 477e54eba4
			
		
	
	
	477e54eba4
	
	
	
		
			
			Insertion of the Falcon hash is unreliable. Signed-off-by: Ben Hutchings <bhutchings@solarflare.com> Signed-off-by: David S. Miller <davem@davemloft.net>
		
			
				
	
	
		
			1886 lines
		
	
	
	
		
			51 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1886 lines
		
	
	
	
		
			51 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /****************************************************************************
 | |
|  * Driver for Solarflare Solarstorm network controllers and boards
 | |
|  * Copyright 2005-2006 Fen Systems Ltd.
 | |
|  * Copyright 2006-2009 Solarflare Communications Inc.
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify it
 | |
|  * under the terms of the GNU General Public License version 2 as published
 | |
|  * by the Free Software Foundation, incorporated herein by reference.
 | |
|  */
 | |
| 
 | |
| #include <linux/bitops.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/pci.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/seq_file.h>
 | |
| #include <linux/i2c.h>
 | |
| #include <linux/mii.h>
 | |
| #include <linux/slab.h>
 | |
| #include "net_driver.h"
 | |
| #include "bitfield.h"
 | |
| #include "efx.h"
 | |
| #include "mac.h"
 | |
| #include "spi.h"
 | |
| #include "nic.h"
 | |
| #include "regs.h"
 | |
| #include "io.h"
 | |
| #include "mdio_10g.h"
 | |
| #include "phy.h"
 | |
| #include "workarounds.h"
 | |
| 
 | |
| /* Hardware control for SFC4000 (aka Falcon). */
 | |
| 
 | |
| static const unsigned int
 | |
| /* "Large" EEPROM device: Atmel AT25640 or similar
 | |
|  * 8 KB, 16-bit address, 32 B write block */
 | |
| large_eeprom_type = ((13 << SPI_DEV_TYPE_SIZE_LBN)
 | |
| 		     | (2 << SPI_DEV_TYPE_ADDR_LEN_LBN)
 | |
| 		     | (5 << SPI_DEV_TYPE_BLOCK_SIZE_LBN)),
 | |
| /* Default flash device: Atmel AT25F1024
 | |
|  * 128 KB, 24-bit address, 32 KB erase block, 256 B write block */
 | |
| default_flash_type = ((17 << SPI_DEV_TYPE_SIZE_LBN)
 | |
| 		      | (3 << SPI_DEV_TYPE_ADDR_LEN_LBN)
 | |
| 		      | (0x52 << SPI_DEV_TYPE_ERASE_CMD_LBN)
 | |
| 		      | (15 << SPI_DEV_TYPE_ERASE_SIZE_LBN)
 | |
| 		      | (8 << SPI_DEV_TYPE_BLOCK_SIZE_LBN));
 | |
| 
 | |
| /**************************************************************************
 | |
|  *
 | |
|  * I2C bus - this is a bit-bashing interface using GPIO pins
 | |
|  * Note that it uses the output enables to tristate the outputs
 | |
|  * SDA is the data pin and SCL is the clock
 | |
|  *
 | |
|  **************************************************************************
 | |
|  */
 | |
| static void falcon_setsda(void *data, int state)
 | |
| {
 | |
| 	struct efx_nic *efx = (struct efx_nic *)data;
 | |
| 	efx_oword_t reg;
 | |
| 
 | |
| 	efx_reado(efx, ®, FR_AB_GPIO_CTL);
 | |
| 	EFX_SET_OWORD_FIELD(reg, FRF_AB_GPIO3_OEN, !state);
 | |
| 	efx_writeo(efx, ®, FR_AB_GPIO_CTL);
 | |
| }
 | |
| 
 | |
| static void falcon_setscl(void *data, int state)
 | |
| {
 | |
| 	struct efx_nic *efx = (struct efx_nic *)data;
 | |
| 	efx_oword_t reg;
 | |
| 
 | |
| 	efx_reado(efx, ®, FR_AB_GPIO_CTL);
 | |
| 	EFX_SET_OWORD_FIELD(reg, FRF_AB_GPIO0_OEN, !state);
 | |
| 	efx_writeo(efx, ®, FR_AB_GPIO_CTL);
 | |
| }
 | |
| 
 | |
| static int falcon_getsda(void *data)
 | |
| {
 | |
| 	struct efx_nic *efx = (struct efx_nic *)data;
 | |
| 	efx_oword_t reg;
 | |
| 
 | |
| 	efx_reado(efx, ®, FR_AB_GPIO_CTL);
 | |
| 	return EFX_OWORD_FIELD(reg, FRF_AB_GPIO3_IN);
 | |
| }
 | |
| 
 | |
| static int falcon_getscl(void *data)
 | |
| {
 | |
| 	struct efx_nic *efx = (struct efx_nic *)data;
 | |
| 	efx_oword_t reg;
 | |
| 
 | |
| 	efx_reado(efx, ®, FR_AB_GPIO_CTL);
 | |
| 	return EFX_OWORD_FIELD(reg, FRF_AB_GPIO0_IN);
 | |
| }
 | |
| 
 | |
| static struct i2c_algo_bit_data falcon_i2c_bit_operations = {
 | |
| 	.setsda		= falcon_setsda,
 | |
| 	.setscl		= falcon_setscl,
 | |
| 	.getsda		= falcon_getsda,
 | |
| 	.getscl		= falcon_getscl,
 | |
| 	.udelay		= 5,
 | |
| 	/* Wait up to 50 ms for slave to let us pull SCL high */
 | |
| 	.timeout	= DIV_ROUND_UP(HZ, 20),
 | |
| };
 | |
| 
 | |
| static void falcon_push_irq_moderation(struct efx_channel *channel)
 | |
| {
 | |
| 	efx_dword_t timer_cmd;
 | |
| 	struct efx_nic *efx = channel->efx;
 | |
| 
 | |
| 	/* Set timer register */
 | |
| 	if (channel->irq_moderation) {
 | |
| 		EFX_POPULATE_DWORD_2(timer_cmd,
 | |
| 				     FRF_AB_TC_TIMER_MODE,
 | |
| 				     FFE_BB_TIMER_MODE_INT_HLDOFF,
 | |
| 				     FRF_AB_TC_TIMER_VAL,
 | |
| 				     channel->irq_moderation - 1);
 | |
| 	} else {
 | |
| 		EFX_POPULATE_DWORD_2(timer_cmd,
 | |
| 				     FRF_AB_TC_TIMER_MODE,
 | |
| 				     FFE_BB_TIMER_MODE_DIS,
 | |
| 				     FRF_AB_TC_TIMER_VAL, 0);
 | |
| 	}
 | |
| 	BUILD_BUG_ON(FR_AA_TIMER_COMMAND_KER != FR_BZ_TIMER_COMMAND_P0);
 | |
| 	efx_writed_page_locked(efx, &timer_cmd, FR_BZ_TIMER_COMMAND_P0,
 | |
| 			       channel->channel);
 | |
| }
 | |
| 
 | |
| static void falcon_deconfigure_mac_wrapper(struct efx_nic *efx);
 | |
| 
 | |
| static void falcon_prepare_flush(struct efx_nic *efx)
 | |
| {
 | |
| 	falcon_deconfigure_mac_wrapper(efx);
 | |
| 
 | |
| 	/* Wait for the tx and rx fifo's to get to the next packet boundary
 | |
| 	 * (~1ms without back-pressure), then to drain the remainder of the
 | |
| 	 * fifo's at data path speeds (negligible), with a healthy margin. */
 | |
| 	msleep(10);
 | |
| }
 | |
| 
 | |
| /* Acknowledge a legacy interrupt from Falcon
 | |
|  *
 | |
|  * This acknowledges a legacy (not MSI) interrupt via INT_ACK_KER_REG.
 | |
|  *
 | |
|  * Due to SFC bug 3706 (silicon revision <=A1) reads can be duplicated in the
 | |
|  * BIU. Interrupt acknowledge is read sensitive so must write instead
 | |
|  * (then read to ensure the BIU collector is flushed)
 | |
|  *
 | |
|  * NB most hardware supports MSI interrupts
 | |
|  */
 | |
| inline void falcon_irq_ack_a1(struct efx_nic *efx)
 | |
| {
 | |
| 	efx_dword_t reg;
 | |
| 
 | |
| 	EFX_POPULATE_DWORD_1(reg, FRF_AA_INT_ACK_KER_FIELD, 0xb7eb7e);
 | |
| 	efx_writed(efx, ®, FR_AA_INT_ACK_KER);
 | |
| 	efx_readd(efx, ®, FR_AA_WORK_AROUND_BROKEN_PCI_READS);
 | |
| }
 | |
| 
 | |
| 
 | |
| irqreturn_t falcon_legacy_interrupt_a1(int irq, void *dev_id)
 | |
| {
 | |
| 	struct efx_nic *efx = dev_id;
 | |
| 	efx_oword_t *int_ker = efx->irq_status.addr;
 | |
| 	struct efx_channel *channel;
 | |
| 	int syserr;
 | |
| 	int queues;
 | |
| 
 | |
| 	/* Check to see if this is our interrupt.  If it isn't, we
 | |
| 	 * exit without having touched the hardware.
 | |
| 	 */
 | |
| 	if (unlikely(EFX_OWORD_IS_ZERO(*int_ker))) {
 | |
| 		netif_vdbg(efx, intr, efx->net_dev,
 | |
| 			   "IRQ %d on CPU %d not for me\n", irq,
 | |
| 			   raw_smp_processor_id());
 | |
| 		return IRQ_NONE;
 | |
| 	}
 | |
| 	efx->last_irq_cpu = raw_smp_processor_id();
 | |
| 	netif_vdbg(efx, intr, efx->net_dev,
 | |
| 		   "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
 | |
| 		   irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
 | |
| 
 | |
| 	/* Determine interrupting queues, clear interrupt status
 | |
| 	 * register and acknowledge the device interrupt.
