 28172739f0
			
		
	
	
	28172739f0
	
	
	
		
			
			There is a small possibility that a reader gets incorrect values on 32 bit arches. SNMP applications could catch incorrect counters when a 32bit high part is changed by another stats consumer/provider. One way to solve this is to add a rtnl_link_stats64 param to all ndo_get_stats64() methods, and also add such a parameter to dev_get_stats(). Rule is that we are not allowed to use dev->stats64 as a temporary storage for 64bit stats, but a caller provided area (usually on stack) Old drivers (only providing get_stats() method) need no changes. Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
		
			
				
	
	
		
			2505 lines
		
	
	
	
		
			66 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2505 lines
		
	
	
	
		
			66 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /****************************************************************************
 | |
|  * Driver for Solarflare Solarstorm network controllers and boards
 | |
|  * Copyright 2005-2006 Fen Systems Ltd.
 | |
|  * Copyright 2005-2009 Solarflare Communications Inc.
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify it
 | |
|  * under the terms of the GNU General Public License version 2 as published
 | |
|  * by the Free Software Foundation, incorporated herein by reference.
 | |
|  */
 | |
| 
 | |
| #include <linux/module.h>
 | |
| #include <linux/pci.h>
 | |
| #include <linux/netdevice.h>
 | |
| #include <linux/etherdevice.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/notifier.h>
 | |
| #include <linux/ip.h>
 | |
| #include <linux/tcp.h>
 | |
| #include <linux/in.h>
 | |
| #include <linux/crc32.h>
 | |
| #include <linux/ethtool.h>
 | |
| #include <linux/topology.h>
 | |
| #include <linux/gfp.h>
 | |
| #include "net_driver.h"
 | |
| #include "efx.h"
 | |
| #include "mdio_10g.h"
 | |
| #include "nic.h"
 | |
| 
 | |
| #include "mcdi.h"
 | |
| #include "workarounds.h"
 | |
| 
 | |
| /**************************************************************************
 | |
|  *
 | |
|  * Type name strings
 | |
|  *
 | |
|  **************************************************************************
 | |
|  */
 | |
| 
 | |
| /* Loopback mode names (see LOOPBACK_MODE()) */
 | |
| const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
 | |
| const char *efx_loopback_mode_names[] = {
 | |
| 	[LOOPBACK_NONE]		= "NONE",
 | |
| 	[LOOPBACK_DATA]		= "DATAPATH",
 | |
| 	[LOOPBACK_GMAC]		= "GMAC",
 | |
| 	[LOOPBACK_XGMII]	= "XGMII",
 | |
| 	[LOOPBACK_XGXS]		= "XGXS",
 | |
| 	[LOOPBACK_XAUI]  	= "XAUI",
 | |
| 	[LOOPBACK_GMII] 	= "GMII",
 | |
| 	[LOOPBACK_SGMII] 	= "SGMII",
 | |
| 	[LOOPBACK_XGBR]		= "XGBR",
 | |
| 	[LOOPBACK_XFI]		= "XFI",
 | |
| 	[LOOPBACK_XAUI_FAR]	= "XAUI_FAR",
 | |
| 	[LOOPBACK_GMII_FAR]	= "GMII_FAR",
 | |
| 	[LOOPBACK_SGMII_FAR]	= "SGMII_FAR",
 | |
| 	[LOOPBACK_XFI_FAR]	= "XFI_FAR",
 | |
| 	[LOOPBACK_GPHY]		= "GPHY",
 | |
| 	[LOOPBACK_PHYXS]	= "PHYXS",
 | |
| 	[LOOPBACK_PCS]	 	= "PCS",
 | |
| 	[LOOPBACK_PMAPMD] 	= "PMA/PMD",
 | |
| 	[LOOPBACK_XPORT]	= "XPORT",
 | |
| 	[LOOPBACK_XGMII_WS]	= "XGMII_WS",
 | |
| 	[LOOPBACK_XAUI_WS]  	= "XAUI_WS",
 | |
| 	[LOOPBACK_XAUI_WS_FAR]  = "XAUI_WS_FAR",
 | |
| 	[LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
 | |
| 	[LOOPBACK_GMII_WS] 	= "GMII_WS",
 | |
| 	[LOOPBACK_XFI_WS]	= "XFI_WS",
 | |
| 	[LOOPBACK_XFI_WS_FAR]	= "XFI_WS_FAR",
 | |
| 	[LOOPBACK_PHYXS_WS]  	= "PHYXS_WS",
 | |
| };
 | |
| 
 | |
| /* Interrupt mode names (see INT_MODE())) */
 | |
| const unsigned int efx_interrupt_mode_max = EFX_INT_MODE_MAX;
 | |
| const char *efx_interrupt_mode_names[] = {
 | |
| 	[EFX_INT_MODE_MSIX]   = "MSI-X",
 | |
| 	[EFX_INT_MODE_MSI]    = "MSI",
 | |
| 	[EFX_INT_MODE_LEGACY] = "legacy",
 | |
| };
 | |
| 
 | |
| const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
 | |
| const char *efx_reset_type_names[] = {
 | |
| 	[RESET_TYPE_INVISIBLE]     = "INVISIBLE",
 | |
| 	[RESET_TYPE_ALL]           = "ALL",
 | |
| 	[RESET_TYPE_WORLD]         = "WORLD",
 | |
| 	[RESET_TYPE_DISABLE]       = "DISABLE",
 | |
| 	[RESET_TYPE_TX_WATCHDOG]   = "TX_WATCHDOG",
 | |
| 	[RESET_TYPE_INT_ERROR]     = "INT_ERROR",
 | |
| 	[RESET_TYPE_RX_RECOVERY]   = "RX_RECOVERY",
 | |
| 	[RESET_TYPE_RX_DESC_FETCH] = "RX_DESC_FETCH",
 | |
| 	[RESET_TYPE_TX_DESC_FETCH] = "TX_DESC_FETCH",
 | |
| 	[RESET_TYPE_TX_SKIP]       = "TX_SKIP",
 | |
| 	[RESET_TYPE_MC_FAILURE]    = "MC_FAILURE",
 | |
| };
 | |
| 
 | |
| #define EFX_MAX_MTU (9 * 1024)
 | |
| 
 | |
| /* Reset workqueue. If any NIC has a hardware failure then a reset will be
 | |
|  * queued onto this work queue. This is not a per-nic work queue, because
 | |
|  * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
 | |
|  */
 | |
| static struct workqueue_struct *reset_workqueue;
 | |
| 
 | |
| /**************************************************************************
 | |
|  *
 | |
|  * Configurable values
 | |
|  *
 | |
|  *************************************************************************/
 | |
| 
 | |
| /*
 | |
|  * Use separate channels for TX and RX events
 | |
|  *
 | |
|  * Set this to 1 to use separate channels for TX and RX. It allows us
 | |
|  * to control interrupt affinity separately for TX and RX.
 | |
|  *
 | |
|  * This is only used in MSI-X interrupt mode
 | |
|  */
 | |
| static unsigned int separate_tx_channels;
 | |
| module_param(separate_tx_channels, uint, 0644);
 | |
| MODULE_PARM_DESC(separate_tx_channels,
 | |
| 		 "Use separate channels for TX and RX");
 | |
| 
 | |
| /* This is the weight assigned to each of the (per-channel) virtual
 | |
|  * NAPI devices.
 | |
|  */
 | |
| static int napi_weight = 64;
 | |
| 
 | |
| /* This is the time (in jiffies) between invocations of the hardware
 | |
|  * monitor, which checks for known hardware bugs and resets the
 | |
|  * hardware and driver as necessary.
 | |
|  */
 | |
| unsigned int efx_monitor_interval = 1 * HZ;
 | |
| 
 | |
| /* This controls whether or not the driver will initialise devices
 | |
|  * with invalid MAC addresses stored in the EEPROM or flash.  If true,
 | |
|  * such devices will be initialised with a random locally-generated
 | |
|  * MAC address.  This allows for loading the sfc_mtd driver to
 | |
|  * reprogram the flash, even if the flash contents (including the MAC
 | |
|  * address) have previously been erased.
 | |
|  */
 | |
| static unsigned int allow_bad_hwaddr;
 | |
| 
 | |
| /* Initial interrupt moderation settings.  They can be modified after
 | |
|  * module load with ethtool.
 | |
|  *
 | |
|  * The default for RX should strike a balance between increasing the
 | |
|  * round-trip latency and reducing overhead.
 | |
|  */
 | |
| static unsigned int rx_irq_mod_usec = 60;
 | |
| 
 | |
| /* Initial interrupt moderation settings.  They can be modified after
 | |
|  * module load with ethtool.
 | |
|  *
 | |
|  * This default is chosen to ensure that a 10G link does not go idle
 | |
|  * while a TX queue is stopped after it has become full.  A queue is
 | |
|  * restarted when it drops below half full.  The time this takes (assuming
 | |
|  * worst case 3 descriptors per packet and 1024 descriptors) is
 | |
|  *   512 / 3 * 1.2 = 205 usec.
 | |
|  */
 | |
| static unsigned int tx_irq_mod_usec = 150;
 | |
| 
 | |
| /* This is the first interrupt mode to try out of:
 | |
|  * 0 => MSI-X
 | |
|  * 1 => MSI
 | |
|  * 2 => legacy
 | |
|  */
 | |
| static unsigned int interrupt_mode;
 | |
| 
 | |
| /* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
 | |
|  * i.e. the number of CPUs among which we may distribute simultaneous
 | |
|  * interrupt handling.
 | |
|  *
 | |
|  * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
 | |
|  * The default (0) means to assign an interrupt to each package (level II cache)
 | |
|  */
 | |
| static unsigned int rss_cpus;
 | |
| module_param(rss_cpus, uint, 0444);
 | |
| MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
 | |
| 
 | |
| static int phy_flash_cfg;
 | |
| module_param(phy_flash_cfg, int, 0644);
 | |
| MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
 | |
| 
 | |
| static unsigned irq_adapt_low_thresh = 10000;
 | |
| module_param(irq_adapt_low_thresh, uint, 0644);
 | |
| MODULE_PARM_DESC(irq_adapt_low_thresh,
 | |
| 		 "Threshold score for reducing IRQ moderation");
 | |
| 
 | |
| static unsigned irq_adapt_high_thresh = 20000;
 | |
| module_param(irq_adapt_high_thresh, uint, 0644);
 | |
| MODULE_PARM_DESC(irq_adapt_high_thresh,
 | |
| 		 "Threshold score for increasing IRQ moderation");
 | |
| 
 | |
| static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
 | |
| 			 NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
 | |
| 			 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
 | |
| 			 NETIF_MSG_TX_ERR | NETIF_MSG_HW);
 | |
| module_param(debug, uint, 0);
 | |
| MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");
 | |
| 
 | |
| /**************************************************************************
 | |
|  *
 | |
|  * Utility functions and prototypes
 | |
|  *
 | |
|  *************************************************************************/
 | |
| static void efx_remove_channel(struct efx_channel *channel);
 | |
| static void efx_remove_port(struct efx_nic *efx);
 | |
| static void efx_fini_napi(struct efx_nic *efx);
 | |
| static void efx_fini_channels(struct efx_nic *efx);
 | |
| 
 | |
| #define EFX_ASSERT_RESET_SERIALISED(efx)		\
 | |
| 	do {						\
 | |
| 		if ((efx->state == STATE_RUNNING) ||	\
 | |
| 		    (efx->state == STATE_DISABLED))	\
 | |
| 			ASSERT_RTNL();			\
 | |
| 	} while (0)
 | |
| 
 | |
| /**************************************************************************
 | |
|  *
 | |
|  * Event queue processing
 | |
|  *
 | |
|  *************************************************************************/
 | |
| 
 | |
| /* Process channel's event queue
 | |
|  *
 | |
|  * This function is responsible for processing the event queue of a
 | |
|  * single channel.  The caller must guarantee that this function will
 | |
|  * never be concurrently called more than once on the same channel,
 | |
|  * though different channels may be being processed concurrently.
 | |
|  */
 | |
| static int efx_process_channel(struct efx_channel *channel, int budget)
 | |
| {
 | |
| 	struct efx_nic *efx = channel->efx;
 | |
| 	int spent;
 | |
| 
 | |
| 	if (unlikely(efx->reset_pending != RESET_TYPE_NONE ||
 | |
| 		     !channel->enabled))
 | |
| 		return 0;
 | |
| 
 | |
| 	spent = efx_nic_process_eventq(channel, budget);
 | |
| 	if (spent == 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* Deliver last RX packet. */
 | |
| 	if (channel->rx_pkt) {
 | |
| 		__efx_rx_packet(channel, channel->rx_pkt,
 | |
| 				channel->rx_pkt_csummed);
 | |
| 		channel->rx_pkt = NULL;
 | |
| 	}
 | |
| 
 | |
| 	efx_rx_strategy(channel);
 | |
| 
 | |
| 	efx_fast_push_rx_descriptors(&efx->rx_queue[channel->channel]);
 | |
| 
 | |
| 	return spent;
 | |
| }
 | |
| 
 | |
| /* Mark channel as finished processing
 | |
|  *
 | |
|  * Note that since we will not receive further interrupts for this
 | |
|  * channel before we finish processing and call the eventq_read_ack()
 | |
|  * method, there is no need to use the interrupt hold-off timers.
