 1c3275b656
			
		
	
	
	1c3275b656
	
	
	
		
			
			On TI's DA830/OMAP-L137, DA850/OMAP-L138 and DM365, after setting the 4BITECC_ADD_CALC_START bit in the NAND Flash control register to 1 and before waiting for the NAND Flash status register to be equal to 1, 2 or 3, we have to wait till the ECC HW goes to correction state. Without this wait, ECC correction calculations will not be proper. This has been tested on DA830/OMAP-L137, DA850/OMAP-L138, DM355 and DM365 EVMs. Signed-off-by: Sudhakar Rajashekhara <sudhakar.raj@ti.com> Acked-by: Sneha Narnakaje <nsnehaprabha@ti.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com> Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
		
			
				
	
	
		
			886 lines
		
	
	
	
		
			24 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			886 lines
		
	
	
	
		
			24 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * davinci_nand.c - NAND Flash Driver for DaVinci family chips
 | |
|  *
 | |
|  * Copyright © 2006 Texas Instruments.
 | |
|  *
 | |
|  * Port to 2.6.23 Copyright © 2008 by:
 | |
|  *   Sander Huijsen <Shuijsen@optelecom-nkf.com>
 | |
|  *   Troy Kisky <troy.kisky@boundarydevices.com>
 | |
|  *   Dirk Behme <Dirk.Behme@gmail.com>
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License as published by
 | |
|  * the Free Software Foundation; either version 2 of the License, or
 | |
|  * (at your option) any later version.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, write to the Free Software
 | |
|  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 | |
|  */
 | |
| 
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/platform_device.h>
 | |
| #include <linux/err.h>
 | |
| #include <linux/clk.h>
 | |
| #include <linux/io.h>
 | |
| #include <linux/mtd/nand.h>
 | |
| #include <linux/mtd/partitions.h>
 | |
| #include <linux/slab.h>
 | |
| 
 | |
| #include <mach/nand.h>
 | |
| 
 | |
| #include <asm/mach-types.h>
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * This is a device driver for the NAND flash controller found on the
 | |
|  * various DaVinci family chips.  It handles up to four SoC chipselects,
 | |
|  * and some flavors of secondary chipselect (e.g. based on A12) as used
 | |
|  * with multichip packages.
 | |
|  *
 | |
|  * The 1-bit ECC hardware is supported, as well as the newer 4-bit ECC
 | |
|  * available on chips like the DM355 and OMAP-L137 and needed with the
 | |
|  * more error-prone MLC NAND chips.
 | |
|  *
 | |
|  * This driver assumes EM_WAIT connects all the NAND devices' RDY/nBUSY
 | |
|  * outputs in a "wire-AND" configuration, with no per-chip signals.
 | |
|  */
 | |
| struct davinci_nand_info {
 | |
| 	struct mtd_info		mtd;
 | |
| 	struct nand_chip	chip;
 | |
| 	struct nand_ecclayout	ecclayout;
 | |
| 
 | |
| 	struct device		*dev;
 | |
| 	struct clk		*clk;
 | |
| 	bool			partitioned;
 | |
| 
 | |
| 	bool			is_readmode;
 | |
| 
 | |
| 	void __iomem		*base;
 | |
| 	void __iomem		*vaddr;
 | |
| 
 | |
| 	uint32_t		ioaddr;
 | |
| 	uint32_t		current_cs;
 | |
| 
 | |
| 	uint32_t		mask_chipsel;
 | |
| 	uint32_t		mask_ale;
 | |
| 	uint32_t		mask_cle;
 | |
| 
 | |
| 	uint32_t		core_chipsel;
 | |
| };
 | |
| 
 | |
| static DEFINE_SPINLOCK(davinci_nand_lock);
 | |
| static bool ecc4_busy;
 | |
| 
 | |
| #define to_davinci_nand(m) container_of(m, struct davinci_nand_info, mtd)
 | |
| 
 | |
| 
 | |
| static inline unsigned int davinci_nand_readl(struct davinci_nand_info *info,
 | |
| 		int offset)
 | |
| {
 | |
| 	return __raw_readl(info->base + offset);
 | |
| }
 | |
| 
 | |
| static inline void davinci_nand_writel(struct davinci_nand_info *info,
 | |
| 		int offset, unsigned long value)
 | |
| {
 | |
| 	__raw_writel(value, info->base + offset);
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------*/
 | |
| 
 | |
| /*
 | |
|  * Access to hardware control lines:  ALE, CLE, secondary chipselect.