 | |
| 	 */
 | |
| 	BUILD_BUG_ON(FSF_AZ_NET_IVEC_INT_Q_WIDTH > EFX_MAX_CHANNELS);
 | |
| 	queues = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_INT_Q);
 | |
| 
 | |
| 	/* Check to see if we have a serious error condition */
 | |
| 	if (queues & (1U << efx->fatal_irq_level)) {
 | |
| 		syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
 | |
| 		if (unlikely(syserr))
 | |
| 			return efx_nic_fatal_interrupt(efx);
 | |
| 	}
 | |
| 
 | |
| 	EFX_ZERO_OWORD(*int_ker);
 | |
| 	wmb(); /* Ensure the vector is cleared before interrupt ack */
 | |
| 	falcon_irq_ack_a1(efx);
 | |
| 
 | |
| 	/* Schedule processing of any interrupting queues */
 | |
| 	channel = &efx->channel[0];
 | |
| 	while (queues) {
 | |
| 		if (queues & 0x01)
 | |
| 			efx_schedule_channel(channel);
 | |
| 		channel++;
 | |
| 		queues >>= 1;
 | |
| 	}
 | |
| 
 | |
| 	return IRQ_HANDLED;
 | |
| }
 | |
| /**************************************************************************
 | |
|  *
 | |
|  * EEPROM/flash
 | |
|  *
 | |
|  **************************************************************************
 | |
|  */
 | |
| 
 | |
| #define FALCON_SPI_MAX_LEN sizeof(efx_oword_t)
 | |
| 
 | |
| static int falcon_spi_poll(struct efx_nic *efx)
 | |
| {
 | |
| 	efx_oword_t reg;
 | |
| 	efx_reado(efx, ®, FR_AB_EE_SPI_HCMD);
 | |
| 	return EFX_OWORD_FIELD(reg, FRF_AB_EE_SPI_HCMD_CMD_EN) ? -EBUSY : 0;
 | |
| }
 | |
| 
 | |
| /* Wait for SPI command completion */
 | |
| static int falcon_spi_wait(struct efx_nic *efx)
 | |
| {
 | |
| 	/* Most commands will finish quickly, so we start polling at
 | |
| 	 * very short intervals.  Sometimes the command may have to
 | |
| 	 * wait for VPD or expansion ROM access outside of our
 | |
| 	 * control, so we allow up to 100 ms. */
 | |
| 	unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 10);
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < 10; i++) {
 | |
| 		if (!falcon_spi_poll(efx))
 | |
| 			return 0;
 | |
| 		udelay(10);
 | |
| 	}
 | |
| 
 | |
| 	for (;;) {
 | |
| 		if (!falcon_spi_poll(efx))
 | |
| 			return 0;
 | |
| 		if (time_after_eq(jiffies, timeout)) {
 | |
| 			netif_err(efx, hw, efx->net_dev,
 | |
| 				  "timed out waiting for SPI\n");
 | |
| 			return -ETIMEDOUT;
 | |
| 		}
 | |
| 		schedule_timeout_uninterruptible(1);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| int falcon_spi_cmd(struct efx_nic *efx, const struct efx_spi_device *spi,
 | |
| 		   unsigned int command, int address,
 | |
| 		   const void *in, void *out, size_t len)
 | |
| {
 | |
| 	bool addressed = (address >= 0);
 | |
| 	bool reading = (out != NULL);
 | |
| 	efx_oword_t reg;
 | |
| 	int rc;
 | |
| 
 | |
| 	/* Input validation */
 | |
| 	if (len > FALCON_SPI_MAX_LEN)
 | |
| 		return -EINVAL;
 | |
| 	BUG_ON(!mutex_is_locked(&efx->spi_lock));
 | |
| 
 | |
| 	/* Check that previous command is not still running */
 | |
| 	rc = falcon_spi_poll(efx);
 | |
| 	if (rc)
 | |
| 		return rc;
 | |
| 
 | |
| 	/* Program address register, if we have an address */
 | |
| 	if (addressed) {
 | |
| 		EFX_POPULATE_OWORD_1(reg, FRF_AB_EE_SPI_HADR_ADR, address);
 | |
| 		efx_writeo(efx, ®, FR_AB_EE_SPI_HADR);
 | |
| 	}
 | |
| 
 | |
| 	/* Program data register, if we have data */
 | |
| 	if (in != NULL) {
 | |
| 		memcpy(®, in, len);
 | |
| 		efx_writeo(efx, ®, FR_AB_EE_SPI_HDATA);
 | |
| 	}
 | |
| 
 | |
| 	/* Issue read/write command */
 | |
| 	EFX_POPULATE_OWORD_7(reg,
 | |
| 			     FRF_AB_EE_SPI_HCMD_CMD_EN, 1,
 | |
| 			     FRF_AB_EE_SPI_HCMD_SF_SEL, spi->device_id,
 | |
| 			     FRF_AB_EE_SPI_HCMD_DABCNT, len,
 | |
| 			     FRF_AB_EE_SPI_HCMD_READ, reading,
 | |
| 			     FRF_AB_EE_SPI_HCMD_DUBCNT, 0,
 | |
| 			     FRF_AB_EE_SPI_HCMD_ADBCNT,
 | |
| 			     (addressed ? spi->addr_len : 0),
 | |
| 			     FRF_AB_EE_SPI_HCMD_ENC, command);
 | |
| 	efx_writeo(efx, ®, FR_AB_EE_SPI_HCMD);
 | |
| 
 | |
| 	/* Wait for read/write to complete */
 | |
| 	rc = falcon_spi_wait(efx);
 | |
| 	if (rc)
 | |
| 		return rc;
 | |
| 
 | |
| 	/* Read data */
 | |
| 	if (out != NULL) {
 | |
| 		efx_reado(efx, ®, FR_AB_EE_SPI_HDATA);
 | |
| 		memcpy(out, ®, len);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static size_t
 | |
| falcon_spi_write_limit(const struct efx_spi_device *spi, size_t start)
 | |
| {
 | |
| 	return min(FALCON_SPI_MAX_LEN,
 | |
| 		   (spi->block_size - (start & (spi->block_size - 1))));
 | |
| }
 | |
| 
 | |
| static inline u8
 | |
| efx_spi_munge_command(const struct efx_spi_device *spi,
 | |
| 		      const u8 command, const unsigned int address)
 | |
| {
 | |
| 	return command | (((address >> 8) & spi->munge_address) << 3);
 | |
| }
 | |
| 
 | |
| /* Wait up to 10 ms for buffered write completion */
 | |
| int
 | |
| falcon_spi_wait_write(struct efx_nic *efx, const struct efx_spi_device *spi)
 | |
| {
 | |
| 	unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 100);
 | |
| 	u8 status;
 | |
| 	int rc;
 | |
| 
 | |
| 	for (;;) {
 | |
| 		rc = falcon_spi_cmd(efx, spi, SPI_RDSR, -1, NULL,
 | |
| 				    &status, sizeof(status));
 | |
| 		if (rc)
 | |
| 			return rc;
 | |
| 		if (!(status & SPI_STATUS_NRDY))
 | |
| 			return 0;
 | |
| 		if (time_after_eq(jiffies, timeout)) {
 | |
| 			netif_err(efx, hw, efx->net_dev,
 | |
| 				  "SPI write timeout on device %d"
 | |
| 				  " last status=0x%02x\n",
 | |
| 				  spi->device_id, status);
 | |
| 			return -ETIMEDOUT;
 | |
| 		}
 | |
| 		schedule_timeout_uninterruptible(1);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| int falcon_spi_read(struct efx_nic *efx, const struct efx_spi_device *spi,
 | |
| 		    loff_t start, size_t len, size_t *retlen, u8 *buffer)
 | |
| {
 | |
| 	size_t block_len, pos = 0;
 | |
| 	unsigned int command;
 | |
| 	int rc = 0;
 | |
| 
 | |
| 	while (pos < len) {
 | |
| 		block_len = min(len - pos, FALCON_SPI_MAX_LEN);
 | |
| 
 | |
| 		command = efx_spi_munge_command(spi, SPI_READ, start + pos);
 | |
| 		rc = falcon_spi_cmd(efx, spi, command, start + pos, NULL,
 | |
| 				    buffer + pos, block_len);
 | |
| 		if (rc)
 | |
| 			break;
 | |
| 		pos += block_len;
 | |
| 
 | |
| 		/* Avoid locking up the system */
 | |
| 		cond_resched();
 | |
| 		if (signal_pending(current)) {
 | |
| 			rc = -EINTR;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (retlen)
 | |
| 		*retlen = pos;
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| int
 | |
| falcon_spi_write(struct efx_nic *efx, const struct efx_spi_device *spi,
 | |
| 		 loff_t start, size_t len, size_t *retlen, const u8 *buffer)
 | |
| {
 | |
| 	u8 verify_buffer[FALCON_SPI_MAX_LEN];
 | |
| 	size_t block_len, pos = 0;
 | |
| 	unsigned int command;
 | |
| 	int rc = 0;
 | |
| 
 | |
| 	while (pos < len) {
 | |
| 		rc = falcon_spi_cmd(efx, spi, SPI_WREN, -1, NULL, NULL, 0);
 | |
| 		if (rc)
 | |
| 			break;
 | |
| 
 | |
| 		block_len = min(len - pos,
 | |
| 				falcon_spi_write_limit(spi, start + pos));
 | |
| 		command = efx_spi_munge_command(spi, SPI_WRITE, start + pos);
 | |
| 		rc = falcon_spi_cmd(efx, spi, command, start + pos,
 | |
| 				    buffer + pos, NULL, block_len);
 | |
| 		if (rc)
 | |
| 			break;
 | |
| 
 | |
| 		rc = falcon_spi_wait_write(efx, spi);
 | |
| 		if (rc)
 | |
| 			break;
 | |
| 
 | |
| 		command = efx_spi_munge_command(spi, SPI_READ, start + pos);
 | |
| 		rc = falcon_spi_cmd(efx, spi, command, start + pos,
 | |
| 				    NULL, verify_buffer, block_len);
 | |
| 		if (memcmp(verify_buffer, buffer + pos, block_len)) {
 | |
| 			rc = -EIO;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		pos += block_len;
 | |
| 
 | |
| 		/* Avoid locking up the system */
 | |
| 		cond_resched();
 | |
| 		if (signal_pending(current)) {
 | |
| 			rc = -EINTR;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (retlen)
 | |
| 		*retlen = pos;
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| /**************************************************************************
 | |
|  *
 | |
|  * MAC wrapper
 | |
|  *
 | |
|  **************************************************************************
 | |
|  */
 | |
| 
 | |
| static void falcon_push_multicast_hash(struct efx_nic *efx)
 | |
| {
 | |
| 	union efx_multicast_hash *mc_hash = &efx->multicast_hash;
 | |
| 
 | |
| 	WARN_ON(!mutex_is_locked(&efx->mac_lock));
 | |
| 
 | |
| 	efx_writeo(efx, &mc_hash->oword[0], FR_AB_MAC_MC_HASH_REG0);
 | |
| 	efx_writeo(efx, &mc_hash->oword[1], FR_AB_MAC_MC_HASH_REG1);
 | |
| }
 | |
| 