 | |
|  */
 | |
| static inline void efx_channel_processed(struct efx_channel *channel)
 | |
| {
 | |
| 	/* The interrupt handler for this channel may set work_pending
 | |
| 	 * as soon as we acknowledge the events we've seen.  Make sure
 | |
| 	 * it's cleared before then. */
 | |
| 	channel->work_pending = false;
 | |
| 	smp_wmb();
 | |
| 
 | |
| 	efx_nic_eventq_read_ack(channel);
 | |
| }
 | |
| 
 | |
| /* NAPI poll handler
 | |
|  *
 | |
|  * NAPI guarantees serialisation of polls of the same device, which
 | |
|  * provides the guarantee required by efx_process_channel().
 | |
|  */
 | |
| static int efx_poll(struct napi_struct *napi, int budget)
 | |
| {
 | |
| 	struct efx_channel *channel =
 | |
| 		container_of(napi, struct efx_channel, napi_str);
 | |
| 	struct efx_nic *efx = channel->efx;
 | |
| 	int spent;
 | |
| 
 | |
| 	netif_vdbg(efx, intr, efx->net_dev,
 | |
| 		   "channel %d NAPI poll executing on CPU %d\n",
 | |
| 		   channel->channel, raw_smp_processor_id());
 | |
| 
 | |
| 	spent = efx_process_channel(channel, budget);
 | |
| 
 | |
| 	if (spent < budget) {
 | |
| 		if (channel->channel < efx->n_rx_channels &&
 | |
| 		    efx->irq_rx_adaptive &&
 | |
| 		    unlikely(++channel->irq_count == 1000)) {
 | |
| 			if (unlikely(channel->irq_mod_score <
 | |
| 				     irq_adapt_low_thresh)) {
 | |
| 				if (channel->irq_moderation > 1) {
 | |
| 					channel->irq_moderation -= 1;
 | |
| 					efx->type->push_irq_moderation(channel);
 | |
| 				}
 | |
| 			} else if (unlikely(channel->irq_mod_score >
 | |
| 					    irq_adapt_high_thresh)) {
 | |
| 				if (channel->irq_moderation <
 | |
| 				    efx->irq_rx_moderation) {
 | |
| 					channel->irq_moderation += 1;
 | |
| 					efx->type->push_irq_moderation(channel);
 | |
| 				}
 | |
| 			}
 | |
| 			channel->irq_count = 0;
 | |
| 			channel->irq_mod_score = 0;
 | |
| 		}
 | |
| 
 | |
| 		/* There is no race here; although napi_disable() will
 | |
| 		 * only wait for napi_complete(), this isn't a problem
 | |
| 		 * since efx_channel_processed() will have no effect if
 | |
| 		 * interrupts have already been disabled.
 | |
| 		 */
 | |
| 		napi_complete(napi);
 | |
| 		efx_channel_processed(channel);
 | |
| 	}
 | |
| 
 | |
| 	return spent;
 | |
| }
 | |
| 
 | |
| /* Process the eventq of the specified channel immediately on this CPU
 | |
|  *
 | |
|  * Disable hardware generated interrupts, wait for any existing
 | |
|  * processing to finish, then directly poll (and ack ) the eventq.
 | |
|  * Finally reenable NAPI and interrupts.
 | |
|  *
 | |
|  * Since we are touching interrupts the caller should hold the suspend lock
 | |
|  */
 | |
| void efx_process_channel_now(struct efx_channel *channel)
 | |
| {
 | |
| 	struct efx_nic *efx = channel->efx;
 | |
| 
 | |
| 	BUG_ON(!channel->enabled);
 | |
| 
 | |
| 	/* Disable interrupts and wait for ISRs to complete */
 | |
| 	efx_nic_disable_interrupts(efx);
 | |
| 	if (efx->legacy_irq)
 | |
| 		synchronize_irq(efx->legacy_irq);
 | |
| 	if (channel->irq)
 | |
| 		synchronize_irq(channel->irq);
 | |
| 
 | |
| 	/* Wait for any NAPI processing to complete */
 | |
| 	napi_disable(&channel->napi_str);
 | |
| 
 | |
| 	/* Poll the channel */
 | |
| 	efx_process_channel(channel, EFX_EVQ_SIZE);
 | |
| 
 | |
| 	/* Ack the eventq. This may cause an interrupt to be generated
 | |
| 	 * when they are reenabled */
 | |
| 	efx_channel_processed(channel);
 | |
| 
 | |
| 	napi_enable(&channel->napi_str);
 | |
| 	efx_nic_enable_interrupts(efx);
 | |
| }
 | |
| 
 | |
| /* Create event queue
 | |
|  * Event queue memory allocations are done only once.  If the channel
 | |
|  * is reset, the memory buffer will be reused; this guards against
 | |
|  * errors during channel reset and also simplifies interrupt handling.
 | |
|  */
 | |
| static int efx_probe_eventq(struct efx_channel *channel)
 | |
| {
 | |
| 	netif_dbg(channel->efx, probe, channel->efx->net_dev,
 | |
| 		  "chan %d create event queue\n", channel->channel);
 | |
| 
 | |
| 	return efx_nic_probe_eventq(channel);
 | |
| }
 | |
| 
 | |
| /* Prepare channel's event queue */
 | |
| static void efx_init_eventq(struct efx_channel *channel)
 | |
| {
 | |
| 	netif_dbg(channel->efx, drv, channel->efx->net_dev,
 | |
| 		  "chan %d init event queue\n", channel->channel);
 | |
| 
 | |
| 	channel->eventq_read_ptr = 0;
 | |
| 
 | |
| 	efx_nic_init_eventq(channel);
 | |
| }
 | |
| 
 | |
| static void efx_fini_eventq(struct efx_channel *channel)
 | |
| {
 | |
| 	netif_dbg(channel->efx, drv, channel->efx->net_dev,
 | |
| 		  "chan %d fini event queue\n", channel->channel);
 | |
| 
 | |
| 	efx_nic_fini_eventq(channel);
 | |
| }
 | |
| 
 | |
| static void efx_remove_eventq(struct efx_channel *channel)
 | |
| {
 | |
| 	netif_dbg(channel->efx, drv, channel->efx->net_dev,
 | |
| 		  "chan %d remove event queue\n", channel->channel);
 | |
| 
 | |
| 	efx_nic_remove_eventq(channel);
 | |
| }
 | |
| 
 | |
| /**************************************************************************
 | |
|  *
 | |
|  * Channel handling
 | |
|  *
 | |
|  *************************************************************************/
 | |
| 
 | |
| static int efx_probe_channel(struct efx_channel *channel)
 | |
| {
 | |
| 	struct efx_tx_queue *tx_queue;
 | |
| 	struct efx_rx_queue *rx_queue;
 | |
| 	int rc;
 | |
| 
 | |
| 	netif_dbg(channel->efx, probe, channel->efx->net_dev,
 | |
| 		  "creating channel %d\n", channel->channel);
 | |
| 
 | |
| 	rc = efx_probe_eventq(channel);
 | |
| 	if (rc)
 | |
| 		goto fail1;
 | |
| 
 | |
| 	efx_for_each_channel_tx_queue(tx_queue, channel) {
 | |
| 		rc = efx_probe_tx_queue(tx_queue);
 | |
| 		if (rc)
 | |
| 			goto fail2;
 | |
| 	}
 | |
| 
 | |
| 	efx_for_each_channel_rx_queue(rx_queue, channel) {
 | |
| 		rc = efx_probe_rx_queue(rx_queue);
 | |
| 		if (rc)
 | |
| 			goto fail3;
 | |
| 	}
 | |
| 
 | |
| 	channel->n_rx_frm_trunc = 0;
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
|  fail3:
 | |
| 	efx_for_each_channel_rx_queue(rx_queue, channel)
 | |
| 		efx_remove_rx_queue(rx_queue);
 | |
|  fail2:
 | |
| 	efx_for_each_channel_tx_queue(tx_queue, channel)
 | |
| 		efx_remove_tx_queue(tx_queue);
 | |
|  fail1:
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| 
 | |
| static void efx_set_channel_names(struct efx_nic *efx)
 | |
| {
 | |
| 	struct efx_channel *channel;
 | |
| 	const char *type = "";
 | |
| 	int number;
 | |
| 
 | |
| 	efx_for_each_channel(channel, efx) {
 | |
| 		number = channel->channel;
 | |
| 		if (efx->n_channels > efx->n_rx_channels) {
 | |
| 			if (channel->channel < efx->n_rx_channels) {
 | |
| 				type = "-rx";
 | |
| 			} else {
 | |
| 				type = "-tx";
 | |
| 				number -= efx->n_rx_channels;
 | |
| 			}
 | |
| 		}
 | |
| 		snprintf(channel->name, sizeof(channel->name),
 | |
| 			 "%s%s-%d", efx->name, type, number);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Channels are shutdown and reinitialised whilst the NIC is running
 | |
|  * to propagate configuration changes (mtu, checksum offload), or
 | |
|  * to clear hardware error conditions
 | |
|  */
 | |
| static void efx_init_channels(struct efx_nic *efx)
 | |
| {
 | |
| 	struct efx_tx_queue *tx_queue;
 | |
| 	struct efx_rx_queue *rx_queue;
 | |
| 	struct efx_channel *channel;
 | |
| 
 | |
| 	/* Calculate the rx buffer allocation parameters required to
 | |
| 	 * support the current MTU, including padding for header
 | |
| 	 * alignment and overruns.
 | |
| 	 */
 | |
| 	efx->rx_buffer_len = (max(EFX_PAGE_IP_ALIGN, NET_IP_ALIGN) +
 | |
| 			      EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
 | |
| 			      efx->type->rx_buffer_hash_size +
 | |
| 			      efx->type->rx_buffer_padding);
 | |
| 	efx->rx_buffer_order = get_order(efx->rx_buffer_len +
 | |
| 					 sizeof(struct efx_rx_page_state));
 | |
| 
 | |
| 	/* Initialise the channels */
 | |
| 	efx_for_each_channel(channel, efx) {
 | |
| 		netif_dbg(channel->efx, drv, channel->efx->net_dev,
 | |
| 			  "init chan %d\n", channel->channel);
 | |
| 
 | |
| 		efx_init_eventq(channel);
 | |
| 
 | |
| 		efx_for_each_channel_tx_queue(tx_queue, channel)
 | |
| 			efx_init_tx_queue(tx_queue);
 | |
| 
 | |
| 		/* The rx buffer allocation strategy is MTU dependent */
 | |
| 		efx_rx_strategy(channel);
 | |
| 
 | |
| 		efx_for_each_channel_rx_queue(rx_queue, channel)
 | |
| 			efx_init_rx_queue(rx_queue);
 | |
| 
 | |
| 		WARN_ON(channel->rx_pkt != NULL);
 | |
| 		efx_rx_strategy(channel);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* This enables event queue processing and packet transmission.
 | |
|  *
 | |
|  * Note that this function is not allowed to fail, since that would
 | |
|  * introduce too much complexity into the suspend/resume path.
 | |
|  */
 | |
| static void efx_start_channel(struct efx_channel *channel)
 | |
| {
 | |
| 	struct efx_rx_queue *rx_queue;
 | |
| 
 | |
| 	netif_dbg(channel->efx, ifup, channel->efx->net_dev,
 | |
| 		  "starting chan %d\n", channel->channel);
 | |
| 
 | |
| 	/* The interrupt handler for this channel may set work_pending
 | |
| 	 * as soon as we enable it.  Make sure it's cleared before
 | |
| 	 * then.  Similarly, make sure it sees the enabled flag set. */
 | |
| 	channel->work_pending = false;
 | |
| 	channel->enabled = true;
 | |
| 	smp_wmb();
 | |
| 
 | |
| 	/* Fill the queues before enabling NAPI */
 | |
| 	efx_for_each_channel_rx_queue(rx_queue, channel)
 | |
| 		efx_fast_push_rx_descriptors(rx_queue);
 | |
| 
 | |
| 	napi_enable(&channel->napi_str);
 | |
| }
 | |
| 
 | |
| /* This disables event queue processing and packet transmission.
 | |
|  * This function does not guarantee that all queue processing
 | |
|  * (e.g. RX refill) is complete.