 | |
|  */
 | |
| 
 | |
| static void nand_davinci_hwcontrol(struct mtd_info *mtd, int cmd,
 | |
| 				   unsigned int ctrl)
 | |
| {
 | |
| 	struct davinci_nand_info	*info = to_davinci_nand(mtd);
 | |
| 	uint32_t			addr = info->current_cs;
 | |
| 	struct nand_chip		*nand = mtd->priv;
 | |
| 
 | |
| 	/* Did the control lines change? */
 | |
| 	if (ctrl & NAND_CTRL_CHANGE) {
 | |
| 		if ((ctrl & NAND_CTRL_CLE) == NAND_CTRL_CLE)
 | |
| 			addr |= info->mask_cle;
 | |
| 		else if ((ctrl & NAND_CTRL_ALE) == NAND_CTRL_ALE)
 | |
| 			addr |= info->mask_ale;
 | |
| 
 | |
| 		nand->IO_ADDR_W = (void __iomem __force *)addr;
 | |
| 	}
 | |
| 
 | |
| 	if (cmd != NAND_CMD_NONE)
 | |
| 		iowrite8(cmd, nand->IO_ADDR_W);
 | |
| }
 | |
| 
 | |
| static void nand_davinci_select_chip(struct mtd_info *mtd, int chip)
 | |
| {
 | |
| 	struct davinci_nand_info	*info = to_davinci_nand(mtd);
 | |
| 	uint32_t			addr = info->ioaddr;
 | |
| 
 | |
| 	/* maybe kick in a second chipselect */
 | |
| 	if (chip > 0)
 | |
| 		addr |= info->mask_chipsel;
 | |
| 	info->current_cs = addr;
 | |
| 
 | |
| 	info->chip.IO_ADDR_W = (void __iomem __force *)addr;
 | |
| 	info->chip.IO_ADDR_R = info->chip.IO_ADDR_W;
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------*/
 | |
| 
 | |
| /*
 | |
|  * 1-bit hardware ECC ... context maintained for each core chipselect
 | |
|  */
 | |
| 
 | |
| static inline uint32_t nand_davinci_readecc_1bit(struct mtd_info *mtd)
 | |
| {
 | |
| 	struct davinci_nand_info *info = to_davinci_nand(mtd);
 | |
| 
 | |
| 	return davinci_nand_readl(info, NANDF1ECC_OFFSET
 | |
| 			+ 4 * info->core_chipsel);
 | |
| }
 | |
| 
 | |
| static void nand_davinci_hwctl_1bit(struct mtd_info *mtd, int mode)
 | |
| {
 | |
| 	struct davinci_nand_info *info;
 | |
| 	uint32_t nandcfr;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	info = to_davinci_nand(mtd);
 | |
| 
 | |
| 	/* Reset ECC hardware */
 | |
| 	nand_davinci_readecc_1bit(mtd);
 | |
| 
 | |
| 	spin_lock_irqsave(&davinci_nand_lock, flags);
 | |
| 
 | |
| 	/* Restart ECC hardware */
 | |
| 	nandcfr = davinci_nand_readl(info, NANDFCR_OFFSET);
 | |
| 	nandcfr |= BIT(8 + info->core_chipsel);
 | |
| 	davinci_nand_writel(info, NANDFCR_OFFSET, nandcfr);
 | |
| 
 | |
| 	spin_unlock_irqrestore(&davinci_nand_lock, flags);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Read hardware ECC value and pack into three bytes
 | |
|  */
 | |
| static int nand_davinci_calculate_1bit(struct mtd_info *mtd,
 | |
| 				      const u_char *dat, u_char *ecc_code)
 | |
| {
 | |
| 	unsigned int ecc_val = nand_davinci_readecc_1bit(mtd);
 | |
| 	unsigned int ecc24 = (ecc_val & 0x0fff) | ((ecc_val & 0x0fff0000) >> 4);
 | |
| 
 | |
| 	/* invert so that erased block ecc is correct */
 | |
| 	ecc24 = ~ecc24;
 | |
| 	ecc_code[0] = (u_char)(ecc24);
 | |
| 	ecc_code[1] = (u_char)(ecc24 >> 8);
 | |
| 	ecc_code[2] = (u_char)(ecc24 >> 16);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int nand_davinci_correct_1bit(struct mtd_info *mtd, u_char *dat,
 | |
| 				     u_char *read_ecc, u_char *calc_ecc)
 | |
| {
 | |
| 	struct nand_chip *chip = mtd->priv;
 | |
| 	uint32_t eccNand = read_ecc[0] | (read_ecc[1] << 8) |