 | |
| static void falcon_reset_macs(struct efx_nic *efx)
 | |
| {
 | |
| 	struct falcon_nic_data *nic_data = efx->nic_data;
 | |
| 	efx_oword_t reg, mac_ctrl;
 | |
| 	int count;
 | |
| 
 | |
| 	if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) {
 | |
| 		/* It's not safe to use GLB_CTL_REG to reset the
 | |
| 		 * macs, so instead use the internal MAC resets
 | |
| 		 */
 | |
| 		if (!EFX_IS10G(efx)) {
 | |
| 			EFX_POPULATE_OWORD_1(reg, FRF_AB_GM_SW_RST, 1);
 | |
| 			efx_writeo(efx, ®, FR_AB_GM_CFG1);
 | |
| 			udelay(1000);
 | |
| 
 | |
| 			EFX_POPULATE_OWORD_1(reg, FRF_AB_GM_SW_RST, 0);
 | |
| 			efx_writeo(efx, ®, FR_AB_GM_CFG1);
 | |
| 			udelay(1000);
 | |
| 			return;
 | |
| 		} else {
 | |
| 			EFX_POPULATE_OWORD_1(reg, FRF_AB_XM_CORE_RST, 1);
 | |
| 			efx_writeo(efx, ®, FR_AB_XM_GLB_CFG);
 | |
| 
 | |
| 			for (count = 0; count < 10000; count++) {
 | |
| 				efx_reado(efx, ®, FR_AB_XM_GLB_CFG);
 | |
| 				if (EFX_OWORD_FIELD(reg, FRF_AB_XM_CORE_RST) ==
 | |
| 				    0)
 | |
| 					return;
 | |
| 				udelay(10);
 | |
| 			}
 | |
| 
 | |
| 			netif_err(efx, hw, efx->net_dev,
 | |
| 				  "timed out waiting for XMAC core reset\n");
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Mac stats will fail whist the TX fifo is draining */
 | |
| 	WARN_ON(nic_data->stats_disable_count == 0);
 | |
| 
 | |
| 	efx_reado(efx, &mac_ctrl, FR_AB_MAC_CTRL);
 | |
| 	EFX_SET_OWORD_FIELD(mac_ctrl, FRF_BB_TXFIFO_DRAIN_EN, 1);
 | |
| 	efx_writeo(efx, &mac_ctrl, FR_AB_MAC_CTRL);
 | |
| 
 | |
| 	efx_reado(efx, ®, FR_AB_GLB_CTL);
 | |
| 	EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_XGTX, 1);
 | |
| 	EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_XGRX, 1);
 | |
| 	EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_EM, 1);
 | |
| 	efx_writeo(efx, ®, FR_AB_GLB_CTL);
 | |
| 
 | |
| 	count = 0;
 | |
| 	while (1) {
 | |
| 		efx_reado(efx, ®, FR_AB_GLB_CTL);
 | |
| 		if (!EFX_OWORD_FIELD(reg, FRF_AB_RST_XGTX) &&
 | |
| 		    !EFX_OWORD_FIELD(reg, FRF_AB_RST_XGRX) &&
 | |
| 		    !EFX_OWORD_FIELD(reg, FRF_AB_RST_EM)) {
 | |
| 			netif_dbg(efx, hw, efx->net_dev,
 | |
| 				  "Completed MAC reset after %d loops\n",
 | |
| 				  count);
 | |
| 			break;
 | |
| 		}
 | |
| 		if (count > 20) {
 | |
| 			netif_err(efx, hw, efx->net_dev, "MAC reset failed\n");
 | |
| 			break;
 | |
| 		}
 | |
| 		count++;
 | |
| 		udelay(10);
 | |
| 	}
 | |
| 
 | |
| 	/* Ensure the correct MAC is selected before statistics
 | |
| 	 * are re-enabled by the caller */
 | |
| 	efx_writeo(efx, &mac_ctrl, FR_AB_MAC_CTRL);
 | |
| 
 | |
| 	/* This can run even when the GMAC is selected */
 | |
| 	falcon_setup_xaui(efx);
 | |
| }
 | |
| 
 | |
| void falcon_drain_tx_fifo(struct efx_nic *efx)
 | |
| {
 | |
| 	efx_oword_t reg;
 | |
| 
 | |
| 	if ((efx_nic_rev(efx) < EFX_REV_FALCON_B0) ||
 | |
| 	    (efx->loopback_mode != LOOPBACK_NONE))
 | |
| 		return;
 | |
| 
 | |
| 	efx_reado(efx, ®, FR_AB_MAC_CTRL);
 | |
| 	/* There is no point in draining more than once */
 | |
| 	if (EFX_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN))
 | |
| 		return;
 | |
| 
 | |
| 	falcon_reset_macs(efx);
 | |
| }
 | |
| 
 | |
| static void falcon_deconfigure_mac_wrapper(struct efx_nic *efx)
 | |
| {
 | |
| 	efx_oword_t reg;
 | |
| 
 | |
| 	if (efx_nic_rev(efx) < EFX_REV_FALCON_B0)
 | |
| 		return;
 | |
| 
 | |
| 	/* Isolate the MAC -> RX */
 | |
| 	efx_reado(efx, ®, FR_AZ_RX_CFG);
 | |
| 	EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 0);
 | |
| 	efx_writeo(efx, ®, FR_AZ_RX_CFG);
 | |
| 
 | |
| 	/* Isolate TX -> MAC */
 | |
| 	falcon_drain_tx_fifo(efx);
 | |
| }
 | |
| 
 | |
| void falcon_reconfigure_mac_wrapper(struct efx_nic *efx)
 | |
| {
 | |
| 	struct efx_link_state *link_state = &efx->link_state;
 | |
| 	efx_oword_t reg;
 | |
| 	int link_speed, isolate;
 | |
| 
 | |
| 	isolate = (efx->reset_pending != RESET_TYPE_NONE);
 | |
| 
 | |
| 	switch (link_state->speed) {
 | |
| 	case 10000: link_speed = 3; break;
 | |
| 	case 1000:  link_speed = 2; break;
 | |
| 	case 100:   link_speed = 1; break;
 | |
| 	default:    link_speed = 0; break;
 | |
| 	}
 | |
| 	/* MAC_LINK_STATUS controls MAC backpressure but doesn't work
 | |
| 	 * as advertised.  Disable to ensure packets are not
 | |
| 	 * indefinitely held and TX queue can be flushed at any point
 | |
| 	 * while the link is down. */
 | |
| 	EFX_POPULATE_OWORD_5(reg,
 | |
| 			     FRF_AB_MAC_XOFF_VAL, 0xffff /* max pause time */,
 | |
| 			     FRF_AB_MAC_BCAD_ACPT, 1,
 | |
| 			     FRF_AB_MAC_UC_PROM, efx->promiscuous,
 | |
| 			     FRF_AB_MAC_LINK_STATUS, 1, /* always set */
 | |
| 			     FRF_AB_MAC_SPEED, link_speed);
 | |
| 	/* On B0, MAC backpressure can be disabled and packets get
 | |
| 	 * discarded. */
 | |
| 	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
 | |
| 		EFX_SET_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN,
 | |
| 				    !link_state->up || isolate);
 | |
| 	}
 | |
| 
 | |
| 	efx_writeo(efx, ®, FR_AB_MAC_CTRL);
 | |
| 
 | |
| 	/* Restore the multicast hash registers. */
 | |
| 	falcon_push_multicast_hash(efx);
 | |
| 
 | |
| 	efx_reado(efx, ®, FR_AZ_RX_CFG);
 | |
| 	/* Enable XOFF signal from RX FIFO (we enabled it during NIC
 | |
| 	 * initialisation but it may read back as 0) */
 | |
| 	EFX_SET_OWORD_FIELD(reg, FRF_AZ_RX_XOFF_MAC_EN, 1);
 | |
| 	/* Unisolate the MAC -> RX */
 | |
| 	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
 | |
| 		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, !isolate);
 | |
| 	efx_writeo(efx, ®, FR_AZ_RX_CFG);
 | |
| }
 | |
| 
 | |
| static void falcon_stats_request(struct efx_nic *efx)
 | |
| {
 | |
| 	struct falcon_nic_data *nic_data = efx->nic_data;
 | |
| 	efx_oword_t reg;
 | |
| 
 | |
| 	WARN_ON(nic_data->stats_pending);
 | |
| 	WARN_ON(nic_data->stats_disable_count);
 | |
| 
 | |
| 	if (nic_data->stats_dma_done == NULL)
 | |
| 		return;	/* no mac selected */
 | |
| 
 | |
| 	*nic_data->stats_dma_done = FALCON_STATS_NOT_DONE;
 | |
| 	nic_data->stats_pending = true;
 | |
| 	wmb(); /* ensure done flag is clear */
 | |
| 
 | |
| 	/* Initiate DMA transfer of stats */
 | |
| 	EFX_POPULATE_OWORD_2(reg,
 | |
| 			     FRF_AB_MAC_STAT_DMA_CMD, 1,
 | |
| 			     FRF_AB_MAC_STAT_DMA_ADR,
 | |
| 			     efx->stats_buffer.dma_addr);
 | |
| 	efx_writeo(efx, ®, FR_AB_MAC_STAT_DMA);
 | |
| 
 | |
| 	mod_timer(&nic_data->stats_timer, round_jiffies_up(jiffies + HZ / 2));
 | |
| }
 | |
| 
 | |
| static void falcon_stats_complete(struct efx_nic *efx)
 | |
| {
 | |
| 	struct falcon_nic_data *nic_data = efx->nic_data;
 | |
| 
 | |
| 	if (!nic_data->stats_pending)
 | |
| 		return;
 | |
| 
 | |
| 	nic_data->stats_pending = 0;
 | |
| 	if (*nic_data->stats_dma_done == FALCON_STATS_DONE) {
 | |
| 		rmb(); /* read the done flag before the stats */
 | |
| 		efx->mac_op->update_stats(efx);
 | |
| 	} else {
 | |
| 		netif_err(efx, hw, efx->net_dev,
 | |
| 			  "timed out waiting for statistics\n");
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void falcon_stats_timer_func(unsigned long context)
 | |
| {
 | |
| 	struct efx_nic *efx = (struct efx_nic *)context;
 | |
| 	struct falcon_nic_data *nic_data = efx->nic_data;
 | |
| 
 | |
| 	spin_lock(&efx->stats_lock);
 | |
| 
 | |
| 	falcon_stats_complete(efx);
 | |
| 	if (nic_data->stats_disable_count == 0)
 | |
| 		falcon_stats_request(efx);
 | |
| 
 | |
| 	spin_unlock(&efx->stats_lock);
 | |
| }
 | |
| 
 | |
| static void falcon_switch_mac(struct efx_nic *efx);
 | |
| 
 | |
| static bool falcon_loopback_link_poll(struct efx_nic *efx)
 | |
| {
 | |
| 	struct efx_link_state old_state = efx->link_state;
 | |
| 
 | |
| 	WARN_ON(!mutex_is_locked(&efx->mac_lock));
 | |
| 	WARN_ON(!LOOPBACK_INTERNAL(efx));
 | |
| 
 | |
| 	efx->link_state.fd = true;
 | |
| 	efx->link_state.fc = efx->wanted_fc;
 | |
| 	efx->link_state.up = true;
 | |
| 
 | |
| 	if (efx->loopback_mode == LOOPBACK_GMAC)
 | |
| 		efx->link_state.speed = 1000;
 | |
| 	else
 | |
| 		efx->link_state.speed = 10000;
 | |
| 
 | |
| 	return !efx_link_state_equal(&efx->link_state, &old_state);
 | |
| }
 | |
| 
 | |
| static int falcon_reconfigure_port(struct efx_nic *efx)
 | |
| {
 | |
| 	int rc;
 | |
| 
 | |
| 	WARN_ON(efx_nic_rev(efx) > EFX_REV_FALCON_B0);
 | |
| 
 | |
| 	/* Poll the PHY link state *before* reconfiguring it. This means we
 | |
| 	 * will pick up the correct speed (in loopback) to select the correct
 | |
| 	 * MAC.