 | |
|  */
 | |
| static void efx_stop_channel(struct efx_channel *channel)
 | |
| {
 | |
| 	if (!channel->enabled)
 | |
| 		return;
 | |
| 
 | |
| 	netif_dbg(channel->efx, ifdown, channel->efx->net_dev,
 | |
| 		  "stop chan %d\n", channel->channel);
 | |
| 
 | |
| 	channel->enabled = false;
 | |
| 	napi_disable(&channel->napi_str);
 | |
| }
 | |
| 
 | |
| static void efx_fini_channels(struct efx_nic *efx)
 | |
| {
 | |
| 	struct efx_channel *channel;
 | |
| 	struct efx_tx_queue *tx_queue;
 | |
| 	struct efx_rx_queue *rx_queue;
 | |
| 	int rc;
 | |
| 
 | |
| 	EFX_ASSERT_RESET_SERIALISED(efx);
 | |
| 	BUG_ON(efx->port_enabled);
 | |
| 
 | |
| 	rc = efx_nic_flush_queues(efx);
 | |
| 	if (rc && EFX_WORKAROUND_7803(efx)) {
 | |
| 		/* Schedule a reset to recover from the flush failure. The
 | |
| 		 * descriptor caches reference memory we're about to free,
 | |
| 		 * but falcon_reconfigure_mac_wrapper() won't reconnect
 | |
| 		 * the MACs because of the pending reset. */
 | |
| 		netif_err(efx, drv, efx->net_dev,
 | |
| 			  "Resetting to recover from flush failure\n");
 | |
| 		efx_schedule_reset(efx, RESET_TYPE_ALL);
 | |
| 	} else if (rc) {
 | |
| 		netif_err(efx, drv, efx->net_dev, "failed to flush queues\n");
 | |
| 	} else {
 | |
| 		netif_dbg(efx, drv, efx->net_dev,
 | |
| 			  "successfully flushed all queues\n");
 | |
| 	}
 | |
| 
 | |
| 	efx_for_each_channel(channel, efx) {
 | |
| 		netif_dbg(channel->efx, drv, channel->efx->net_dev,
 | |
| 			  "shut down chan %d\n", channel->channel);
 | |
| 
 | |
| 		efx_for_each_channel_rx_queue(rx_queue, channel)
 | |
| 			efx_fini_rx_queue(rx_queue);
 | |
| 		efx_for_each_channel_tx_queue(tx_queue, channel)
 | |
| 			efx_fini_tx_queue(tx_queue);
 | |
| 		efx_fini_eventq(channel);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void efx_remove_channel(struct efx_channel *channel)
 | |
| {
 | |
| 	struct efx_tx_queue *tx_queue;
 | |
| 	struct efx_rx_queue *rx_queue;
 | |
| 
 | |
| 	netif_dbg(channel->efx, drv, channel->efx->net_dev,
 | |
| 		  "destroy chan %d\n", channel->channel);
 | |
| 
 | |
| 	efx_for_each_channel_rx_queue(rx_queue, channel)
 | |
| 		efx_remove_rx_queue(rx_queue);
 | |
| 	efx_for_each_channel_tx_queue(tx_queue, channel)
 | |
| 		efx_remove_tx_queue(tx_queue);
 | |
| 	efx_remove_eventq(channel);
 | |
| }
 | |
| 
 | |
| void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue)
 | |
| {
 | |
| 	mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100));
 | |
| }
 | |
| 
 | |
| /**************************************************************************
 | |
|  *
 | |
|  * Port handling
 | |
|  *
 | |
|  **************************************************************************/
 | |
| 
 | |
| /* This ensures that the kernel is kept informed (via
 | |
|  * netif_carrier_on/off) of the link status, and also maintains the
 | |
|  * link status's stop on the port's TX queue.
 | |
|  */
 | |
| void efx_link_status_changed(struct efx_nic *efx)
 | |
| {
 | |
| 	struct efx_link_state *link_state = &efx->link_state;
 | |
| 
 | |
| 	/* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
 | |
| 	 * that no events are triggered between unregister_netdev() and the
 | |
| 	 * driver unloading. A more general condition is that NETDEV_CHANGE
 | |
| 	 * can only be generated between NETDEV_UP and NETDEV_DOWN */
 | |
| 	if (!netif_running(efx->net_dev))
 | |
| 		return;
 | |
| 
 | |
| 	if (efx->port_inhibited) {
 | |
| 		netif_carrier_off(efx->net_dev);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (link_state->up != netif_carrier_ok(efx->net_dev)) {
 | |
| 		efx->n_link_state_changes++;
 | |
| 
 | |
| 		if (link_state->up)
 | |
| 			netif_carrier_on(efx->net_dev);
 | |
| 		else
 | |
| 			netif_carrier_off(efx->net_dev);
 | |
| 	}
 | |
| 
 | |
| 	/* Status message for kernel log */
 | |
| 	if (link_state->up) {
 | |
| 		netif_info(efx, link, efx->net_dev,
 | |
| 			   "link up at %uMbps %s-duplex (MTU %d)%s\n",
 | |
| 			   link_state->speed, link_state->fd ? "full" : "half",
 | |
| 			   efx->net_dev->mtu,
 | |
| 			   (efx->promiscuous ? " [PROMISC]" : ""));
 | |
| 	} else {
 | |
| 		netif_info(efx, link, efx->net_dev, "link down\n");
 | |
| 	}
 | |
| 
 | |
| }
 | |
| 
 | |
| void efx_link_set_advertising(struct efx_nic *efx, u32 advertising)
 | |
| {
 | |
| 	efx->link_advertising = advertising;
 | |
| 	if (advertising) {
 | |
| 		if (advertising & ADVERTISED_Pause)
 | |
| 			efx->wanted_fc |= (EFX_FC_TX | EFX_FC_RX);
 | |
| 		else
 | |
| 			efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX);
 | |
| 		if (advertising & ADVERTISED_Asym_Pause)
 | |
| 			efx->wanted_fc ^= EFX_FC_TX;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void efx_link_set_wanted_fc(struct efx_nic *efx, enum efx_fc_type wanted_fc)
 | |
| {
 | |
| 	efx->wanted_fc = wanted_fc;
 | |
| 	if (efx->link_advertising) {
 | |
| 		if (wanted_fc & EFX_FC_RX)
 | |
| 			efx->link_advertising |= (ADVERTISED_Pause |
 | |
| 						  ADVERTISED_Asym_Pause);
 | |
| 		else
 | |
| 			efx->link_advertising &= ~(ADVERTISED_Pause |
 | |
| 						   ADVERTISED_Asym_Pause);
 | |
| 		if (wanted_fc & EFX_FC_TX)
 | |
| 			efx->link_advertising ^= ADVERTISED_Asym_Pause;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void efx_fini_port(struct efx_nic *efx);
 | |
| 
 | |
| /* Push loopback/power/transmit disable settings to the PHY, and reconfigure
 | |
|  * the MAC appropriately. All other PHY configuration changes are pushed
 | |
|  * through phy_op->set_settings(), and pushed asynchronously to the MAC
 | |
|  * through efx_monitor().
 | |
|  *
 | |
|  * Callers must hold the mac_lock
 | |
|  */
 | |
| int __efx_reconfigure_port(struct efx_nic *efx)
 | |
| {
 | |
| 	enum efx_phy_mode phy_mode;
 | |
| 	int rc;
 | |
| 
 | |
| 	WARN_ON(!mutex_is_locked(&efx->mac_lock));
 | |
| 
 | |
| 	/* Serialise the promiscuous flag with efx_set_multicast_list. */
 | |
| 	if (efx_dev_registered(efx)) {
 | |
| 		netif_addr_lock_bh(efx->net_dev);
 | |
| 		netif_addr_unlock_bh(efx->net_dev);
 | |
| 	}
 | |
| 
 | |
| 	/* Disable PHY transmit in mac level loopbacks */
 | |
| 	phy_mode = efx->phy_mode;
 | |
| 	if (LOOPBACK_INTERNAL(efx))
 | |
| 		efx->phy_mode |= PHY_MODE_TX_DISABLED;
 | |
| 	else
 | |
| 		efx->phy_mode &= ~PHY_MODE_TX_DISABLED;
 | |
| 
 | |
| 	rc = efx->type->reconfigure_port(efx);
 | |
| 
 | |
| 	if (rc)
 | |
| 		efx->phy_mode = phy_mode;
 | |
| 
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| /* Reinitialise the MAC to pick up new PHY settings, even if the port is
 | |
|  * disabled. */
 | |
| int efx_reconfigure_port(struct efx_nic *efx)
 | |
| {
 | |
| 	int rc;
 | |
| 
 | |
| 	EFX_ASSERT_RESET_SERIALISED(efx);
 | |
| 
 | |
| 	mutex_lock(&efx->mac_lock);
 | |
| 	rc = __efx_reconfigure_port(efx);
 | |
| 	mutex_unlock(&efx->mac_lock);
 | |
| 
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| /* Asynchronous work item for changing MAC promiscuity and multicast
 | |
|  * hash.  Avoid a drain/rx_ingress enable by reconfiguring the current
 | |
|  * MAC directly. */
 | |
| static void efx_mac_work(struct work_struct *data)
 | |
| {
 | |
| 	struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);
 | |
| 
 | |
| 	mutex_lock(&efx->mac_lock);
 | |
| 	if (efx->port_enabled) {
 | |
| 		efx->type->push_multicast_hash(efx);
 | |
| 		efx->mac_op->reconfigure(efx);
 | |
| 	}
 | |
| 	mutex_unlock(&efx->mac_lock);
 | |
| }
 | |
| 
 | |
| static int efx_probe_port(struct efx_nic *efx)
 | |
| {
 | |
| 	int rc;
 | |
| 
 | |
| 	netif_dbg(efx, probe, efx->net_dev, "create port\n");
 | |
| 
 | |
| 	if (phy_flash_cfg)
 | |
| 		efx->phy_mode = PHY_MODE_SPECIAL;
 | |
| 
 | |
| 	/* Connect up MAC/PHY operations table */
 | |
| 	rc = efx->type->probe_port(efx);
 | |
| 	if (rc)
 | |
| 		goto err;
 | |
| 
 | |
| 	/* Sanity check MAC address */
 | |
| 	if (is_valid_ether_addr(efx->mac_address)) {
 | |
| 		memcpy(efx->net_dev->dev_addr, efx->mac_address, ETH_ALEN);
 | |
| 	} else {
 | |
| 		netif_err(efx, probe, efx->net_dev, "invalid MAC address %pM\n",
 | |
| 			  efx->mac_address);
 | |
| 		if (!allow_bad_hwaddr) {
 | |
| 			rc = -EINVAL;
 | |
| 			goto err;
 | |
| 		}
 | |
| 		random_ether_addr(efx->net_dev->dev_addr);
 | |
| 		netif_info(efx, probe, efx->net_dev,
 | |
| 			   "using locally-generated MAC %pM\n",
 | |
| 			   efx->net_dev->dev_addr);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
|  err:
 | |
| 	efx_remove_port(efx);
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| static int efx_init_port(struct efx_nic *efx)
 | |
| {
 | |
| 	int rc;
 | |
| 
 | |
| 	netif_dbg(efx, drv, efx->net_dev, "init port\n");
 | |
| 
 | |
| 	mutex_lock(&efx->mac_lock);
 | |
| 
 | |
| 	rc = efx->phy_op->init(efx);
 | |
| 	if (rc)
 | |
| 		goto fail1;
 | |
| 
 | |
| 	efx->port_initialized = true;
 | |
| 
 | |
| 	/* Reconfigure the MAC before creating dma queues (required for
 | |
| 	 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
 | |
| 	efx->mac_op->reconfigure(efx);
 | |
| 
 | |
| 	/* Ensure the PHY advertises the correct flow control settings */
 | |
| 	rc = efx->phy_op->reconfigure(efx);
 | |
| 	if (rc)
 | |
| 		goto fail2;
 | |
| 
 | |
| 	mutex_unlock(&efx->mac_lock);
 | |
| 	return 0;
 | |
| 
 | |
| fail2:
 | |
| 	efx->phy_op->fini(efx);
 | |
| fail1:
 | |
| 	mutex_unlock(&efx->mac_lock);
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| static void efx_start_port(struct efx_nic *efx)
 | |
| {
 | |
| 	netif_dbg(efx, ifup, efx->net_dev, "start port\n");
 | |
| 	BUG_ON(efx->port_enabled);
 | |
| 
 | |
| 	mutex_lock(&efx->mac_lock);
 | |
| 	efx->port_enabled = true;
 | |
| 
 | |
| 	/* efx_mac_work() might have been scheduled after efx_stop_port(),
 | |
| 	 * and then cancelled by efx_flush_all() */
 | |
| 	efx->type->push_multicast_hash(efx);
 | |
| 	efx->mac_op->reconfigure(efx);
 | |
| 
 | |
| 	mutex_unlock(&efx->mac_lock);
 | |
| }
 | |
| 
 | |
| /* Prevent efx_mac_work() and efx_monitor() from working */
 | |
| static void efx_stop_port(struct efx_nic *efx)
 | |
| {
 | |
| 	netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
 | |
| 
 | |
| 	mutex_lock(&efx->mac_lock);
 | |
| 	efx->port_enabled = false;
 | |
| 	mutex_unlock(&efx->mac_lock);
 | |
| 
 | |
| 	/* Serialise against efx_set_multicast_list() */
 | |
| 	if (efx_dev_registered(efx)) {
 | |
| 		netif_addr_lock_bh(efx->net_dev);
 | |
| 		netif_addr_unlock_bh(efx->net_dev);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void efx_fini_port(struct efx_nic *efx)
 | |
| {
 | |
| 	netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
 | |
| 
 | |
| 	if (!efx->port_initialized)
 | |
| 		return;
 | |
| 
 | |
| 	efx->phy_op->fini(efx);
 | |
| 	efx->port_initialized = false;
 | |
| 
 | |
| 	efx->link_state.up = false;
 | |
| 	efx_link_status_changed(efx);
 | |
| }
 | |
| 
 | |
| static void efx_remove_port(struct efx_nic *efx)
 | |
| {
 | |
| 	netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
 | |
| 
 | |
| 	efx->type->remove_port(efx);
 | |
| }
 | |
| 
 | |
| /**************************************************************************
 | |
|  *
 | |
|  * NIC handling
 | |
|  *
 | |
|  **************************************************************************/
 | |
| 
 | |
| /* This configures the PCI device to enable I/O and DMA. */
 | |
| static int efx_init_io(struct efx_nic *efx)
 | |
| {
 | |
| 	struct pci_dev *pci_dev = efx->pci_dev;
 | |
| 	dma_addr_t dma_mask = efx->type->max_dma_mask;
 | |
| 	int rc;
 | |
| 
 | |
| 	netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n");
 | |
| 
 | |
| 	rc = pci_enable_device(pci_dev);
 | |
| 	if (rc) {
 | |
| 		netif_err(efx, probe, efx->net_dev,
 | |
| 			  "failed to enable PCI device\n");
 | |
| 		goto fail1;
 | |
| 	}
 | |
| 
 | |
| 	pci_set_master(pci_dev);
 | |
| 
 | |
| 	/* Set the PCI DMA mask.  Try all possibilities from our
 | |
| 	 * genuine mask down to 32 bits, because some architectures
 | |
| 	 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
 | |
| 	 * masks event though they reject 46 bit masks.