 | |
| 					  (read_ecc[2] << 16);
 | |
| 	uint32_t eccCalc = calc_ecc[0] | (calc_ecc[1] << 8) |
 | |
| 					  (calc_ecc[2] << 16);
 | |
| 	uint32_t diff = eccCalc ^ eccNand;
 | |
| 
 | |
| 	if (diff) {
 | |
| 		if ((((diff >> 12) ^ diff) & 0xfff) == 0xfff) {
 | |
| 			/* Correctable error */
 | |
| 			if ((diff >> (12 + 3)) < chip->ecc.size) {
 | |
| 				dat[diff >> (12 + 3)] ^= BIT((diff >> 12) & 7);
 | |
| 				return 1;
 | |
| 			} else {
 | |
| 				return -1;
 | |
| 			}
 | |
| 		} else if (!(diff & (diff - 1))) {
 | |
| 			/* Single bit ECC error in the ECC itself,
 | |
| 			 * nothing to fix */
 | |
| 			return 1;
 | |
| 		} else {
 | |
| 			/* Uncorrectable error */
 | |
| 			return -1;
 | |
| 		}
 | |
| 
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------*/
 | |
| 
 | |
| /*
 | |
|  * 4-bit hardware ECC ... context maintained over entire AEMIF
 | |
|  *
 | |
|  * This is a syndrome engine, but we avoid NAND_ECC_HW_SYNDROME
 | |
|  * since that forces use of a problematic "infix OOB" layout.
 | |
|  * Among other things, it trashes manufacturer bad block markers.
 | |
|  * Also, and specific to this hardware, it ECC-protects the "prepad"
 | |
|  * in the OOB ... while having ECC protection for parts of OOB would
 | |
|  * seem useful, the current MTD stack sometimes wants to update the
 | |
|  * OOB without recomputing ECC.
 | |
|  */
 | |
| 
 | |
| static void nand_davinci_hwctl_4bit(struct mtd_info *mtd, int mode)
 | |
| {
 | |
| 	struct davinci_nand_info *info = to_davinci_nand(mtd);
 | |
| 	unsigned long flags;
 | |
| 	u32 val;
 | |
| 
 | |
| 	spin_lock_irqsave(&davinci_nand_lock, flags);
 | |
| 
 | |
| 	/* Start 4-bit ECC calculation for read/write */
 | |
| 	val = davinci_nand_readl(info, NANDFCR_OFFSET);
 | |
| 	val &= ~(0x03 << 4);
 | |
| 	val |= (info->core_chipsel << 4) | BIT(12);
 | |
| 	davinci_nand_writel(info, NANDFCR_OFFSET, val);
 | |
| 
 | |
| 	info->is_readmode = (mode == NAND_ECC_READ);
 | |
| 
 | |
| 	spin_unlock_irqrestore(&davinci_nand_lock, flags);
 | |
| }
 | |
| 
 | |
| /* Read raw ECC code after writing to NAND. */
 | |
| static void
 | |
| nand_davinci_readecc_4bit(struct davinci_nand_info *info, u32 code[4])
 | |
| {
 | |
| 	const u32 mask = 0x03ff03ff;
 | |
| 
 | |
| 	code[0] = davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET) & mask;
 | |
| 	code[1] = davinci_nand_readl(info, NAND_4BIT_ECC2_OFFSET) & mask;
 | |
| 	code[2] = davinci_nand_readl(info, NAND_4BIT_ECC3_OFFSET) & mask;
 | |
| 	code[3] = davinci_nand_readl(info, NAND_4BIT_ECC4_OFFSET) & mask;
 | |
| }
 | |
| 
 | |
| /* Terminate read ECC; or return ECC (as bytes) of data written to NAND. */
 | |
| static int nand_davinci_calculate_4bit(struct mtd_info *mtd,
 | |
| 		const u_char *dat, u_char *ecc_code)
 | |
| {
 | |
| 	struct davinci_nand_info *info = to_davinci_nand(mtd);
 | |
| 	u32 raw_ecc[4], *p;
 | |
| 	unsigned i;
 | |
| 
 | |
| 	/* After a read, terminate ECC calculation by a dummy read
 | |
| 	 * of some 4-bit ECC register.  ECC covers everything that
 | |
| 	 * was read; correct() just uses the hardware state, so
 | |
| 	 * ecc_code is not needed.