 | |
| 	 */
 | |
| 	if (LOOPBACK_INTERNAL(efx))
 | |
| 		falcon_loopback_link_poll(efx);
 | |
| 	else
 | |
| 		efx->phy_op->poll(efx);
 | |
| 
 | |
| 	falcon_stop_nic_stats(efx);
 | |
| 	falcon_deconfigure_mac_wrapper(efx);
 | |
| 
 | |
| 	falcon_switch_mac(efx);
 | |
| 
 | |
| 	efx->phy_op->reconfigure(efx);
 | |
| 	rc = efx->mac_op->reconfigure(efx);
 | |
| 	BUG_ON(rc);
 | |
| 
 | |
| 	falcon_start_nic_stats(efx);
 | |
| 
 | |
| 	/* Synchronise efx->link_state with the kernel */
 | |
| 	efx_link_status_changed(efx);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**************************************************************************
 | |
|  *
 | |
|  * PHY access via GMII
 | |
|  *
 | |
|  **************************************************************************
 | |
|  */
 | |
| 
 | |
| /* Wait for GMII access to complete */
 | |
| static int falcon_gmii_wait(struct efx_nic *efx)
 | |
| {
 | |
| 	efx_oword_t md_stat;
 | |
| 	int count;
 | |
| 
 | |
| 	/* wait upto 50ms - taken max from datasheet */
 | |
| 	for (count = 0; count < 5000; count++) {
 | |
| 		efx_reado(efx, &md_stat, FR_AB_MD_STAT);
 | |
| 		if (EFX_OWORD_FIELD(md_stat, FRF_AB_MD_BSY) == 0) {
 | |
| 			if (EFX_OWORD_FIELD(md_stat, FRF_AB_MD_LNFL) != 0 ||
 | |
| 			    EFX_OWORD_FIELD(md_stat, FRF_AB_MD_BSERR) != 0) {
 | |
| 				netif_err(efx, hw, efx->net_dev,
 | |
| 					  "error from GMII access "
 | |
| 					  EFX_OWORD_FMT"\n",
 | |
| 					  EFX_OWORD_VAL(md_stat));
 | |
| 				return -EIO;
 | |
| 			}
 | |
| 			return 0;
 | |
| 		}
 | |
| 		udelay(10);
 | |
| 	}
 | |
| 	netif_err(efx, hw, efx->net_dev, "timed out waiting for GMII\n");
 | |
| 	return -ETIMEDOUT;
 | |
| }
 | |
| 
 | |
| /* Write an MDIO register of a PHY connected to Falcon. */
 | |
| static int falcon_mdio_write(struct net_device *net_dev,
 | |
| 			     int prtad, int devad, u16 addr, u16 value)
 | |
| {
 | |
| 	struct efx_nic *efx = netdev_priv(net_dev);
 | |
| 	efx_oword_t reg;
 | |
| 	int rc;
 | |
| 
 | |
| 	netif_vdbg(efx, hw, efx->net_dev,
 | |
| 		   "writing MDIO %d register %d.%d with 0x%04x\n",
 | |
| 		    prtad, devad, addr, value);
 | |
| 
 | |
| 	mutex_lock(&efx->mdio_lock);
 | |
| 
 | |
| 	/* Check MDIO not currently being accessed */
 | |
| 	rc = falcon_gmii_wait(efx);
 | |
| 	if (rc)
 | |
| 		goto out;
 | |
| 
 | |
| 	/* Write the address/ID register */
 | |
| 	EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr);
 | |
| 	efx_writeo(efx, ®, FR_AB_MD_PHY_ADR);
 | |
| 
 | |
| 	EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad,
 | |
| 			     FRF_AB_MD_DEV_ADR, devad);
 | |
| 	efx_writeo(efx, ®, FR_AB_MD_ID);
 | |
| 
 | |
| 	/* Write data */
 | |
| 	EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_TXD, value);
 | |
| 	efx_writeo(efx, ®, FR_AB_MD_TXD);
 | |
| 
 | |
| 	EFX_POPULATE_OWORD_2(reg,
 | |
| 			     FRF_AB_MD_WRC, 1,
 | |
| 			     FRF_AB_MD_GC, 0);
 | |
| 	efx_writeo(efx, ®, FR_AB_MD_CS);
 | |
| 
 | |
| 	/* Wait for data to be written */
 | |
| 	rc = falcon_gmii_wait(efx);
 | |
| 	if (rc) {
 | |
| 		/* Abort the write operation */
 | |
| 		EFX_POPULATE_OWORD_2(reg,
 | |
| 				     FRF_AB_MD_WRC, 0,
 | |
| 				     FRF_AB_MD_GC, 1);
 | |
| 		efx_writeo(efx, ®, FR_AB_MD_CS);
 | |
| 		udelay(10);
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	mutex_unlock(&efx->mdio_lock);
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| /* Read an MDIO register of a PHY connected to Falcon. */
 | |
| static int falcon_mdio_read(struct net_device *net_dev,
 | |
| 			    int prtad, int devad, u16 addr)
 | |
| {
 | |
| 	struct efx_nic *efx = netdev_priv(net_dev);
 | |
| 	efx_oword_t reg;
 | |
| 	int rc;
 | |
| 
 | |
| 	mutex_lock(&efx->mdio_lock);
 | |
| 
 | |
| 	/* Check MDIO not currently being accessed */
 | |
| 	rc = falcon_gmii_wait(efx);
 | |
| 	if (rc)
 | |
| 		goto out;
 | |
| 
 | |
| 	EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr);
 | |
| 	efx_writeo(efx, ®, FR_AB_MD_PHY_ADR);
 | |
| 
 | |
| 	EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad,
 | |
| 			     FRF_AB_MD_DEV_ADR, devad);
 | |
| 	efx_writeo(efx, ®, FR_AB_MD_ID);
 | |
| 
 | |
| 	/* Request data to be read */
 | |
| 	EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_RDC, 1, FRF_AB_MD_GC, 0);
 | |
| 	efx_writeo(efx, ®, FR_AB_MD_CS);
 | |
| 
 | |
| 	/* Wait for data to become available */
 | |
| 	rc = falcon_gmii_wait(efx);
 | |
| 	if (rc == 0) {
 | |
| 		efx_reado(efx, ®, FR_AB_MD_RXD);
 | |
| 		rc = EFX_OWORD_FIELD(reg, FRF_AB_MD_RXD);
 | |
| 		netif_vdbg(efx, hw, efx->net_dev,
 | |
| 			   "read from MDIO %d register %d.%d, got %04x\n",
 | |
| 			   prtad, devad, addr, rc);
 | |
| 	} else {
 | |
| 		/* Abort the read operation */
 | |
| 		EFX_POPULATE_OWORD_2(reg,
 | |
| 				     FRF_AB_MD_RIC, 0,
 | |
| 				     FRF_AB_MD_GC, 1);
 | |
| 		efx_writeo(efx, ®, FR_AB_MD_CS);
 | |
| 
 | |
| 		netif_dbg(efx, hw, efx->net_dev,
 | |
| 			  "read from MDIO %d register %d.%d, got error %d\n",
 | |
| 			  prtad, devad, addr, rc);
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	mutex_unlock(&efx->mdio_lock);
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| static void falcon_clock_mac(struct efx_nic *efx)
 | |
| {
 | |
| 	unsigned strap_val;
 | |
| 	efx_oword_t nic_stat;
 | |
| 
 | |
| 	/* Configure the NIC generated MAC clock correctly */
 | |
| 	efx_reado(efx, &nic_stat, FR_AB_NIC_STAT);
 | |
| 	strap_val = EFX_IS10G(efx) ? 5 : 3;
 | |
| 	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
 | |
| 		EFX_SET_OWORD_FIELD(nic_stat, FRF_BB_EE_STRAP_EN, 1);
 | |
| 		EFX_SET_OWORD_FIELD(nic_stat, FRF_BB_EE_STRAP, strap_val);
 | |
| 		efx_writeo(efx, &nic_stat, FR_AB_NIC_STAT);
 | |
| 	} else {
 | |
| 		/* Falcon A1 does not support 1G/10G speed switching
 | |
| 		 * and must not be used with a PHY that does. */
 | |
| 		BUG_ON(EFX_OWORD_FIELD(nic_stat, FRF_AB_STRAP_PINS) !=
 | |
| 		       strap_val);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void falcon_switch_mac(struct efx_nic *efx)
 | |
| {
 | |
| 	struct efx_mac_operations *old_mac_op = efx->mac_op;
 | |
| 	struct falcon_nic_data *nic_data = efx->nic_data;
 | |
| 	unsigned int stats_done_offset;
 | |
| 
 | |
| 	WARN_ON(!mutex_is_locked(&efx->mac_lock));
 | |
| 	WARN_ON(nic_data->stats_disable_count == 0);
 | |
| 
 | |
| 	efx->mac_op = (EFX_IS10G(efx) ?
 | |
| 		       &falcon_xmac_operations : &falcon_gmac_operations);
 | |
| 
 | |
| 	if (EFX_IS10G(efx))
 | |
| 		stats_done_offset = XgDmaDone_offset;
 | |
| 	else
 | |
| 		stats_done_offset = GDmaDone_offset;
 | |
| 	nic_data->stats_dma_done = efx->stats_buffer.addr + stats_done_offset;
 | |
| 
 | |
| 	if (old_mac_op == efx->mac_op)
 | |
| 		return;
 | |
| 
 | |
| 	falcon_clock_mac(efx);
 | |
| 
 | |
| 	netif_dbg(efx, hw, efx->net_dev, "selected %cMAC\n",
 | |
| 		  EFX_IS10G(efx) ? 'X' : 'G');
 | |
| 	/* Not all macs support a mac-level link state */
 | |
| 	efx->xmac_poll_required = false;
 | |
| 	falcon_reset_macs(efx);
 | |
| }
 | |
| 
 | |
| /* This call is responsible for hooking in the MAC and PHY operations */
 | |
| static int falcon_probe_port(struct efx_nic *efx)
 | |
| {
 | |
| 	int rc;
 | |
| 
 | |
| 	switch (efx->phy_type) {
 | |
| 	case PHY_TYPE_SFX7101:
 | |
| 		efx->phy_op = &falcon_sfx7101_phy_ops;
 | |
| 		break;
 | |
| 	case PHY_TYPE_SFT9001A:
 | |
| 	case PHY_TYPE_SFT9001B:
 | |
| 		efx->phy_op = &falcon_sft9001_phy_ops;
 | |
| 		break;
 | |
| 	case PHY_TYPE_QT2022C2:
 | |
| 	case PHY_TYPE_QT2025C:
 | |
| 		efx->phy_op = &falcon_qt202x_phy_ops;
 | |
| 		break;
 | |
| 	default:
 | |
| 		netif_err(efx, probe, efx->net_dev, "Unknown PHY type %d\n",
 | |
| 			  efx->phy_type);
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 
 | |
| 	/* Fill out MDIO structure and loopback modes */
 | |
| 	efx->mdio.mdio_read = falcon_mdio_read;
 | |
| 	efx->mdio.mdio_write = falcon_mdio_write;
 | |
| 	rc = efx->phy_op->probe(efx);
 | |
| 	if (rc != 0)
 | |
| 		return rc;
 | |
| 
 | |
| 	/* Initial assumption */
 | |
| 	efx->link_state.speed = 10000;
 | |
| 	efx->link_state.fd = true;
 | |
| 
 | |
| 	/* Hardware flow ctrl. FalconA RX FIFO too small for pause generation */
 | |
| 	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
 | |
| 		efx->wanted_fc = EFX_FC_RX | EFX_FC_TX;
 | |
| 	else
 | |
| 		efx->wanted_fc = EFX_FC_RX;
 | |
| 	if (efx->mdio.mmds & MDIO_DEVS_AN)
 | |
| 		efx->wanted_fc |= EFX_FC_AUTO;
 | |
| 
 | |
| 	/* Allocate buffer for stats */
 | |
| 	rc = efx_nic_alloc_buffer(efx, &efx->stats_buffer,
 | |
| 				  FALCON_MAC_STATS_SIZE);
 | |
| 	if (rc)
 | |
| 		return rc;
 | |
| 	netif_dbg(efx, probe, efx->net_dev,
 | |
| 		  "stats buffer at %llx (virt %p phys %llx)\n",
 | |
| 		  (u64)efx->stats_buffer.dma_addr,
 | |
| 		  efx->stats_buffer.addr,
 | |
| 		  (u64)virt_to_phys(efx->stats_buffer.addr));
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void falcon_remove_port(struct efx_nic *efx)
 | |
| {
 | |
| 	efx->phy_op->remove(efx);
 | |
| 	efx_nic_free_buffer(efx, &efx->stats_buffer);
 | |
| }
 | |
| 
 | |
| /**************************************************************************
 | |
|  *
 | |
|  * Falcon test code
 | |
|  *
 | |
|  **************************************************************************/
 | |
| 
 | |
| static int
 | |