 | |
| 	 */
 | |
| 	while (dma_mask > 0x7fffffffUL) {
 | |
| 		if (pci_dma_supported(pci_dev, dma_mask) &&
 | |
| 		    ((rc = pci_set_dma_mask(pci_dev, dma_mask)) == 0))
 | |
| 			break;
 | |
| 		dma_mask >>= 1;
 | |
| 	}
 | |
| 	if (rc) {
 | |
| 		netif_err(efx, probe, efx->net_dev,
 | |
| 			  "could not find a suitable DMA mask\n");
 | |
| 		goto fail2;
 | |
| 	}
 | |
| 	netif_dbg(efx, probe, efx->net_dev,
 | |
| 		  "using DMA mask %llx\n", (unsigned long long) dma_mask);
 | |
| 	rc = pci_set_consistent_dma_mask(pci_dev, dma_mask);
 | |
| 	if (rc) {
 | |
| 		/* pci_set_consistent_dma_mask() is not *allowed* to
 | |
| 		 * fail with a mask that pci_set_dma_mask() accepted,
 | |
| 		 * but just in case...
 | |
| 		 */
 | |
| 		netif_err(efx, probe, efx->net_dev,
 | |
| 			  "failed to set consistent DMA mask\n");
 | |
| 		goto fail2;
 | |
| 	}
 | |
| 
 | |
| 	efx->membase_phys = pci_resource_start(efx->pci_dev, EFX_MEM_BAR);
 | |
| 	rc = pci_request_region(pci_dev, EFX_MEM_BAR, "sfc");
 | |
| 	if (rc) {
 | |
| 		netif_err(efx, probe, efx->net_dev,
 | |
| 			  "request for memory BAR failed\n");
 | |
| 		rc = -EIO;
 | |
| 		goto fail3;
 | |
| 	}
 | |
| 	efx->membase = ioremap_nocache(efx->membase_phys,
 | |
| 				       efx->type->mem_map_size);
 | |
| 	if (!efx->membase) {
 | |
| 		netif_err(efx, probe, efx->net_dev,
 | |
| 			  "could not map memory BAR at %llx+%x\n",
 | |
| 			  (unsigned long long)efx->membase_phys,
 | |
| 			  efx->type->mem_map_size);
 | |
| 		rc = -ENOMEM;
 | |
| 		goto fail4;
 | |
| 	}
 | |
| 	netif_dbg(efx, probe, efx->net_dev,
 | |
| 		  "memory BAR at %llx+%x (virtual %p)\n",
 | |
| 		  (unsigned long long)efx->membase_phys,
 | |
| 		  efx->type->mem_map_size, efx->membase);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
|  fail4:
 | |
| 	pci_release_region(efx->pci_dev, EFX_MEM_BAR);
 | |
|  fail3:
 | |
| 	efx->membase_phys = 0;
 | |
|  fail2:
 | |
| 	pci_disable_device(efx->pci_dev);
 | |
|  fail1:
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| static void efx_fini_io(struct efx_nic *efx)
 | |
| {
 | |
| 	netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n");
 | |
| 
 | |
| 	if (efx->membase) {
 | |
| 		iounmap(efx->membase);
 | |
| 		efx->membase = NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (efx->membase_phys) {
 | |
| 		pci_release_region(efx->pci_dev, EFX_MEM_BAR);
 | |
| 		efx->membase_phys = 0;
 | |
| 	}
 | |
| 
 | |
| 	pci_disable_device(efx->pci_dev);
 | |
| }
 | |
| 
 | |
| /* Get number of channels wanted.  Each channel will have its own IRQ,
 | |
|  * 1 RX queue and/or 2 TX queues. */
 | |
| static int efx_wanted_channels(void)
 | |
| {
 | |
| 	cpumask_var_t core_mask;
 | |
| 	int count;
 | |
| 	int cpu;
 | |
| 
 | |
| 	if (unlikely(!zalloc_cpumask_var(&core_mask, GFP_KERNEL))) {
 | |
| 		printk(KERN_WARNING
 | |
| 		       "sfc: RSS disabled due to allocation failure\n");
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	count = 0;
 | |
| 	for_each_online_cpu(cpu) {
 | |
| 		if (!cpumask_test_cpu(cpu, core_mask)) {
 | |
| 			++count;
 | |
| 			cpumask_or(core_mask, core_mask,
 | |
| 				   topology_core_cpumask(cpu));
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	free_cpumask_var(core_mask);
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| /* Probe the number and type of interrupts we are able to obtain, and
 | |
|  * the resulting numbers of channels and RX queues.
 | |
|  */
 | |
| static void efx_probe_interrupts(struct efx_nic *efx)
 | |
| {
 | |
| 	int max_channels =
 | |
| 		min_t(int, efx->type->phys_addr_channels, EFX_MAX_CHANNELS);
 | |
| 	int rc, i;
 | |
| 
 | |
| 	if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
 | |
| 		struct msix_entry xentries[EFX_MAX_CHANNELS];
 | |
| 		int n_channels;
 | |
| 
 | |
| 		n_channels = efx_wanted_channels();
 | |
| 		if (separate_tx_channels)
 | |
| 			n_channels *= 2;
 | |
| 		n_channels = min(n_channels, max_channels);
 | |
| 
 | |
| 		for (i = 0; i < n_channels; i++)
 | |
| 			xentries[i].entry = i;
 | |
| 		rc = pci_enable_msix(efx->pci_dev, xentries, n_channels);
 | |
| 		if (rc > 0) {
 | |
| 			netif_err(efx, drv, efx->net_dev,
 | |
| 				  "WARNING: Insufficient MSI-X vectors"
 | |
| 				  " available (%d < %d).\n", rc, n_channels);
 | |
| 			netif_err(efx, drv, efx->net_dev,
 | |
| 				  "WARNING: Performance may be reduced.\n");
 | |
| 			EFX_BUG_ON_PARANOID(rc >= n_channels);
 | |
| 			n_channels = rc;
 | |
| 			rc = pci_enable_msix(efx->pci_dev, xentries,
 | |
| 					     n_channels);
 | |
| 		}
 | |
| 
 | |
| 		if (rc == 0) {
 | |
| 			efx->n_channels = n_channels;
 | |
| 			if (separate_tx_channels) {
 | |
| 				efx->n_tx_channels =
 | |
| 					max(efx->n_channels / 2, 1U);
 | |
| 				efx->n_rx_channels =
 | |
| 					max(efx->n_channels -
 | |
| 					    efx->n_tx_channels, 1U);
 | |
| 			} else {
 | |
| 				efx->n_tx_channels = efx->n_channels;
 | |
| 				efx->n_rx_channels = efx->n_channels;
 | |
| 			}
 | |
| 			for (i = 0; i < n_channels; i++)
 | |
| 				efx->channel[i].irq = xentries[i].vector;
 | |
| 		} else {
 | |
| 			/* Fall back to single channel MSI */
 | |
| 			efx->interrupt_mode = EFX_INT_MODE_MSI;
 | |
| 			netif_err(efx, drv, efx->net_dev,
 | |
| 				  "could not enable MSI-X\n");
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Try single interrupt MSI */
 | |
| 	if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
 | |
| 		efx->n_channels = 1;
 | |
| 		efx->n_rx_channels = 1;
 | |
| 		efx->n_tx_channels = 1;
 | |
| 		rc = pci_enable_msi(efx->pci_dev);
 | |
| 		if (rc == 0) {
 | |
| 			efx->channel[0].irq = efx->pci_dev->irq;
 | |
| 		} else {
 | |
| 			netif_err(efx, drv, efx->net_dev,
 | |
| 				  "could not enable MSI\n");
 | |
| 			efx->interrupt_mode = EFX_INT_MODE_LEGACY;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Assume legacy interrupts */
 | |
| 	if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
 | |
| 		efx->n_channels = 1 + (separate_tx_channels ? 1 : 0);
 | |
| 		efx->n_rx_channels = 1;
 | |
| 		efx->n_tx_channels = 1;
 | |
| 		efx->legacy_irq = efx->pci_dev->irq;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void efx_remove_interrupts(struct efx_nic *efx)
 | |
| {
 | |
| 	struct efx_channel *channel;
 | |
| 
 | |
| 	/* Remove MSI/MSI-X interrupts */
 | |
| 	efx_for_each_channel(channel, efx)
 | |
| 		channel->irq = 0;
 | |
| 	pci_disable_msi(efx->pci_dev);
 | |
| 	pci_disable_msix(efx->pci_dev);
 | |
| 
 | |
| 	/* Remove legacy interrupt */
 | |
| 	efx->legacy_irq = 0;
 | |
| }
 | |
| 
 | |
| static void efx_set_channels(struct efx_nic *efx)
 | |
| {
 | |
| 	struct efx_channel *channel;
 | |
| 	struct efx_tx_queue *tx_queue;
 | |
| 	struct efx_rx_queue *rx_queue;
 | |
| 	unsigned tx_channel_offset =
 | |
| 		separate_tx_channels ? efx->n_channels - efx->n_tx_channels : 0;
 | |
| 
 | |
| 	efx_for_each_channel(channel, efx) {
 | |
| 		if (channel->channel - tx_channel_offset < efx->n_tx_channels) {
 | |
| 			channel->tx_queue = &efx->tx_queue[
 | |
| 				(channel->channel - tx_channel_offset) *
 | |
| 				EFX_TXQ_TYPES];
 | |
| 			efx_for_each_channel_tx_queue(tx_queue, channel)
 | |
| 				tx_queue->channel = channel;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	efx_for_each_rx_queue(rx_queue, efx)
 | |
| 		rx_queue->channel = &efx->channel[rx_queue->queue];
 | |
| }
 | |
| 
 | |
| static int efx_probe_nic(struct efx_nic *efx)
 | |
| {
 | |
| 	size_t i;
 | |
| 	int rc;
 | |
| 
 | |
| 	netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
 | |
| 
 | |
| 	/* Carry out hardware-type specific initialisation */
 | |
| 	rc = efx->type->probe(efx);
 | |
| 	if (rc)
 | |
| 		return rc;
 | |
| 
 | |
| 	/* Determine the number of channels and queues by trying to hook
 | |
| 	 * in MSI-X interrupts. */
 | |
| 	efx_probe_interrupts(efx);
 | |
| 
 | |
| 	if (efx->n_channels > 1)
 | |
| 		get_random_bytes(&efx->rx_hash_key, sizeof(efx->rx_hash_key));
 | |
| 	for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++)
 | |
| 		efx->rx_indir_table[i] = i % efx->n_rx_channels;
 | |
| 
 | |
| 	efx_set_channels(efx);
 | |
| 	efx->net_dev->real_num_tx_queues = efx->n_tx_channels;
 | |
| 
 | |
| 	/* Initialise the interrupt moderation settings */
 | |
| 	efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void efx_remove_nic(struct efx_nic *efx)
 | |
| {
 | |
| 	netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
 | |
| 
 | |
| 	efx_remove_interrupts(efx);
 | |
| 	efx->type->remove(efx);
 | |
| }
 | |
| 
 | |
| /**************************************************************************
 | |
|  *
 | |
|  * NIC startup/shutdown
 | |
|  *
 | |
|  *************************************************************************/
 | |
| 
 | |
| static int efx_probe_all(struct efx_nic *efx)
 | |
| {
 | |
| 	struct efx_channel *channel;
 | |
| 	int rc;
 | |
| 
 | |
| 	/* Create NIC */
 | |
| 	rc = efx_probe_nic(efx);
 | |
| 	if (rc) {
 | |
| 		netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
 | |
| 		goto fail1;
 | |
| 	}
 | |
| 
 | |
| 	/* Create port */
 | |
| 	rc = efx_probe_port(efx);
 | |
| 	if (rc) {
 | |
| 		netif_err(efx, probe, efx->net_dev, "failed to create port\n");
 | |
| 		goto fail2;
 | |
| 	}
 | |
| 
 | |
| 	/* Create channels */
 | |
| 	efx_for_each_channel(channel, efx) {
 | |
| 		rc = efx_probe_channel(channel);
 | |
| 		if (rc) {
 | |
| 			netif_err(efx, probe, efx->net_dev,
 | |
| 				  "failed to create channel %d\n",
 | |
| 				  channel->channel);
 | |
| 			goto fail3;
 | |
| 		}
 | |
| 	}
 | |
| 	efx_set_channel_names(efx);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
|  fail3:
 | |
| 	efx_for_each_channel(channel, efx)
 | |
| 		efx_remove_channel(channel);
 | |
| 	efx_remove_port(efx);
 | |
|  fail2:
 | |
| 	efx_remove_nic(efx);
 | |
|  fail1:
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| /* Called after previous invocation(s) of efx_stop_all, restarts the
 | |
|  * port, kernel transmit queue, NAPI processing and hardware interrupts,
 | |
|  * and ensures that the port is scheduled to be reconfigured.
