rt2x00_dev *rt2x00dev,
 | |
| 				   struct rt2x00lib_conf *libconf)
 | |
| {
 | |
| 	u16 eeprom;
 | |
| 	short lna_gain;
 | |
| 
 | |
| 	if (libconf->rf.channel <= 14) {
 | |
| 		rt2x00_eeprom_read(rt2x00dev, EEPROM_LNA, &eeprom);
 | |
| 		lna_gain = rt2x00_get_field16(eeprom, EEPROM_LNA_BG);
 | |
| 	} else if (libconf->rf.channel <= 64) {
 | |
| 		rt2x00_eeprom_read(rt2x00dev, EEPROM_LNA, &eeprom);
 | |
| 		lna_gain = rt2x00_get_field16(eeprom, EEPROM_LNA_A0);
 | |
| 	} else if (libconf->rf.channel <= 128) {
 | |
| 		rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_BG2, &eeprom);
 | |
| 		lna_gain = rt2x00_get_field16(eeprom, EEPROM_RSSI_BG2_LNA_A1);
 | |
| 	} else {
 | |
| 		rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_A2, &eeprom);
 | |
| 		lna_gain = rt2x00_get_field16(eeprom, EEPROM_RSSI_A2_LNA_A2);
 | |
| 	}
 | |
| 
 | |
| 	rt2x00dev->lna_gain = lna_gain;
 | |
| }
 | |
| 
 | |
| static void rt2800_config_channel_rf2xxx(struct rt2x00_dev *rt2x00dev,
 | |
| 					 struct ieee80211_conf *conf,
 | |
| 					 struct rf_channel *rf,
 | |
| 					 struct channel_info *info)
 | |
| {
 | |
| 	rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset);
 | |
| 
 | |
| 	if (rt2x00dev->default_ant.tx == 1)
 | |
| 		rt2x00_set_field32(&rf->rf2, RF2_ANTENNA_TX1, 1);
 | |
| 
 | |
| 	if (rt2x00dev->default_ant.rx == 1) {
 | |
| 		rt2x00_set_field32(&rf->rf2, RF2_ANTENNA_RX1, 1);
 | |
| 		rt2x00_set_field32(&rf->rf2, RF2_ANTENNA_RX2, 1);
 | |
| 	} else if (rt2x00dev->default_ant.rx == 2)
 | |
| 		rt2x00_set_field32(&rf->rf2, RF2_ANTENNA_RX2, 1);
 | |
| 
 | |
| 	if (rf->channel > 14) {
 | |
| 		/*
 | |
| 		 * When TX power is below 0, we should increase it by 7 to
 | |
| 		 * make it a positive value (Minumum value is -7).
 | |
| 		 * However this means that values between 0 and 7 have
 | |
| 		 * double meaning, and we should set a 7DBm boost flag.
 | |
| 		 */
 | |
| 		rt2x00_set_field32(&rf->rf3, RF3_TXPOWER_A_7DBM_BOOST,
 | |
| 				   (info->tx_power1 >= 0));
 | |
| 
 | |
| 		if (info->tx_power1 < 0)
 | |
| 			info->tx_power1 += 7;
 | |
| 
 | |
| 		rt2x00_set_field32(&rf->rf3, RF3_TXPOWER_A,
 | |
| 				   TXPOWER_A_TO_DEV(info->tx_power1));
 | |
| 
 | |
| 		rt2x00_set_field32(&rf->rf4, RF4_TXPOWER_A_7DBM_BOOST,
 | |
| 				   (info->tx_power2 >= 0));
 | |
| 
 | |
| 		if (info->tx_power2 < 0)
 | |
| 			info->tx_power2 += 7;
 | |
| 
 | |
| 		rt2x00_set_field32(&rf->rf4, RF4_TXPOWER_A,
 | |
| 				   TXPOWER_A_TO_DEV(info->tx_power2));
 | |
| 	} else {
 | |
| 		rt2x00_set_field32(&rf->rf3, RF3_TXPOWER_G,
 | |
| 				   TXPOWER_G_TO_DEV(info->tx_power1));
 | |
| 		rt2x00_set_field32(&rf->rf4, RF4_TXPOWER_G,
 | |
| 				   TXPOWER_G_TO_DEV(info->tx_power2));
 | |
| 	}
 | |
| 
 | |
| 	rt2x00_set_field32(&rf->rf4, RF4_HT40, conf_is_ht40(conf));
 | |
| 
 | |
| 	rt2800_rf_write(rt2x00dev, 1, rf->rf1);
 | |
| 	rt2800_rf_write(rt2x00dev, 2, rf->rf2);
 | |
| 	rt2800_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
 | |
| 	rt2800_rf_write(rt2x00dev, 4, rf->rf4);
 | |
| 
 | |
| 	udelay(200);
 | |
| 
 | |
| 	rt2800_rf_write(rt2x00dev, 1, rf->rf1);
 | |
| 	rt2800_rf_write(rt2x00dev, 2, rf->rf2);
 | |
| 	rt2800_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004);
 | |
| 	rt2800_rf_write(rt2x00dev, 4, rf->rf4);
 | |
| 
 | |
| 	udelay(200);
 | |
| 
 | |
| 	rt2800_rf_write(rt2x00dev, 1, rf->rf1);
 | |
| 	rt2800_rf_write(rt2x00dev, 2, rf->rf2);
 | |
| 	rt2800_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
 | |
| 	rt2800_rf_write(rt2x00dev, 4, rf->rf4);
 | |
| }
 | |
| 
 | |
| static void rt2800_config_channel_rf3xxx(struct rt2x00_dev *rt2x00dev,
 | |
| 					 struct ieee80211_conf *conf,
 | |
| 					 struct rf_channel *rf,
 | |
| 					 struct channel_info *info)
 | |
| {
 | |
| 	u8 rfcsr;
 | |
| 
 | |
| 	rt2800_rfcsr_write(rt2x00dev, 2, rf->rf1);
 | |
| 	rt2800_rfcsr_write(rt2x00dev, 3, rf->rf3);
 | |
| 
 | |
| 	rt2800_rfcsr_read(rt2x00dev, 6, &rfcsr);
 | |
| 	rt2x00_set_field8(&rfcsr, RFCSR6_R1, rf->rf2);
 | |
| 	rt2800_rfcsr_write(rt2x00dev, 6, rfcsr);
 | |
| 
 | |
| 	rt2800_rfcsr_read(rt2x00dev, 12, &rfcsr);
 | |
| 	rt2x00_set_field8(&rfcsr, RFCSR12_TX_POWER,
 | |
| 			  TXPOWER_G_TO_DEV(info->tx_power1));
 | |
| 	rt2800_rfcsr_write(rt2x00dev, 12, rfcsr);
 | |
| 
 | |
| 	rt2800_rfcsr_read(rt2x00dev, 13, &rfcsr);
 | |
| 	rt2x00_set_field8(&rfcsr, RFCSR13_TX_POWER,
 | |
| 			  TXPOWER_G_TO_DEV(info->tx_power2));
 | |
| 	rt2800_rfcsr_write(rt2x00dev, 13, rfcsr);
 | |
| 
 | |
| 	rt2800_rfcsr_read(rt2x00dev, 23, &rfcsr);
 | |
| 	rt2x00_set_field8(&rfcsr, RFCSR23_FREQ_OFFSET, rt2x00dev->freq_offset);
 | |
| 	rt2800_rfcsr_write(rt2x00dev, 23, rfcsr);
 | |
| 
 | |
| 	rt2800_rfcsr_write(rt2x00dev, 24,
 | |
| 			      rt2x00dev->calibration[conf_is_ht40(conf)]);
 | |
| 
 | |
| 	rt2800_rfcsr_read(rt2x00dev, 7, &rfcsr);
 | |
| 	rt2x00_set_field8(&rfcsr, RFCSR7_RF_TUNING, 1);
 | |
| 	rt2800_rfcsr_write(rt2x00dev, 7, rfcsr);
 | |
| }
 | |
| 
 | |
| static void rt2800_config_channel(struct rt2x00_dev *rt2x00dev,
 | |
| 				  struct ieee80211_conf *conf,
 | |
| 				  struct rf_channel *rf,
 | |
| 				  struct channel_info *info)
 | |
| {
 | |
| 	u32 reg;
 | |
| 	unsigned int tx_pin;
 | |
| 	u8 bbp;
 | |
| 
 | |
| 	if (rt2x00_rf(rt2x00dev, RF2020) ||
 | |
| 	    rt2x00_rf(rt2x00dev, RF3020) ||
 | |
| 	    rt2x00_rf(rt2x00dev, RF3021) ||
 | |
| 	    rt2x00_rf(rt2x00dev, RF3022))
 | |
| 		rt2800_config_channel_rf3xxx(rt2x00dev, conf, rf, info);
 | |
| 	else
 | |
| 		rt2800_config_channel_rf2xxx(rt2x00dev, conf, rf, info);
 | |
| 
 | |
| 	/*
 | |
| 	 * Change BBP settings
 | |
| 	 */
 | |
| 	rt2800_bbp_write(rt2x00dev, 62, 0x37 - rt2x00dev->lna_gain);
 | |
| 	rt2800_bbp_write(rt2x00dev, 63, 0x37 - rt2x00dev->lna_gain);
 | |
| 	rt2800_bbp_write(rt2x00dev, 64, 0x37 - rt2x00dev->lna_gain);
 | |
| 	rt2800_bbp_write(rt2x00dev, 86, 0);
 | |
| 
 | |
| 	if (rf->channel <= 14) {
 | |
| 		if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags)) {
 | |
| 			rt2800_bbp_write(rt2x00dev, 82, 0x62);
 | |
| 			rt2800_bbp_write(rt2x00dev, 75, 0x46);
 | |
| 		} else {
 | |
| 			rt2800_bbp_write(rt2x00dev, 82, 0x84);
 | |
| 			rt2800_bbp_write(rt2x00dev, 75, 0x50);
 | |
| 		}
 | |
| 	} else {
 | |
| 		rt2800_bbp_write(rt2x00dev, 82, 0xf2);
 | |
| 
 | |
| 		if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags))
 | |
| 			rt2800_bbp_write(rt2x00dev, 75, 0x46);
 | |
| 		else
 | |
| 			rt2800_bbp_write(rt2x00dev, 75, 0x50);
 | |
| 	}
 | |
| 
 | |
| 	rt2800_register_read(rt2x00dev, TX_BAND_CFG, ®);
 | |
| 	rt2x00_set_field32(®, TX_BAND_CFG_HT40_MINUS, conf_is_ht40_minus(conf));
 | |
| 	rt2x00_set_field32(®, TX_BAND_CFG_A, rf->channel > 14);
 | |
| 	rt2x00_set_field32(®, TX_BAND_CFG_BG, rf->channel <= 14);
 | |
| 	rt2800_register_write(rt2x00dev, TX_BAND_CFG, reg);
 | |
| 
 | |
| 	tx_pin = 0;
 | |
| 
 | |
| 	/* Turn on unused PA or LNA when not using 1T or 1R */
 | |
| 	if (rt2x00dev->default_ant.tx != 1) {
 | |
| 		rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_A1_EN, 1);
 | |
| 		rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_G1_EN, 1);
 | |
| 	}
 | |
| 
 | |
| 	/* Turn on unused PA or LNA when not using 1T or 1R */
 | |
| 	if (rt2x00dev->default_ant.rx != 1) {
 | |
| 		rt2x00_set_field32(&tx_pin, TX_PIN_CFG_LNA_PE_A1_EN, 1);
 | |
| 		rt2x00_set_field32(&tx_pin, TX_PIN_CFG_LNA_PE_G1_EN, 1);
 | |
| 	}
 | |
| 
 | |
| 	rt2x00_set_field32(&tx_pin, TX_PIN_CFG_LNA_PE_A0_EN, 1);
 | |
| 	rt2x00_set_field32(&tx_pin, TX_PIN_CFG_LNA_PE_G0_EN, 1);
 | |
| 	rt2x00_set_field32(&tx_pin, TX_PIN_CFG_RFTR_EN, 1);
 | |
| 	rt2x00_set_field32(&tx_pin, TX_PIN_CFG_TRSW_EN, 1);
 | |
| 	rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_G0_EN, rf->channel <= 14);
 | |
| 	rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_A0_EN, rf->channel > 14);
 | |
| 
 | |
| 	rt2800_register_write(rt2x00dev, TX_PIN_CFG, tx_pin);
 | |
| 
 | |
| 	rt2800_bbp_read(rt2x00dev, 4, &bbp);
 | |
| 	rt2x00_set_field8(&bbp, BBP4_BANDWIDTH, 2 * conf_is_ht40(conf));
 | |
| 	rt2800_bbp_write(rt2x00dev, 4, bbp);
 | |
| 
 | |
| 	rt2800_bbp_read(rt2x00dev, 3, &bbp);
 | |
| 	rt2x00_set_field8(&bbp, BBP3_HT40_MINUS, conf_is_ht40_minus(conf));
 | |
| 	rt2800_bbp_write(rt2x00dev, 3, bbp);
 | |
| 
 | |
| 	if (rt2x00_rt_rev(rt2x00dev, RT2860, REV_RT2860C)) {
 | |
| 		if (conf_is_ht40(conf)) {
 | |
| 			rt2800_bbp_write(rt2x00dev, 69, 0x1a);
 | |
| 			rt2800_bbp_write(rt2x00dev, 70, 0x0a);
 | |
| 			rt2800_bbp_write(rt2x00dev, 73, 0x16);
 | |
| 		} else {
 | |
| 			rt2800_bbp_write(rt2x00dev, 69, 0x16);
 | |
| 			rt2800_bbp_write(rt2x00dev, 70, 0x08);
 | |
| 			rt2800_bbp_write(rt2x00dev, 73, 0x11);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	msleep(1);
 | |
| }
 | |
| 
 | |
| static void rt2800_config_txpower(struct rt2x00_dev *rt2x00dev,
 | |
| 				  const int max_txpower)
 | |
| {
 | |
| 	u8 txpower;
 | |
| 	u8 max_value = (u8)max_txpower;
 | |
| 	u16 eeprom;
 | |
| 	int i;
 | |
| 	u32 reg;
 | |
| 	u8 r1;
 | |
| 	u32 offset;
 | |
| 
 | |
| 	/*
 | |
| 	 * set to normal tx power mode: +/- 0dBm
 | |
| 	 */
 | |
| 	rt2800_bbp_read(rt2x00dev, 1, &r1);
 | |
| 	rt2x00_set_field8(&r1, BBP1_TX_POWER, 0);
 | |
| 	rt2800_bbp_write(rt2x00dev, 1, r1);
 | |
| 
 | |
| 	/*
 | |
| 	 * The eeprom contains the tx power values for each rate. These
 | |
| 	 * values map to 100% tx power. Each 16bit word contains four tx
 | |
| 	 * power values and the order is the same as used in the TX_PWR_CFG
 | |
| 	 * registers.