 | |
| 	 */
 | |
| 	if (info->is_readmode) {
 | |
| 		davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* Pack eight raw 10-bit ecc values into ten bytes, making
 | |
| 	 * two passes which each convert four values (in upper and
 | |
| 	 * lower halves of two 32-bit words) into five bytes.  The
 | |
| 	 * ROM boot loader uses this same packing scheme.
 | |
| 	 */
 | |
| 	nand_davinci_readecc_4bit(info, raw_ecc);
 | |
| 	for (i = 0, p = raw_ecc; i < 2; i++, p += 2) {
 | |
| 		*ecc_code++ =   p[0]        & 0xff;
 | |
| 		*ecc_code++ = ((p[0] >>  8) & 0x03) | ((p[0] >> 14) & 0xfc);
 | |
| 		*ecc_code++ = ((p[0] >> 22) & 0x0f) | ((p[1] <<  4) & 0xf0);
 | |
| 		*ecc_code++ = ((p[1] >>  4) & 0x3f) | ((p[1] >> 10) & 0xc0);
 | |
| 		*ecc_code++ =  (p[1] >> 18) & 0xff;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Correct up to 4 bits in data we just read, using state left in the
 | |
|  * hardware plus the ecc_code computed when it was first written.
 | |
|  */
 | |
| static int nand_davinci_correct_4bit(struct mtd_info *mtd,
 | |
| 		u_char *data, u_char *ecc_code, u_char *null)
 | |
| {
 | |
| 	int i;
 | |
| 	struct davinci_nand_info *info = to_davinci_nand(mtd);
 | |
| 	unsigned short ecc10[8];
 | |
| 	unsigned short *ecc16;
 | |
| 	u32 syndrome[4];
 | |
| 	u32 ecc_state;
 | |
| 	unsigned num_errors, corrected;
 | |
| 	unsigned long timeo = jiffies + msecs_to_jiffies(100);
 | |
| 
 | |
| 	/* All bytes 0xff?  It's an erased page; ignore its ECC. */
 | |
| 	for (i = 0; i < 10; i++) {
 | |
| 		if (ecc_code[i] != 0xff)
 | |
| 			goto compare;
 | |
| 	}
 | |
| 	return 0;
 | |
| 
 | |
| compare:
 | |
| 	/* Unpack ten bytes into eight 10 bit values.  We know we're
 | |
| 	 * little-endian, and use type punning for less shifting/masking.
 | |
| 	 */
 | |
| 	if (WARN_ON(0x01 & (unsigned) ecc_code))
 | |
| 		return -EINVAL;
 | |
| 	ecc16 = (unsigned short *)ecc_code;
 | |
| 
 | |
| 	ecc10[0] =  (ecc16[0] >>  0) & 0x3ff;
 | |
| 	ecc10[1] = ((ecc16[0] >> 10) & 0x3f) | ((ecc16[1] << 6) & 0x3c0);
 | |
| 	ecc10[2] =  (ecc16[1] >>  4) & 0x3ff;
 | |
| 	ecc10[3] = ((ecc16[1] >> 14) & 0x3)  | ((ecc16[2] << 2) & 0x3fc);
 | |
| 	ecc10[4] =  (ecc16[2] >>  8)         | ((ecc16[3] << 8) & 0x300);
 | |
| 	ecc10[5] =  (ecc16[3] >>  2) & 0x3ff;
 | |
| 	ecc10[6] = ((ecc16[3] >> 12) & 0xf)  | ((ecc16[4] << 4) & 0x3f0);
 | |
| 	ecc10[7] =  (ecc16[4] >>  6) & 0x3ff;
 | |
| 
 | |
| 	/* Tell ECC controller about the expected ECC codes. */
 | |
| 	for (i = 7; i >= 0; i--)
 | |
| 		davinci_nand_writel(info, NAND_4BIT_ECC_LOAD_OFFSET, ecc10[i]);
 | |
| 
 | |
| 	/* Allow time for syndrome calculation ... then read it.
 | |
| 	 * A syndrome of all zeroes 0 means no detected errors.
 | |
| 	 */
 | |
| 	davinci_nand_readl(info, NANDFSR_OFFSET);
 | |
| 	nand_davinci_readecc_4bit(info, syndrome);
 | |
| 	if (!(syndrome[0] | syndrome[1] | syndrome[2] | syndrome[3]))
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Clear any previous address calculation by doing a dummy read of an
 | |
| 	 * error address register.