 | |
|  * This function is safe to call multiple times when the NIC is in any
 | |
|  * state. */
 | |
| static void efx_start_all(struct efx_nic *efx)
 | |
| {
 | |
| 	struct efx_channel *channel;
 | |
| 
 | |
| 	EFX_ASSERT_RESET_SERIALISED(efx);
 | |
| 
 | |
| 	/* Check that it is appropriate to restart the interface. All
 | |
| 	 * of these flags are safe to read under just the rtnl lock */
 | |
| 	if (efx->port_enabled)
 | |
| 		return;
 | |
| 	if ((efx->state != STATE_RUNNING) && (efx->state != STATE_INIT))
 | |
| 		return;
 | |
| 	if (efx_dev_registered(efx) && !netif_running(efx->net_dev))
 | |
| 		return;
 | |
| 
 | |
| 	/* Mark the port as enabled so port reconfigurations can start, then
 | |
| 	 * restart the transmit interface early so the watchdog timer stops */
 | |
| 	efx_start_port(efx);
 | |
| 
 | |
| 	efx_for_each_channel(channel, efx) {
 | |
| 		if (efx_dev_registered(efx))
 | |
| 			efx_wake_queue(channel);
 | |
| 		efx_start_channel(channel);
 | |
| 	}
 | |
| 
 | |
| 	efx_nic_enable_interrupts(efx);
 | |
| 
 | |
| 	/* Switch to event based MCDI completions after enabling interrupts.
 | |
| 	 * If a reset has been scheduled, then we need to stay in polled mode.
 | |
| 	 * Rather than serialising efx_mcdi_mode_event() [which sleeps] and
 | |
| 	 * reset_pending [modified from an atomic context], we instead guarantee
 | |
| 	 * that efx_mcdi_mode_poll() isn't reverted erroneously */
 | |
| 	efx_mcdi_mode_event(efx);
 | |
| 	if (efx->reset_pending != RESET_TYPE_NONE)
 | |
| 		efx_mcdi_mode_poll(efx);
 | |
| 
 | |
| 	/* Start the hardware monitor if there is one. Otherwise (we're link
 | |
| 	 * event driven), we have to poll the PHY because after an event queue
 | |
| 	 * flush, we could have a missed a link state change */
 | |
| 	if (efx->type->monitor != NULL) {
 | |
| 		queue_delayed_work(efx->workqueue, &efx->monitor_work,
 | |
| 				   efx_monitor_interval);
 | |
| 	} else {
 | |
| 		mutex_lock(&efx->mac_lock);
 | |
| 		if (efx->phy_op->poll(efx))
 | |
| 			efx_link_status_changed(efx);
 | |
| 		mutex_unlock(&efx->mac_lock);
 | |
| 	}
 | |
| 
 | |
| 	efx->type->start_stats(efx);
 | |
| }
 | |
| 
 | |
| /* Flush all delayed work. Should only be called when no more delayed work
 | |
|  * will be scheduled. This doesn't flush pending online resets (efx_reset),
 | |
|  * since we're holding the rtnl_lock at this point. */
 | |
| static void efx_flush_all(struct efx_nic *efx)
 | |
| {
 | |
| 	/* Make sure the hardware monitor is stopped */
 | |
| 	cancel_delayed_work_sync(&efx->monitor_work);
 | |
| 	/* Stop scheduled port reconfigurations */
 | |
| 	cancel_work_sync(&efx->mac_work);
 | |
| }
 | |
| 
 | |
| /* Quiesce hardware and software without bringing the link down.
 | |
|  * Safe to call multiple times, when the nic and interface is in any
 | |
|  * state. The caller is guaranteed to subsequently be in a position
 | |
|  * to modify any hardware and software state they see fit without
 | |
|  * taking locks. */
 | |
| static void efx_stop_all(struct efx_nic *efx)
 | |
| {
 | |
| 	struct efx_channel *channel;
 | |
| 
 | |
| 	EFX_ASSERT_RESET_SERIALISED(efx);
 | |
| 
 | |
| 	/* port_enabled can be read safely under the rtnl lock */
 | |
| 	if (!efx->port_enabled)
 | |
| 		return;
 | |
| 
 | |
| 	efx->type->stop_stats(efx);
 | |
| 
 | |
| 	/* Switch to MCDI polling on Siena before disabling interrupts */
 | |
| 	efx_mcdi_mode_poll(efx);
 | |
| 
 | |
| 	/* Disable interrupts and wait for ISR to complete */
 | |
| 	efx_nic_disable_interrupts(efx);
 | |
| 	if (efx->legacy_irq)
 | |
| 		synchronize_irq(efx->legacy_irq);
 | |
| 	efx_for_each_channel(channel, efx) {
 | |
| 		if (channel->irq)
 | |
| 			synchronize_irq(channel->irq);
 | |
| 	}
 | |
| 
 | |
| 	/* Stop all NAPI processing and synchronous rx refills */
 | |
| 	efx_for_each_channel(channel, efx)
 | |
| 		efx_stop_channel(channel);
 | |
| 
 | |
| 	/* Stop all asynchronous port reconfigurations. Since all
 | |
| 	 * event processing has already been stopped, there is no
 | |
| 	 * window to loose phy events */
 | |
| 	efx_stop_port(efx);
 | |
| 
 | |
| 	/* Flush efx_mac_work(), refill_workqueue, monitor_work */
 | |
| 	efx_flush_all(efx);
 | |
| 
 | |
| 	/* Stop the kernel transmit interface late, so the watchdog
 | |
| 	 * timer isn't ticking over the flush */
 | |
| 	if (efx_dev_registered(efx)) {
 | |
| 		struct efx_channel *channel;
 | |
| 		efx_for_each_channel(channel, efx)
 | |
| 			efx_stop_queue(channel);
 | |
| 		netif_tx_lock_bh(efx->net_dev);
 | |
| 		netif_tx_unlock_bh(efx->net_dev);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void efx_remove_all(struct efx_nic *efx)
 | |
| {
 | |
| 	struct efx_channel *channel;
 | |
| 
 | |
| 	efx_for_each_channel(channel, efx)
 | |
| 		efx_remove_channel(channel);
 | |
| 	efx_remove_port(efx);
 | |
| 	efx_remove_nic(efx);
 | |
| }
 | |
| 
 | |
| /**************************************************************************
 | |
|  *
 | |
|  * Interrupt moderation
 | |
|  *
 | |
|  **************************************************************************/
 | |
| 
 | |
| static unsigned irq_mod_ticks(int usecs, int resolution)
 | |
| {
 | |
| 	if (usecs <= 0)
 | |
| 		return 0; /* cannot receive interrupts ahead of time :-) */
 | |
| 	if (usecs < resolution)
 | |
| 		return 1; /* never round down to 0 */
 | |
| 	return usecs / resolution;
 | |
| }
 | |
| 
 | |
| /* Set interrupt moderation parameters */
 | |
| void efx_init_irq_moderation(struct efx_nic *efx, int tx_usecs, int rx_usecs,
 | |
| 			     bool rx_adaptive)
 | |
| {
 | |
| 	struct efx_tx_queue *tx_queue;
 | |
| 	struct efx_rx_queue *rx_queue;
 | |
| 	unsigned tx_ticks = irq_mod_ticks(tx_usecs, EFX_IRQ_MOD_RESOLUTION);
 | |
| 	unsigned rx_ticks = irq_mod_ticks(rx_usecs, EFX_IRQ_MOD_RESOLUTION);
 | |
| 
 | |
| 	EFX_ASSERT_RESET_SERIALISED(efx);
 | |
| 
 | |
| 	efx_for_each_tx_queue(tx_queue, efx)
 | |
| 		tx_queue->channel->irq_moderation = tx_ticks;
 | |
| 
 | |
| 	efx->irq_rx_adaptive = rx_adaptive;
 | |
| 	efx->irq_rx_moderation = rx_ticks;
 | |
| 	efx_for_each_rx_queue(rx_queue, efx)
 | |
| 		rx_queue->channel->irq_moderation = rx_ticks;
 | |
| }
 | |
| 
 | |
| /**************************************************************************
 | |
|  *
 | |
|  * Hardware monitor
 | |
|  *
 | |
|  **************************************************************************/
 | |
| 
 | |
| /* Run periodically off the general workqueue. Serialised against
 | |
|  * efx_reconfigure_port via the mac_lock */
 | |
| static void efx_monitor(struct work_struct *data)
 | |
| {
 | |
| 	struct efx_nic *efx = container_of(data, struct efx_nic,
 | |
| 					   monitor_work.work);
 | |
| 
 | |
| 	netif_vdbg(efx, timer, efx->net_dev,
 | |
| 		   "hardware monitor executing on CPU %d\n",
 | |
| 		   raw_smp_processor_id());
 | |
| 	BUG_ON(efx->type->monitor == NULL);
 | |
| 
 | |
| 	/* If the mac_lock is already held then it is likely a port
 | |
| 	 * reconfiguration is already in place, which will likely do
 | |
| 	 * most of the work of check_hw() anyway. */
 | |
| 	if (!mutex_trylock(&efx->mac_lock))
 | |
| 		goto out_requeue;
 | |
| 	if (!efx->port_enabled)
 | |
| 		goto out_unlock;
 | |
| 	efx->type->monitor(efx);
 | |
| 
 | |
| out_unlock:
 | |
| 	mutex_unlock(&efx->mac_lock);
 | |
| out_requeue:
 | |
| 	queue_delayed_work(efx->workqueue, &efx->monitor_work,
 | |
| 			   efx_monitor_interval);
 | |
| }
 | |
| 
 | |
| /**************************************************************************
 | |
|  *
 | |
|  * ioctls
 | |
|  *
 | |
|  *************************************************************************/
 | |
| 
 | |
| /* Net device ioctl
 | |
|  * Context: process, rtnl_lock() held.
 | |
|  */
 | |
| static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
 | |
| {
 | |
| 	struct efx_nic *efx = netdev_priv(net_dev);
 | |
| 	struct mii_ioctl_data *data = if_mii(ifr);
 | |
| 
 | |
| 	EFX_ASSERT_RESET_SERIALISED(efx);
 | |
| 
 | |
| 	/* Convert phy_id from older PRTAD/DEVAD format */
 | |
| 	if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
 | |
| 	    (data->phy_id & 0xfc00) == 0x0400)
 | |
| 		data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;
 | |
| 
 | |
| 	return mdio_mii_ioctl(&efx->mdio, data, cmd);
 | |
| }
 | |
| 
 | |
| /**************************************************************************
 | |
|  *
 | |
|  * NAPI interface
 | |
|  *
 | |
|  **************************************************************************/
 | |
| 
 | |
| static int efx_init_napi(struct efx_nic *efx)
 | |
| {
 | |
| 	struct efx_channel *channel;
 | |
| 
 | |
| 	efx_for_each_channel(channel, efx) {
 | |
| 		channel->napi_dev = efx->net_dev;
 | |
| 		netif_napi_add(channel->napi_dev, &channel->napi_str,
 | |
| 			       efx_poll, napi_weight);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void efx_fini_napi(struct efx_nic *efx)
 | |
| {
 | |
| 	struct efx_channel *channel;
 | |
| 
 | |
| 	efx_for_each_channel(channel, efx) {
 | |
| 		if (channel->napi_dev)
 | |
| 			netif_napi_del(&channel->napi_str);
 | |
| 		channel->napi_dev = NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**************************************************************************
 | |
|  *
 | |
|  * Kernel netpoll interface
 | |
|  *
 | |
|  *************************************************************************/
 | |
| 
 | |
| #ifdef CONFIG_NET_POLL_CONTROLLER
 | |
| 
 | |
| /* Although in the common case interrupts will be disabled, this is not
 | |
|  * guaranteed. However, all our work happens inside the NAPI callback,
 | |
|  * so no locking is required.
 | |
|  */
 | |
| static void efx_netpoll(struct net_device *net_dev)
 | |
| {
 | |
| 	struct efx_nic *efx = netdev_priv(net_dev);
 | |
| 	struct efx_channel *channel;
 | |
| 
 | |
| 	efx_for_each_channel(channel, efx)
 | |
| 		efx_schedule_channel(channel);
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /**************************************************************************
 | |
|  *
 | |
|  * Kernel net device interface
 | |
|  *
 | |
|  *************************************************************************/
 | |
| 
 | |
| /* Context: process, rtnl_lock() held. */
 | |
| static int efx_net_open(struct net_device *net_dev)
 | |
| {
 | |
| 	struct efx_nic *efx = netdev_priv(net_dev);
 | |
| 	EFX_ASSERT_RESET_SERIALISED(efx);
 | |
| 
 | |
| 	netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
 | |
| 		  raw_smp_processor_id());
 | |
| 
 | |
| 	if (efx->state == STATE_DISABLED)
 | |
| 		return -EIO;
 | |
| 	if (efx->phy_mode & PHY_MODE_SPECIAL)
 | |
| 		return -EBUSY;
 | |
| 	if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL))
 | |
| 		return -EIO;
 | |
| 
 | |
| 	/* Notify the kernel of the link state polled during driver load,
 | |
| 	 * before the monitor starts running */
 | |
| 	efx_link_status_changed(efx);
 | |
| 
 | |
| 	efx_start_all(efx);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Context: process, rtnl_lock() held.
 | |
|  * Note that the kernel will ignore our return code; this method
 | |
|  * should really be a void.