 | |
| 	 */
 | |
| 	offset = TX_PWR_CFG_0;
 | |
| 
 | |
| 	for (i = 0; i < EEPROM_TXPOWER_BYRATE_SIZE; i += 2) {
 | |
| 		/* just to be safe */
 | |
| 		if (offset > TX_PWR_CFG_4)
 | |
| 			break;
 | |
| 
 | |
| 		rt2800_register_read(rt2x00dev, offset, ®);
 | |
| 
 | |
| 		/* read the next four txpower values */
 | |
| 		rt2x00_eeprom_read(rt2x00dev, EEPROM_TXPOWER_BYRATE + i,
 | |
| 				   &eeprom);
 | |
| 
 | |
| 		/* TX_PWR_CFG_0: 1MBS, TX_PWR_CFG_1: 24MBS,
 | |
| 		 * TX_PWR_CFG_2: MCS4, TX_PWR_CFG_3: MCS12,
 | |
| 		 * TX_PWR_CFG_4: unknown */
 | |
| 		txpower = rt2x00_get_field16(eeprom,
 | |
| 					     EEPROM_TXPOWER_BYRATE_RATE0);
 | |
| 		rt2x00_set_field32(®, TX_PWR_CFG_RATE0,
 | |
| 				   min(txpower, max_value));
 | |
| 
 | |
| 		/* TX_PWR_CFG_0: 2MBS, TX_PWR_CFG_1: 36MBS,
 | |
| 		 * TX_PWR_CFG_2: MCS5, TX_PWR_CFG_3: MCS13,
 | |
| 		 * TX_PWR_CFG_4: unknown */
 | |
| 		txpower = rt2x00_get_field16(eeprom,
 | |
| 					     EEPROM_TXPOWER_BYRATE_RATE1);
 | |
| 		rt2x00_set_field32(®, TX_PWR_CFG_RATE1,
 | |
| 				   min(txpower, max_value));
 | |
| 
 | |
| 		/* TX_PWR_CFG_0: 55MBS, TX_PWR_CFG_1: 48MBS,
 | |
| 		 * TX_PWR_CFG_2: MCS6,  TX_PWR_CFG_3: MCS14,
 | |
| 		 * TX_PWR_CFG_4: unknown */
 | |
| 		txpower = rt2x00_get_field16(eeprom,
 | |
| 					     EEPROM_TXPOWER_BYRATE_RATE2);
 | |
| 		rt2x00_set_field32(®, TX_PWR_CFG_RATE2,
 | |
| 				   min(txpower, max_value));
 | |
| 
 | |
| 		/* TX_PWR_CFG_0: 11MBS, TX_PWR_CFG_1: 54MBS,
 | |
| 		 * TX_PWR_CFG_2: MCS7,  TX_PWR_CFG_3: MCS15,
 | |
| 		 * TX_PWR_CFG_4: unknown */
 | |
| 		txpower = rt2x00_get_field16(eeprom,
 | |
| 					     EEPROM_TXPOWER_BYRATE_RATE3);
 | |
| 		rt2x00_set_field32(®, TX_PWR_CFG_RATE3,
 | |
| 				   min(txpower, max_value));
 | |
| 
 | |
| 		/* read the next four txpower values */
 | |
| 		rt2x00_eeprom_read(rt2x00dev, EEPROM_TXPOWER_BYRATE + i + 1,
 | |
| 				   &eeprom);
 | |
| 
 | |
| 		/* TX_PWR_CFG_0: 6MBS, TX_PWR_CFG_1: MCS0,
 | |
| 		 * TX_PWR_CFG_2: MCS8, TX_PWR_CFG_3: unknown,
 | |
| 		 * TX_PWR_CFG_4: unknown */
 | |
| 		txpower = rt2x00_get_field16(eeprom,
 | |
| 					     EEPROM_TXPOWER_BYRATE_RATE0);
 | |
| 		rt2x00_set_field32(®, TX_PWR_CFG_RATE4,
 | |
| 				   min(txpower, max_value));
 | |
| 
 | |
| 		/* TX_PWR_CFG_0: 9MBS, TX_PWR_CFG_1: MCS1,
 | |
| 		 * TX_PWR_CFG_2: MCS9, TX_PWR_CFG_3: unknown,
 | |
| 		 * TX_PWR_CFG_4: unknown */
 | |
| 		txpower = rt2x00_get_field16(eeprom,
 | |
| 					     EEPROM_TXPOWER_BYRATE_RATE1);
 | |
| 		rt2x00_set_field32(®, TX_PWR_CFG_RATE5,
 | |
| 				   min(txpower, max_value));
 | |
| 
 | |
| 		/* TX_PWR_CFG_0: 12MBS, TX_PWR_CFG_1: MCS2,
 | |
| 		 * TX_PWR_CFG_2: MCS10, TX_PWR_CFG_3: unknown,
 | |
| 		 * TX_PWR_CFG_4: unknown */
 | |
| 		txpower = rt2x00_get_field16(eeprom,
 | |
| 					     EEPROM_TXPOWER_BYRATE_RATE2);
 | |
| 		rt2x00_set_field32(®, TX_PWR_CFG_RATE6,
 | |
| 				   min(txpower, max_value));
 | |
| 
 | |
| 		/* TX_PWR_CFG_0: 18MBS, TX_PWR_CFG_1: MCS3,
 | |
| 		 * TX_PWR_CFG_2: MCS11, TX_PWR_CFG_3: unknown,
 | |
| 		 * TX_PWR_CFG_4: unknown */
 | |
| 		txpower = rt2x00_get_field16(eeprom,
 | |
| 					     EEPROM_TXPOWER_BYRATE_RATE3);
 | |
| 		rt2x00_set_field32(®, TX_PWR_CFG_RATE7,
 | |
| 				   min(txpower, max_value));
 | |
| 
 | |
| 		rt2800_register_write(rt2x00dev, offset, reg);
 | |
| 
 | |
| 		/* next TX_PWR_CFG register */
 | |
| 		offset += 4;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void rt2800_config_retry_limit(struct rt2x00_dev *rt2x00dev,
 | |
| 				      struct rt2x00lib_conf *libconf)
 | |
| {
 | |
| 	u32 reg;
 | |
| 
 | |
| 	rt2800_register_read(rt2x00dev, TX_RTY_CFG, ®);
 | |
| 	rt2x00_set_field32(®, TX_RTY_CFG_SHORT_RTY_LIMIT,
 | |
| 			   libconf->conf->short_frame_max_tx_count);
 | |
| 	rt2x00_set_field32(®, TX_RTY_CFG_LONG_RTY_LIMIT,
 | |
| 			   libconf->conf->long_frame_max_tx_count);
 | |
| 	rt2800_register_write(rt2x00dev, TX_RTY_CFG, reg);
 | |
| }
 | |
| 
 | |
| static void rt2800_config_ps(struct rt2x00_dev *rt2x00dev,
 | |
| 			     struct rt2x00lib_conf *libconf)
 | |
| {
 | |
| 	enum dev_state state =
 | |
| 	    (libconf->conf->flags & IEEE80211_CONF_PS) ?
 | |
| 		STATE_SLEEP : STATE_AWAKE;
 | |
| 	u32 reg;
 | |
| 
 | |
| 	if (state == STATE_SLEEP) {
 | |
| 		rt2800_register_write(rt2x00dev, AUTOWAKEUP_CFG, 0);
 | |
| 
 | |
| 		rt2800_register_read(rt2x00dev, AUTOWAKEUP_CFG, ®);
 | |
| 		rt2x00_set_field32(®, AUTOWAKEUP_CFG_AUTO_LEAD_TIME, 5);
 | |
| 		rt2x00_set_field32(®, AUTOWAKEUP_CFG_TBCN_BEFORE_WAKE,
 | |
| 				   libconf->conf->listen_interval - 1);
 | |
| 		rt2x00_set_field32(®, AUTOWAKEUP_CFG_AUTOWAKE, 1);
 | |
| 		rt2800_register_write(rt2x00dev, AUTOWAKEUP_CFG, reg);
 | |
| 
 | |
| 		rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
 | |
| 	} else {
 | |
| 		rt2800_register_read(rt2x00dev, AUTOWAKEUP_CFG, ®);
 | |
| 		rt2x00_set_field32(®, AUTOWAKEUP_CFG_AUTO_LEAD_TIME, 0);
 | |
| 		rt2x00_set_field32(®, AUTOWAKEUP_CFG_TBCN_BEFORE_WAKE, 0);
 | |
| 		rt2x00_set_field32(®, AUTOWAKEUP_CFG_AUTOWAKE, 0);
 | |
| 		rt2800_register_write(rt2x00dev, AUTOWAKEUP_CFG, reg);
 | |
| 
 | |
| 		rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void rt2800_config(struct rt2x00_dev *rt2x00dev,
 | |
| 		   struct rt2x00lib_conf *libconf,
 | |
| 		   const unsigned int flags)
 | |
| {
 | |
| 	/* Always recalculate LNA gain before changing configuration */
 | |
| 	rt2800_config_lna_gain(rt2x00dev, libconf);
 | |
| 
 | |
| 	if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
 | |
| 		rt2800_config_channel(rt2x00dev, libconf->conf,
 | |
| 				      &libconf->rf, &libconf->channel);
 | |
| 	if (flags & IEEE80211_CONF_CHANGE_POWER)
 | |
| 		rt2800_config_txpower(rt2x00dev, libconf->conf->power_level);
 | |
| 	if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
 | |
| 		rt2800_config_retry_limit(rt2x00dev, libconf);
 | |
| 	if (flags & IEEE80211_CONF_CHANGE_PS)
 | |
| 		rt2800_config_ps(rt2x00dev, libconf);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rt2800_config);
 | |
| 
 | |
| /*
 | |
|  * Link tuning
 | |
|  */
 | |
| void rt2800_link_stats(struct rt2x00_dev *rt2x00dev, struct link_qual *qual)
 | |
| {
 | |
| 	u32 reg;
 | |
| 
 | |
| 	/*
 | |
| 	 * Update FCS error count from register.
 | |
| 	 */
 | |
| 	rt2800_register_read(rt2x00dev, RX_STA_CNT0, ®);
 | |
| 	qual->rx_failed = rt2x00_get_field32(reg, RX_STA_CNT0_CRC_ERR);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rt2800_link_stats);
 | |
| 
 | |
| static u8 rt2800_get_default_vgc(struct rt2x00_dev *rt2x00dev)
 | |
| {
 | |
| 	if (rt2x00dev->curr_band == IEEE80211_BAND_2GHZ) {
 | |
| 		if (rt2x00_rt(rt2x00dev, RT3070) ||
 | |
| 		    rt2x00_rt(rt2x00dev, RT3071) ||
 | |
| 		    rt2x00_rt(rt2x00dev, RT3090) ||
 | |
| 		    rt2x00_rt(rt2x00dev, RT3390))
 | |
| 			return 0x1c + (2 * rt2x00dev->lna_gain);
 | |
| 		else
 | |
| 			return 0x2e + rt2x00dev->lna_gain;
 | |
| 	}
 | |
| 
 | |
| 	if (!test_bit(CONFIG_CHANNEL_HT40, &rt2x00dev->flags))
 | |
| 		return 0x32 + (rt2x00dev->lna_gain * 5) / 3;
 | |
| 	else
 | |
| 		return 0x3a + (rt2x00dev->lna_gain * 5) / 3;
 | |
| }
 | |
| 
 | |
| static inline void rt2800_set_vgc(struct rt2x00_dev *rt2x00dev,
 | |
| 				  struct link_qual *qual, u8 vgc_level)
 | |
| {
 | |
| 	if (qual->vgc_level != vgc_level) {
 | |
| 		rt2800_bbp_write(rt2x00dev, 66, vgc_level);
 | |
| 		qual->vgc_level = vgc_level;
 | |
| 		qual->vgc_level_reg = vgc_level;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void rt2800_reset_tuner(struct rt2x00_dev *rt2x00dev, struct link_qual *qual)
 | |
| {
 | |
| 	rt2800_set_vgc(rt2x00dev, qual, rt2800_get_default_vgc(rt2x00dev));
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rt2800_reset_tuner);
 | |
| 
 | |
| void rt2800_link_tuner(struct rt2x00_dev *rt2x00dev, struct link_qual *qual,
 | |
| 		       const u32 count)
 | |
| {
 | |
| 	if (rt2x00_rt_rev(rt2x00dev, RT2860, REV_RT2860C))
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * When RSSI is better then -80 increase VGC level with 0x10
 | |
| 	 */
 | |
| 	rt2800_set_vgc(rt2x00dev, qual,
 | |
| 		       rt2800_get_default_vgc(rt2x00dev) +
 | |
| 		       ((qual->rssi > -80) * 0x10));
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rt2800_link_tuner);
 | |
| 
 | |
| /*
 | |
|  * Initialization functions.
 | |
|  */
 | |
| int rt2800_init_registers(struct rt2x00_dev *rt2x00dev)
 | |
| {
 | |
| 	u32 reg;
 | |
| 	u16 eeprom;
 | |
| 	unsigned int i;
 | |
| 	int ret;
 | |
| 
 | |
| 	rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, ®);
 | |
| 	rt2x00_set_field32(®, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
 | |
| 	rt2x00_set_field32(®, WPDMA_GLO_CFG_TX_DMA_BUSY, 0);
 | |
| 	rt2x00_set_field32(®, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
 | |
| 	rt2x00_set_field32(®, WPDMA_GLO_CFG_RX_DMA_BUSY, 0);
 | |
| 	rt2x00_set_field32(®, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
 | |
| 	rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
 | |
| 
 | |
| 	ret = rt2800_drv_init_registers(rt2x00dev);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	rt2800_register_read(rt2x00dev, BCN_OFFSET0, ®);
 | |
| 	rt2x00_set_field32(®, BCN_OFFSET0_BCN0, 0xe0); /* 0x3800 */
 | |
| 	rt2x00_set_field32(®, BCN_OFFSET0_BCN1, 0xe8); /* 0x3a00 */
 | |
| 	rt2x00_set_field32(®, BCN_OFFSET0_BCN2, 0xf0); /* 0x3c00 */
 | |
| 	rt2x00_set_field32(®, BCN_OFFSET0_BCN3, 0xf8); /* 0x3e00 */
 | |
| 	rt2800_register_write(rt2x00dev, BCN_OFFSET0, reg);
 | |
| 
 | |
| 	rt2800_register_read(rt2x00dev, BCN_OFFSET1, ®);
 | |
| 	rt2x00_set_field32(®, BCN_OFFSET1_BCN4, 0xc8); /* 0x3200 */
 | |
| 	rt2x00_set_field32(®, BCN_OFFSET1_BCN5, 0xd0); /* 0x3400 */
 | |
| 	rt2x00_set_field32(®, BCN_OFFSET1_BCN6, 0x77); /* 0x1dc0 */
 | |
| 	rt2x00_set_field32(®, BCN_OFFSET1_BCN7, 0x6f); /* 0x1bc0 */
 | |
| 	rt2800_register_write(rt2x00dev, BCN_OFFSET1, reg);
 | |
| 
 | |
| 	rt2800_register_write(rt2x00dev, LEGACY_BASIC_RATE, 0x0000013f);
 | |
| 	rt2800_register_write(rt2x00dev, HT_BASIC_RATE, 0x00008003);
 | |
| 
 | |
| 	rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, 0x00000000);
 | |
| 
 | |
| 	rt2800_register_read(rt2x00dev, BCN_TIME_CFG, ®);
 | |
| 	rt2x00_set_field32(®, BCN_TIME_CFG_BEACON_INTERVAL, 1600);
 | |
| 	rt2x00_set_field32(®, BCN_TIME_CFG_TSF_TICKING, 0);
 | |
| 	rt2x00_set_field32(®, BCN_TIME_CFG_TSF_SYNC, 0);
 | |
| 	rt2x00_set_field32(®, BCN_TIME_CFG_TBTT_ENABLE, 0);
 | |
| 	rt2x00_set_field32(®, BCN_TIME_CFG_BEACON_GEN, 0);
 | |
| 	rt2x00_set_field32(®, BCN_TIME_CFG_TX_TIME_COMPENSATE, 0);
 | |
| 	rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg);
 | |
| 
 | |
| 	rt2800_config_filter(rt2x00dev, FIF_ALLMULTI);
 | |
| 
 | |
| 	rt2800_register_read(rt2x00dev, BKOFF_SLOT_CFG, ®);
 | |
| 	rt2x00_set_field32(®, BKOFF_SLOT_CFG_SLOT_TIME, 9);
 | |
| 	rt2x00_set_field32(®, BKOFF_SLOT_CFG_CC_DELAY_TIME, 2);
 | |
| 	rt2800_register_write(rt2x00dev, BKOFF_SLOT_CFG, reg);
 | |
| 
 | |
| 	if (rt2x00_rt(rt2x00dev, RT3071) ||
 | |
| 	    rt2x00_rt(rt2x00dev, RT3090) ||
 | |
| 	    rt2x00_rt(rt2x00dev, RT3390)) {
 | |
| 		rt2800_register_write(rt2x00dev, TX_SW_CFG0, 0x00000400);
 | |
| 		rt2800_register_write(rt2x00dev, TX_SW_CFG1, 0x00000000);
 | |