| falcon_read_nvram(struct efx_nic *efx, struct falcon_nvconfig *nvconfig_out)
 | |
| {
 | |
| 	struct falcon_nvconfig *nvconfig;
 | |
| 	struct efx_spi_device *spi;
 | |
| 	void *region;
 | |
| 	int rc, magic_num, struct_ver;
 | |
| 	__le16 *word, *limit;
 | |
| 	u32 csum;
 | |
| 
 | |
| 	spi = efx->spi_flash ? efx->spi_flash : efx->spi_eeprom;
 | |
| 	if (!spi)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	region = kmalloc(FALCON_NVCONFIG_END, GFP_KERNEL);
 | |
| 	if (!region)
 | |
| 		return -ENOMEM;
 | |
| 	nvconfig = region + FALCON_NVCONFIG_OFFSET;
 | |
| 
 | |
| 	mutex_lock(&efx->spi_lock);
 | |
| 	rc = falcon_spi_read(efx, spi, 0, FALCON_NVCONFIG_END, NULL, region);
 | |
| 	mutex_unlock(&efx->spi_lock);
 | |
| 	if (rc) {
 | |
| 		netif_err(efx, hw, efx->net_dev, "Failed to read %s\n",
 | |
| 			  efx->spi_flash ? "flash" : "EEPROM");
 | |
| 		rc = -EIO;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	magic_num = le16_to_cpu(nvconfig->board_magic_num);
 | |
| 	struct_ver = le16_to_cpu(nvconfig->board_struct_ver);
 | |
| 
 | |
| 	rc = -EINVAL;
 | |
| 	if (magic_num != FALCON_NVCONFIG_BOARD_MAGIC_NUM) {
 | |
| 		netif_err(efx, hw, efx->net_dev,
 | |
| 			  "NVRAM bad magic 0x%x\n", magic_num);
 | |
| 		goto out;
 | |
| 	}
 | |
| 	if (struct_ver < 2) {
 | |
| 		netif_err(efx, hw, efx->net_dev,
 | |
| 			  "NVRAM has ancient version 0x%x\n", struct_ver);
 | |
| 		goto out;
 | |
| 	} else if (struct_ver < 4) {
 | |
| 		word = &nvconfig->board_magic_num;
 | |
| 		limit = (__le16 *) (nvconfig + 1);
 | |
| 	} else {
 | |
| 		word = region;
 | |
| 		limit = region + FALCON_NVCONFIG_END;
 | |
| 	}
 | |
| 	for (csum = 0; word < limit; ++word)
 | |
| 		csum += le16_to_cpu(*word);
 | |
| 
 | |
| 	if (~csum & 0xffff) {
 | |
| 		netif_err(efx, hw, efx->net_dev,
 | |
| 			  "NVRAM has incorrect checksum\n");
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	rc = 0;
 | |
| 	if (nvconfig_out)
 | |
| 		memcpy(nvconfig_out, nvconfig, sizeof(*nvconfig));
 | |
| 
 | |
|  out:
 | |
| 	kfree(region);
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| static int falcon_test_nvram(struct efx_nic *efx)
 | |
| {
 | |
| 	return falcon_read_nvram(efx, NULL);
 | |
| }
 | |
| 
 | |
| static const struct efx_nic_register_test falcon_b0_register_tests[] = {
 | |
| 	{ FR_AZ_ADR_REGION,
 | |
| 	  EFX_OWORD32(0x0003FFFF, 0x0003FFFF, 0x0003FFFF, 0x0003FFFF) },
 | |
| 	{ FR_AZ_RX_CFG,
 | |
| 	  EFX_OWORD32(0xFFFFFFFE, 0x00017FFF, 0x00000000, 0x00000000) },
 | |
| 	{ FR_AZ_TX_CFG,
 | |
| 	  EFX_OWORD32(0x7FFF0037, 0x00000000, 0x00000000, 0x00000000) },
 | |
| 	{ FR_AZ_TX_RESERVED,
 | |
| 	  EFX_OWORD32(0xFFFEFE80, 0x1FFFFFFF, 0x020000FE, 0x007FFFFF) },
 | |
| 	{ FR_AB_MAC_CTRL,
 | |
| 	  EFX_OWORD32(0xFFFF0000, 0x00000000, 0x00000000, 0x00000000) },
 | |
| 	{ FR_AZ_SRM_TX_DC_CFG,
 | |
| 	  EFX_OWORD32(0x001FFFFF, 0x00000000, 0x00000000, 0x00000000) },
 | |
| 	{ FR_AZ_RX_DC_CFG,
 | |
| 	  EFX_OWORD32(0x0000000F, 0x00000000, 0x00000000, 0x00000000) },
 | |
| 	{ FR_AZ_RX_DC_PF_WM,
 | |
| 	  EFX_OWORD32(0x000003FF, 0x00000000, 0x00000000, 0x00000000) },
 | |
| 	{ FR_BZ_DP_CTRL,
 | |
| 	  EFX_OWORD32(0x00000FFF, 0x00000000, 0x00000000, 0x00000000) },
 | |
| 	{ FR_AB_GM_CFG2,
 | |
| 	  EFX_OWORD32(0x00007337, 0x00000000, 0x00000000, 0x00000000) },
 | |
| 	{ FR_AB_GMF_CFG0,
 | |
| 	  EFX_OWORD32(0x00001F1F, 0x00000000, 0x00000000, 0x00000000) },
 | |
| 	{ FR_AB_XM_GLB_CFG,
 | |
| 	  EFX_OWORD32(0x00000C68, 0x00000000, 0x00000000, 0x00000000) },
 | |
| 	{ FR_AB_XM_TX_CFG,
 | |
| 	  EFX_OWORD32(0x00080164, 0x00000000, 0x00000000, 0x00000000) },
 | |
| 	{ FR_AB_XM_RX_CFG,
 | |
| 	  EFX_OWORD32(0x07100A0C, 0x00000000, 0x00000000, 0x00000000) },
 | |
| 	{ FR_AB_XM_RX_PARAM,
 | |
| 	  EFX_OWORD32(0x00001FF8, 0x00000000, 0x00000000, 0x00000000) },
 | |
| 	{ FR_AB_XM_FC,
 | |
| 	  EFX_OWORD32(0xFFFF0001, 0x00000000, 0x00000000, 0x00000000) },
 | |
| 	{ FR_AB_XM_ADR_LO,
 | |
| 	  EFX_OWORD32(0xFFFFFFFF, 0x00000000, 0x00000000, 0x00000000) },
 | |
| 	{ FR_AB_XX_SD_CTL,
 | |
| 	  EFX_OWORD32(0x0003FF0F, 0x00000000, 0x00000000, 0x00000000) },
 | |
| };
 | |
| 
 | |
| static int falcon_b0_test_registers(struct efx_nic *efx)
 | |
| {
 | |
| 	return efx_nic_test_registers(efx, falcon_b0_register_tests,
 | |
| 				      ARRAY_SIZE(falcon_b0_register_tests));
 | |
| }
 | |
| 
 | |
| /**************************************************************************
 | |
|  *
 | |
|  * Device reset
 | |
|  *
 | |
|  **************************************************************************
 | |
|  */
 | |
| 
 | |
| /* Resets NIC to known state.  This routine must be called in process
 | |
|  * context and is allowed to sleep. */
 | |
| static int falcon_reset_hw(struct efx_nic *efx, enum reset_type method)
 | |
| {
 | |
| 	struct falcon_nic_data *nic_data = efx->nic_data;
 | |
| 	efx_oword_t glb_ctl_reg_ker;
 | |
| 	int rc;
 | |
| 
 | |
| 	netif_dbg(efx, hw, efx->net_dev, "performing %s hardware reset\n",
 | |
| 		  RESET_TYPE(method));
 | |
| 
 | |
| 	/* Initiate device reset */
 | |
| 	if (method == RESET_TYPE_WORLD) {
 | |
| 		rc = pci_save_state(efx->pci_dev);
 | |
| 		if (rc) {
 | |
| 			netif_err(efx, drv, efx->net_dev,
 | |
| 				  "failed to backup PCI state of primary "
 | |
| 				  "function prior to hardware reset\n");
 | |
| 			goto fail1;
 | |
| 		}
 | |
| 		if (efx_nic_is_dual_func(efx)) {
 | |
| 			rc = pci_save_state(nic_data->pci_dev2);
 | |
| 			if (rc) {
 | |
| 				netif_err(efx, drv, efx->net_dev,
 | |
| 					  "failed to backup PCI state of "
 | |
| 					  "secondary function prior to "
 | |
| 					  "hardware reset\n");
 | |
| 				goto fail2;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		EFX_POPULATE_OWORD_2(glb_ctl_reg_ker,
 | |
| 				     FRF_AB_EXT_PHY_RST_DUR,
 | |
| 				     FFE_AB_EXT_PHY_RST_DUR_10240US,
 | |
| 				     FRF_AB_SWRST, 1);
 | |
| 	} else {
 | |
| 		EFX_POPULATE_OWORD_7(glb_ctl_reg_ker,
 | |
| 				     /* exclude PHY from "invisible" reset */
 | |
| 				     FRF_AB_EXT_PHY_RST_CTL,
 | |
| 				     method == RESET_TYPE_INVISIBLE,
 | |
| 				     /* exclude EEPROM/flash and PCIe */
 | |
| 				     FRF_AB_PCIE_CORE_RST_CTL, 1,
 | |
| 				     FRF_AB_PCIE_NSTKY_RST_CTL, 1,
 | |
| 				     FRF_AB_PCIE_SD_RST_CTL, 1,
 | |
| 				     FRF_AB_EE_RST_CTL, 1,
 | |
| 				     FRF_AB_EXT_PHY_RST_DUR,
 | |
| 				     FFE_AB_EXT_PHY_RST_DUR_10240US,
 | |
| 				     FRF_AB_SWRST, 1);
 | |
| 	}
 | |
| 	efx_writeo(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL);
 | |
| 
 | |
| 	netif_dbg(efx, hw, efx->net_dev, "waiting for hardware reset\n");
 | |
| 	schedule_timeout_uninterruptible(HZ / 20);
 | |
| 
 | |
| 	/* Restore PCI configuration if needed */
 | |
| 	if (method == RESET_TYPE_WORLD) {
 | |
| 		if (efx_nic_is_dual_func(efx)) {
 | |
| 			rc = pci_restore_state(nic_data->pci_dev2);
 | |
| 			if (rc) {
 | |
| 				netif_err(efx, drv, efx->net_dev,
 | |
| 					  "failed to restore PCI config for "
 | |
| 					  "the secondary function\n");
 | |
| 				goto fail3;
 | |
| 			}
 | |
| 		}
 | |
| 		rc = pci_restore_state(efx->pci_dev);
 | |
| 		if (rc) {
 | |
| 			netif_err(efx, drv, efx->net_dev,
 | |
| 				  "failed to restore PCI config for the "
 | |
| 				  "primary function\n");
 | |
| 			goto fail4;
 | |
| 		}
 | |
| 		netif_dbg(efx, drv, efx->net_dev,
 | |
| 			  "successfully restored PCI config\n");
 | |
| 	}
 | |
| 
 | |
| 	/* Assert that reset complete */
 | |
| 	efx_reado(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL);
 | |
| 	if (EFX_OWORD_FIELD(glb_ctl_reg_ker, FRF_AB_SWRST) != 0) {
 | |
| 		rc = -ETIMEDOUT;
 | |
| 		netif_err(efx, hw, efx->net_dev,
 | |
| 			  "timed out waiting for hardware reset\n");
 | |
| 		goto fail5;
 | |
| 	}
 | |
| 	netif_dbg(efx, hw, efx->net_dev, "hardware reset complete\n");
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| 	/* pci_save_state() and pci_restore_state() MUST be called in pairs */
 | |
| fail2:
 | |
| fail3:
 | |
| 	pci_restore_state(efx->pci_dev);
 | |
| fail1:
 | |
| fail4:
 | |
| fail5:
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| static void falcon_monitor(struct efx_nic *efx)
 | |
| {
 | |
| 	bool link_changed;
 | |
| 	int rc;
 | |
| 
 | |
| 	BUG_ON(!mutex_is_locked(&efx->mac_lock));
 | |
| 
 | |
| 	rc = falcon_board(efx)->type->monitor(efx);
 | |
| 	if (rc) {
 | |
| 		netif_err(efx, hw, efx->net_dev,
 | |
| 			  "Board sensor %s; shutting down PHY\n",
 | |
| 			  (rc == -ERANGE) ? "reported fault" : "failed");
 | |
| 		efx->phy_mode |= PHY_MODE_LOW_POWER;
 | |
| 		rc = __efx_reconfigure_port(efx);
 | |
| 		WARN_ON(rc);
 | |
| 	}
 | |
| 
 | |
| 	if (LOOPBACK_INTERNAL(efx))
 | |
| 		link_changed = falcon_loopback_link_poll(efx);
 | |
| 	else
 | |
| 		link_changed = efx->phy_op->poll(efx);
 | |
| 
 | |
| 	if (link_changed) {
 | |
| 		falcon_stop_nic_stats(efx);
 | |
| 		falcon_deconfigure_mac_wrapper(efx);
 | |
| 
 | |
| 		falcon_switch_mac(efx);
 | |
| 		rc = efx->mac_op->reconfigure(efx);
 | |
| 		BUG_ON(rc);
 | |
| 
 | |
| 		falcon_start_nic_stats(efx);
 | |
| 
 | |
| 		efx_link_status_changed(efx);
 | |
| 	}
 | |
| 
 | |
| 	if (EFX_IS10G(efx))
 | |
| 		falcon_poll_xmac(efx);
 | |
| }
 | |
| 
 | |
| /* Zeroes out the SRAM contents.  This routine must be called in
 | |
|  * process context and is allowed to sleep.