 | |
| 	 */
 | |
| 	davinci_nand_readl(info, NAND_ERR_ADD1_OFFSET);
 | |
| 
 | |
| 	/* Start address calculation, and wait for it to complete.
 | |
| 	 * We _could_ start reading more data while this is working,
 | |
| 	 * to speed up the overall page read.
 | |
| 	 */
 | |
| 	davinci_nand_writel(info, NANDFCR_OFFSET,
 | |
| 			davinci_nand_readl(info, NANDFCR_OFFSET) | BIT(13));
 | |
| 
 | |
| 	/*
 | |
| 	 * ECC_STATE field reads 0x3 (Error correction complete) immediately
 | |
| 	 * after setting the 4BITECC_ADD_CALC_START bit. So if you immediately
 | |
| 	 * begin trying to poll for the state, you may fall right out of your
 | |
| 	 * loop without any of the correction calculations having taken place.
 | |
| 	 * The recommendation from the hardware team is to wait till ECC_STATE
 | |
| 	 * reads less than 4, which means ECC HW has entered correction state.
 | |
| 	 */
 | |
| 	do {
 | |
| 		ecc_state = (davinci_nand_readl(info,
 | |
| 				NANDFSR_OFFSET) >> 8) & 0x0f;
 | |
| 		cpu_relax();
 | |
| 	} while ((ecc_state < 4) && time_before(jiffies, timeo));
 | |
| 
 | |
| 	for (;;) {
 | |
| 		u32	fsr = davinci_nand_readl(info, NANDFSR_OFFSET);
 | |
| 
 | |
| 		switch ((fsr >> 8) & 0x0f) {
 | |
| 		case 0:		/* no error, should not happen */
 | |
| 			davinci_nand_readl(info, NAND_ERR_ERRVAL1_OFFSET);
 | |
| 			return 0;
 | |
| 		case 1:		/* five or more errors detected */
 | |
| 			davinci_nand_readl(info, NAND_ERR_ERRVAL1_OFFSET);
 | |
| 			return -EIO;
 | |
| 		case 2:		/* error addresses computed */
 | |
| 		case 3:
 | |
| 			num_errors = 1 + ((fsr >> 16) & 0x03);
 | |
| 			goto correct;
 | |
| 		default:	/* still working on it */
 | |
| 			cpu_relax();
 | |
| 			continue;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| correct:
 | |
| 	/* correct each error */
 | |
| 	for (i = 0, corrected = 0; i < num_errors; i++) {
 | |
| 		int error_address, error_value;
 | |
| 
 | |
| 		if (i > 1) {
 | |
| 			error_address = davinci_nand_readl(info,
 | |
| 						NAND_ERR_ADD2_OFFSET);
 | |
| 			error_value = davinci_nand_readl(info,
 | |
| 						NAND_ERR_ERRVAL2_OFFSET);
 | |
| 		} else {
 | |
| 			error_address = davinci_nand_readl(info,
 | |
| 						NAND_ERR_ADD1_OFFSET);
 | |
| 			error_value = davinci_nand_readl(info,
 | |
| 						NAND_ERR_ERRVAL1_OFFSET);
 | |
| 		}
 | |
| 
 | |
| 		if (i & 1) {
 | |
| 			error_address >>= 16;
 | |
| 			error_value >>= 16;
 | |
| 		}
 | |
| 		error_address &= 0x3ff;
 | |
| 		error_address = (512 + 7) - error_address;
 | |
| 
 | |
| 		if (error_address < 512) {
 | |
| 			data[error_address] ^= error_value;
 | |
| 			corrected++;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return corrected;
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------*/
 | |
| 
 | |
| /*
 | |
|  * NOTE:  NAND boot requires ALE == EM_A[1], CLE == EM_A[2], so that's
 | |
|  * how these chips are normally wired.  This translates to both 8 and 16
 | |
|  * bit busses using ALE == BIT(3) in byte addresses, and CLE == BIT(4).
 | |
|  *
 | |
|  * For now we assume that configuration, or any other one which ignores
 | |
|  * the two LSBs for NAND access ... so we can issue 32-bit reads/writes
 | |
|  * and have that transparently morphed into multiple NAND operations.