| 		if (rt2x00_rt_rev_lt(rt2x00dev, RT3071, REV_RT3071E) ||
 | |
| 		    rt2x00_rt_rev_lt(rt2x00dev, RT3090, REV_RT3090E) ||
 | |
| 		    rt2x00_rt_rev_lt(rt2x00dev, RT3390, REV_RT3390E)) {
 | |
| 			rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
 | |
| 			if (rt2x00_get_field16(eeprom, EEPROM_NIC_DAC_TEST))
 | |
| 				rt2800_register_write(rt2x00dev, TX_SW_CFG2,
 | |
| 						      0x0000002c);
 | |
| 			else
 | |
| 				rt2800_register_write(rt2x00dev, TX_SW_CFG2,
 | |
| 						      0x0000000f);
 | |
| 		} else {
 | |
| 			rt2800_register_write(rt2x00dev, TX_SW_CFG2, 0x00000000);
 | |
| 		}
 | |
| 	} else if (rt2x00_rt(rt2x00dev, RT3070)) {
 | |
| 		rt2800_register_write(rt2x00dev, TX_SW_CFG0, 0x00000400);
 | |
| 
 | |
| 		if (rt2x00_rt_rev_lt(rt2x00dev, RT3070, REV_RT3070F)) {
 | |
| 			rt2800_register_write(rt2x00dev, TX_SW_CFG1, 0x00000000);
 | |
| 			rt2800_register_write(rt2x00dev, TX_SW_CFG2, 0x0000002c);
 | |
| 		} else {
 | |
| 			rt2800_register_write(rt2x00dev, TX_SW_CFG1, 0x00080606);
 | |
| 			rt2800_register_write(rt2x00dev, TX_SW_CFG2, 0x00000000);
 | |
| 		}
 | |
| 	} else if (rt2800_is_305x_soc(rt2x00dev)) {
 | |
| 		rt2800_register_write(rt2x00dev, TX_SW_CFG0, 0x00000400);
 | |
| 		rt2800_register_write(rt2x00dev, TX_SW_CFG1, 0x00000000);
 | |
| 		rt2800_register_write(rt2x00dev, TX_SW_CFG2, 0x0000001f);
 | |
| 	} else {
 | |
| 		rt2800_register_write(rt2x00dev, TX_SW_CFG0, 0x00000000);
 | |
| 		rt2800_register_write(rt2x00dev, TX_SW_CFG1, 0x00080606);
 | |
| 	}
 | |
| 
 | |
| 	rt2800_register_read(rt2x00dev, TX_LINK_CFG, ®);
 | |
| 	rt2x00_set_field32(®, TX_LINK_CFG_REMOTE_MFB_LIFETIME, 32);
 | |
| 	rt2x00_set_field32(®, TX_LINK_CFG_MFB_ENABLE, 0);
 | |
| 	rt2x00_set_field32(®, TX_LINK_CFG_REMOTE_UMFS_ENABLE, 0);
 | |
| 	rt2x00_set_field32(®, TX_LINK_CFG_TX_MRQ_EN, 0);
 | |
| 	rt2x00_set_field32(®, TX_LINK_CFG_TX_RDG_EN, 0);
 | |
| 	rt2x00_set_field32(®, TX_LINK_CFG_TX_CF_ACK_EN, 1);
 | |
| 	rt2x00_set_field32(®, TX_LINK_CFG_REMOTE_MFB, 0);
 | |
| 	rt2x00_set_field32(®, TX_LINK_CFG_REMOTE_MFS, 0);
 | |
| 	rt2800_register_write(rt2x00dev, TX_LINK_CFG, reg);
 | |
| 
 | |
| 	rt2800_register_read(rt2x00dev, TX_TIMEOUT_CFG, ®);
 | |
| 	rt2x00_set_field32(®, TX_TIMEOUT_CFG_MPDU_LIFETIME, 9);
 | |
| 	rt2x00_set_field32(®, TX_TIMEOUT_CFG_RX_ACK_TIMEOUT, 32);
 | |
| 	rt2x00_set_field32(®, TX_TIMEOUT_CFG_TX_OP_TIMEOUT, 10);
 | |
| 	rt2800_register_write(rt2x00dev, TX_TIMEOUT_CFG, reg);
 | |
| 
 | |
| 	rt2800_register_read(rt2x00dev, MAX_LEN_CFG, ®);
 | |
| 	rt2x00_set_field32(®, MAX_LEN_CFG_MAX_MPDU, AGGREGATION_SIZE);
 | |
| 	if (rt2x00_rt_rev_gte(rt2x00dev, RT2872, REV_RT2872E) ||
 | |
| 	    rt2x00_rt(rt2x00dev, RT2883) ||
 | |
| 	    rt2x00_rt_rev_lt(rt2x00dev, RT3070, REV_RT3070E))
 | |
| 		rt2x00_set_field32(®, MAX_LEN_CFG_MAX_PSDU, 2);
 | |
| 	else
 | |
| 		rt2x00_set_field32(®, MAX_LEN_CFG_MAX_PSDU, 1);
 | |
| 	rt2x00_set_field32(®, MAX_LEN_CFG_MIN_PSDU, 0);
 | |
| 	rt2x00_set_field32(®, MAX_LEN_CFG_MIN_MPDU, 0);
 | |
| 	rt2800_register_write(rt2x00dev, MAX_LEN_CFG, reg);
 | |
| 
 | |
| 	rt2800_register_read(rt2x00dev, LED_CFG, ®);
 | |
| 	rt2x00_set_field32(®, LED_CFG_ON_PERIOD, 70);
 | |
| 	rt2x00_set_field32(®, LED_CFG_OFF_PERIOD, 30);
 | |
| 	rt2x00_set_field32(®, LED_CFG_SLOW_BLINK_PERIOD, 3);
 | |
| 	rt2x00_set_field32(®, LED_CFG_R_LED_MODE, 3);
 | |
| 	rt2x00_set_field32(®, LED_CFG_G_LED_MODE, 3);
 | |
| 	rt2x00_set_field32(®, LED_CFG_Y_LED_MODE, 3);
 | |
| 	rt2x00_set_field32(®, LED_CFG_LED_POLAR, 1);
 | |
| 	rt2800_register_write(rt2x00dev, LED_CFG, reg);
 | |
| 
 | |
| 	rt2800_register_write(rt2x00dev, PBF_MAX_PCNT, 0x1f3fbf9f);
 | |
| 
 | |
| 	rt2800_register_read(rt2x00dev, TX_RTY_CFG, ®);
 | |
| 	rt2x00_set_field32(®, TX_RTY_CFG_SHORT_RTY_LIMIT, 15);
 | |
| 	rt2x00_set_field32(®, TX_RTY_CFG_LONG_RTY_LIMIT, 31);
 | |
| 	rt2x00_set_field32(®, TX_RTY_CFG_LONG_RTY_THRE, 2000);
 | |
| 	rt2x00_set_field32(®, TX_RTY_CFG_NON_AGG_RTY_MODE, 0);
 | |
| 	rt2x00_set_field32(®, TX_RTY_CFG_AGG_RTY_MODE, 0);
 | |
| 	rt2x00_set_field32(®, TX_RTY_CFG_TX_AUTO_FB_ENABLE, 1);
 | |
| 	rt2800_register_write(rt2x00dev, TX_RTY_CFG, reg);
 | |
| 
 | |
| 	rt2800_register_read(rt2x00dev, AUTO_RSP_CFG, ®);
 | |
| 	rt2x00_set_field32(®, AUTO_RSP_CFG_AUTORESPONDER, 1);
 | |
| 	rt2x00_set_field32(®, AUTO_RSP_CFG_BAC_ACK_POLICY, 1);
 | |
| 	rt2x00_set_field32(®, AUTO_RSP_CFG_CTS_40_MMODE, 0);
 | |
| 	rt2x00_set_field32(®, AUTO_RSP_CFG_CTS_40_MREF, 0);
 | |
| 	rt2x00_set_field32(®, AUTO_RSP_CFG_AR_PREAMBLE, 1);
 | |
| 	rt2x00_set_field32(®, AUTO_RSP_CFG_DUAL_CTS_EN, 0);
 | |
| 	rt2x00_set_field32(®, AUTO_RSP_CFG_ACK_CTS_PSM_BIT, 0);
 | |
| 	rt2800_register_write(rt2x00dev, AUTO_RSP_CFG, reg);
 | |
| 
 | |
| 	rt2800_register_read(rt2x00dev, CCK_PROT_CFG, ®);
 | |
| 	rt2x00_set_field32(®, CCK_PROT_CFG_PROTECT_RATE, 3);
 | |
| 	rt2x00_set_field32(®, CCK_PROT_CFG_PROTECT_CTRL, 0);
 | |
| 	rt2x00_set_field32(®, CCK_PROT_CFG_PROTECT_NAV, 1);
 | |
| 	rt2x00_set_field32(®, CCK_PROT_CFG_TX_OP_ALLOW_CCK, 1);
 | |
| 	rt2x00_set_field32(®, CCK_PROT_CFG_TX_OP_ALLOW_OFDM, 1);
 | |
| 	rt2x00_set_field32(®, CCK_PROT_CFG_TX_OP_ALLOW_MM20, 1);
 | |
| 	rt2x00_set_field32(®, CCK_PROT_CFG_TX_OP_ALLOW_MM40, 0);
 | |
| 	rt2x00_set_field32(®, CCK_PROT_CFG_TX_OP_ALLOW_GF20, 1);
 | |
| 	rt2x00_set_field32(®, CCK_PROT_CFG_TX_OP_ALLOW_GF40, 0);
 | |
| 	rt2x00_set_field32(®, CCK_PROT_CFG_RTS_TH_EN, 1);
 | |
| 	rt2800_register_write(rt2x00dev, CCK_PROT_CFG, reg);
 | |
| 
 | |
| 	rt2800_register_read(rt2x00dev, OFDM_PROT_CFG, ®);
 | |
| 	rt2x00_set_field32(®, OFDM_PROT_CFG_PROTECT_RATE, 3);
 | |
| 	rt2x00_set_field32(®, OFDM_PROT_CFG_PROTECT_CTRL, 0);
 | |
| 	rt2x00_set_field32(®, OFDM_PROT_CFG_PROTECT_NAV, 1);
 | |
| 	rt2x00_set_field32(®, OFDM_PROT_CFG_TX_OP_ALLOW_CCK, 1);
 | |
| 	rt2x00_set_field32(®, OFDM_PROT_CFG_TX_OP_ALLOW_OFDM, 1);
 | |
| 	rt2x00_set_field32(®, OFDM_PROT_CFG_TX_OP_ALLOW_MM20, 1);
 | |
| 	rt2x00_set_field32(®, OFDM_PROT_CFG_TX_OP_ALLOW_MM40, 0);
 | |
| 	rt2x00_set_field32(®, OFDM_PROT_CFG_TX_OP_ALLOW_GF20, 1);
 | |
| 	rt2x00_set_field32(®, OFDM_PROT_CFG_TX_OP_ALLOW_GF40, 0);
 | |
| 	rt2x00_set_field32(®, OFDM_PROT_CFG_RTS_TH_EN, 1);
 | |
| 	rt2800_register_write(rt2x00dev, OFDM_PROT_CFG, reg);
 | |
| 
 | |
| 	rt2800_register_read(rt2x00dev, MM20_PROT_CFG, ®);
 | |
| 	rt2x00_set_field32(®, MM20_PROT_CFG_PROTECT_RATE, 0x4004);
 | |
| 	rt2x00_set_field32(®, MM20_PROT_CFG_PROTECT_CTRL, 0);
 | |
| 	rt2x00_set_field32(®, MM20_PROT_CFG_PROTECT_NAV, 1);
 | |
| 	rt2x00_set_field32(®, MM20_PROT_CFG_TX_OP_ALLOW_CCK, 1);
 | |
| 	rt2x00_set_field32(®, MM20_PROT_CFG_TX_OP_ALLOW_OFDM, 1);
 | |
| 	rt2x00_set_field32(®, MM20_PROT_CFG_TX_OP_ALLOW_MM20, 1);
 | |
| 	rt2x00_set_field32(®, MM20_PROT_CFG_TX_OP_ALLOW_MM40, 0);
 | |
| 	rt2x00_set_field32(®, MM20_PROT_CFG_TX_OP_ALLOW_GF20, 1);
 | |
| 	rt2x00_set_field32(®, MM20_PROT_CFG_TX_OP_ALLOW_GF40, 0);
 | |
| 	rt2x00_set_field32(®, MM20_PROT_CFG_RTS_TH_EN, 0);
 | |
| 	rt2800_register_write(rt2x00dev, MM20_PROT_CFG, reg);
 | |
| 
 | |
| 	rt2800_register_read(rt2x00dev, MM40_PROT_CFG, ®);
 | |
| 	rt2x00_set_field32(®, MM40_PROT_CFG_PROTECT_RATE, 0x4084);
 | |
| 	rt2x00_set_field32(®, MM40_PROT_CFG_PROTECT_CTRL,
 | |
| 			   !rt2x00_is_usb(rt2x00dev));
 | |
| 	rt2x00_set_field32(®, MM40_PROT_CFG_PROTECT_NAV, 1);
 | |
| 	rt2x00_set_field32(®, MM40_PROT_CFG_TX_OP_ALLOW_CCK, 1);
 | |
| 	rt2x00_set_field32(®, MM40_PROT_CFG_TX_OP_ALLOW_OFDM, 1);
 | |
| 	rt2x00_set_field32(®, MM40_PROT_CFG_TX_OP_ALLOW_MM20, 1);
 | |
| 	rt2x00_set_field32(®, MM40_PROT_CFG_TX_OP_ALLOW_MM40, 1);
 | |
| 	rt2x00_set_field32(®, MM40_PROT_CFG_TX_OP_ALLOW_GF20, 1);
 | |
| 	rt2x00_set_field32(®, MM40_PROT_CFG_TX_OP_ALLOW_GF40, 1);
 | |
| 	rt2x00_set_field32(®, MM40_PROT_CFG_RTS_TH_EN, 0);
 | |
| 	rt2800_register_write(rt2x00dev, MM40_PROT_CFG, reg);
 | |
| 
 | |
| 	rt2800_register_read(rt2x00dev, GF20_PROT_CFG, ®);
 | |
| 	rt2x00_set_field32(®, GF20_PROT_CFG_PROTECT_RATE, 0x4004);
 | |
| 	rt2x00_set_field32(®, GF20_PROT_CFG_PROTECT_CTRL, 0);
 | |
| 	rt2x00_set_field32(®, GF20_PROT_CFG_PROTECT_NAV, 1);
 | |
| 	rt2x00_set_field32(®, GF20_PROT_CFG_TX_OP_ALLOW_CCK, 1);
 | |
| 	rt2x00_set_field32(®, GF20_PROT_CFG_TX_OP_ALLOW_OFDM, 1);
 | |
| 	rt2x00_set_field32(®, GF20_PROT_CFG_TX_OP_ALLOW_MM20, 1);
 | |
| 	rt2x00_set_field32(®, GF20_PROT_CFG_TX_OP_ALLOW_MM40, 0);
 | |
| 	rt2x00_set_field32(®, GF20_PROT_CFG_TX_OP_ALLOW_GF20, 1);
 | |
| 	rt2x00_set_field32(®, GF20_PROT_CFG_TX_OP_ALLOW_GF40, 0);
 | |
| 	rt2x00_set_field32(®, GF20_PROT_CFG_RTS_TH_EN, 0);
 | |
| 	rt2800_register_write(rt2x00dev, GF20_PROT_CFG, reg);
 | |
| 
 | |
| 	rt2800_register_read(rt2x00dev, GF40_PROT_CFG, ®);
 | |
| 	rt2x00_set_field32(®, GF40_PROT_CFG_PROTECT_RATE, 0x4084);
 | |
| 	rt2x00_set_field32(®, GF40_PROT_CFG_PROTECT_CTRL, 0);
 | |
| 	rt2x00_set_field32(®, GF40_PROT_CFG_PROTECT_NAV, 1);
 | |
| 	rt2x00_set_field32(®, GF40_PROT_CFG_TX_OP_ALLOW_CCK, 1);
 | |
| 	rt2x00_set_field32(®, GF40_PROT_CFG_TX_OP_ALLOW_OFDM, 1);
 | |
| 	rt2x00_set_field32(®, GF40_PROT_CFG_TX_OP_ALLOW_MM20, 1);
 | |
| 	rt2x00_set_field32(®, GF40_PROT_CFG_TX_OP_ALLOW_MM40, 1);
 | |
| 	rt2x00_set_field32(®, GF40_PROT_CFG_TX_OP_ALLOW_GF20, 1);
 | |
| 	rt2x00_set_field32(®, GF40_PROT_CFG_TX_OP_ALLOW_GF40, 1);
 | |
| 	rt2x00_set_field32(®, GF40_PROT_CFG_RTS_TH_EN, 0);
 | |
| 	rt2800_register_write(rt2x00dev, GF40_PROT_CFG, reg);
 | |
| 
 | |
| 	if (rt2x00_is_usb(rt2x00dev)) {
 | |
| 		rt2800_register_write(rt2x00dev, PBF_CFG, 0xf40006);
 | |
| 
 | |
| 		rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, ®);
 | |
| 		rt2x00_set_field32(®, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
 | |
| 		rt2x00_set_field32(®, WPDMA_GLO_CFG_TX_DMA_BUSY, 0);
 | |
| 		rt2x00_set_field32(®, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
 | |
| 		rt2x00_set_field32(®, WPDMA_GLO_CFG_RX_DMA_BUSY, 0);
 | |
| 		rt2x00_set_field32(®, WPDMA_GLO_CFG_WP_DMA_BURST_SIZE, 3);
 | |
| 		rt2x00_set_field32(®, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 0);
 | |
| 		rt2x00_set_field32(®, WPDMA_GLO_CFG_BIG_ENDIAN, 0);
 | |
| 		rt2x00_set_field32(®, WPDMA_GLO_CFG_RX_HDR_SCATTER, 0);
 | |
| 		rt2x00_set_field32(®, WPDMA_GLO_CFG_HDR_SEG_LEN, 0);
 | |
| 		rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
 | |
| 	}
 | |
| 
 | |
| 	rt2800_register_write(rt2x00dev, TXOP_CTRL_CFG, 0x0000583f);
 | |
| 	rt2800_register_write(rt2x00dev, TXOP_HLDR_ET, 0x00000002);
 | |
| 
 | |
| 	rt2800_register_read(rt2x00dev, TX_RTS_CFG, ®);
 | |
| 	rt2x00_set_field32(®, TX_RTS_CFG_AUTO_RTS_RETRY_LIMIT, 32);
 | |
| 	rt2x00_set_field32(®, TX_RTS_CFG_RTS_THRES,
 | |
| 			   IEEE80211_MAX_RTS_THRESHOLD);
 | |
| 	rt2x00_set_field32(®, TX_RTS_CFG_RTS_FBK_EN, 0);
 | |
| 	rt2800_register_write(rt2x00dev, TX_RTS_CFG, reg);
 | |
| 
 | |
| 	rt2800_register_write(rt2x00dev, EXP_ACK_TIME, 0x002400ca);
 | |
| 
 | |
| 	/*
 | |
| 	 * Usually the CCK SIFS time should be set to 10 and the OFDM SIFS
 | |
| 	 * time should be set to 16. However, the original Ralink driver uses
 | |
| 	 * 16 for both and indeed using a value of 10 for CCK SIFS results in
 | |
| 	 * connection problems with 11g + CTS protection. Hence, use the same
 | |
| 	 * defaults as the Ralink driver: 16 for both, CCK and OFDM SIFS.