 | |
|  */
 | |
| static int falcon_reset_sram(struct efx_nic *efx)
 | |
| {
 | |
| 	efx_oword_t srm_cfg_reg_ker, gpio_cfg_reg_ker;
 | |
| 	int count;
 | |
| 
 | |
| 	/* Set the SRAM wake/sleep GPIO appropriately. */
 | |
| 	efx_reado(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL);
 | |
| 	EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OEN, 1);
 | |
| 	EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OUT, 1);
 | |
| 	efx_writeo(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL);
 | |
| 
 | |
| 	/* Initiate SRAM reset */
 | |
| 	EFX_POPULATE_OWORD_2(srm_cfg_reg_ker,
 | |
| 			     FRF_AZ_SRM_INIT_EN, 1,
 | |
| 			     FRF_AZ_SRM_NB_SZ, 0);
 | |
| 	efx_writeo(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG);
 | |
| 
 | |
| 	/* Wait for SRAM reset to complete */
 | |
| 	count = 0;
 | |
| 	do {
 | |
| 		netif_dbg(efx, hw, efx->net_dev,
 | |
| 			  "waiting for SRAM reset (attempt %d)...\n", count);
 | |
| 
 | |
| 		/* SRAM reset is slow; expect around 16ms */
 | |
| 		schedule_timeout_uninterruptible(HZ / 50);
 | |
| 
 | |
| 		/* Check for reset complete */
 | |
| 		efx_reado(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG);
 | |
| 		if (!EFX_OWORD_FIELD(srm_cfg_reg_ker, FRF_AZ_SRM_INIT_EN)) {
 | |
| 			netif_dbg(efx, hw, efx->net_dev,
 | |
| 				  "SRAM reset complete\n");
 | |
| 
 | |
| 			return 0;
 | |
| 		}
 | |
| 	} while (++count < 20);	/* wait upto 0.4 sec */
 | |
| 
 | |
| 	netif_err(efx, hw, efx->net_dev, "timed out waiting for SRAM reset\n");
 | |
| 	return -ETIMEDOUT;
 | |
| }
 | |
| 
 | |
| static int falcon_spi_device_init(struct efx_nic *efx,
 | |
| 				  struct efx_spi_device **spi_device_ret,
 | |
| 				  unsigned int device_id, u32 device_type)
 | |
| {
 | |
| 	struct efx_spi_device *spi_device;
 | |
| 
 | |
| 	if (device_type != 0) {
 | |
| 		spi_device = kzalloc(sizeof(*spi_device), GFP_KERNEL);
 | |
| 		if (!spi_device)
 | |
| 			return -ENOMEM;
 | |
| 		spi_device->device_id = device_id;
 | |
| 		spi_device->size =
 | |
| 			1 << SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_SIZE);
 | |
| 		spi_device->addr_len =
 | |
| 			SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ADDR_LEN);
 | |
| 		spi_device->munge_address = (spi_device->size == 1 << 9 &&
 | |
| 					     spi_device->addr_len == 1);
 | |
| 		spi_device->erase_command =
 | |
| 			SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ERASE_CMD);
 | |
| 		spi_device->erase_size =
 | |
| 			1 << SPI_DEV_TYPE_FIELD(device_type,
 | |
| 						SPI_DEV_TYPE_ERASE_SIZE);
 | |
| 		spi_device->block_size =
 | |
| 			1 << SPI_DEV_TYPE_FIELD(device_type,
 | |
| 						SPI_DEV_TYPE_BLOCK_SIZE);
 | |
| 	} else {
 | |
| 		spi_device = NULL;
 | |
| 	}
 | |
| 
 | |
| 	kfree(*spi_device_ret);
 | |
| 	*spi_device_ret = spi_device;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void falcon_remove_spi_devices(struct efx_nic *efx)
 | |
| {
 | |
| 	kfree(efx->spi_eeprom);
 | |
| 	efx->spi_eeprom = NULL;
 | |
| 	kfree(efx->spi_flash);
 | |
| 	efx->spi_flash = NULL;
 | |
| }
 | |
| 
 | |
| /* Extract non-volatile configuration */
 | |
| static int falcon_probe_nvconfig(struct efx_nic *efx)
 | |
| {
 | |
| 	struct falcon_nvconfig *nvconfig;
 | |
| 	int board_rev;
 | |
| 	int rc;
 | |
| 
 | |
| 	nvconfig = kmalloc(sizeof(*nvconfig), GFP_KERNEL);
 | |
| 	if (!nvconfig)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	rc = falcon_read_nvram(efx, nvconfig);
 | |
| 	if (rc == -EINVAL) {
 | |
| 		netif_err(efx, probe, efx->net_dev,
 | |
| 			  "NVRAM is invalid therefore using defaults\n");
 | |
| 		efx->phy_type = PHY_TYPE_NONE;
 | |
| 		efx->mdio.prtad = MDIO_PRTAD_NONE;
 | |
| 		board_rev = 0;
 | |
| 		rc = 0;
 | |
| 	} else if (rc) {
 | |
| 		goto fail1;
 | |
| 	} else {
 | |
| 		struct falcon_nvconfig_board_v2 *v2 = &nvconfig->board_v2;
 | |
| 		struct falcon_nvconfig_board_v3 *v3 = &nvconfig->board_v3;
 | |
| 
 | |
| 		efx->phy_type = v2->port0_phy_type;
 | |
| 		efx->mdio.prtad = v2->port0_phy_addr;
 | |
| 		board_rev = le16_to_cpu(v2->board_revision);
 | |
| 
 | |
| 		if (le16_to_cpu(nvconfig->board_struct_ver) >= 3) {
 | |
| 			rc = falcon_spi_device_init(
 | |
| 				efx, &efx->spi_flash, FFE_AB_SPI_DEVICE_FLASH,
 | |
| 				le32_to_cpu(v3->spi_device_type
 | |
| 					    [FFE_AB_SPI_DEVICE_FLASH]));
 | |
| 			if (rc)
 | |
| 				goto fail2;
 | |
| 			rc = falcon_spi_device_init(
 | |
| 				efx, &efx->spi_eeprom, FFE_AB_SPI_DEVICE_EEPROM,
 | |
| 				le32_to_cpu(v3->spi_device_type
 | |
| 					    [FFE_AB_SPI_DEVICE_EEPROM]));
 | |
| 			if (rc)
 | |
| 				goto fail2;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Read the MAC addresses */
 | |
| 	memcpy(efx->mac_address, nvconfig->mac_address[0], ETH_ALEN);
 | |
| 
 | |
| 	netif_dbg(efx, probe, efx->net_dev, "PHY is %d phy_id %d\n",
 | |
| 		  efx->phy_type, efx->mdio.prtad);
 | |
| 
 | |
| 	rc = falcon_probe_board(efx, board_rev);
 | |
| 	if (rc)
 | |
| 		goto fail2;
 | |
| 
 | |
| 	kfree(nvconfig);
 | |
| 	return 0;
 | |
| 
 | |
|  fail2:
 | |
| 	falcon_remove_spi_devices(efx);
 | |
|  fail1:
 | |
| 	kfree(nvconfig);
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| /* Probe all SPI devices on the NIC */
 | |
| static void falcon_probe_spi_devices(struct efx_nic *efx)
 | |
| {
 | |
| 	efx_oword_t nic_stat, gpio_ctl, ee_vpd_cfg;
 | |
| 	int boot_dev;
 | |
| 
 | |
| 	efx_reado(efx, &gpio_ctl, FR_AB_GPIO_CTL);
 | |
| 	efx_reado(efx, &nic_stat, FR_AB_NIC_STAT);
 | |
| 	efx_reado(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0);
 | |
| 
 | |
| 	if (EFX_OWORD_FIELD(gpio_ctl, FRF_AB_GPIO3_PWRUP_VALUE)) {
 | |
| 		boot_dev = (EFX_OWORD_FIELD(nic_stat, FRF_AB_SF_PRST) ?
 | |
| 			    FFE_AB_SPI_DEVICE_FLASH : FFE_AB_SPI_DEVICE_EEPROM);
 | |
| 		netif_dbg(efx, probe, efx->net_dev, "Booted from %s\n",
 | |
| 			  boot_dev == FFE_AB_SPI_DEVICE_FLASH ?