 | |
|  */
 | |
| static void nand_davinci_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
 | |
| {
 | |
| 	struct nand_chip *chip = mtd->priv;
 | |
| 
 | |
| 	if ((0x03 & ((unsigned)buf)) == 0 && (0x03 & len) == 0)
 | |
| 		ioread32_rep(chip->IO_ADDR_R, buf, len >> 2);
 | |
| 	else if ((0x01 & ((unsigned)buf)) == 0 && (0x01 & len) == 0)
 | |
| 		ioread16_rep(chip->IO_ADDR_R, buf, len >> 1);
 | |
| 	else
 | |
| 		ioread8_rep(chip->IO_ADDR_R, buf, len);
 | |
| }
 | |
| 
 | |
| static void nand_davinci_write_buf(struct mtd_info *mtd,
 | |
| 		const uint8_t *buf, int len)
 | |
| {
 | |
| 	struct nand_chip *chip = mtd->priv;
 | |
| 
 | |
| 	if ((0x03 & ((unsigned)buf)) == 0 && (0x03 & len) == 0)
 | |
| 		iowrite32_rep(chip->IO_ADDR_R, buf, len >> 2);
 | |
| 	else if ((0x01 & ((unsigned)buf)) == 0 && (0x01 & len) == 0)
 | |
| 		iowrite16_rep(chip->IO_ADDR_R, buf, len >> 1);
 | |
| 	else
 | |
| 		iowrite8_rep(chip->IO_ADDR_R, buf, len);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check hardware register for wait status. Returns 1 if device is ready,
 | |
|  * 0 if it is still busy.
 | |
|  */
 | |
| static int nand_davinci_dev_ready(struct mtd_info *mtd)
 | |
| {
 | |
| 	struct davinci_nand_info *info = to_davinci_nand(mtd);
 | |
| 
 | |
| 	return davinci_nand_readl(info, NANDFSR_OFFSET) & BIT(0);
 | |
| }
 | |
| 
 | |
| static void __init nand_dm6446evm_flash_init(struct davinci_nand_info *info)
 | |
| {
 | |
| 	uint32_t regval, a1cr;
 | |
| 
 | |
| 	/*
 | |
| 	 * NAND FLASH timings @ PLL1 == 459 MHz
 | |
| 	 *  - AEMIF.CLK freq   = PLL1/6 = 459/6 = 76.5 MHz
 | |
| 	 *  - AEMIF.CLK period = 1/76.5 MHz = 13.1 ns
 | |
| 	 */
 | |
| 	regval = 0
 | |
| 		| (0 << 31)           /* selectStrobe */
 | |
| 		| (0 << 30)           /* extWait (never with NAND) */
 | |
| 		| (1 << 26)           /* writeSetup      10 ns */
 | |
| 		| (3 << 20)           /* writeStrobe     40 ns */
 | |
| 		| (1 << 17)           /* writeHold       10 ns */
 | |
| 		| (0 << 13)           /* readSetup       10 ns */
 | |
| 		| (3 << 7)            /* readStrobe      60 ns */
 | |
| 		| (0 << 4)            /* readHold        10 ns */
 | |
| 		| (3 << 2)            /* turnAround      ?? ns */
 | |
| 		| (0 << 0)            /* asyncSize       8-bit bus */
 | |
| 		;
 | |
| 	a1cr = davinci_nand_readl(info, A1CR_OFFSET);
 | |
| 	if (a1cr != regval) {
 | |
| 		dev_dbg(info->dev, "Warning: NAND config: Set A1CR " \
 | |
| 		       "reg to 0x%08x, was 0x%08x, should be done by " \
 | |
| 		       "bootloader.\n", regval, a1cr);
 | |
| 		davinci_nand_writel(info, A1CR_OFFSET, regval);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------*/
 | |
| 
 | |
| /* An ECC layout for using 4-bit ECC with small-page flash, storing
 | |
|  * ten ECC bytes plus the manufacturer's bad block marker byte, and
 | |
|  * and not overlapping the default BBT markers.
 | |
|  */
 | |
| static struct nand_ecclayout hwecc4_small __initconst = {
 | |
| 	.eccbytes = 10,
 | |
| 	.eccpos = { 0, 1, 2, 3, 4,
 | |
| 		/* offset 5 holds the badblock marker */
 | |
| 		6, 7,
 | |
| 		13, 14, 15, },
 | |
| 	.oobfree = {
 | |
| 		{.offset = 8, .length = 5, },
 | |
| 		{.offset = 16, },
 | |
| 	},
 | |
| };
 | |
| 
 | |
| /* An ECC layout for using 4-bit ECC with large-page (2048bytes) flash,
 | |
|  * storing ten ECC bytes plus the manufacturer's bad block marker byte,
 | |
|  * and not overlapping the default BBT markers.