 | |
| 	 */
 | |
| 	rt2800_register_read(rt2x00dev, XIFS_TIME_CFG, ®);
 | |
| 	rt2x00_set_field32(®, XIFS_TIME_CFG_CCKM_SIFS_TIME, 16);
 | |
| 	rt2x00_set_field32(®, XIFS_TIME_CFG_OFDM_SIFS_TIME, 16);
 | |
| 	rt2x00_set_field32(®, XIFS_TIME_CFG_OFDM_XIFS_TIME, 4);
 | |
| 	rt2x00_set_field32(®, XIFS_TIME_CFG_EIFS, 314);
 | |
| 	rt2x00_set_field32(®, XIFS_TIME_CFG_BB_RXEND_ENABLE, 1);
 | |
| 	rt2800_register_write(rt2x00dev, XIFS_TIME_CFG, reg);
 | |
| 
 | |
| 	rt2800_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000003);
 | |
| 
 | |
| 	/*
 | |
| 	 * ASIC will keep garbage value after boot, clear encryption keys.
 | |
| 	 */
 | |
| 	for (i = 0; i < 4; i++)
 | |
| 		rt2800_register_write(rt2x00dev,
 | |
| 					 SHARED_KEY_MODE_ENTRY(i), 0);
 | |
| 
 | |
| 	for (i = 0; i < 256; i++) {
 | |
| 		u32 wcid[2] = { 0xffffffff, 0x00ffffff };
 | |
| 		rt2800_register_multiwrite(rt2x00dev, MAC_WCID_ENTRY(i),
 | |
| 					      wcid, sizeof(wcid));
 | |
| 
 | |
| 		rt2800_register_write(rt2x00dev, MAC_WCID_ATTR_ENTRY(i), 1);
 | |
| 		rt2800_register_write(rt2x00dev, MAC_IVEIV_ENTRY(i), 0);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Clear all beacons
 | |
| 	 */
 | |
| 	rt2800_clear_beacon(rt2x00dev, HW_BEACON_BASE0);
 | |
| 	rt2800_clear_beacon(rt2x00dev, HW_BEACON_BASE1);
 | |
| 	rt2800_clear_beacon(rt2x00dev, HW_BEACON_BASE2);
 | |
| 	rt2800_clear_beacon(rt2x00dev, HW_BEACON_BASE3);
 | |
| 	rt2800_clear_beacon(rt2x00dev, HW_BEACON_BASE4);
 | |
| 	rt2800_clear_beacon(rt2x00dev, HW_BEACON_BASE5);
 | |
| 	rt2800_clear_beacon(rt2x00dev, HW_BEACON_BASE6);
 | |
| 	rt2800_clear_beacon(rt2x00dev, HW_BEACON_BASE7);
 | |
| 
 | |
| 	if (rt2x00_is_usb(rt2x00dev)) {
 | |
| 		rt2800_register_read(rt2x00dev, US_CYC_CNT, ®);
 | |
| 		rt2x00_set_field32(®, US_CYC_CNT_CLOCK_CYCLE, 30);
 | |
| 		rt2800_register_write(rt2x00dev, US_CYC_CNT, reg);
 | |
| 	}
 | |
| 
 | |
| 	rt2800_register_read(rt2x00dev, HT_FBK_CFG0, ®);
 | |
| 	rt2x00_set_field32(®, HT_FBK_CFG0_HTMCS0FBK, 0);
 | |
| 	rt2x00_set_field32(®, HT_FBK_CFG0_HTMCS1FBK, 0);
 | |
| 	rt2x00_set_field32(®, HT_FBK_CFG0_HTMCS2FBK, 1);
 | |
| 	rt2x00_set_field32(®, HT_FBK_CFG0_HTMCS3FBK, 2);
 | |
| 	rt2x00_set_field32(®, HT_FBK_CFG0_HTMCS4FBK, 3);
 | |
| 	rt2x00_set_field32(®, HT_FBK_CFG0_HTMCS5FBK, 4);
 | |
| 	rt2x00_set_field32(®, HT_FBK_CFG0_HTMCS6FBK, 5);
 | |
| 	rt2x00_set_field32(®, HT_FBK_CFG0_HTMCS7FBK, 6);
 | |
| 	rt2800_register_write(rt2x00dev, HT_FBK_CFG0, reg);
 | |
| 
 | |
| 	rt2800_register_read(rt2x00dev, HT_FBK_CFG1, ®);
 | |
| 	rt2x00_set_field32(®, HT_FBK_CFG1_HTMCS8FBK, 8);
 | |
| 	rt2x00_set_field32(®, HT_FBK_CFG1_HTMCS9FBK, 8);
 | |
| 	rt2x00_set_field32(®, HT_FBK_CFG1_HTMCS10FBK, 9);
 | |
| 	rt2x00_set_field32(®, HT_FBK_CFG1_HTMCS11FBK, 10);
 | |
| 	rt2x00_set_field32(®, HT_FBK_CFG1_HTMCS12FBK, 11);
 | |
| 	rt2x00_set_field32(®, HT_FBK_CFG1_HTMCS13FBK, 12);
 | |
| 	rt2x00_set_field32(®, HT_FBK_CFG1_HTMCS14FBK, 13);
 | |
| 	rt2x00_set_field32(®, HT_FBK_CFG1_HTMCS15FBK, 14);
 | |
| 	rt2800_register_write(rt2x00dev, HT_FBK_CFG1, reg);
 | |
| 
 | |
| 	rt2800_register_read(rt2x00dev, LG_FBK_CFG0, ®);
 | |
| 	rt2x00_set_field32(®, LG_FBK_CFG0_OFDMMCS0FBK, 8);
 | |
| 	rt2x00_set_field32(®, LG_FBK_CFG0_OFDMMCS1FBK, 8);
 | |
| 	rt2x00_set_field32(®, LG_FBK_CFG0_OFDMMCS2FBK, 9);
 | |
| 	rt2x00_set_field32(®, LG_FBK_CFG0_OFDMMCS3FBK, 10);
 | |
| 	rt2x00_set_field32(®, LG_FBK_CFG0_OFDMMCS4FBK, 11);
 | |
| 	rt2x00_set_field32(®, LG_FBK_CFG0_OFDMMCS5FBK, 12);
 | |
| 	rt2x00_set_field32(®, LG_FBK_CFG0_OFDMMCS6FBK, 13);
 | |
| 	rt2x00_set_field32(®, LG_FBK_CFG0_OFDMMCS7FBK, 14);
 | |
| 	rt2800_register_write(rt2x00dev, LG_FBK_CFG0, reg);
 | |
| 
 | |
| 	rt2800_register_read(rt2x00dev, LG_FBK_CFG1, ®);
 | |
| 	rt2x00_set_field32(®, LG_FBK_CFG0_CCKMCS0FBK, 0);
 | |
| 	rt2x00_set_field32(®, LG_FBK_CFG0_CCKMCS1FBK, 0);
 | |
| 	rt2x00_set_field32(®, LG_FBK_CFG0_CCKMCS2FBK, 1);
 | |
| 	rt2x00_set_field32(®, LG_FBK_CFG0_CCKMCS3FBK, 2);
 | |
| 	rt2800_register_write(rt2x00dev, LG_FBK_CFG1, reg);
 | |
| 
 | |
| 	/*
 | |
| 	 * We must clear the error counters.
 | |
| 	 * These registers are cleared on read,
 | |
| 	 * so we may pass a useless variable to store the value.
 | |
| 	 */
 | |
| 	rt2800_register_read(rt2x00dev, RX_STA_CNT0, ®);
 | |
| 	rt2800_register_read(rt2x00dev, RX_STA_CNT1, ®);
 | |
| 	rt2800_register_read(rt2x00dev, RX_STA_CNT2, ®);
 | |
| 	rt2800_register_read(rt2x00dev, TX_STA_CNT0, ®);
 | |
| 	rt2800_register_read(rt2x00dev, TX_STA_CNT1, ®);
 | |
| 	rt2800_register_read(rt2x00dev, TX_STA_CNT2, ®);
 | |
| 
 | |
| 	/*
 | |
| 	 * Setup leadtime for pre tbtt interrupt to 6ms
 | |
| 	 */
 | |
| 	rt2800_register_read(rt2x00dev, INT_TIMER_CFG, ®);
 | |
| 	rt2x00_set_field32(®, INT_TIMER_CFG_PRE_TBTT_TIMER, 6 << 4);
 | |
| 	rt2800_register_write(rt2x00dev, INT_TIMER_CFG, reg);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rt2800_init_registers);
 | |
| 
 | |
| static int rt2800_wait_bbp_rf_ready(struct rt2x00_dev *rt2x00dev)
 | |
| {
 | |
| 	unsigned int i;
 | |
| 	u32 reg;
 | |
| 
 | |
| 	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
 | |
| 		rt2800_register_read(rt2x00dev, MAC_STATUS_CFG, ®);
 | |
| 		if (!rt2x00_get_field32(reg, MAC_STATUS_CFG_BBP_RF_BUSY))
 | |
| 			return 0;
 | |
| 
 | |
| 		udelay(REGISTER_BUSY_DELAY);
 | |
| 	}
 | |
| 
 | |
| 	ERROR(rt2x00dev, "BBP/RF register access failed, aborting.\n");
 | |
| 	return -EACCES;
 | |
| }
 | |
| 
 | |
| static int rt2800_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
 | |
| {
 | |
| 	unsigned int i;
 | |
| 	u8 value;
 | |
| 
 | |
| 	/*
 | |
| 	 * BBP was enabled after firmware was loaded,
 | |
| 	 * but we need to reactivate it now.