 | |
|  */
 | |
| static int efx_net_stop(struct net_device *net_dev)
 | |
| {
 | |
| 	struct efx_nic *efx = netdev_priv(net_dev);
 | |
| 
 | |
| 	netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
 | |
| 		  raw_smp_processor_id());
 | |
| 
 | |
| 	if (efx->state != STATE_DISABLED) {
 | |
| 		/* Stop the device and flush all the channels */
 | |
| 		efx_stop_all(efx);
 | |
| 		efx_fini_channels(efx);
 | |
| 		efx_init_channels(efx);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Context: process, dev_base_lock or RTNL held, non-blocking. */
 | |
| static struct rtnl_link_stats64 *efx_net_stats(struct net_device *net_dev, struct rtnl_link_stats64 *stats)
 | |
| {
 | |
| 	struct efx_nic *efx = netdev_priv(net_dev);
 | |
| 	struct efx_mac_stats *mac_stats = &efx->mac_stats;
 | |
| 
 | |
| 	spin_lock_bh(&efx->stats_lock);
 | |
| 	efx->type->update_stats(efx);
 | |
| 	spin_unlock_bh(&efx->stats_lock);
 | |
| 
 | |
| 	stats->rx_packets = mac_stats->rx_packets;
 | |
| 	stats->tx_packets = mac_stats->tx_packets;
 | |
| 	stats->rx_bytes = mac_stats->rx_bytes;
 | |
| 	stats->tx_bytes = mac_stats->tx_bytes;
 | |
| 	stats->multicast = mac_stats->rx_multicast;
 | |
| 	stats->collisions = mac_stats->tx_collision;
 | |
| 	stats->rx_length_errors = (mac_stats->rx_gtjumbo +
 | |
| 				   mac_stats->rx_length_error);
 | |
| 	stats->rx_over_errors = efx->n_rx_nodesc_drop_cnt;
 | |
| 	stats->rx_crc_errors = mac_stats->rx_bad;
 | |
| 	stats->rx_frame_errors = mac_stats->rx_align_error;
 | |
| 	stats->rx_fifo_errors = mac_stats->rx_overflow;
 | |
| 	stats->rx_missed_errors = mac_stats->rx_missed;
 | |
| 	stats->tx_window_errors = mac_stats->tx_late_collision;
 | |
| 
 | |
| 	stats->rx_errors = (stats->rx_length_errors +
 | |
| 			    stats->rx_crc_errors +
 | |
| 			    stats->rx_frame_errors +
 | |
| 			    mac_stats->rx_symbol_error);
 | |
| 	stats->tx_errors = (stats->tx_window_errors +
 | |
| 			    mac_stats->tx_bad);
 | |
| 
 | |
| 	return stats;
 | |
| }
 | |
| 
 | |
| /* Context: netif_tx_lock held, BHs disabled. */
 | |
| static void efx_watchdog(struct net_device *net_dev)
 | |
| {
 | |
| 	struct efx_nic *efx = netdev_priv(net_dev);
 | |
| 
 | |
| 	netif_err(efx, tx_err, efx->net_dev,
 | |
| 		  "TX stuck with port_enabled=%d: resetting channels\n",
 | |
| 		  efx->port_enabled);
 | |
| 
 | |
| 	efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Context: process, rtnl_lock() held. */
 | |
| static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
 | |
| {
 | |
| 	struct efx_nic *efx = netdev_priv(net_dev);
 | |
| 	int rc = 0;
 | |
| 
 | |
| 	EFX_ASSERT_RESET_SERIALISED(efx);
 | |
| 
 | |
| 	if (new_mtu > EFX_MAX_MTU)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	efx_stop_all(efx);
 | |
| 
 | |
| 	netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
 | |
| 
 | |
| 	efx_fini_channels(efx);
 | |
| 
 | |
| 	mutex_lock(&efx->mac_lock);
 | |
| 	/* Reconfigure the MAC before enabling the dma queues so that
 | |
| 	 * the RX buffers don't overflow */
 | |
| 	net_dev->mtu = new_mtu;
 | |
| 	efx->mac_op->reconfigure(efx);
 | |
| 	mutex_unlock(&efx->mac_lock);
 | |
| 
 | |
| 	efx_init_channels(efx);
 | |
| 
 | |
| 	efx_start_all(efx);
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| static int efx_set_mac_address(struct net_device *net_dev, void *data)
 | |
| {
 | |
| 	struct efx_nic *efx = netdev_priv(net_dev);
 | |
| 	struct sockaddr *addr = data;
 | |
| 	char *new_addr = addr->sa_data;
 | |
| 
 | |
| 	EFX_ASSERT_RESET_SERIALISED(efx);
 | |
| 
 | |
| 	if (!is_valid_ether_addr(new_addr)) {
 | |
| 		netif_err(efx, drv, efx->net_dev,
 | |
| 			  "invalid ethernet MAC address requested: %pM\n",
 | |
| 			  new_addr);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len);
 | |
| 
 | |
| 	/* Reconfigure the MAC */
 | |
| 	mutex_lock(&efx->mac_lock);
 | |
| 	efx->mac_op->reconfigure(efx);
 | |
| 	mutex_unlock(&efx->mac_lock);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Context: netif_addr_lock held, BHs disabled. */
 | |
| static void efx_set_multicast_list(struct net_device *net_dev)
 | |
| {
 | |
| 	struct efx_nic *efx = netdev_priv(net_dev);
 | |
| 	struct netdev_hw_addr *ha;
 | |
| 	union efx_multicast_hash *mc_hash = &efx->multicast_hash;
 | |
| 	u32 crc;
 | |
| 	int bit;
 | |
| 
 | |
| 	efx->promiscuous = !!(net_dev->flags & IFF_PROMISC);
 | |
| 
 | |
| 	/* Build multicast hash table */
 | |
| 	if (efx->promiscuous || (net_dev->flags & IFF_ALLMULTI)) {
 | |
| 		memset(mc_hash, 0xff, sizeof(*mc_hash));
 | |
| 	} else {
 | |
| 		memset(mc_hash, 0x00, sizeof(*mc_hash));
 | |
| 		netdev_for_each_mc_addr(ha, net_dev) {
 | |
| 			crc = ether_crc_le(ETH_ALEN, ha->addr);
 | |
| 			bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
 | |
| 			set_bit_le(bit, mc_hash->byte);
 | |
| 		}
 | |
| 
 | |
| 		/* Broadcast packets go through the multicast hash filter.
 | |
| 		 * ether_crc_le() of the broadcast address is 0xbe2612ff
 | |
| 		 * so we always add bit 0xff to the mask.
 | |
| 		 */
 | |
| 		set_bit_le(0xff, mc_hash->byte);
 | |
| 	}
 | |
| 
 | |
| 	if (efx->port_enabled)
 | |
| 		queue_work(efx->workqueue, &efx->mac_work);
 | |
| 	/* Otherwise efx_start_port() will do this */
 | |
| }
 | |
| 
 | |
| static const struct net_device_ops efx_netdev_ops = {
 | |
| 	.ndo_open		= efx_net_open,
 | |
| 	.ndo_stop		= efx_net_stop,
 | |
| 	.ndo_get_stats64	= efx_net_stats,
 | |
| 	.ndo_tx_timeout		= efx_watchdog,
 | |
| 	.ndo_start_xmit		= efx_hard_start_xmit,
 | |
| 	.ndo_validate_addr	= eth_validate_addr,
 | |
| 	.ndo_do_ioctl		= efx_ioctl,
 | |
| 	.ndo_change_mtu		= efx_change_mtu,
 | |
| 	.ndo_set_mac_address	= efx_set_mac_address,
 | |
| 	.ndo_set_multicast_list = efx_set_multicast_list,
 | |
| #ifdef CONFIG_NET_POLL_CONTROLLER
 | |
| 	.ndo_poll_controller = efx_netpoll,
 | |
| #endif
 | |
| };
 | |
| 
 | |
| static void efx_update_name(struct efx_nic *efx)
 | |
| {
 | |
| 	strcpy(efx->name, efx->net_dev->name);
 | |
| 	efx_mtd_rename(efx);
 | |
| 	efx_set_channel_names(efx);
 | |
| }
 | |
| 
 | |
| static int efx_netdev_event(struct notifier_block *this,
 | |
| 			    unsigned long event, void *ptr)
 | |
| {
 | |
| 	struct net_device *net_dev = ptr;
 | |
| 
 | |
| 	if (net_dev->netdev_ops == &efx_netdev_ops &&
 | |
| 	    event == NETDEV_CHANGENAME)
 | |
| 		efx_update_name(netdev_priv(net_dev));
 | |
| 
 | |
| 	return NOTIFY_DONE;
 | |
| }
 | |
| 
 | |
| static struct notifier_block efx_netdev_notifier = {
 | |
| 	.notifier_call = efx_netdev_event,
 | |
| };
 | |
| 
 | |
| static ssize_t
 | |
| show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
 | |
| {
 | |
| 	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
 | |
| 	return sprintf(buf, "%d\n", efx->phy_type);
 | |
| }
 | |
| static DEVICE_ATTR(phy_type, 0644, show_phy_type, NULL);
 | |
| 
 | |
| static int efx_register_netdev(struct efx_nic *efx)
 | |
| {
 | |
| 	struct net_device *net_dev = efx->net_dev;
 | |
| 	int rc;
 | |
| 
 | |
| 	net_dev->watchdog_timeo = 5 * HZ;
 | |
| 	net_dev->irq = efx->pci_dev->irq;
 | |
| 	net_dev->netdev_ops = &efx_netdev_ops;
 | |
| 	SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);
 | |
| 
 | |
| 	/* Clear MAC statistics */
 | |
| 	efx->mac_op->update_stats(efx);
 | |
| 	memset(&efx->mac_stats, 0, sizeof(efx->mac_stats));
 | |
| 
 | |
| 	rtnl_lock();
 | |
| 
 | |
| 	rc = dev_alloc_name(net_dev, net_dev->name);
 | |
| 	if (rc < 0)
 | |
| 		goto fail_locked;
 | |
| 	efx_update_name(efx);
 | |
| 
 | |
| 	rc = register_netdevice(net_dev);
 | |
| 	if (rc)
 | |
| 		goto fail_locked;
 | |
| 
 | |
| 	/* Always start with carrier off; PHY events will detect the link */
 | |
| 	netif_carrier_off(efx->net_dev);
 | |
| 
 | |
| 	rtnl_unlock();
 | |
| 
 | |
| 	rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
 | |
| 	if (rc) {
 | |
| 		netif_err(efx, drv, efx->net_dev,
 | |
| 			  "failed to init net dev attributes\n");
 | |
| 		goto fail_registered;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| fail_locked:
 | |
| 	rtnl_unlock();
 | |
| 	netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
 | |
| 	return rc;
 | |
| 
 | |
| fail_registered:
 | |
| 	unregister_netdev(net_dev);
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| static void efx_unregister_netdev(struct efx_nic *efx)
 | |
| {
 | |
| 	struct efx_tx_queue *tx_queue;
 | |
| 
 | |
| 	if (!efx->net_dev)
 | |
| 		return;
 | |
| 
 | |
| 	BUG_ON(netdev_priv(efx->net_dev) != efx);
 | |
| 
 | |
| 	/* Free up any skbs still remaining. This has to happen before
 | |
| 	 * we try to unregister the netdev as running their destructors
 | |
| 	 * may be needed to get the device ref. count to 0. */
 | |
| 	efx_for_each_tx_queue(tx_queue, efx)
 | |
| 		efx_release_tx_buffers(tx_queue);
 | |
| 
 | |
| 	if (efx_dev_registered(efx)) {
 | |
| 		strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
 | |
| 		device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
 | |
| 		unregister_netdev(efx->net_dev);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**************************************************************************
 | |
|  *
 | |
|  * Device reset and suspend
 | |
|  *
 | |
|  **************************************************************************/
 | |
| 
 | |
| /* Tears down the entire software state and most of the hardware state
 | |
|  * before reset.  */
 | |
| void efx_reset_down(struct efx_nic *efx, enum reset_type method)
 | |
| {
 | |
| 	EFX_ASSERT_RESET_SERIALISED(efx);
 | |
| 
 | |
| 	efx_stop_all(efx);
 | |
| 	mutex_lock(&efx->mac_lock);
 | |
| 	mutex_lock(&efx->spi_lock);
 | |
| 
 | |
| 	efx_fini_channels(efx);
 | |
| 	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE)
 | |
| 		efx->phy_op->fini(efx);
 | |
| 	efx->type->fini(efx);
 | |
| }
 | |
| 
 | |
| /* This function will always ensure that the locks acquired in
 | |
|  * efx_reset_down() are released. A failure return code indicates
 | |
|  * that we were unable to reinitialise the hardware, and the
 | |
|  * driver should be disabled. If ok is false, then the rx and tx
 | |
|  * engines are not restarted, pending a RESET_DISABLE. */
 | |
| int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok)
 | |
| {
 | |
| 	int rc;
 | |
| 
 | |
| 	EFX_ASSERT_RESET_SERIALISED(efx);
 | |
| 
 | |
| 	rc = efx->type->init(efx);
 | |
| 	if (rc) {
 | |
| 		netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
 | |
| 		goto fail;
 | |
| 	}
 | |
| 
 | |
| 	if (!ok)
 | |
| 		goto fail;
 | |
| 
 | |
| 	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) {
 | |
| 		rc = efx->phy_op->init(efx);
 | |
| 		if (rc)
 | |
| 			goto fail;
 | |
| 		if (efx->phy_op->reconfigure(efx))
 | |
| 			netif_err(efx, drv, efx->net_dev,
 | |
| 				  "could not restore PHY settings\n");
 | |
| 	}
 | |
| 
 | |
| 	efx->mac_op->reconfigure(efx);
 | |
| 
 | |
| 	efx_init_channels(efx);
 | |
| 
 | |
| 	mutex_unlock(&efx->spi_lock);
 | |
| 	mutex_unlock(&efx->mac_lock);
 | |
| 
 | |
| 	efx_start_all(efx);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| fail:
 | |
| 	efx->port_initialized = false;
 | |
| 
 | |
| 	mutex_unlock(&efx->spi_lock);
 | |
| 	mutex_unlock(&efx->mac_lock);
 | |
| 
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| /* Reset the NIC using the specified method.  Note that the reset may
 | |
|  * fail, in which case the card will be left in an unusable state.