 | |
|  */
 | |
| static struct nand_ecclayout hwecc4_2048 __initconst = {
 | |
| 	.eccbytes = 40,
 | |
| 	.eccpos = {
 | |
| 		/* at the end of spare sector */
 | |
| 		24, 25, 26, 27, 28, 29,	30, 31, 32, 33,
 | |
| 		34, 35, 36, 37, 38, 39,	40, 41, 42, 43,
 | |
| 		44, 45, 46, 47, 48, 49, 50, 51, 52, 53,
 | |
| 		54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
 | |
| 		},
 | |
| 	.oobfree = {
 | |
| 		/* 2 bytes at offset 0 hold manufacturer badblock markers */
 | |
| 		{.offset = 2, .length = 22, },
 | |
| 		/* 5 bytes at offset 8 hold BBT markers */
 | |
| 		/* 8 bytes at offset 16 hold JFFS2 clean markers */
 | |
| 	},
 | |
| };
 | |
| 
 | |
| static int __init nand_davinci_probe(struct platform_device *pdev)
 | |
| {
 | |
| 	struct davinci_nand_pdata	*pdata = pdev->dev.platform_data;
 | |
| 	struct davinci_nand_info	*info;
 | |
| 	struct resource			*res1;
 | |
| 	struct resource			*res2;
 | |
| 	void __iomem			*vaddr;
 | |
| 	void __iomem			*base;
 | |
| 	int				ret;
 | |
| 	uint32_t			val;
 | |
| 	nand_ecc_modes_t		ecc_mode;
 | |
| 
 | |
| 	/* insist on board-specific configuration */
 | |
| 	if (!pdata)
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	/* which external chipselect will we be managing? */
 | |
| 	if (pdev->id < 0 || pdev->id > 3)
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	info = kzalloc(sizeof(*info), GFP_KERNEL);
 | |
| 	if (!info) {
 | |
| 		dev_err(&pdev->dev, "unable to allocate memory\n");
 | |
| 		ret = -ENOMEM;
 | |
| 		goto err_nomem;
 | |
| 	}
 | |
| 
 | |
| 	platform_set_drvdata(pdev, info);
 | |
| 
 | |
| 	res1 = platform_get_resource(pdev, IORESOURCE_MEM, 0);
 | |
| 	res2 = platform_get_resource(pdev, IORESOURCE_MEM, 1);
 | |
| 	if (!res1 || !res2) {
 | |
| 		dev_err(&pdev->dev, "resource missing\n");
 | |
| 		ret = -EINVAL;
 | |
| 		goto err_nomem;
 | |
| 	}
 | |
| 
 | |
| 	vaddr = ioremap(res1->start, resource_size(res1));
 | |
| 	base = ioremap(res2->start, resource_size(res2));
 | |
| 	if (!vaddr || !base) {
 | |
| 		dev_err(&pdev->dev, "ioremap failed\n");
 | |
| 		ret = -EINVAL;
 | |
| 		goto err_ioremap;
 | |
| 	}
 | |
| 
 | |
| 	info->dev		= &pdev->dev;
 | |
| 	info->base		= base;
 | |
| 	info->vaddr		= vaddr;
 | |
| 
 | |
| 	info->mtd.priv		= &info->chip;
 | |
| 	info->mtd.name		= dev_name(&pdev->dev);
 | |
| 	info->mtd.owner		= THIS_MODULE;
 | |
| 
 | |
| 	info->mtd.dev.parent	= &pdev->dev;
 | |
| 
 | |
| 	info->chip.IO_ADDR_R	= vaddr;
 | |
| 	info->chip.IO_ADDR_W	= vaddr;
 | |
| 	info->chip.chip_delay	= 0;
 | |
| 	info->chip.select_chip	= nand_davinci_select_chip;
 | |
| 
 | |
| 	/* options such as NAND_USE_FLASH_BBT or 16-bit widths */
 | |
| 	info->chip.options	= pdata->options;
 | |
| 	info->chip.bbt_td	= pdata->bbt_td;
 | |
| 	info->chip.bbt_md	= pdata->bbt_md;
 | |
| 
 | |
| 	info->ioaddr		= (uint32_t __force) vaddr;
 | |
| 
 | |
| 	info->current_cs	= info->ioaddr;
 | |
| 	info->core_chipsel	= pdev->id;