 | |
| 	 */
 | |
| 	rt2800_register_write(rt2x00dev, H2M_BBP_AGENT, 0);
 | |
| 	rt2800_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
 | |
| 	msleep(1);
 | |
| 
 | |
| 	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
 | |
| 		rt2800_bbp_read(rt2x00dev, 0, &value);
 | |
| 		if ((value != 0xff) && (value != 0x00))
 | |
| 			return 0;
 | |
| 		udelay(REGISTER_BUSY_DELAY);
 | |
| 	}
 | |
| 
 | |
| 	ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
 | |
| 	return -EACCES;
 | |
| }
 | |
| 
 | |
| int rt2800_init_bbp(struct rt2x00_dev *rt2x00dev)
 | |
| {
 | |
| 	unsigned int i;
 | |
| 	u16 eeprom;
 | |
| 	u8 reg_id;
 | |
| 	u8 value;
 | |
| 
 | |
| 	if (unlikely(rt2800_wait_bbp_rf_ready(rt2x00dev) ||
 | |
| 		     rt2800_wait_bbp_ready(rt2x00dev)))
 | |
| 		return -EACCES;
 | |
| 
 | |
| 	if (rt2800_is_305x_soc(rt2x00dev))
 | |
| 		rt2800_bbp_write(rt2x00dev, 31, 0x08);
 | |
| 
 | |
| 	rt2800_bbp_write(rt2x00dev, 65, 0x2c);
 | |
| 	rt2800_bbp_write(rt2x00dev, 66, 0x38);
 | |
| 
 | |
| 	if (rt2x00_rt_rev(rt2x00dev, RT2860, REV_RT2860C)) {
 | |
| 		rt2800_bbp_write(rt2x00dev, 69, 0x16);
 | |
| 		rt2800_bbp_write(rt2x00dev, 73, 0x12);
 | |
| 	} else {
 | |
| 		rt2800_bbp_write(rt2x00dev, 69, 0x12);
 | |
| 		rt2800_bbp_write(rt2x00dev, 73, 0x10);
 | |
| 	}
 | |
| 
 | |
| 	rt2800_bbp_write(rt2x00dev, 70, 0x0a);
 | |
| 
 | |
| 	if (rt2x00_rt(rt2x00dev, RT3070) ||
 | |
| 	    rt2x00_rt(rt2x00dev, RT3071) ||
 | |
| 	    rt2x00_rt(rt2x00dev, RT3090) ||
 | |
| 	    rt2x00_rt(rt2x00dev, RT3390)) {
 | |
| 		rt2800_bbp_write(rt2x00dev, 79, 0x13);
 | |
| 		rt2800_bbp_write(rt2x00dev, 80, 0x05);
 | |
| 		rt2800_bbp_write(rt2x00dev, 81, 0x33);
 | |
| 	} else if (rt2800_is_305x_soc(rt2x00dev)) {
 | |
| 		rt2800_bbp_write(rt2x00dev, 78, 0x0e);
 | |
| 		rt2800_bbp_write(rt2x00dev, 80, 0x08);
 | |
| 	} else {
 | |
| 		rt2800_bbp_write(rt2x00dev, 81, 0x37);
 | |
| 	}
 | |
| 
 | |
| 	rt2800_bbp_write(rt2x00dev, 82, 0x62);
 | |
| 	rt2800_bbp_write(rt2x00dev, 83, 0x6a);
 | |
| 
 | |
| 	if (rt2x00_rt_rev(rt2x00dev, RT2860, REV_RT2860D))
 | |
| 		rt2800_bbp_write(rt2x00dev, 84, 0x19);
 | |
| 	else
 | |
| 		rt2800_bbp_write(rt2x00dev, 84, 0x99);
 | |
| 
 | |
| 	rt2800_bbp_write(rt2x00dev, 86, 0x00);
 | |
| 	rt2800_bbp_write(rt2x00dev, 91, 0x04);
 | |
| 	rt2800_bbp_write(rt2x00dev, 92, 0x00);
 | |
| 
 | |
| 	if (rt2x00_rt_rev_gte(rt2x00dev, RT3070, REV_RT3070F) ||
 | |
| 	    rt2x00_rt_rev_gte(rt2x00dev, RT3071, REV_RT3071E) ||
 | |
| 	    rt2x00_rt_rev_gte(rt2x00dev, RT3090, REV_RT3090E) ||
 | |
| 	    rt2x00_rt_rev_gte(rt2x00dev, RT3390, REV_RT3390E) ||
 | |
| 	    rt2800_is_305x_soc(rt2x00dev))
 | |
| 		rt2800_bbp_write(rt2x00dev, 103, 0xc0);
 | |
| 	else
 | |
| 		rt2800_bbp_write(rt2x00dev, 103, 0x00);
 | |
| 
 | |
| 	if (rt2800_is_305x_soc(rt2x00dev))
 | |
| 		rt2800_bbp_write(rt2x00dev, 105, 0x01);
 | |
| 	else
 | |
| 		rt2800_bbp_write(rt2x00dev, 105, 0x05);
 | |
| 	rt2800_bbp_write(rt2x00dev, 106, 0x35);
 | |
| 
 | |
| 	if (rt2x00_rt(rt2x00dev, RT3071) ||
 | |
| 	    rt2x00_rt(rt2x00dev, RT3090) ||
 | |
| 	    rt2x00_rt(rt2x00dev, RT3390)) {
 | |
| 		rt2800_bbp_read(rt2x00dev, 138, &value);
 | |
| 
 | |
| 		rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
 | |
| 		if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TXPATH) == 1)
 | |
| 			value |= 0x20;
 | |
| 		if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RXPATH) == 1)
 | |
| 			value &= ~0x02;
 | |
| 
 | |
| 		rt2800_bbp_write(rt2x00dev, 138, value);
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	for (i = 0; i < EEPROM_BBP_SIZE; i++) {
 | |
| 		rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
 | |
| 
 | |
| 		if (eeprom != 0xffff && eeprom != 0x0000) {
 | |
| 			reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
 | |
| 			value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
 | |
| 			rt2800_bbp_write(rt2x00dev, reg_id, value);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rt2800_init_bbp);
 | |
| 
 | |
| static u8 rt2800_init_rx_filter(struct rt2x00_dev *rt2x00dev,
 | |
| 				bool bw40, u8 rfcsr24, u8 filter_target)
 | |
| {
 | |
| 	unsigned int i;
 | |
| 	u8 bbp;
 | |
| 	u8 rfcsr;
 | |
| 	u8 passband;
 | |
| 	u8 stopband;
 | |
| 	u8 overtuned = 0;
 | |
| 
 | |
| 	rt2800_rfcsr_write(rt2x00dev, 24, rfcsr24);
 | |
| 
 | |
| 	rt2800_bbp_read(rt2x00dev, 4, &bbp);
 | |
| 	rt2x00_set_field8(&bbp, BBP4_BANDWIDTH, 2 * bw40);
 | |
| 	rt2800_bbp_write(rt2x00dev, 4, bbp);
 | |
| 
 | |
| 	rt2800_rfcsr_read(rt2x00dev, 22, &rfcsr);
 | |
| 	rt2x00_set_field8(&rfcsr, RFCSR22_BASEBAND_LOOPBACK, 1);
 | |
| 	rt2800_rfcsr_write(rt2x00dev, 22, rfcsr);
 | |
| 
 | |
| 	/*
 | |
| 	 * Set power & frequency of passband test tone
 | |
| 	 */
 | |
| 	rt2800_bbp_write(rt2x00dev, 24, 0);
 | |
| 
 | |
| 	for (i = 0; i < 100; i++) {
 | |
| 		rt2800_bbp_write(rt2x00dev, 25, 0x90);
 | |
| 		msleep(1);
 | |
| 
 | |
| 		rt2800_bbp_read(rt2x00dev, 55, &passband);
 | |
| 		if (passband)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Set power & frequency of stopband test tone
 | |
| 	 */
 | |
| 	rt2800_bbp_write(rt2x00dev, 24, 0x06);
 | |
| 
 | |
| 	for (i = 0; i < 100; i++) {
 | |
| 		rt2800_bbp_write(rt2x00dev, 25, 0x90);
 | |
| 		msleep(1);
 | |
| 
 | |
| 		rt2800_bbp_read(rt2x00dev, 55, &stopband);
 | |
| 
 | |
| 		if ((passband - stopband) <= filter_target) {
 | |
| 			rfcsr24++;
 | |
| 			overtuned += ((passband - stopband) == filter_target);
 | |
| 		} else
 | |
| 			break;
 | |
| 
 | |
| 		rt2800_rfcsr_write(rt2x00dev, 24, rfcsr24);
 | |
| 	}
 | |
| 
 | |
| 	rfcsr24 -= !!overtuned;
 | |
| 
 | |
| 	rt2800_rfcsr_write(rt2x00dev, 24, rfcsr24);
 | |
| 	return rfcsr24;
 | |
| }
 | |
| 
 | |
| int rt2800_init_rfcsr(struct rt2x00_dev *rt2x00dev)
 | |
| {
 | |
| 	u8 rfcsr;
 | |
| 	u8 bbp;
 | |
| 	u32 reg;
 | |
| 	u16 eeprom;
 | |
| 
 | |
| 	if (!rt2x00_rt(rt2x00dev, RT3070) &&
 | |
| 	    !rt2x00_rt(rt2x00dev, RT3071) &&
 | |
| 	    !rt2x00_rt(rt2x00dev, RT3090) &&
 | |
| 	    !rt2x00_rt(rt2x00dev, RT3390) &&
 | |
| 	    !rt2800_is_305x_soc(rt2x00dev))
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Init RF calibration.
 | |
| 	 */
 | |
| 	rt2800_rfcsr_read(rt2x00dev, 30, &rfcsr);
 | |
| 	rt2x00_set_field8(&rfcsr, RFCSR30_RF_CALIBRATION, 1);
 | |
| 	rt2800_rfcsr_write(rt2x00dev, 30, rfcsr);
 | |
| 	msleep(1);
 | |
| 	rt2x00_set_field8(&rfcsr, RFCSR30_RF_CALIBRATION, 0);
 | |
| 	rt2800_rfcsr_write(rt2x00dev, 30, rfcsr);
 | |
| 
 | |
| 	if (rt2x00_rt(rt2x00dev, RT3070) ||
 | |
| 	    rt2x00_rt(rt2x00dev, RT3071) ||
 | |
| 	    rt2x00_rt(rt2x00dev, RT3090)) {
 | |
| 		rt2800_rfcsr_write(rt2x00dev, 4, 0x40);
 | |
| 		rt2800_rfcsr_write(rt2x00dev, 5, 0x03);
 | |
| 		rt2800_rfcsr_write(rt2x00dev, 6, 0x02);
 | |
| 		rt2800_rfcsr_write(rt2x00dev, 7, 0x70);
 | |
| 		rt2800_rfcsr_write(rt2x00dev, 9, 0x0f);
 | |
| 		rt2800_rfcsr_write(rt2x00dev, 10, 0x41);
 | |
| 		rt2800_rfcsr_write(rt2x00dev, 11, 0x21);
 | |
| 		rt2800_rfcsr_write(rt2x00dev, 12, 0x7b);
 | |
| 		rt2800_rfcsr_write(rt2x00dev, 14, 0x90);
 | |
| 		rt2800_rfcsr_write(rt2x00dev, 15, 0x58);
 | |
| 		rt2800_rfcsr_write(rt2x00dev, 16, 0xb3);
 | |
| 		rt2800_rfcsr_write(rt2x00dev, 17, 0x92);
 | |
| 		rt2800_rfcsr_write(rt2x00dev, 18, 0x2c);
 | |
| 		rt2800_rfcsr_write(rt2x00dev, 19, 0x02);
 | |
| 		rt2800_rfcsr_write(rt2x00dev, 20, 0xba);
 | |
| 		rt2800_rfcsr_write(rt2x00dev, 21, 0xdb);
 | |
| 		rt2800_rfcsr_write(rt2x00dev, 24, 0x16);
 | |
| 		rt2800_rfcsr_write(rt2x00dev, 25, 0x01);
 | |
| 		rt2800_rfcsr_write(rt2x00dev, 29, 0x1f);
 | |
| 	} else if (rt2x00_rt(rt2x00dev, RT3390)) {
 | |
| 		rt2800_rfcsr_write(rt2x00dev, 0, 0xa0);
 | |
| 		rt2800_rfcsr_write(rt2x00dev, 1, 0xe1);
 | |
| 		rt2800_rfcsr_write(rt2x00dev, 2, 0xf1);
 | |
| 		rt2800_rfcsr_write(rt2x00dev, 3, 0x62);
 | |
| 		rt2800_rfcsr_write(rt2x00dev, 4, 0x40);
 | |
| 		rt2800_rfcsr_write(rt2x00dev, 5, 0x8b);
 | |
| 		rt2800_rfcsr_write(rt2x00dev, 6, 0x42);
 | |
| 		rt2800_rfcsr_write(rt2x00dev, 7, 0x34);
 | |
| 		rt2800_rfcsr_write(rt2x00dev, 8, 0x00);
 | |
| 		rt2800_rfcsr_write(rt2x00dev, 9, 0xc0);
 | |
| 		rt2800_rfcsr_write(rt2x00dev, 10, 0x61);
 | |
| 		rt2800_rfcsr_write(rt2x00dev, 11, 0x21);
 | |
| 		rt2800_rfcsr_write(rt2x00dev, 12, 0x3b);
 | |
| 		rt2800_rfcsr_write(rt2x00dev, 13, 0xe0);
 | |
| 		rt2800_rfcsr_write(rt2x00dev, 14, 0x90);
 | |
| 		rt2800_rfcsr_write(rt2x00dev, 15, 0x53);
 | |
| 		rt2800_rfcsr_write(rt2x00dev, 16, 0xe0);
 | |
| 		rt2800_rfcsr_write(rt2x00dev, 17, 0x94);
 | |
| 		rt2800_rfcsr_write(rt2x00dev, 18, 0x5c);
 | |
| 		rt2800_rfcsr_write(rt2x00dev, 19, 0x4a);
 | |
| 		rt2800_rfcsr_write(rt2x00dev, 20, 0xb2);
 | |
| 		rt2800_rfcsr_write(rt2x00dev, 21, 0xf6);
 | |
| 		rt2800_rfcsr_write(rt2x00dev, 22, 0x00);
 | |
| 		rt2800_rfcsr_write(rt2x00dev, 23, 0x14);
 | |
| 		rt2800_rfcsr_write(rt2x00dev, 24, 0x08);
 | |
| 		rt2800_rfcsr_write(rt2x00dev, 25, 0x3d);
 | |
| 		rt2800_rfcsr_write(rt2x00dev, 26, 0x85);
 | |
| 		rt2800_rfcsr_write(rt2x00dev, 27, 0x00);
 | |
| 		rt2800_rfcsr_write(rt2x00dev, 28, 0x41);
 | |
| 		rt2800_rfcsr_write(rt2x00dev, 29, 0x8f);
 | |
| 		rt2800_rfcsr_write(rt2x00dev, 30, 0x20);
 | |
| 		rt2800_rfcsr_write(rt2x00dev, 31, 0x0f);
 | |
| 	} else if (rt2800_is_305x_soc(rt2x00dev)) {
 | |
| 		rt2800_rfcsr_write(rt2x00dev, 0, 0x50);
 | |
| 		rt2800_rfcsr_write(rt2x00dev, 1, 0x01);
 | |
| 		rt2800_rfcsr_write(rt2x00dev, 2, 0xf7);
 | |
| 		rt2800_rfcsr_write(rt2x00dev, 3, 0x75);
 | |
| 		rt2800_rfcsr_write(rt2x00dev, 4, 0x40);
 | |
| 		rt2800_rfcsr_write(rt2x00dev, 5, 0x03);
 | |
| 		rt2800_rfcsr_write(rt2x00dev, 6, 0x02);
 | |
| 		rt2800_rfcsr_write(rt2x00dev, 7, 0x50);
 | |
| 		rt2800_rfcsr_write(rt2x00dev, 8, 0x39);
 | |
| 		rt2800_rfcsr_write(rt2x00dev, 9, 0x0f);
 | |
| 		rt2800_rfcsr_write(rt2x00dev, 10, 0x60);
 | |
| 		rt2800_rfcsr_write(rt2x00dev, 11, 0x21);
 | |
| 		rt2800_rfcsr_write(rt2x00dev, 12, 0x75);
 | |
| 		rt2800_rfcsr_write(rt2x00dev, 13, 0x75);
 | |
| 		rt2800_rfcsr_write(rt2x00dev, 14, 0x90);
 | |
| 		rt2800_rfcsr_write(rt2x00dev, 15, 0x58);
 | |
| 		rt2800_rfcsr_write(rt2x00dev, 16, 0xb3);
 | |
| 		rt2800_rfcsr_write(rt2x00dev, 17, 0x92);
 | |
| 		rt2800_rfcsr_write(rt2x00dev, 18, 0x2c);
 | |
| 		rt2800_rfcsr_write(rt2x00dev, 19, 0x02);
 | |
| 		rt2800_rfcsr_write(rt2x00dev, 20, 0xba);
 | |
| 		rt2800_rfcsr_write(rt2x00dev, 21, 0xdb);
 | |
| 		rt2800_rfcsr_write(rt2x00dev, 22, 0x00);
 | |
| 		rt2800_rfcsr_write(rt2x00dev, 23, 0x31);
 | |
| 		rt2800_rfcsr_write(rt2x00dev, 24, 0x08);
 | |
| 		rt2800_rfcsr_write(rt2x00dev, 25, 0x01);
 | |
| 		rt2800_rfcsr_write(rt2x00dev, 26, 0x25);
 | |
| 		rt2800_rfcsr_write(rt2x00dev, 27, 0x23);
 | |
| 		rt2800_rfcsr_write(rt2x00dev, 28, 0x13);
 | |
| 		rt2800_rfcsr_write(rt2x00dev, 29, 0x83);
 | |
| 		rt2800_rfcsr_write(rt2x00dev, 30, 0x00);
 | |
| 		rt2800_rfcsr_write(rt2x00dev, 31, 0x00);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (rt2x00_rt_rev_lt(rt2x00dev, RT3070, REV_RT3070F)) {
 | |
| 		rt2800_register_read(rt2x00dev, LDO_CFG0, ®);
 | |