 | |
| 			  "flash" : "EEPROM");
 | |
| 	} else {
 | |
| 		/* Disable VPD and set clock dividers to safe
 | |
| 		 * values for initial programming. */
 | |
| 		boot_dev = -1;
 | |
| 		netif_dbg(efx, probe, efx->net_dev,
 | |
| 			  "Booted from internal ASIC settings;"
 | |
| 			  " setting SPI config\n");
 | |
| 		EFX_POPULATE_OWORD_3(ee_vpd_cfg, FRF_AB_EE_VPD_EN, 0,
 | |
| 				     /* 125 MHz / 7 ~= 20 MHz */
 | |
| 				     FRF_AB_EE_SF_CLOCK_DIV, 7,
 | |
| 				     /* 125 MHz / 63 ~= 2 MHz */
 | |
| 				     FRF_AB_EE_EE_CLOCK_DIV, 63);
 | |
| 		efx_writeo(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0);
 | |
| 	}
 | |
| 
 | |
| 	if (boot_dev == FFE_AB_SPI_DEVICE_FLASH)
 | |
| 		falcon_spi_device_init(efx, &efx->spi_flash,
 | |
| 				       FFE_AB_SPI_DEVICE_FLASH,
 | |
| 				       default_flash_type);
 | |
| 	if (boot_dev == FFE_AB_SPI_DEVICE_EEPROM)
 | |
| 		falcon_spi_device_init(efx, &efx->spi_eeprom,
 | |
| 				       FFE_AB_SPI_DEVICE_EEPROM,
 | |
| 				       large_eeprom_type);
 | |
| }
 | |
| 
 | |
| static int falcon_probe_nic(struct efx_nic *efx)
 | |
| {
 | |
| 	struct falcon_nic_data *nic_data;
 | |
| 	struct falcon_board *board;
 | |
| 	int rc;
 | |
| 
 | |
| 	/* Allocate storage for hardware specific data */
 | |
| 	nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
 | |
| 	if (!nic_data)
 | |
| 		return -ENOMEM;
 | |
| 	efx->nic_data = nic_data;
 | |
| 
 | |
| 	rc = -ENODEV;
 | |
| 
 | |
| 	if (efx_nic_fpga_ver(efx) != 0) {
 | |
| 		netif_err(efx, probe, efx->net_dev,
 | |
| 			  "Falcon FPGA not supported\n");
 | |
| 		goto fail1;
 | |
| 	}
 | |
| 
 | |
| 	if (efx_nic_rev(efx) <= EFX_REV_FALCON_A1) {
 | |
| 		efx_oword_t nic_stat;
 | |
| 		struct pci_dev *dev;
 | |
| 		u8 pci_rev = efx->pci_dev->revision;
 | |
| 
 | |
| 		if ((pci_rev == 0xff) || (pci_rev == 0)) {
 | |
| 			netif_err(efx, probe, efx->net_dev,
 | |
| 				  "Falcon rev A0 not supported\n");
 | |
| 			goto fail1;
 | |
| 		}
 | |
| 		efx_reado(efx, &nic_stat, FR_AB_NIC_STAT);
 | |
| 		if (EFX_OWORD_FIELD(nic_stat, FRF_AB_STRAP_10G) == 0) {
 | |
| 			netif_err(efx, probe, efx->net_dev,
 | |
| 				  "Falcon rev A1 1G not supported\n");
 | |
| 			goto fail1;
 | |
| 		}
 | |
| 		if (EFX_OWORD_FIELD(nic_stat, FRF_AA_STRAP_PCIE) == 0) {
 | |
| 			netif_err(efx, probe, efx->net_dev,
 | |
| 				  "Falcon rev A1 PCI-X not supported\n");
 | |
| 			goto fail1;
 | |
| 		}
 | |
| 
 | |
| 		dev = pci_dev_get(efx->pci_dev);
 | |
| 		while ((dev = pci_get_device(EFX_VENDID_SFC, FALCON_A_S_DEVID,
 | |
| 					     dev))) {
 | |
| 			if (dev->bus == efx->pci_dev->bus &&
 | |
| 			    dev->devfn == efx->pci_dev->devfn + 1) {
 | |
| 				nic_data->pci_dev2 = dev;
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 		if (!nic_data->pci_dev2) {
 | |
| 			netif_err(efx, probe, efx->net_dev,
 | |
| 				  "failed to find secondary function\n");
 | |
| 			rc = -ENODEV;
 | |
| 			goto fail2;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Now we can reset the NIC */
 | |
| 	rc = falcon_reset_hw(efx, RESET_TYPE_ALL);
 | |
| 	if (rc) {
 | |
| 		netif_err(efx, probe, efx->net_dev, "failed to reset NIC\n");
 | |
| 		goto fail3;
 | |
| 	}
 | |
| 
 | |
| 	/* Allocate memory for INT_KER */
 | |
| 	rc = efx_nic_alloc_buffer(efx, &efx->irq_status, sizeof(efx_oword_t));
 | |
| 	if (rc)
 | |
| 		goto fail4;
 | |
| 	BUG_ON(efx->irq_status.dma_addr & 0x0f);
 | |
| 
 | |
| 	netif_dbg(efx, probe, efx->net_dev,
 | |
| 		  "INT_KER at %llx (virt %p phys %llx)\n",
 | |
| 		  (u64)efx->irq_status.dma_addr,
 | |
| 		  efx->irq_status.addr,
 | |
| 		  (u64)virt_to_phys(efx->irq_status.addr));
 | |
| 
 | |
| 	falcon_probe_spi_devices(efx);
 | |
| 
 | |
| 	/* Read in the non-volatile configuration */
 | |
| 	rc = falcon_probe_nvconfig(efx);
 | |
| 	if (rc)
 | |
| 		goto fail5;
 | |
| 
 | |
| 	/* Initialise I2C adapter */
 | |
| 	board = falcon_board(efx);
 | |
| 	board->i2c_adap.owner = THIS_MODULE;
 | |
| 	board->i2c_data = falcon_i2c_bit_operations;
 | |
| 	board->i2c_data.data = efx;
 | |
| 	board->i2c_adap.algo_data = &board->i2c_data;
 | |
| 	board->i2c_adap.dev.parent = &efx->pci_dev->dev;
 | |
| 	strlcpy(board->i2c_adap.name, "SFC4000 GPIO",
 | |
| 		sizeof(board->i2c_adap.name));
 | |
| 	rc = i2c_bit_add_bus(&board->i2c_adap);
 | |
| 	if (rc)
 | |
| 		goto fail5;
 | |
| 
 | |
| 	rc = falcon_board(efx)->type->init(efx);
 | |
| 	if (rc) {
 | |
| 		netif_err(efx, probe, efx->net_dev,
 | |
| 			  "failed to initialise board\n");
 | |
| 		goto fail6;
 | |
| 	}
 | |
| 
 | |
| 	nic_data->stats_disable_count = 1;
 | |
| 	setup_timer(&nic_data->stats_timer, &falcon_stats_timer_func,
 | |
| 		    (unsigned long)efx);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
|  fail6:
 | |
| 	BUG_ON(i2c_del_adapter(&board->i2c_adap));
 | |
| 	memset(&board->i2c_adap, 0, sizeof(board->i2c_adap));
 | |
|  fail5:
 | |
| 	falcon_remove_spi_devices(efx);
 | |
| 	efx_nic_free_buffer(efx, &efx->irq_status);
 | |
|  fail4:
 | |
|  fail3:
 | |
| 	if (nic_data->pci_dev2) {
 | |
| 		pci_dev_put(nic_data->pci_dev2);
 | |
| 		nic_data->pci_dev2 = NULL;
 | |
| 	}
 | |
|  fail2:
 | |
|  fail1:
 | |
| 	kfree(efx->nic_data);
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| static void falcon_init_rx_cfg(struct efx_nic *efx)
 | |
| {
 | |
| 	/* Prior to Siena the RX DMA engine will split each frame at
 | |
| 	 * intervals of RX_USR_BUF_SIZE (32-byte units). We set it to
 | |
| 	 * be so large that that never happens. */
 | |
| 	const unsigned huge_buf_size = (3 * 4096) >> 5;
 | |
| 	/* RX control FIFO thresholds (32 entries) */
 | |
| 	const unsigned ctrl_xon_thr = 20;
 | |
| 	const unsigned ctrl_xoff_thr = 25;
 | |
| 	/* RX data FIFO thresholds (256-byte units; size varies) */
 | |
| 	int data_xon_thr = efx_nic_rx_xon_thresh >> 8;
 | |
| 	int data_xoff_thr = efx_nic_rx_xoff_thresh >> 8;
 | |
| 	efx_oword_t reg;
 | |
| 
 | |
| 	efx_reado(efx, ®, FR_AZ_RX_CFG);
 | |
| 	if (efx_nic_rev(efx) <= EFX_REV_FALCON_A1) {
 | |
| 		/* Data FIFO size is 5.5K */
 | |
| 		if (data_xon_thr < 0)
 | |
| 			data_xon_thr = 512 >> 8;
 | |
| 		if (data_xoff_thr < 0)
 | |
| 			data_xoff_thr = 2048 >> 8;
 | |
| 		EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_DESC_PUSH_EN, 0);
 | |
| 		EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_USR_BUF_SIZE,
 | |
| 				    huge_buf_size);
 | |
| 		EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_MAC_TH, data_xon_thr);
 | |
| 		EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_MAC_TH, data_xoff_thr);
 | |
| 		EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_TX_TH, ctrl_xon_thr);
 | |
| 		EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_TX_TH, ctrl_xoff_thr);
 | |
| 	} else {
 | |
| 		/* Data FIFO size is 80K; register fields moved */
 | |
| 		if (data_xon_thr < 0)
 | |
| 			data_xon_thr = 27648 >> 8; /* ~3*max MTU */
 | |
| 		if (data_xoff_thr < 0)
 | |
| 			data_xoff_thr = 54272 >> 8; /* ~80Kb - 3*max MTU */
 | |
| 		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_DESC_PUSH_EN, 0);
 | |
| 		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_USR_BUF_SIZE,
 | |
| 				    huge_buf_size);
 | |
| 		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_MAC_TH, data_xon_thr);
 | |
| 		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_MAC_TH, data_xoff_thr);
 | |
| 		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_TX_TH, ctrl_xon_thr);
 | |
| 		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_TX_TH, ctrl_xoff_thr);
 | |
| 		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 1);
 | |
| 
 | |
| 		/* Enable hash insertion. This is broken for the
 | |
| 		 * 'Falcon' hash so also select Toeplitz TCP/IPv4 and
 | |
| 		 * IPv4 hashes. */
 | |
| 		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_HASH_INSRT_HDR, 1);
 | |
| 		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_HASH_ALG, 1);
 | |
| 		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_IP_HASH, 1);
 | |
| 	}
 | |
| 	/* Always enable XOFF signal from RX FIFO.  We enable
 | |
| 	 * or disable transmission of pause frames at the MAC. */
 | |
| 	EFX_SET_OWORD_FIELD(reg, FRF_AZ_RX_XOFF_MAC_EN, 1);
 | |
| 	efx_writeo(efx, ®, FR_AZ_RX_CFG);
 | |
| }
 | |
| 
 | |
| /* This call performs hardware-specific global initialisation, such as
 | |
|  * defining the descriptor cache sizes and number of RSS channels.
 | |
|  * It does not set up any buffers, descriptor rings or event queues.
 | |
|  */
 | |
| static int falcon_init_nic(struct efx_nic *efx)
 | |
| {
 | |
| 	efx_oword_t temp;
 | |
| 	int rc;
 | |
| 
 | |
| 	/* Use on-chip SRAM */
 | |
| 	efx_reado(efx, &temp, FR_AB_NIC_STAT);
 | |
| 	EFX_SET_OWORD_FIELD(temp, FRF_AB_ONCHIP_SRAM, 1);
 | |
| 	efx_writeo(efx, &temp, FR_AB_NIC_STAT);
 | |
| 
 | |
| 	/* Set the source of the GMAC clock */
 | |
| 	if (efx_nic_rev(efx) == EFX_REV_FALCON_B0) {
 | |
| 		efx_reado(efx, &temp, FR_AB_GPIO_CTL);
 | |
| 		EFX_SET_OWORD_FIELD(temp, FRF_AB_USE_NIC_CLK, true);
 | |
| 		efx_writeo(efx, &temp, FR_AB_GPIO_CTL);
 | |
| 	}
 | |
| 
 | |
| 	/* Select the correct MAC */
 | |
| 	falcon_clock_mac(efx);
 | |
| 
 | |
| 	rc = falcon_reset_sram(efx);
 | |
| 	if (rc)
 | |
| 		return rc;
 | |
| 
 | |
| 	/* Clear the parity enables on the TX data fifos as
 | |
| 	 * they produce false parity errors because of timing issues
 | |
| 	 */
 | |
| 	if (EFX_WORKAROUND_5129(efx)) {
 | |
| 		efx_reado(efx, &temp, FR_AZ_CSR_SPARE);
 | |
| 		EFX_SET_OWORD_FIELD(temp, FRF_AB_MEM_PERR_EN_TX_DATA, 0);
 | |
| 		efx_writeo(efx, &temp, FR_AZ_CSR_SPARE);
 | |
| 	}
 | |
| 
 | |
| 	if (EFX_WORKAROUND_7244(efx)) {
 | |
| 		efx_reado(efx, &temp, FR_BZ_RX_FILTER_CTL);
 | |
| 		EFX_SET_OWORD_FIELD(temp, FRF_BZ_UDP_FULL_SRCH_LIMIT, 8);
 | |
| 		EFX_SET_OWORD_FIELD(temp, FRF_BZ_UDP_WILD_SRCH_LIMIT, 8);
 | |
| 		EFX_SET_OWORD_FIELD(temp, FRF_BZ_TCP_FULL_SRCH_LIMIT, 8);
 | |
| 		EFX_SET_OWORD_FIELD(temp, FRF_BZ_TCP_WILD_SRCH_LIMIT, 8);
 | |
| 		efx_writeo(efx, &temp, FR_BZ_RX_FILTER_CTL);
 | |
| 	}
 | |
| 
 | |
| 	/* XXX This is documented only for Falcon A0/A1 */
 | |
| 	/* Setup RX.  Wait for descriptor is broken and must
 | |
| 	 * be disabled.  RXDP recovery shouldn't be needed, but is.
 | |
| 	 */
 | |
| 	efx_reado(efx, &temp, FR_AA_RX_SELF_RST);
 | |
| 	EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_NODESC_WAIT_DIS, 1);
 | |
| 	EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_SELF_RST_EN, 1);
 | |
| 	if (EFX_WORKAROUND_5583(efx))
 | |
| 		EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_ISCSI_DIS, 1);
 | |
| 	efx_writeo(efx, &temp, FR_AA_RX_SELF_RST);
 | |
| 
 | |
| 	/* Do not enable TX_NO_EOP_DISC_EN, since it limits packets to 16
 | |
| 	 * descriptors (which is bad).