 | |
|  *
 | |
|  * Caller must hold the rtnl_lock.
 | |
|  */
 | |
| int efx_reset(struct efx_nic *efx, enum reset_type method)
 | |
| {
 | |
| 	int rc, rc2;
 | |
| 	bool disabled;
 | |
| 
 | |
| 	netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
 | |
| 		   RESET_TYPE(method));
 | |
| 
 | |
| 	efx_reset_down(efx, method);
 | |
| 
 | |
| 	rc = efx->type->reset(efx, method);
 | |
| 	if (rc) {
 | |
| 		netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/* Allow resets to be rescheduled. */
 | |
| 	efx->reset_pending = RESET_TYPE_NONE;
 | |
| 
 | |
| 	/* Reinitialise bus-mastering, which may have been turned off before
 | |
| 	 * the reset was scheduled. This is still appropriate, even in the
 | |
| 	 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
 | |
| 	 * can respond to requests. */
 | |
| 	pci_set_master(efx->pci_dev);
 | |
| 
 | |
| out:
 | |
| 	/* Leave device stopped if necessary */
 | |
| 	disabled = rc || method == RESET_TYPE_DISABLE;
 | |
| 	rc2 = efx_reset_up(efx, method, !disabled);
 | |
| 	if (rc2) {
 | |
| 		disabled = true;
 | |
| 		if (!rc)
 | |
| 			rc = rc2;
 | |
| 	}
 | |
| 
 | |
| 	if (disabled) {
 | |
| 		dev_close(efx->net_dev);
 | |
| 		netif_err(efx, drv, efx->net_dev, "has been disabled\n");
 | |
| 		efx->state = STATE_DISABLED;
 | |
| 	} else {
 | |
| 		netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
 | |
| 	}
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| /* The worker thread exists so that code that cannot sleep can
 | |
|  * schedule a reset for later.
 | |
|  */
 | |
| static void efx_reset_work(struct work_struct *data)
 | |
| {
 | |
| 	struct efx_nic *efx = container_of(data, struct efx_nic, reset_work);
 | |
| 
 | |
| 	if (efx->reset_pending == RESET_TYPE_NONE)
 | |
| 		return;
 | |
| 
 | |
| 	/* If we're not RUNNING then don't reset. Leave the reset_pending
 | |
| 	 * flag set so that efx_pci_probe_main will be retried */
 | |
| 	if (efx->state != STATE_RUNNING) {
 | |
| 		netif_info(efx, drv, efx->net_dev,
 | |
| 			   "scheduled reset quenched. NIC not RUNNING\n");
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	rtnl_lock();
 | |
| 	(void)efx_reset(efx, efx->reset_pending);
 | |
| 	rtnl_unlock();
 | |
| }
 | |
| 
 | |
| void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
 | |
| {
 | |
| 	enum reset_type method;
 | |
| 
 | |
| 	if (efx->reset_pending != RESET_TYPE_NONE) {
 | |
| 		netif_info(efx, drv, efx->net_dev,
 | |
| 			   "quenching already scheduled reset\n");
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	switch (type) {
 | |
| 	case RESET_TYPE_INVISIBLE:
 | |
| 	case RESET_TYPE_ALL:
 | |
| 	case RESET_TYPE_WORLD:
 | |
| 	case RESET_TYPE_DISABLE:
 | |
| 		method = type;
 | |
| 		break;
 | |
| 	case RESET_TYPE_RX_RECOVERY:
 | |
| 	case RESET_TYPE_RX_DESC_FETCH:
 | |
| 	case RESET_TYPE_TX_DESC_FETCH:
 | |
| 	case RESET_TYPE_TX_SKIP:
 | |
| 		method = RESET_TYPE_INVISIBLE;
 | |
| 		break;
 | |
| 	case RESET_TYPE_MC_FAILURE:
 | |
| 	default:
 | |
| 		method = RESET_TYPE_ALL;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	if (method != type)
 | |
| 		netif_dbg(efx, drv, efx->net_dev,
 | |
| 			  "scheduling %s reset for %s\n",
 | |
| 			  RESET_TYPE(method), RESET_TYPE(type));
 | |
| 	else
 | |
| 		netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
 | |
| 			  RESET_TYPE(method));
 | |
| 
 | |
| 	efx->reset_pending = method;
 | |
| 
 | |
| 	/* efx_process_channel() will no longer read events once a
 | |
| 	 * reset is scheduled. So switch back to poll'd MCDI completions. */
 | |
| 	efx_mcdi_mode_poll(efx);
 | |
| 
 | |
| 	queue_work(reset_workqueue, &efx->reset_work);
 | |
| }
 | |
| 
 | |
| /**************************************************************************
 | |
|  *
 | |
|  * List of NICs we support
 | |
|  *
 | |
|  **************************************************************************/
 | |
| 
 | |
| /* PCI device ID table */
 | |
| static DEFINE_PCI_DEVICE_TABLE(efx_pci_table) = {
 | |
| 	{PCI_DEVICE(EFX_VENDID_SFC, FALCON_A_P_DEVID),
 | |
| 	 .driver_data = (unsigned long) &falcon_a1_nic_type},
 | |
| 	{PCI_DEVICE(EFX_VENDID_SFC, FALCON_B_P_DEVID),
 | |
| 	 .driver_data = (unsigned long) &falcon_b0_nic_type},
 | |
| 	{PCI_DEVICE(EFX_VENDID_SFC, BETHPAGE_A_P_DEVID),
 | |
| 	 .driver_data = (unsigned long) &siena_a0_nic_type},
 | |
| 	{PCI_DEVICE(EFX_VENDID_SFC, SIENA_A_P_DEVID),
 | |
| 	 .driver_data = (unsigned long) &siena_a0_nic_type},
 | |
| 	{0}			/* end of list */
 | |
| };
 | |
| 
 | |
| /**************************************************************************
 | |
|  *
 | |
|  * Dummy PHY/MAC operations
 | |
|  *
 | |
|  * Can be used for some unimplemented operations
 | |
|  * Needed so all function pointers are valid and do not have to be tested
 | |
|  * before use
 | |
|  *
 | |
|  **************************************************************************/
 | |
| int efx_port_dummy_op_int(struct efx_nic *efx)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| void efx_port_dummy_op_void(struct efx_nic *efx) {}
 | |
| void efx_port_dummy_op_set_id_led(struct efx_nic *efx, enum efx_led_mode mode)
 | |
| {
 | |
| }
 | |
| bool efx_port_dummy_op_poll(struct efx_nic *efx)
 | |
| {
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static struct efx_phy_operations efx_dummy_phy_operations = {
 | |
| 	.init		 = efx_port_dummy_op_int,
 | |
| 	.reconfigure	 = efx_port_dummy_op_int,
 | |
| 	.poll		 = efx_port_dummy_op_poll,
 | |
| 	.fini		 = efx_port_dummy_op_void,
 | |
| };
 | |
| 
 | |
| /**************************************************************************
 | |
|  *
 | |
|  * Data housekeeping
 | |
|  *
 | |
|  **************************************************************************/
 | |
| 
 | |
| /* This zeroes out and then fills in the invariants in a struct
 | |
|  * efx_nic (including all sub-structures).
 | |
|  */
 | |
| static int efx_init_struct(struct efx_nic *efx, struct efx_nic_type *type,
 | |
| 			   struct pci_dev *pci_dev, struct net_device *net_dev)
 | |
| {
 | |
| 	struct efx_channel *channel;
 | |
| 	struct efx_tx_queue *tx_queue;
 | |
| 	struct efx_rx_queue *rx_queue;
 | |
| 	int i;
 | |
| 
 | |
| 	/* Initialise common structures */
 | |
| 	memset(efx, 0, sizeof(*efx));
 | |
| 	spin_lock_init(&efx->biu_lock);
 | |
| 	mutex_init(&efx->mdio_lock);
 | |
| 	mutex_init(&efx->spi_lock);
 | |
| #ifdef CONFIG_SFC_MTD
 | |
| 	INIT_LIST_HEAD(&efx->mtd_list);
 | |
| #endif
 | |
| 	INIT_WORK(&efx->reset_work, efx_reset_work);
 | |
| 	INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
 | |
| 	efx->pci_dev = pci_dev;
 | |
| 	efx->msg_enable = debug;
 | |
| 	efx->state = STATE_INIT;
 | |
| 	efx->reset_pending = RESET_TYPE_NONE;
 | |
| 	strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
 | |
| 
 | |
| 	efx->net_dev = net_dev;
 | |
| 	efx->rx_checksum_enabled = true;
 | |
| 	spin_lock_init(&efx->stats_lock);
 | |
| 	mutex_init(&efx->mac_lock);
 | |
| 	efx->mac_op = type->default_mac_ops;
 | |
| 	efx->phy_op = &efx_dummy_phy_operations;
 | |
| 	efx->mdio.dev = net_dev;
 | |
| 	INIT_WORK(&efx->mac_work, efx_mac_work);
 | |
| 
 | |
| 	for (i = 0; i < EFX_MAX_CHANNELS; i++) {
 | |
| 		channel = &efx->channel[i];
 | |
| 		channel->efx = efx;
 | |
| 		channel->channel = i;
 | |
| 		channel->work_pending = false;
 | |
| 		spin_lock_init(&channel->tx_stop_lock);
 | |
| 		atomic_set(&channel->tx_stop_count, 1);
 | |
| 	}
 | |
| 	for (i = 0; i < EFX_MAX_TX_QUEUES; i++) {
 | |
| 		tx_queue = &efx->tx_queue[i];
 | |
| 		tx_queue->efx = efx;
 | |
| 		tx_queue->queue = i;
 | |
| 		tx_queue->buffer = NULL;
 | |
| 		tx_queue->channel = &efx->channel[0]; /* for safety */
 | |
| 		tx_queue->tso_headers_free = NULL;
 | |
| 	}
 | |
| 	for (i = 0; i < EFX_MAX_RX_QUEUES; i++) {
 | |
| 		rx_queue = &efx->rx_queue[i];
 | |
| 		rx_queue->efx = efx;
 | |
| 		rx_queue->queue = i;
 | |
| 		rx_queue->channel = &efx->channel[0]; /* for safety */
 | |
| 		rx_queue->buffer = NULL;
 | |
| 		setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
 | |
| 			    (unsigned long)rx_queue);
 | |
| 	}
 | |
| 
 | |
| 	efx->type = type;
 | |
| 
 | |
| 	/* As close as we can get to guaranteeing that we don't overflow */
 | |
| 	BUILD_BUG_ON(EFX_EVQ_SIZE < EFX_TXQ_SIZE + EFX_RXQ_SIZE);
 | |
| 
 | |
| 	EFX_BUG_ON_PARANOID(efx->type->phys_addr_channels > EFX_MAX_CHANNELS);
 | |
| 
 | |
| 	/* Higher numbered interrupt modes are less capable! */
 | |
| 	efx->interrupt_mode = max(efx->type->max_interrupt_mode,
 | |
| 				  interrupt_mode);
 | |
| 
 | |
| 	/* Would be good to use the net_dev name, but we're too early */
 | |
| 	snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
 | |
| 		 pci_name(pci_dev));
 | |
| 	efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
 | |
| 	if (!efx->workqueue)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void efx_fini_struct(struct efx_nic *efx)
 | |
| {
 | |
| 	if (efx->workqueue) {
 | |
| 		destroy_workqueue(efx->workqueue);
 | |
| 		efx->workqueue = NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**************************************************************************
 | |
|  *
 | |
|  * PCI interface
 | |
|  *
 | |
|  **************************************************************************/
 | |
| 
 | |
| /* Main body of final NIC shutdown code
 | |
|  * This is called only at module unload (or hotplug removal).
 | |
|  */
 | |
| static void efx_pci_remove_main(struct efx_nic *efx)
 | |
| {
 | |
| 	efx_nic_fini_interrupt(efx);
 | |
| 	efx_fini_channels(efx);
 | |
| 	efx_fini_port(efx);
 | |
| 	efx->type->fini(efx);
 | |
| 	efx_fini_napi(efx);
 | |
| 	efx_remove_all(efx);
 | |
| }
 | |
| 
 | |
| /* Final NIC shutdown
 | |
|  * This is called only at module unload (or hotplug removal).
 | |
|  */
 | |
| static void efx_pci_remove(struct pci_dev *pci_dev)
 | |
| {
 | |
| 	struct efx_nic *efx;
 | |
| 
 | |
| 	efx = pci_get_drvdata(pci_dev);
 | |
| 	if (!efx)
 | |
| 		return;
 | |
| 
 | |
| 	/* Mark the NIC as fini, then stop the interface */
 | |
| 	rtnl_lock();
 | |
| 	efx->state = STATE_FINI;
 | |
| 	dev_close(efx->net_dev);
 | |
| 
 | |
| 	/* Allow any queued efx_resets() to complete */
 | |
| 	rtnl_unlock();
 | |
| 
 | |
| 	efx_unregister_netdev(efx);
 | |
| 
 | |
| 	efx_mtd_remove(efx);
 | |
| 
 | |
| 	/* Wait for any scheduled resets to complete. No more will be
 | |
| 	 * scheduled from this point because efx_stop_all() has been
 | |
| 	 * called, we are no longer registered with driverlink, and
 | |
| 	 * the net_device's have been removed. */
 | |
| 	cancel_work_sync(&efx->reset_work);
 | |
| 
 | |
| 	efx_pci_remove_main(efx);
 | |
| 
 | |
| 	efx_fini_io(efx);
 | |
| 	netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n");
 | |
| 
 | |
| 	pci_set_drvdata(pci_dev, NULL);
 | |
| 	efx_fini_struct(efx);
 | |
| 	free_netdev(efx->net_dev);
 | |
| };
 | |
| 
 | |
| /* Main body of NIC initialisation
 | |
|  * This is called at module load (or hotplug insertion, theoretically).