| 		rt2x00_set_field32(®, LDO_CFG0_BGSEL, 1);
 | |
| 		rt2x00_set_field32(®, LDO_CFG0_LDO_CORE_VLEVEL, 3);
 | |
| 		rt2800_register_write(rt2x00dev, LDO_CFG0, reg);
 | |
| 	} else if (rt2x00_rt(rt2x00dev, RT3071) ||
 | |
| 		   rt2x00_rt(rt2x00dev, RT3090)) {
 | |
| 		rt2800_rfcsr_read(rt2x00dev, 6, &rfcsr);
 | |
| 		rt2x00_set_field8(&rfcsr, RFCSR6_R2, 1);
 | |
| 		rt2800_rfcsr_write(rt2x00dev, 6, rfcsr);
 | |
| 
 | |
| 		rt2800_rfcsr_write(rt2x00dev, 31, 0x14);
 | |
| 
 | |
| 		rt2800_register_read(rt2x00dev, LDO_CFG0, ®);
 | |
| 		rt2x00_set_field32(®, LDO_CFG0_BGSEL, 1);
 | |
| 		if (rt2x00_rt_rev_lt(rt2x00dev, RT3071, REV_RT3071E) ||
 | |
| 		    rt2x00_rt_rev_lt(rt2x00dev, RT3090, REV_RT3090E)) {
 | |
| 			rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
 | |
| 			if (rt2x00_get_field16(eeprom, EEPROM_NIC_DAC_TEST))
 | |
| 				rt2x00_set_field32(®, LDO_CFG0_LDO_CORE_VLEVEL, 3);
 | |
| 			else
 | |
| 				rt2x00_set_field32(®, LDO_CFG0_LDO_CORE_VLEVEL, 0);
 | |
| 		}
 | |
| 		rt2800_register_write(rt2x00dev, LDO_CFG0, reg);
 | |
| 	} else if (rt2x00_rt(rt2x00dev, RT3390)) {
 | |
| 		rt2800_register_read(rt2x00dev, GPIO_SWITCH, ®);
 | |
| 		rt2x00_set_field32(®, GPIO_SWITCH_5, 0);
 | |
| 		rt2800_register_write(rt2x00dev, GPIO_SWITCH, reg);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Set RX Filter calibration for 20MHz and 40MHz
 | |
| 	 */
 | |
| 	if (rt2x00_rt(rt2x00dev, RT3070)) {
 | |
| 		rt2x00dev->calibration[0] =
 | |
| 			rt2800_init_rx_filter(rt2x00dev, false, 0x07, 0x16);
 | |
| 		rt2x00dev->calibration[1] =
 | |
| 			rt2800_init_rx_filter(rt2x00dev, true, 0x27, 0x19);
 | |
| 	} else if (rt2x00_rt(rt2x00dev, RT3071) ||
 | |
| 		   rt2x00_rt(rt2x00dev, RT3090) ||
 | |
| 		   rt2x00_rt(rt2x00dev, RT3390)) {
 | |
| 		rt2x00dev->calibration[0] =
 | |
| 			rt2800_init_rx_filter(rt2x00dev, false, 0x07, 0x13);
 | |
| 		rt2x00dev->calibration[1] =
 | |
| 			rt2800_init_rx_filter(rt2x00dev, true, 0x27, 0x15);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Set back to initial state
 | |
| 	 */
 | |
| 	rt2800_bbp_write(rt2x00dev, 24, 0);
 | |
| 
 | |
| 	rt2800_rfcsr_read(rt2x00dev, 22, &rfcsr);
 | |
| 	rt2x00_set_field8(&rfcsr, RFCSR22_BASEBAND_LOOPBACK, 0);
 | |
| 	rt2800_rfcsr_write(rt2x00dev, 22, rfcsr);
 | |
| 
 | |
| 	/*
 | |
| 	 * set BBP back to BW20
 | |
| 	 */
 | |
| 	rt2800_bbp_read(rt2x00dev, 4, &bbp);
 | |
| 	rt2x00_set_field8(&bbp, BBP4_BANDWIDTH, 0);
 | |
| 	rt2800_bbp_write(rt2x00dev, 4, bbp);
 | |
| 
 | |
| 	if (rt2x00_rt_rev_lt(rt2x00dev, RT3070, REV_RT3070F) ||
 | |
| 	    rt2x00_rt_rev_lt(rt2x00dev, RT3071, REV_RT3071E) ||
 | |
| 	    rt2x00_rt_rev_lt(rt2x00dev, RT3090, REV_RT3090E) ||
 | |
| 	    rt2x00_rt_rev_lt(rt2x00dev, RT3390, REV_RT3390E))
 | |
| 		rt2800_rfcsr_write(rt2x00dev, 27, 0x03);
 | |
| 
 | |
| 	rt2800_register_read(rt2x00dev, OPT_14_CSR, ®);
 | |
| 	rt2x00_set_field32(®, OPT_14_CSR_BIT0, 1);
 | |
| 	rt2800_register_write(rt2x00dev, OPT_14_CSR, reg);
 | |
| 
 | |
| 	rt2800_rfcsr_read(rt2x00dev, 17, &rfcsr);
 | |
| 	rt2x00_set_field8(&rfcsr, RFCSR17_TX_LO1_EN, 0);
 | |
| 	if (rt2x00_rt_rev_lt(rt2x00dev, RT3071, REV_RT3071E) ||
 | |
| 	    rt2x00_rt_rev_lt(rt2x00dev, RT3090, REV_RT3090E) ||
 | |
| 	    rt2x00_rt_rev_lt(rt2x00dev, RT3390, REV_RT3390E)) {
 | |
| 		if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags))
 | |
| 			rt2x00_set_field8(&rfcsr, RFCSR17_R, 1);
 | |
| 	}
 | |
| 	rt2x00_eeprom_read(rt2x00dev, EEPROM_TXMIXER_GAIN_BG, &eeprom);
 | |
| 	if (rt2x00_get_field16(eeprom, EEPROM_TXMIXER_GAIN_BG_VAL) >= 1)
 | |
| 		rt2x00_set_field8(&rfcsr, RFCSR17_TXMIXER_GAIN,
 | |
| 				  rt2x00_get_field16(eeprom,
 | |
| 						   EEPROM_TXMIXER_GAIN_BG_VAL));
 | |
| 	rt2800_rfcsr_write(rt2x00dev, 17, rfcsr);
 | |
| 
 | |
| 	if (rt2x00_rt(rt2x00dev, RT3090)) {
 | |
| 		rt2800_bbp_read(rt2x00dev, 138, &bbp);
 | |
| 
 | |
| 		rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
 | |
| 		if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RXPATH) == 1)
 | |
| 			rt2x00_set_field8(&bbp, BBP138_RX_ADC1, 0);
 | |
| 		if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TXPATH) == 1)
 | |
| 			rt2x00_set_field8(&bbp, BBP138_TX_DAC1, 1);
 | |
| 
 | |
| 		rt2800_bbp_write(rt2x00dev, 138, bbp);
 | |
| 	}
 | |
| 
 | |
| 	if (rt2x00_rt(rt2x00dev, RT3071) ||
 | |
| 	    rt2x00_rt(rt2x00dev, RT3090) ||
 | |
| 	    rt2x00_rt(rt2x00dev, RT3390)) {
 | |
| 		rt2800_rfcsr_read(rt2x00dev, 1, &rfcsr);
 | |
| 		rt2x00_set_field8(&rfcsr, RFCSR1_RF_BLOCK_EN, 1);
 | |
| 		rt2x00_set_field8(&rfcsr, RFCSR1_RX0_PD, 0);
 | |
| 		rt2x00_set_field8(&rfcsr, RFCSR1_TX0_PD, 0);
 | |
| 		rt2x00_set_field8(&rfcsr, RFCSR1_RX1_PD, 1);
 | |
| 		rt2x00_set_field8(&rfcsr, RFCSR1_TX1_PD, 1);
 | |
| 		rt2800_rfcsr_write(rt2x00dev, 1, rfcsr);
 | |
| 
 | |
| 		rt2800_rfcsr_read(rt2x00dev, 15, &rfcsr);
 | |
| 		rt2x00_set_field8(&rfcsr, RFCSR15_TX_LO2_EN, 0);
 | |
| 		rt2800_rfcsr_write(rt2x00dev, 15, rfcsr);
 | |
| 
 | |
| 		rt2800_rfcsr_read(rt2x00dev, 20, &rfcsr);
 | |
| 		rt2x00_set_field8(&rfcsr, RFCSR20_RX_LO1_EN, 0);
 | |
| 		rt2800_rfcsr_write(rt2x00dev, 20, rfcsr);
 | |
| 
 | |
| 		rt2800_rfcsr_read(rt2x00dev, 21, &rfcsr);
 | |
| 		rt2x00_set_field8(&rfcsr, RFCSR21_RX_LO2_EN, 0);
 | |
| 		rt2800_rfcsr_write(rt2x00dev, 21, rfcsr);
 | |
| 	}
 | |
| 
 | |
| 	if (rt2x00_rt(rt2x00dev, RT3070) || rt2x00_rt(rt2x00dev, RT3071)) {
 | |
| 		rt2800_rfcsr_read(rt2x00dev, 27, &rfcsr);
 | |
| 		if (rt2x00_rt_rev_lt(rt2x00dev, RT3070, REV_RT3070F) ||
 | |
| 		    rt2x00_rt_rev_lt(rt2x00dev, RT3071, REV_RT3071E))
 | |
| 			rt2x00_set_field8(&rfcsr, RFCSR27_R1, 3);
 | |
| 		else
 | |
| 			rt2x00_set_field8(&rfcsr, RFCSR27_R1, 0);
 | |
| 		rt2x00_set_field8(&rfcsr, RFCSR27_R2, 0);
 | |
| 		rt2x00_set_field8(&rfcsr, RFCSR27_R3, 0);
 | |
| 		rt2x00_set_field8(&rfcsr, RFCSR27_R4, 0);
 | |
| 		rt2800_rfcsr_write(rt2x00dev, 27, rfcsr);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rt2800_init_rfcsr);
 | |
| 
 | |
| int rt2800_efuse_detect(struct rt2x00_dev *rt2x00dev)
 | |
| {
 | |
| 	u32 reg;
 | |
| 
 | |
| 	rt2800_register_read(rt2x00dev, EFUSE_CTRL, ®);
 | |
| 
 | |
| 	return rt2x00_get_field32(reg, EFUSE_CTRL_PRESENT);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rt2800_efuse_detect);
 | |
| 
 | |
| static void rt2800_efuse_read(struct rt2x00_dev *rt2x00dev, unsigned int i)
 | |
| {
 | |
| 	u32 reg;
 | |
| 
 | |
| 	mutex_lock(&rt2x00dev->csr_mutex);
 | |
| 
 | |
| 	rt2800_register_read_lock(rt2x00dev, EFUSE_CTRL, ®);
 | |
| 	rt2x00_set_field32(®, EFUSE_CTRL_ADDRESS_IN, i);
 | |
| 	rt2x00_set_field32(®, EFUSE_CTRL_MODE, 0);
 | |
| 	rt2x00_set_field32(®, EFUSE_CTRL_KICK, 1);
 | |
| 	rt2800_register_write_lock(rt2x00dev, EFUSE_CTRL, reg);
 | |
| 
 | |
| 	/* Wait until the EEPROM has been loaded */
 | |
| 	rt2800_regbusy_read(rt2x00dev, EFUSE_CTRL, EFUSE_CTRL_KICK, ®);
 | |
| 
 | |
| 	/* Apparently the data is read from end to start */
 | |
| 	rt2800_register_read_lock(rt2x00dev, EFUSE_DATA3,
 | |
| 					(u32 *)&rt2x00dev->eeprom[i]);
 | |
| 	rt2800_register_read_lock(rt2x00dev, EFUSE_DATA2,
 | |
| 					(u32 *)&rt2x00dev->eeprom[i + 2]);
 | |
| 	rt2800_register_read_lock(rt2x00dev, EFUSE_DATA1,
 | |
| 					(u32 *)&rt2x00dev->eeprom[i + 4]);
 | |
| 	rt2800_register_read_lock(rt2x00dev, EFUSE_DATA0,
 | |
| 					(u32 *)&rt2x00dev->eeprom[i + 6]);
 | |
| 
 | |
| 	mutex_unlock(&rt2x00dev->csr_mutex);
 | |
| }
 | |
| 
 | |
| void rt2800_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
 | |
| {
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	for (i = 0; i < EEPROM_SIZE / sizeof(u16); i += 8)
 | |
| 		rt2800_efuse_read(rt2x00dev, i);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rt2800_read_eeprom_efuse);
 | |
| 
 | |
| int rt2800_validate_eeprom(struct rt2x00_dev *rt2x00dev)
 | |
| {
 | |
| 	u16 word;
 | |
| 	u8 *mac;
 | |
| 	u8 default_lna_gain;
 | |
| 
 | |
| 	/*
 | |
| 	 * Start validation of the data that has been read.
 | |
| 	 */
 | |
| 	mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
 | |
| 	if (!is_valid_ether_addr(mac)) {
 | |
| 		random_ether_addr(mac);
 | |
| 		EEPROM(rt2x00dev, "MAC: %pM\n", mac);
 | |
| 	}
 | |
| 
 | |
| 	rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
 | |
| 	if (word == 0xffff) {
 | |
| 		rt2x00_set_field16(&word, EEPROM_ANTENNA_RXPATH, 2);
 | |
| 		rt2x00_set_field16(&word, EEPROM_ANTENNA_TXPATH, 1);
 | |
| 		rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2820);
 | |
| 		rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
 | |
| 		EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
 | |
| 	} else if (rt2x00_rt(rt2x00dev, RT2860) ||
 | |
| 		   rt2x00_rt(rt2x00dev, RT2872)) {
 | |
| 		/*
 | |
| 		 * There is a max of 2 RX streams for RT28x0 series
 | |
| 		 */
 | |
| 		if (rt2x00_get_field16(word, EEPROM_ANTENNA_RXPATH) > 2)
 | |
| 			rt2x00_set_field16(&word, EEPROM_ANTENNA_RXPATH, 2);
 | |
| 		rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
 | |
| 	}
 | |
| 
 | |
| 	rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
 | |
| 	if (word == 0xffff) {
 | |
| 		rt2x00_set_field16(&word, EEPROM_NIC_HW_RADIO, 0);
 | |
| 		rt2x00_set_field16(&word, EEPROM_NIC_DYNAMIC_TX_AGC, 0);
 | |
| 		rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_BG, 0);
 | |
| 		rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_A, 0);
 | |
| 		rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
 | |
| 		rt2x00_set_field16(&word, EEPROM_NIC_BW40M_SB_BG, 0);
 | |
| 		rt2x00_set_field16(&word, EEPROM_NIC_BW40M_SB_A, 0);
 | |
| 		rt2x00_set_field16(&word, EEPROM_NIC_WPS_PBC, 0);
 | |
| 		rt2x00_set_field16(&word, EEPROM_NIC_BW40M_BG, 0);
 | |
| 		rt2x00_set_field16(&word, EEPROM_NIC_BW40M_A, 0);
 | |
| 		rt2x00_set_field16(&word, EEPROM_NIC_ANT_DIVERSITY, 0);
 | |
| 		rt2x00_set_field16(&word, EEPROM_NIC_DAC_TEST, 0);
 | |
| 		rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
 | |
| 		EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
 | |
| 	}
 | |
| 
 | |
| 	rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &word);
 | |
| 	if ((word & 0x00ff) == 0x00ff) {
 | |
| 		rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0);
 | |
| 		rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word);
 | |
| 		EEPROM(rt2x00dev, "Freq: 0x%04x\n", word);
 | |
| 	}
 | |
| 	if ((word & 0xff00) == 0xff00) {
 | |
| 		rt2x00_set_field16(&word, EEPROM_FREQ_LED_MODE,
 | |
| 				   LED_MODE_TXRX_ACTIVITY);
 | |
| 		rt2x00_set_field16(&word, EEPROM_FREQ_LED_POLARITY, 0);
 | |
| 		rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word);
 | |
| 		rt2x00_eeprom_write(rt2x00dev, EEPROM_LED1, 0x5555);
 | |
| 		rt2x00_eeprom_write(rt2x00dev, EEPROM_LED2, 0x2221);
 | |
| 		rt2x00_eeprom_write(rt2x00dev, EEPROM_LED3, 0xa9f8);
 | |
| 		EEPROM(rt2x00dev, "Led Mode: 0x%04x\n", word);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * During the LNA validation we are going to use
 | |
| 	 * lna0 as correct value. Note that EEPROM_LNA
 | |
| 	 * is never validated.