 | |
| 	 */
 | |
| 	efx_reado(efx, &temp, FR_AZ_TX_CFG);
 | |
| 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_NO_EOP_DISC_EN, 0);
 | |
| 	efx_writeo(efx, &temp, FR_AZ_TX_CFG);
 | |
| 
 | |
| 	falcon_init_rx_cfg(efx);
 | |
| 
 | |
| 	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
 | |
| 		/* Set hash key for IPv4 */
 | |
| 		memcpy(&temp, efx->rx_hash_key, sizeof(temp));
 | |
| 		efx_writeo(efx, &temp, FR_BZ_RX_RSS_TKEY);
 | |
| 
 | |
| 		/* Set destination of both TX and RX Flush events */
 | |
| 		EFX_POPULATE_OWORD_1(temp, FRF_BZ_FLS_EVQ_ID, 0);
 | |
| 		efx_writeo(efx, &temp, FR_BZ_DP_CTRL);
 | |
| 	}
 | |
| 
 | |
| 	efx_nic_init_common(efx);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void falcon_remove_nic(struct efx_nic *efx)
 | |
| {
 | |
| 	struct falcon_nic_data *nic_data = efx->nic_data;
 | |
| 	struct falcon_board *board = falcon_board(efx);
 | |
| 	int rc;
 | |
| 
 | |
| 	board->type->fini(efx);
 | |
| 
 | |
| 	/* Remove I2C adapter and clear it in preparation for a retry */
 | |
| 	rc = i2c_del_adapter(&board->i2c_adap);
 | |
| 	BUG_ON(rc);
 | |
| 	memset(&board->i2c_adap, 0, sizeof(board->i2c_adap));
 | |
| 
 | |
| 	falcon_remove_spi_devices(efx);
 | |
| 	efx_nic_free_buffer(efx, &efx->irq_status);
 | |
| 
 | |
| 	falcon_reset_hw(efx, RESET_TYPE_ALL);
 | |
| 
 | |
| 	/* Release the second function after the reset */
 | |
| 	if (nic_data->pci_dev2) {
 | |
| 		pci_dev_put(nic_data->pci_dev2);
 | |
| 		nic_data->pci_dev2 = NULL;
 | |
| 	}
 | |
| 
 | |
| 	/* Tear down the private nic state */
 | |
| 	kfree(efx->nic_data);
 | |
| 	efx->nic_data = NULL;
 | |
| }
 | |
| 
 | |
| static void falcon_update_nic_stats(struct efx_nic *efx)
 | |
| {
 | |
| 	struct falcon_nic_data *nic_data = efx->nic_data;
 | |
| 	efx_oword_t cnt;
 | |
| 
 | |
| 	if (nic_data->stats_disable_count)
 | |
| 		return;
 | |
| 
 | |
| 	efx_reado(efx, &cnt, FR_AZ_RX_NODESC_DROP);
 | |
| 	efx->n_rx_nodesc_drop_cnt +=
 | |
| 		EFX_OWORD_FIELD(cnt, FRF_AB_RX_NODESC_DROP_CNT);
 | |
| 
 | |
| 	if (nic_data->stats_pending &&
 | |
| 	    *nic_data->stats_dma_done == FALCON_STATS_DONE) {
 | |
| 		nic_data->stats_pending = false;
 | |
| 		rmb(); /* read the done flag before the stats */
 | |
| 		efx->mac_op->update_stats(efx);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void falcon_start_nic_stats(struct efx_nic *efx)
 | |
| {
 | |
| 	struct falcon_nic_data *nic_data = efx->nic_data;
 | |
| 
 | |
| 	spin_lock_bh(&efx->stats_lock);
 | |
| 	if (--nic_data->stats_disable_count == 0)
 | |
| 		falcon_stats_request(efx);
 | |
| 	spin_unlock_bh(&efx->stats_lock);
 | |
| }
 | |
| 
 | |
| void falcon_stop_nic_stats(struct efx_nic *efx)
 | |
| {
 | |
| 	struct falcon_nic_data *nic_data = efx->nic_data;
 | |
| 	int i;
 | |
| 
 | |
| 	might_sleep();
 | |
| 
 | |
| 	spin_lock_bh(&efx->stats_lock);
 | |
| 	++nic_data->stats_disable_count;
 | |
| 	spin_unlock_bh(&efx->stats_lock);
 | |
| 
 | |
| 	del_timer_sync(&nic_data->stats_timer);
 | |
| 
 | |
| 	/* Wait enough time for the most recent transfer to
 | |
| 	 * complete. */
 | |
| 	for (i = 0; i < 4 && nic_data->stats_pending; i++) {
 | |
| 		if (*nic_data->stats_dma_done == FALCON_STATS_DONE)
 | |
| 			break;
 | |
| 		msleep(1);
 | |
| 	}
 | |
| 
 | |
| 	spin_lock_bh(&efx->stats_lock);
 | |
| 	falcon_stats_complete(efx);
 | |
| 	spin_unlock_bh(&efx->stats_lock);
 | |
| }
 | |
| 
 | |
| static void falcon_set_id_led(struct efx_nic *efx, enum efx_led_mode mode)
 | |
| {
 | |
| 	falcon_board(efx)->type->set_id_led(efx, mode);
 | |
| }
 | |
| 
 | |
| /**************************************************************************
 | |
|  *
 | |
|  * Wake on LAN
 | |
|  *
 | |
|  **************************************************************************
 | |
|  */
 | |
| 
 | |
| static void falcon_get_wol(struct efx_nic *efx, struct ethtool_wolinfo *wol)
 | |
| {
 | |
| 	wol->supported = 0;
 | |
| 	wol->wolopts = 0;
 | |
| 	memset(&wol->sopass, 0, sizeof(wol->sopass));
 | |
| }
 | |
| 
 | |
| static int falcon_set_wol(struct efx_nic *efx, u32 type)
 | |
| {
 | |
| 	if (type != 0)
 | |
| 		return -EINVAL;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**************************************************************************
 | |
|  *
 | |
|  * Revision-dependent attributes used by efx.c and nic.c
 | |
|  *
 | |
|  **************************************************************************
 | |
|  */
 | |
| 
 | |
| struct efx_nic_type falcon_a1_nic_type = {
 | |
| 	.probe = falcon_probe_nic,
 | |
| 	.remove = falcon_remove_nic,
 | |
| 	.init = falcon_init_nic,
 | |
| 	.fini = efx_port_dummy_op_void,
 | |
| 	.monitor = falcon_monitor,
 | |
| 	.reset = falcon_reset_hw,
 | |
| 	.probe_port = falcon_probe_port,
 | |
| 	.remove_port = falcon_remove_port,
 | |
| 	.prepare_flush = falcon_prepare_flush,
 | |
| 	.update_stats = falcon_update_nic_stats,
 | |
| 	.start_stats = falcon_start_nic_stats,
 | |
| 	.stop_stats = falcon_stop_nic_stats,
 | |
| 	.set_id_led = falcon_set_id_led,
 | |
| 	.push_irq_moderation = falcon_push_irq_moderation,
 | |
| 	.push_multicast_hash = falcon_push_multicast_hash,
 | |
| 	.reconfigure_port = falcon_reconfigure_port,
 | |
| 	.get_wol = falcon_get_wol,
 | |
| 	.set_wol = falcon_set_wol,
 | |
| 	.resume_wol = efx_port_dummy_op_void,
 | |
| 	.test_nvram = falcon_test_nvram,
 | |
| 	.default_mac_ops = &falcon_xmac_operations,
 | |
| 
 | |
| 	.revision = EFX_REV_FALCON_A1,
 | |
| 	.mem_map_size = 0x20000,
 | |
| 	.txd_ptr_tbl_base = FR_AA_TX_DESC_PTR_TBL_KER,
 | |
| 	.rxd_ptr_tbl_base = FR_AA_RX_DESC_PTR_TBL_KER,
 | |
| 	.buf_tbl_base = FR_AA_BUF_FULL_TBL_KER,
 | |
| 	.evq_ptr_tbl_base = FR_AA_EVQ_PTR_TBL_KER,
 | |
| 	.evq_rptr_tbl_base = FR_AA_EVQ_RPTR_KER,
 | |
| 	.max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
 | |
| 	.rx_buffer_padding = 0x24,
 | |
| 	.max_interrupt_mode = EFX_INT_MODE_MSI,
 | |
| 	.phys_addr_channels = 4,
 | |
| 	.tx_dc_base = 0x130000,
 | |
| 	.rx_dc_base = 0x100000,
 | |
| 	.offload_features = NETIF_F_IP_CSUM,
 | |
| 	.reset_world_flags = ETH_RESET_IRQ,
 | |
| };
 | |
| 
 | |
| struct efx_nic_type falcon_b0_nic_type = {
 | |
| 	.probe = falcon_probe_nic,
 | |
| 	.remove = falcon_remove_nic,
 | |
| 	.init = falcon_init_nic,
 | |
| 	.fini = efx_port_dummy_op_void,
 | |
| 	.monitor = falcon_monitor,
 | |
| 	.reset = falcon_reset_hw,
 | |
| 	.probe_port = falcon_probe_port,
 | |
| 	.remove_port = falcon_remove_port,
 | |
| 	.prepare_flush = falcon_prepare_flush,
 | |
| 	.update_stats = falcon_update_nic_stats,
 | |
| 	.start_stats = falcon_start_nic_stats,
 | |
| 	.stop_stats = falcon_stop_nic_stats,
 | |
| 	.set_id_led = falcon_set_id_led,
 | |
| 	.push_irq_moderation = falcon_push_irq_moderation,
 | |
| 	.push_multicast_hash = falcon_push_multicast_hash,
 | |
| 	.reconfigure_port = falcon_reconfigure_port,
 | |
| 	.get_wol = falcon_get_wol,
 | |
| 	.set_wol = falcon_set_wol,
 | |
| 	.resume_wol = efx_port_dummy_op_void,
 | |
| 	.test_registers = falcon_b0_test_registers,
 | |
| 	.test_nvram = falcon_test_nvram,
 | |
| 	.default_mac_ops = &falcon_xmac_operations,
 | |
| 
 | |
| 	.revision = EFX_REV_FALCON_B0,
 | |
| 	/* Map everything up to and including the RSS indirection
 | |
| 	 * table.  Don't map MSI-X table, MSI-X PBA since Linux
 | |
| 	 * requires that they not be mapped.  */
 | |
| 	.mem_map_size = (FR_BZ_RX_INDIRECTION_TBL +
 | |
| 			 FR_BZ_RX_INDIRECTION_TBL_STEP *
 | |
| 			 FR_BZ_RX_INDIRECTION_TBL_ROWS),
 | |
| 	.txd_ptr_tbl_base = FR_BZ_TX_DESC_PTR_TBL,
 | |
| 	.rxd_ptr_tbl_base = FR_BZ_RX_DESC_PTR_TBL,
 | |
| 	.buf_tbl_base = FR_BZ_BUF_FULL_TBL,
 | |
| 	.evq_ptr_tbl_base = FR_BZ_EVQ_PTR_TBL,
 | |
| 	.evq_rptr_tbl_base = FR_BZ_EVQ_RPTR,
 | |
| 	.max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
 | |
| 	.rx_buffer_hash_size = 0x10,
 | |
| 	.rx_buffer_padding = 0,
 | |
| 	.max_interrupt_mode = EFX_INT_MODE_MSIX,
 | |
| 	.phys_addr_channels = 32, /* Hardware limit is 64, but the legacy
 | |
| 				   * interrupt handler only supports 32
 | |
| 				   * channels */
 | |
| 	.tx_dc_base = 0x130000,
 | |
| 	.rx_dc_base = 0x100000,
 | |
| 	.offload_features = NETIF_F_IP_CSUM | NETIF_F_RXHASH,
 | |
| 	.reset_world_flags = ETH_RESET_IRQ,
 | |
| };
 | |
| 
 |