 | |
|  */
 | |
| static int efx_pci_probe_main(struct efx_nic *efx)
 | |
| {
 | |
| 	int rc;
 | |
| 
 | |
| 	/* Do start-of-day initialisation */
 | |
| 	rc = efx_probe_all(efx);
 | |
| 	if (rc)
 | |
| 		goto fail1;
 | |
| 
 | |
| 	rc = efx_init_napi(efx);
 | |
| 	if (rc)
 | |
| 		goto fail2;
 | |
| 
 | |
| 	rc = efx->type->init(efx);
 | |
| 	if (rc) {
 | |
| 		netif_err(efx, probe, efx->net_dev,
 | |
| 			  "failed to initialise NIC\n");
 | |
| 		goto fail3;
 | |
| 	}
 | |
| 
 | |
| 	rc = efx_init_port(efx);
 | |
| 	if (rc) {
 | |
| 		netif_err(efx, probe, efx->net_dev,
 | |
| 			  "failed to initialise port\n");
 | |
| 		goto fail4;
 | |
| 	}
 | |
| 
 | |
| 	efx_init_channels(efx);
 | |
| 
 | |
| 	rc = efx_nic_init_interrupt(efx);
 | |
| 	if (rc)
 | |
| 		goto fail5;
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
|  fail5:
 | |
| 	efx_fini_channels(efx);
 | |
| 	efx_fini_port(efx);
 | |
|  fail4:
 | |
| 	efx->type->fini(efx);
 | |
|  fail3:
 | |
| 	efx_fini_napi(efx);
 | |
|  fail2:
 | |
| 	efx_remove_all(efx);
 | |
|  fail1:
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| /* NIC initialisation
 | |
|  *
 | |
|  * This is called at module load (or hotplug insertion,
 | |
|  * theoretically).  It sets up PCI mappings, tests and resets the NIC,
 | |
|  * sets up and registers the network devices with the kernel and hooks
 | |
|  * the interrupt service routine.  It does not prepare the device for
 | |
|  * transmission; this is left to the first time one of the network
 | |
|  * interfaces is brought up (i.e. efx_net_open).
 | |
|  */
 | |
| static int __devinit efx_pci_probe(struct pci_dev *pci_dev,
 | |
| 				   const struct pci_device_id *entry)
 | |
| {
 | |
| 	struct efx_nic_type *type = (struct efx_nic_type *) entry->driver_data;
 | |
| 	struct net_device *net_dev;
 | |
| 	struct efx_nic *efx;
 | |
| 	int i, rc;
 | |
| 
 | |
| 	/* Allocate and initialise a struct net_device and struct efx_nic */
 | |
| 	net_dev = alloc_etherdev_mq(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES);
 | |
| 	if (!net_dev)
 | |
| 		return -ENOMEM;
 | |
| 	net_dev->features |= (type->offload_features | NETIF_F_SG |
 | |
| 			      NETIF_F_HIGHDMA | NETIF_F_TSO |
 | |
| 			      NETIF_F_GRO);
 | |
| 	if (type->offload_features & NETIF_F_V6_CSUM)
 | |
| 		net_dev->features |= NETIF_F_TSO6;
 | |
| 	/* Mask for features that also apply to VLAN devices */
 | |
| 	net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
 | |
| 				   NETIF_F_HIGHDMA | NETIF_F_TSO);
 | |
| 	efx = netdev_priv(net_dev);
 | |
| 	pci_set_drvdata(pci_dev, efx);
 | |
| 	SET_NETDEV_DEV(net_dev, &pci_dev->dev);
 | |
| 	rc = efx_init_struct(efx, type, pci_dev, net_dev);
 | |
| 	if (rc)
 | |
| 		goto fail1;
 | |
| 
 | |
| 	netif_info(efx, probe, efx->net_dev,
 | |
| 		   "Solarflare Communications NIC detected\n");
 | |
| 
 | |
| 	/* Set up basic I/O (BAR mappings etc) */
 | |
| 	rc = efx_init_io(efx);
 | |
| 	if (rc)
 | |
| 		goto fail2;
 | |
| 
 | |
| 	/* No serialisation is required with the reset path because
 | |
| 	 * we're in STATE_INIT. */
 | |
| 	for (i = 0; i < 5; i++) {
 | |
| 		rc = efx_pci_probe_main(efx);
 | |
| 
 | |
| 		/* Serialise against efx_reset(). No more resets will be
 | |
| 		 * scheduled since efx_stop_all() has been called, and we
 | |
| 		 * have not and never have been registered with either
 | |
| 		 * the rtnetlink or driverlink layers. */
 | |
| 		cancel_work_sync(&efx->reset_work);
 | |
| 
 | |
| 		if (rc == 0) {
 | |
| 			if (efx->reset_pending != RESET_TYPE_NONE) {
 | |
| 				/* If there was a scheduled reset during
 | |
| 				 * probe, the NIC is probably hosed anyway */
 | |
| 				efx_pci_remove_main(efx);
 | |
| 				rc = -EIO;
 | |
| 			} else {
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/* Retry if a recoverably reset event has been scheduled */
 | |
| 		if ((efx->reset_pending != RESET_TYPE_INVISIBLE) &&
 | |
| 		    (efx->reset_pending != RESET_TYPE_ALL))
 | |
| 			goto fail3;
 | |
| 
 | |
| 		efx->reset_pending = RESET_TYPE_NONE;
 | |
| 	}
 | |
| 
 | |
| 	if (rc) {
 | |
| 		netif_err(efx, probe, efx->net_dev, "Could not reset NIC\n");
 | |
| 		goto fail4;
 | |
| 	}
 | |
| 
 | |
| 	/* Switch to the running state before we expose the device to the OS,
 | |
| 	 * so that dev_open()|efx_start_all() will actually start the device */
 | |
| 	efx->state = STATE_RUNNING;
 | |
| 
 | |
| 	rc = efx_register_netdev(efx);
 | |
| 	if (rc)
 | |
| 		goto fail5;
 | |
| 
 | |
| 	netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
 | |
| 
 | |
| 	rtnl_lock();
 | |
| 	efx_mtd_probe(efx); /* allowed to fail */
 | |
| 	rtnl_unlock();
 | |
| 	return 0;
 | |
| 
 | |
|  fail5:
 | |
| 	efx_pci_remove_main(efx);
 | |
|  fail4:
 | |
|  fail3:
 | |
| 	efx_fini_io(efx);
 | |
|  fail2:
 | |
| 	efx_fini_struct(efx);
 | |
|  fail1:
 | |
| 	WARN_ON(rc > 0);
 | |
| 	netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
 | |
| 	free_netdev(net_dev);
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| static int efx_pm_freeze(struct device *dev)
 | |
| {
 | |
| 	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
 | |
| 
 | |
| 	efx->state = STATE_FINI;
 | |
| 
 | |
| 	netif_device_detach(efx->net_dev);
 | |
| 
 | |
| 	efx_stop_all(efx);
 | |
| 	efx_fini_channels(efx);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int efx_pm_thaw(struct device *dev)
 | |
| {
 | |
| 	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
 | |
| 
 | |
| 	efx->state = STATE_INIT;
 | |
| 
 | |
| 	efx_init_channels(efx);
 | |
| 
 | |
| 	mutex_lock(&efx->mac_lock);
 | |
| 	efx->phy_op->reconfigure(efx);
 | |
| 	mutex_unlock(&efx->mac_lock);
 | |
| 
 | |
| 	efx_start_all(efx);
 | |
| 
 | |
| 	netif_device_attach(efx->net_dev);
 | |
| 
 | |
| 	efx->state = STATE_RUNNING;
 | |
| 
 | |
| 	efx->type->resume_wol(efx);
 | |
| 
 | |
| 	/* Reschedule any quenched resets scheduled during efx_pm_freeze() */
 | |
| 	queue_work(reset_workqueue, &efx->reset_work);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int efx_pm_poweroff(struct device *dev)
 | |
| {
 | |
| 	struct pci_dev *pci_dev = to_pci_dev(dev);
 | |
| 	struct efx_nic *efx = pci_get_drvdata(pci_dev);
 | |
| 
 | |
| 	efx->type->fini(efx);
 | |
| 
 | |
| 	efx->reset_pending = RESET_TYPE_NONE;
 | |
| 
 | |
| 	pci_save_state(pci_dev);
 | |
| 	return pci_set_power_state(pci_dev, PCI_D3hot);
 | |
| }
 | |
| 
 | |
| /* Used for both resume and restore */
 | |
| static int efx_pm_resume(struct device *dev)
 | |
| {
 | |
| 	struct pci_dev *pci_dev = to_pci_dev(dev);
 | |
| 	struct efx_nic *efx = pci_get_drvdata(pci_dev);
 | |
| 	int rc;
 | |
| 
 | |
| 	rc = pci_set_power_state(pci_dev, PCI_D0);
 | |
| 	if (rc)
 | |
| 		return rc;
 | |
| 	pci_restore_state(pci_dev);
 | |
| 	rc = pci_enable_device(pci_dev);
 | |
| 	if (rc)
 | |
| 		return rc;
 | |
| 	pci_set_master(efx->pci_dev);
 | |
| 	rc = efx->type->reset(efx, RESET_TYPE_ALL);
 | |
| 	if (rc)
 | |
| 		return rc;
 | |
| 	rc = efx->type->init(efx);
 | |
| 	if (rc)
 | |
| 		return rc;
 | |
| 	efx_pm_thaw(dev);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int efx_pm_suspend(struct device *dev)
 | |
| {
 | |
| 	int rc;
 | |
| 
 | |
| 	efx_pm_freeze(dev);
 | |
| 	rc = efx_pm_poweroff(dev);
 | |
| 	if (rc)
 | |
| 		efx_pm_resume(dev);
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| static struct dev_pm_ops efx_pm_ops = {
 | |
| 	.suspend	= efx_pm_suspend,
 | |
| 	.resume		= efx_pm_resume,
 | |
| 	.freeze		= efx_pm_freeze,
 | |
| 	.thaw		= efx_pm_thaw,
 | |
| 	.poweroff	= efx_pm_poweroff,
 | |
| 	.restore	= efx_pm_resume,
 | |
| };
 | |
| 
 | |
| static struct pci_driver efx_pci_driver = {
 | |
| 	.name		= KBUILD_MODNAME,
 | |
| 	.id_table	= efx_pci_table,
 | |
| 	.probe		= efx_pci_probe,
 | |
| 	.remove		= efx_pci_remove,
 | |
| 	.driver.pm	= &efx_pm_ops,
 | |
| };
 | |
| 
 | |
| /**************************************************************************
 | |
|  *
 | |
|  * Kernel module interface
 | |
|  *
 | |
|  *************************************************************************/
 | |
| 
 | |
| module_param(interrupt_mode, uint, 0444);
 | |
| MODULE_PARM_DESC(interrupt_mode,
 | |
| 		 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
 | |
| 
 | |
| static int __init efx_init_module(void)
 | |
| {
 | |
| 	int rc;
 | |
| 
 | |
| 	printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");
 | |
| 
 | |
| 	rc = register_netdevice_notifier(&efx_netdev_notifier);
 | |
| 	if (rc)
 | |
| 		goto err_notifier;
 | |
| 
 | |
| 	reset_workqueue = create_singlethread_workqueue("sfc_reset");
 | |
| 	if (!reset_workqueue) {
 | |
| 		rc = -ENOMEM;
 | |
| 		goto err_reset;
 | |
| 	}
 | |
| 
 | |
| 	rc = pci_register_driver(&efx_pci_driver);
 | |
| 	if (rc < 0)
 | |
| 		goto err_pci;
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
|  err_pci:
 | |
| 	destroy_workqueue(reset_workqueue);
 | |
|  err_reset:
 | |
| 	unregister_netdevice_notifier(&efx_netdev_notifier);
 | |
|  err_notifier:
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| static void __exit efx_exit_module(void)
 | |
| {
 | |
| 	printk(KERN_INFO "Solarflare NET driver unloading\n");
 | |
| 
 | |
| 	pci_unregister_driver(&efx_pci_driver);
 | |
| 	destroy_workqueue(reset_workqueue);
 | |
| 	unregister_netdevice_notifier(&efx_netdev_notifier);
 | |
| 
 | |
| }
 | |
| 
 | |
| module_init(efx_init_module);
 | |
| module_exit(efx_exit_module);
 | |
| 
 | |
| MODULE_AUTHOR("Solarflare Communications and "
 | |
| 	      "Michael Brown <mbrown@fensystems.co.uk>");
 | |
| MODULE_DESCRIPTION("Solarflare Communications network driver");
 | |
| MODULE_LICENSE("GPL");
 | |
| MODULE_DEVICE_TABLE(pci, efx_pci_table);
 |