 | |
| 	 */
 | |
| 	rt2x00_eeprom_read(rt2x00dev, EEPROM_LNA, &word);
 | |
| 	default_lna_gain = rt2x00_get_field16(word, EEPROM_LNA_A0);
 | |
| 
 | |
| 	rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_BG, &word);
 | |
| 	if (abs(rt2x00_get_field16(word, EEPROM_RSSI_BG_OFFSET0)) > 10)
 | |
| 		rt2x00_set_field16(&word, EEPROM_RSSI_BG_OFFSET0, 0);
 | |
| 	if (abs(rt2x00_get_field16(word, EEPROM_RSSI_BG_OFFSET1)) > 10)
 | |
| 		rt2x00_set_field16(&word, EEPROM_RSSI_BG_OFFSET1, 0);
 | |
| 	rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_BG, word);
 | |
| 
 | |
| 	rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_BG2, &word);
 | |
| 	if (abs(rt2x00_get_field16(word, EEPROM_RSSI_BG2_OFFSET2)) > 10)
 | |
| 		rt2x00_set_field16(&word, EEPROM_RSSI_BG2_OFFSET2, 0);
 | |
| 	if (rt2x00_get_field16(word, EEPROM_RSSI_BG2_LNA_A1) == 0x00 ||
 | |
| 	    rt2x00_get_field16(word, EEPROM_RSSI_BG2_LNA_A1) == 0xff)
 | |
| 		rt2x00_set_field16(&word, EEPROM_RSSI_BG2_LNA_A1,
 | |
| 				   default_lna_gain);
 | |
| 	rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_BG2, word);
 | |
| 
 | |
| 	rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_A, &word);
 | |
| 	if (abs(rt2x00_get_field16(word, EEPROM_RSSI_A_OFFSET0)) > 10)
 | |
| 		rt2x00_set_field16(&word, EEPROM_RSSI_A_OFFSET0, 0);
 | |
| 	if (abs(rt2x00_get_field16(word, EEPROM_RSSI_A_OFFSET1)) > 10)
 | |
| 		rt2x00_set_field16(&word, EEPROM_RSSI_A_OFFSET1, 0);
 | |
| 	rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_A, word);
 | |
| 
 | |
| 	rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_A2, &word);
 | |
| 	if (abs(rt2x00_get_field16(word, EEPROM_RSSI_A2_OFFSET2)) > 10)
 | |
| 		rt2x00_set_field16(&word, EEPROM_RSSI_A2_OFFSET2, 0);
 | |
| 	if (rt2x00_get_field16(word, EEPROM_RSSI_A2_LNA_A2) == 0x00 ||
 | |
| 	    rt2x00_get_field16(word, EEPROM_RSSI_A2_LNA_A2) == 0xff)
 | |
| 		rt2x00_set_field16(&word, EEPROM_RSSI_A2_LNA_A2,
 | |
| 				   default_lna_gain);
 | |
| 	rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_A2, word);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rt2800_validate_eeprom);
 | |
| 
 | |
| int rt2800_init_eeprom(struct rt2x00_dev *rt2x00dev)
 | |
| {
 | |
| 	u32 reg;
 | |
| 	u16 value;
 | |
| 	u16 eeprom;
 | |
| 
 | |
| 	/*
 | |
| 	 * Read EEPROM word for configuration.
 | |
| 	 */
 | |
| 	rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
 | |
| 
 | |
| 	/*
 | |
| 	 * Identify RF chipset.
 | |
| 	 */
 | |
| 	value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
 | |
| 	rt2800_register_read(rt2x00dev, MAC_CSR0, ®);
 | |
| 
 | |
| 	rt2x00_set_chip(rt2x00dev, rt2x00_get_field32(reg, MAC_CSR0_CHIPSET),
 | |
| 			value, rt2x00_get_field32(reg, MAC_CSR0_REVISION));
 | |
| 
 | |
| 	if (!rt2x00_rt(rt2x00dev, RT2860) &&
 | |
| 	    !rt2x00_rt(rt2x00dev, RT2872) &&
 | |
| 	    !rt2x00_rt(rt2x00dev, RT2883) &&
 | |
| 	    !rt2x00_rt(rt2x00dev, RT3070) &&
 | |
| 	    !rt2x00_rt(rt2x00dev, RT3071) &&
 | |
| 	    !rt2x00_rt(rt2x00dev, RT3090) &&
 | |
| 	    !rt2x00_rt(rt2x00dev, RT3390) &&
 | |
| 	    !rt2x00_rt(rt2x00dev, RT3572)) {
 | |
| 		ERROR(rt2x00dev, "Invalid RT chipset detected.\n");
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 
 | |
| 	if (!rt2x00_rf(rt2x00dev, RF2820) &&
 | |
| 	    !rt2x00_rf(rt2x00dev, RF2850) &&
 | |
| 	    !rt2x00_rf(rt2x00dev, RF2720) &&
 | |
| 	    !rt2x00_rf(rt2x00dev, RF2750) &&
 | |
| 	    !rt2x00_rf(rt2x00dev, RF3020) &&
 | |
| 	    !rt2x00_rf(rt2x00dev, RF2020) &&
 | |
| 	    !rt2x00_rf(rt2x00dev, RF3021) &&
 | |
| 	    !rt2x00_rf(rt2x00dev, RF3022) &&
 | |
| 	    !rt2x00_rf(rt2x00dev, RF3052)) {
 | |
| 		ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Identify default antenna configuration.
 | |
| 	 */
 | |
| 	rt2x00dev->default_ant.tx =
 | |
| 	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TXPATH);
 | |
| 	rt2x00dev->default_ant.rx =
 | |
| 	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RXPATH);
 | |
| 
 | |
| 	/*
 | |
| 	 * Read frequency offset and RF programming sequence.
 | |
| 	 */
 | |
| 	rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &eeprom);
 | |
| 	rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET);
 | |
| 
 | |
| 	/*
 | |
| 	 * Read external LNA informations.
 | |
| 	 */
 | |
| 	rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
 | |
| 
 | |
| 	if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_A))
 | |
| 		__set_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
 | |
| 	if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_BG))
 | |
| 		__set_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);
 | |
| 
 | |
| 	/*
 | |
| 	 * Detect if this device has an hardware controlled radio.
 | |
| 	 */
 | |
| 	if (rt2x00_get_field16(eeprom, EEPROM_NIC_HW_RADIO))
 | |
| 		__set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
 | |
| 
 | |
| 	/*
 | |
| 	 * Store led settings, for correct led behaviour.
 | |
| 	 */
 | |
| #ifdef CONFIG_RT2X00_LIB_LEDS
 | |
| 	rt2800_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
 | |
| 	rt2800_init_led(rt2x00dev, &rt2x00dev->led_assoc, LED_TYPE_ASSOC);
 | |
| 	rt2800_init_led(rt2x00dev, &rt2x00dev->led_qual, LED_TYPE_QUALITY);
 | |
| 
 | |
| 	rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &rt2x00dev->led_mcu_reg);
 | |
| #endif /* CONFIG_RT2X00_LIB_LEDS */
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rt2800_init_eeprom);
 | |
| 
 | |
| /*
 | |
|  * RF value list for rt28xx
 | |
|  * Supports: 2.4 GHz (all) & 5.2 GHz (RF2850 & RF2750)
 | |
|  */
 | |
| static const struct rf_channel rf_vals[] = {
 | |
| 	{ 1,  0x18402ecc, 0x184c0786, 0x1816b455, 0x1800510b },
 | |
| 	{ 2,  0x18402ecc, 0x184c0786, 0x18168a55, 0x1800519f },
 | |
| 	{ 3,  0x18402ecc, 0x184c078a, 0x18168a55, 0x1800518b },
 | |
| 	{ 4,  0x18402ecc, 0x184c078a, 0x18168a55, 0x1800519f },
 | |
| 	{ 5,  0x18402ecc, 0x184c078e, 0x18168a55, 0x1800518b },
 | |
| 	{ 6,  0x18402ecc, 0x184c078e, 0x18168a55, 0x1800519f },
 | |
| 	{ 7,  0x18402ecc, 0x184c0792, 0x18168a55, 0x1800518b },
 | |
| 	{ 8,  0x18402ecc, 0x184c0792, 0x18168a55, 0x1800519f },
 | |
| 	{ 9,  0x18402ecc, 0x184c0796, 0x18168a55, 0x1800518b },
 | |
| 	{ 10, 0x18402ecc, 0x184c0796, 0x18168a55, 0x1800519f },
 | |
| 	{ 11, 0x18402ecc, 0x184c079a, 0x18168a55, 0x1800518b },
 | |
| 	{ 12, 0x18402ecc, 0x184c079a, 0x18168a55, 0x1800519f },
 | |
| 	{ 13, 0x18402ecc, 0x184c079e, 0x18168a55, 0x1800518b },
 | |
| 	{ 14, 0x18402ecc, 0x184c07a2, 0x18168a55, 0x18005193 },
 | |
| 
 | |
| 	/* 802.11 UNI / HyperLan 2 */
 | |
| 	{ 36, 0x18402ecc, 0x184c099a, 0x18158a55, 0x180ed1a3 },
 | |
| 	{ 38, 0x18402ecc, 0x184c099e, 0x18158a55, 0x180ed193 },
 | |
| 	{ 40, 0x18402ec8, 0x184c0682, 0x18158a55, 0x180ed183 },
 | |
| 	{ 44, 0x18402ec8, 0x184c0682, 0x18158a55, 0x180ed1a3 },
 | |
| 	{ 46, 0x18402ec8, 0x184c0686, 0x18158a55, 0x180ed18b },
 | |
| 	{ 48, 0x18402ec8, 0x184c0686, 0x18158a55, 0x180ed19b },
 | |
| 	{ 52, 0x18402ec8, 0x184c068a, 0x18158a55, 0x180ed193 },
 | |
| 	{ 54, 0x18402ec8, 0x184c068a, 0x18158a55, 0x180ed1a3 },
 | |
| 	{ 56, 0x18402ec8, 0x184c068e, 0x18158a55, 0x180ed18b },
 | |
| 	{ 60, 0x18402ec8, 0x184c0692, 0x18158a55, 0x180ed183 },
 | |
| 	{ 62, 0x18402ec8, 0x184c0692, 0x18158a55, 0x180ed193 },
 | |
| 	{ 64, 0x18402ec8, 0x184c0692, 0x18158a55, 0x180ed1a3 },
 | |
| 
 | |
| 	/* 802.11 HyperLan 2 */
 | |
| 	{ 100, 0x18402ec8, 0x184c06b2, 0x18178a55, 0x180ed783 },
 | |
| 	{ 102, 0x18402ec8, 0x184c06b2, 0x18578a55, 0x180ed793 },
 | |
| 	{ 104, 0x18402ec8, 0x185c06b2, 0x18578a55, 0x180ed1a3 },
 | |
| 	{ 108, 0x18402ecc, 0x185c0a32, 0x18578a55, 0x180ed193 },
 | |
| 	{ 110, 0x18402ecc, 0x184c0a36, 0x18178a55, 0x180ed183 },
 | |
| 	{ 112, 0x18402ecc, 0x184c0a36, 0x18178a55, 0x180ed19b },
 | |
| 	{ 116, 0x18402ecc, 0x184c0a3a, 0x18178a55, 0x180ed1a3 },
 | |
| 	{ 118, 0x18402ecc, 0x184c0a3e, 0x18178a55, 0x180ed193 },
 | |
| 	{ 120, 0x18402ec4, 0x184c0382, 0x18178a55, 0x180ed183 },
 | |
| 	{ 124, 0x18402ec4, 0x184c0382, 0x18178a55, 0x180ed193 },
 | |
| 	{ 126, 0x18402ec4, 0x184c0382, 0x18178a55, 0x180ed15b },
 | |
| 	{ 128, 0x18402ec4, 0x184c0382, 0x18178a55, 0x180ed1a3 },
 | |
| 	{ 132, 0x18402ec4, 0x184c0386, 0x18178a55, 0x180ed18b },
 | |
| 	{ 134, 0x18402ec4, 0x184c0386, 0x18178a55, 0x180ed193 },
 | |
| 	{ 136, 0x18402ec4, 0x184c0386, 0x18178a55, 0x180ed19b },
 | |
| 	{ 140, 0x18402ec4, 0x184c038a, 0x18178a55, 0x180ed183 },
 | |
| 
 | |
| 	/* 802.11 UNII */
 | |
| 	{ 149, 0x18402ec4, 0x184c038a, 0x18178a55, 0x180ed1a7 },
 | |
| 	{ 151, 0x18402ec4, 0x184c038e, 0x18178a55, 0x180ed187 },
 | |
| 	{ 153, 0x18402ec4, 0x184c038e, 0x18178a55, 0x180ed18f },
 | |
| 	{ 157, 0x18402ec4, 0x184c038e, 0x18178a55, 0x180ed19f },
 | |
| 	{ 159, 0x18402ec4, 0x184c038e, 0x18178a55, 0x180ed1a7 },
 | |
| 	{ 161, 0x18402ec4, 0x184c0392, 0x18178a55, 0x180ed187 },
 | |
| 	{ 165, 0x18402ec4, 0x184c0392, 0x18178a55, 0x180ed197 },
 | |
| 	{ 167, 0x18402ec4, 0x184c03d2, 0x18179855, 0x1815531f },
 | |
| 	{ 169, 0x18402ec4, 0x184c03d2, 0x18179855, 0x18155327 },
 | |
| 	{ 171, 0x18402ec4, 0x184c03d6, 0x18179855, 0x18155307 },
 | |
| 	{ 173, 0x18402ec4, 0x184c03d6, 0x18179855, 0x1815530f },
 | |
| 
 | |
| 	/* 802.11 Japan */
 | |
| 	{ 184, 0x15002ccc, 0x1500491e, 0x1509be55, 0x150c0a0b },
 | |
| 	{ 188, 0x15002ccc, 0x15004922, 0x1509be55, 0x150c0a13 },
 | |
| 	{ 192, 0x15002ccc, 0x15004926, 0x1509be55, 0x150c0a1b },
 | |
| 	{ 196, 0x15002ccc, 0x1500492a, 0x1509be55, 0x150c0a23 },
 | |
| 	{ 208, 0x15002ccc, 0x1500493a, 0x1509be55, 0x150c0a13 },
 | |
| 	{ 212, 0x15002ccc, 0x1500493e, 0x1509be55, 0x150c0a1b },
 | |
| 	{ 216, 0x15002ccc, 0x15004982, 0x1509be55, 0x150c0a23 },
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * RF value list for rt3xxx
 | |
|  * Supports: 2.4 GHz (all) & 5.2 GHz (RF3052)
 | |
|  */
 | |
| static const struct rf_channel rf_vals_3x[] = {
 | |
| 	{1,  241, 2, 2 },
 | |
| 	{2,  241, 2, 7 },
 | |
| 	{3,  242, 2, 2 },
 | |
| 	{4,  242, 2, 7 },
 | |
| 	{5,  243, 2, 2 },
 | |
| 	{6,  243, 2, 7 },
 | |
| 	{7,  244, 2, 2 },
 | |
| 	{8,  244, 2, 7 },
 | |
| 	{9,  245, 2, 2 },
 | |
| 	{10, 245, 2, 7 },
 | |
| 	{11, 246, 2, 2 },
 | |
| 	{12, 246, 2, 7 },
 | |
| 	{13, 247, 2, 2 },
 | |
| 	{14, 248, 2, 4 },
 | |
| 
 | |
| 	/* 802.11 UNI / HyperLan 2 */
 | |
| 	{36, 0x56, 0, 4},
 | |
| 	{38, 0x56, 0, 6},
 | |
| 	{40, 0x56, 0, 8},
 | |
| 	{44, 0x57, 0, 0},
 | |
| 	{46, 0x57, 0, 2},
 | |
| 	{48, 0x57, 0, 4},
 | |
| 	{52, 0x57, 0, 8},
 | |
| 	{54, 0x57, 0, 10},
 | |
| 	{56, 0x58, 0, 0},
 | |
| 	{60, 0x58, 0, 4},
 | |
| 	{62, 0x58, 0, 6},
 | |
| 	{64, 0x58, 0, 8},
 | |
| 
 | |
| 	/* 802.11 HyperLan 2 */
 | |
| 	{100, 0x5b, 0, 8},
 | |
| 	{102, 0x5b, 0, 10},
 | |
| 	{104, 0x5c, 0, 0},
 | |
| 	{108, 0x5c, 0, 4},
 | |
| 	{110, 0x5c, 0, 6},
 | |
| 	{112, 0x5c, 0, 8},
 | |
| 	{116, 0x5d, 0, 0},
 | |
| 	{118, 0x5d, 0, 2},
 | |
| 	{120, 0x5d, 0, 4},
 | |
| 	{124, 0x5d, 0, 8},
 | |
| 	{126, 0x5d, 0, 10},
 | |
| 	{128, 0x5e, 0, 0},
 | |
| 	{132, 0x5e, 0, 4},
 | |
| 	{134, 0x5e, 0, 6},
 | |
| 	{136, 0x5e, 0, 8},
 | |
| 	{140, 0x5f, 0, 0},
 | |
| 
 | |
| 	/* 802.11 UNII */
 | |
| 	{149, 0x5f, 0, 9},
 | |
| 	{151, 0x5f, 0, 11},
 | |
| 	{153, 0x60, 0, 1},
 | |
| 	{157, 0x60, 0, 5},
 | |
| 	{159, 0x60, 0, 7},
 | |
| 	{161, 0x60, 0, 9},
 | |
| 	{165, 0x61, 0, 1},
 | |
| 	{167, 0x61, 0, 3},
 | |
| 	{169, 0x61, 0, 5},
 | |
| 	{171, 0x61, 0, 7},
 | |
| 	{173, 0x61, 0, 9},
 | |
| };
 | |
| 
 | |
| int rt2800_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
 | |
| {
 | |
| 	struct hw_mode_spec *spec = &rt2x00dev->spec;
 | |
| 	struct channel_info *info;
 | |
| 	char *tx_power1;
 | |
| 	char *tx_power2;
 | |
| 	unsigned int i;
 | |
| 	u16 eeprom;
 | |
| 
 | |
| 	/*
 | |
| 	 * Disable powersaving as default on PCI devices.
 | |
| 	 */
 | |
| 	if (rt2x00_is_pci(rt2x00dev) || rt2x00_is_soc(rt2x00dev))
 | |
| 		rt2x00dev->hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT;
 | |
| 
 | |
| 	/*
 | |
| 	 * Initialize all hw fields.
 | |
| 	 */
 | |
| 	rt2x00dev->hw->flags =
 | |
| 	    IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
 | |
| 	    IEEE80211_HW_SIGNAL_DBM |
 | |
| 	    IEEE80211_HW_SUPPORTS_PS |
 | |
| 	    IEEE80211_HW_PS_NULLFUNC_STACK |
 | |
| 	    IEEE80211_HW_AMPDU_AGGREGATION;
 | |
| 
 | |
| 	SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
 | |
| 	SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
 | |
| 				rt2x00_eeprom_addr(rt2x00dev,
 | |
| 						   EEPROM_MAC_ADDR_0));
 | |
| 
 | |
| 	/*
 | |
| 	 * As rt2800 has a global fallback table we cannot specify
 | |
| 	 * more then one tx rate per frame but since the hw will
 | |
| 	 * try several rates (based on the fallback table) we should
 | |
| 	 * still initialize max_rates to the maximum number of rates
 | |
| 	 * we are going to try. Otherwise mac80211 will truncate our
 | |
| 	 * reported tx rates and the rc algortihm will end up with
 | |
| 	 * incorrect data.
 | |
| 	 */
 | |
| 	rt2x00dev->hw->max_rates = 7;
 | |
| 	rt2x00dev->hw->max_rate_tries = 1;
 | |
| 
 | |
| 	rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
 | |
| 
 | |
| 	/*
 | |
| 	 * Initialize hw_mode information.
 | |
| 	 */
 | |
| 	spec->supported_bands = SUPPORT_BAND_2GHZ;
 | |
| 	spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
 | |
| 
 | |
| 	if (rt2x00_rf(rt2x00dev, RF2820) ||
 | |
| 	    rt2x00_rf(rt2x00dev, RF2720)) {
 | |
| 		spec->num_channels = 14;
 | |
| 		spec->channels = rf_vals;
 | |
| 	} else if (rt2x00_rf(rt2x00dev, RF2850) ||
 | |
| 		   rt2x00_rf(rt2x00dev, RF2750)) {
 | |
| 		spec->supported_bands |= SUPPORT_BAND_5GHZ;
 | |
| 		spec->num_channels = ARRAY_SIZE(rf_vals);
 | |
| 		spec->channels = rf_vals;
 | |
| 	} else if (rt2x00_rf(rt2x00dev, RF3020) ||
 | |
| 		   rt2x00_rf(rt2x00dev, RF2020) ||
 | |
| 		   rt2x00_rf(rt2x00dev, RF3021) ||
 | |
| 		   rt2x00_rf(rt2x00dev, RF3022)) {
 | |
| 		spec->num_channels = 14;
 | |
| 		spec->channels = rf_vals_3x;
 | |
| 	} else if (rt2x00_rf(rt2x00dev, RF3052)) {
 | |
| 		spec->supported_bands |= SUPPORT_BAND_5GHZ;
 | |
| 		spec->num_channels = ARRAY_SIZE(rf_vals_3x);
 | |
| 		spec->channels = rf_vals_3x;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Initialize HT information.
 | |
| 	 */
 | |
| 	if (!rt2x00_rf(rt2x00dev, RF2020))
 | |
| 		spec->ht.ht_supported = true;
 | |
| 	else
 | |
| 		spec->ht.ht_supported = false;
 | |
| 
 | |
| 	spec->ht.cap =
 | |
| 	    IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
 | |
| 	    IEEE80211_HT_CAP_GRN_FLD |
 | |
| 	    IEEE80211_HT_CAP_SGI_20 |
 | |
| 	    IEEE80211_HT_CAP_SGI_40;
 | |
| 
 | |
| 	if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TXPATH) >= 2)
 | |
| 		spec->ht.cap |= IEEE80211_HT_CAP_TX_STBC;
 | |
| 
 | |
| 	spec->ht.cap |=
 | |
| 	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RXPATH) <<
 | |
| 		IEEE80211_HT_CAP_RX_STBC_SHIFT;
 | |
| 
 | |
| 	spec->ht.ampdu_factor = 3;
 | |
| 	spec->ht.ampdu_density = 4;
 | |
| 	spec->ht.mcs.tx_params =
 | |
| 	    IEEE80211_HT_MCS_TX_DEFINED |
 | |
| 	    IEEE80211_HT_MCS_TX_RX_DIFF |
 | |
| 	    ((rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TXPATH) - 1) <<
 | |
| 		IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT);
 | |
| 
 | |
| 	switch (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RXPATH)) {
 | |
| 	case 3:
 | |
| 		spec->ht.mcs.rx_mask[2] = 0xff;
 | |
| 	case 2:
 | |
| 		spec->ht.mcs.rx_mask[1] = 0xff;
 | |
| 	case 1:
 | |
| 		spec->ht.mcs.rx_mask[0] = 0xff;
 | |
| 		spec->ht.mcs.rx_mask[4] = 0x1; /* MCS32 */
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Create channel information array
 | |
| 	 */
 | |
| 	info = kzalloc(spec->num_channels * sizeof(*info), GFP_KERNEL);
 | |
| 	if (!info)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	spec->channels_info = info;
 | |
| 
 | |
| 	tx_power1 = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_BG1);
 | |
| 	tx_power2 = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_BG2);
 | |
| 
 | |
| 	for (i = 0; i < 14; i++) {
 | |
| 		info[i].tx_power1 = TXPOWER_G_FROM_DEV(tx_power1[i]);
 | |
| 		info[i].tx_power2 = TXPOWER_G_FROM_DEV(tx_power2[i]);
 | |
| 	}
 | |
| 
 | |
| 	if (spec->num_channels > 14) {
 | |
| 		tx_power1 = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A1);
 | |
| 		tx_power2 = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A2);
 | |
| 
 | |
| 		for (i = 14; i < spec->num_channels; i++) {
 | |
| 			info[i].tx_power1 = TXPOWER_A_FROM_DEV(tx_power1[i]);
 | |
| 			info[i].tx_power2 = TXPOWER_A_FROM_DEV(tx_power2[i]);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rt2800_probe_hw_mode);
 | |
| 
 | |
| /*
 | |
|  * IEEE80211 stack callback functions.
 | |
|  */
 | |
| void rt2800_get_tkip_seq(struct ieee80211_hw *hw, u8 hw_key_idx, u32 *iv32,
 | |
| 			 u16 *iv16)
 | |
| {
 | |
| 	struct rt2x00_dev *rt2x00dev = hw->priv;
 | |
| 	struct mac_iveiv_entry iveiv_entry;
 | |
| 	u32 offset;
 | |
| 
 | |
| 	offset = MAC_IVEIV_ENTRY(hw_key_idx);
 | |
| 	rt2800_register_multiread(rt2x00dev, offset,
 | |
| 				      &iveiv_entry, sizeof(iveiv_entry));
 | |
| 
 | |
| 	memcpy(iv16, &iveiv_entry.iv[0], sizeof(*iv16));
 | |
| 	memcpy(iv32, &iveiv_entry.iv[4], sizeof(*iv32));
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rt2800_get_tkip_seq);
 | |
| 
 | |
| int rt2800_set_rts_threshold(struct ieee80211_hw *hw, u32 value)
 | |
| {
 | |
| 	struct rt2x00_dev *rt2x00dev = hw->priv;
 | |
| 	u32 reg;
 | |
| 	bool enabled = (value < IEEE80211_MAX_RTS_THRESHOLD);
 | |
| 
 | |
| 	rt2800_register_read(rt2x00dev, TX_RTS_CFG, ®);
 | |
| 	rt2x00_set_field32(®, TX_RTS_CFG_RTS_THRES, value);
 | |
| 	rt2800_register_write(rt2x00dev, TX_RTS_CFG, reg);
 | |
| 
 | |
| 	rt2800_register_read(rt2x00dev, CCK_PROT_CFG, ®);
 | |
| 	rt2x00_set_field32(®, CCK_PROT_CFG_RTS_TH_EN, enabled);
 | |
| 	rt2800_register_write(rt2x00dev, CCK_PROT_CFG, reg);
 | |
| 
 | |
| 	rt2800_register_read(rt2x00dev, OFDM_PROT_CFG, ®);
 | |
| 	rt2x00_set_field32(®, OFDM_PROT_CFG_RTS_TH_EN, enabled);
 | |
| 	rt2800_register_write(rt2x00dev, OFDM_PROT_CFG, reg);
 | |
| 
 | |
| 	rt2800_register_read(rt2x00dev, MM20_PROT_CFG, ®);
 | |
| 	rt2x00_set_field32(®, MM20_PROT_CFG_RTS_TH_EN, enabled);
 | |
| 	rt2800_register_write(rt2x00dev, MM20_PROT_CFG, reg);
 | |
| 
 | |
| 	rt2800_register_read(rt2x00dev, MM40_PROT_CFG, ®);
 | |
| 	rt2x00_set_field32(®, MM40_PROT_CFG_RTS_TH_EN, enabled);
 | |
| 	rt2800_register_write(rt2x00dev, MM40_PROT_CFG, reg);
 | |
| 
 | |
| 	rt2800_register_read(rt2x00dev, GF20_PROT_CFG, ®);
 | |
| 	rt2x00_set_field32(®, GF20_PROT_CFG_RTS_TH_EN, enabled);
 | |
| 	rt2800_register_write(rt2x00dev, GF20_PROT_CFG, reg);
 | |
| 
 | |
| 	rt2800_register_read(rt2x00dev, GF40_PROT_CFG, ®);
 | |
| 	rt2x00_set_field32(®, GF40_PROT_CFG_RTS_TH_EN, enabled);
 | |
| 	rt2800_register_write(rt2x00dev, GF40_PROT_CFG, reg);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rt2800_set_rts_threshold);
 | |
| 
 | |
| int rt2800_conf_tx(struct ieee80211_hw *hw, u16 queue_idx,
 | |
| 		   const struct ieee80211_tx_queue_params *params)
 | |
| {
 | |
| 	struct rt2x00_dev *rt2x00dev = hw->priv;
 | |
| 	struct data_queue *queue;
 | |
| 	struct rt2x00_field32 field;
 | |
| 	int retval;
 | |
| 	u32 reg;
 | |
| 	u32 offset;
 | |
| 
 | |
| 	/*
 | |
| 	 * First pass the configuration through rt2x00lib, that will
 | |
| 	 * update the queue settings and validate the input. After that
 | |
| 	 * we are free to update the registers based on the value
 | |
| 	 * in the queue parameter.
 | |
| 	 */
 | |
| 	retval = rt2x00mac_conf_tx(hw, queue_idx, params);
 | |
| 	if (retval)
 | |
| 		return retval;
 | |
| 
 | |
| 	/*
 | |
| 	 * We only need to perform additional register initialization
 | |
| 	 * for WMM queues/
 | |
| 	 */
 | |
| 	if (queue_idx >= 4)
 | |
| 		return 0;
 | |
| 
 | |
| 	queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
 | |
| 
 | |
| 	/* Update WMM TXOP register */
 | |
| 	offset = WMM_TXOP0_CFG + (sizeof(u32) * (!!(queue_idx & 2)));
 | |
| 	field.bit_offset = (queue_idx & 1) * 16;
 | |
| 	field.bit_mask = 0xffff << field.bit_offset;
 | |
| 
 | |
| 	rt2800_register_read(rt2x00dev, offset, ®);
 | |
| 	rt2x00_set_field32(®, field, queue->txop);
 | |
| 	rt2800_register_write(rt2x00dev, offset, reg);
 | |
| 
 | |
| 	/* Update WMM registers */
 | |
| 	field.bit_offset = queue_idx * 4;
 | |
| 	field.bit_mask = 0xf << field.bit_offset;
 | |
| 
 | |
| 	rt2800_register_read(rt2x00dev, WMM_AIFSN_CFG, ®);
 | |
| 	rt2x00_set_field32(®, field, queue->aifs);
 | |
| 	rt2800_register_write(rt2x00dev, WMM_AIFSN_CFG, reg);
 | |
| 
 | |
| 	rt2800_register_read(rt2x00dev, WMM_CWMIN_CFG, ®);
 | |
| 	rt2x00_set_field32(®, field, queue->cw_min);
 | |
| 	rt2800_register_write(rt2x00dev, WMM_CWMIN_CFG, reg);
 | |
| 
 | |
| 	rt2800_register_read(rt2x00dev, WMM_CWMAX_CFG, ®);
 | |
| 	rt2x00_set_field32(®, field, queue->cw_max);
 | |
| 	rt2800_register_write(rt2x00dev, WMM_CWMAX_CFG, reg);
 | |
| 
 | |
| 	/* Update EDCA registers */
 | |
| 	offset = EDCA_AC0_CFG + (sizeof(u32) * queue_idx);
 | |
| 
 | |
| 	rt2800_register_read(rt2x00dev, offset, ®);
 | |
| 	rt2x00_set_field32(®, EDCA_AC0_CFG_TX_OP, queue->txop);
 | |
| 	rt2x00_set_field32(®, EDCA_AC0_CFG_AIFSN, queue->aifs);
 | |
| 	rt2x00_set_field32(®, EDCA_AC0_CFG_CWMIN, queue->cw_min);
 | |
| 	rt2x00_set_field32(®, EDCA_AC0_CFG_CWMAX, queue->cw_max);
 | |
| 	rt2800_register_write(rt2x00dev, offset, reg);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rt2800_conf_tx);
 | |
| 
 | |
| u64 rt2800_get_tsf(struct ieee80211_hw *hw)
 | |
| {
 | |
| 	struct rt2x00_dev *rt2x00dev = hw->priv;
 | |
| 	u64 tsf;
 | |
| 	u32 reg;
 | |
| 
 | |
| 	rt2800_register_read(rt2x00dev, TSF_TIMER_DW1, ®);
 | |
| 	tsf = (u64) rt2x00_get_field32(reg, TSF_TIMER_DW1_HIGH_WORD) << 32;
 | |
| 	rt2800_register_read(rt2x00dev, TSF_TIMER_DW0, ®);
 | |
| 	tsf |= rt2x00_get_field32(reg, TSF_TIMER_DW0_LOW_WORD);
 | |
| 
 | |
| 	return tsf;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rt2800_get_tsf);
 | |
| 
 | |
| int rt2800_ampdu_action(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
 | |
| 			enum ieee80211_ampdu_mlme_action action,
 | |
| 			struct ieee80211_sta *sta, u16 tid, u16 *ssn)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	switch (action) {
 | |
| 	case IEEE80211_AMPDU_RX_START:
 | |
| 	case IEEE80211_AMPDU_RX_STOP:
 | |
| 		/* we don't support RX aggregation yet */
 | |
| 		ret = -ENOTSUPP;
 | |
| 		break;
 | |
| 	case IEEE80211_AMPDU_TX_START:
 | |
| 		ieee80211_start_tx_ba_cb_irqsafe(vif, sta->addr, tid);
 | |
| 		break;
 | |
| 	case IEEE80211_AMPDU_TX_STOP:
 | |
| 		ieee80211_stop_tx_ba_cb_irqsafe(vif, sta->addr, tid);
 | |
| 		break;
 | |
| 	case IEEE80211_AMPDU_TX_OPERATIONAL:
 | |
| 		break;
 | |
| 	default:
 | |
| 		WARNING((struct rt2x00_dev *)hw->priv, "Unknown AMPDU action\n");
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rt2800_ampdu_action);
 | |
| 
 | |
| MODULE_AUTHOR(DRV_PROJECT ", Bartlomiej Zolnierkiewicz");
 | |
| MODULE_VERSION(DRV_VERSION);
 | |
| MODULE_DESCRIPTION("Ralink RT2800 library");
 | |
| MODULE_LICENSE("GPL");
 |