 | |
| 	info->mask_chipsel	= pdata->mask_chipsel;
 | |
| 
 | |
| 	/* use nandboot-capable ALE/CLE masks by default */
 | |
| 	info->mask_ale		= pdata->mask_ale ? : MASK_ALE;
 | |
| 	info->mask_cle		= pdata->mask_cle ? : MASK_CLE;
 | |
| 
 | |
| 	/* Set address of hardware control function */
 | |
| 	info->chip.cmd_ctrl	= nand_davinci_hwcontrol;
 | |
| 	info->chip.dev_ready	= nand_davinci_dev_ready;
 | |
| 
 | |
| 	/* Speed up buffer I/O */
 | |
| 	info->chip.read_buf     = nand_davinci_read_buf;
 | |
| 	info->chip.write_buf    = nand_davinci_write_buf;
 | |
| 
 | |
| 	/* Use board-specific ECC config */
 | |
| 	ecc_mode		= pdata->ecc_mode;
 | |
| 
 | |
| 	ret = -EINVAL;
 | |
| 	switch (ecc_mode) {
 | |
| 	case NAND_ECC_NONE:
 | |
| 	case NAND_ECC_SOFT:
 | |
| 		pdata->ecc_bits = 0;
 | |
| 		break;
 | |
| 	case NAND_ECC_HW:
 | |
| 		if (pdata->ecc_bits == 4) {
 | |
| 			/* No sanity checks:  CPUs must support this,
 | |
| 			 * and the chips may not use NAND_BUSWIDTH_16.
 | |
| 			 */
 | |
| 
 | |
| 			/* No sharing 4-bit hardware between chipselects yet */
 | |
| 			spin_lock_irq(&davinci_nand_lock);
 | |
| 			if (ecc4_busy)
 | |
| 				ret = -EBUSY;
 | |
| 			else
 | |
| 				ecc4_busy = true;
 | |
| 			spin_unlock_irq(&davinci_nand_lock);
 | |
| 
 | |
| 			if (ret == -EBUSY)
 | |
| 				goto err_ecc;
 | |
| 
 | |
| 			info->chip.ecc.calculate = nand_davinci_calculate_4bit;
 | |
| 			info->chip.ecc.correct = nand_davinci_correct_4bit;
 | |
| 			info->chip.ecc.hwctl = nand_davinci_hwctl_4bit;
 | |
| 			info->chip.ecc.bytes = 10;
 | |
| 		} else {
 | |
| 			info->chip.ecc.calculate = nand_davinci_calculate_1bit;
 | |
| 			info->chip.ecc.correct = nand_davinci_correct_1bit;
 | |
| 			info->chip.ecc.hwctl = nand_davinci_hwctl_1bit;
 | |
| 			info->chip.ecc.bytes = 3;
 | |
| 		}
 | |
| 		info->chip.ecc.size = 512;
 | |
| 		break;
 | |
| 	default:
 | |
| 		ret = -EINVAL;
 | |
| 		goto err_ecc;
 | |
| 	}
 | |
| 	info->chip.ecc.mode = ecc_mode;
 | |
| 
 | |
| 	info->clk = clk_get(&pdev->dev, "aemif");
 | |
| 	if (IS_ERR(info->clk)) {
 | |
| 		ret = PTR_ERR(info->clk);
 | |
| 		dev_dbg(&pdev->dev, "unable to get AEMIF clock, err %d\n", ret);
 | |
| 		goto err_clk;
 | |
| 	}
 | |
| 
 | |
| 	ret = clk_enable(info->clk);
 | |
| 	if (ret < 0) {
 | |
| 		dev_dbg(&pdev->dev, "unable to enable AEMIF clock, err %d\n",
 | |
| 			ret);
 | |
| 		goto err_clk_enable;
 | |
| 	}
 | |
| 
 | |
| 	/* EMIF timings should normally be set by the boot loader,
 | |
| 	 * especially after boot-from-NAND.  The *only* reason to
 | |
| 	 * have this special casing for the DM6446 EVM is to work
 | |
| 	 * with boot-from-NOR ... with CS0 manually re-jumpered
 | |
| 	 * (after startup) so it addresses the NAND flash, not NOR.
 | |
| 	 * Even for dev boards, that's unusually rude...
 | |
| 	 */
 | |
| 	if (machine_is_davinci_evm())
 | |
| 		nand_dm6446evm_flash_init(info);
 | |
| 
 | |
| 	spin_lock_irq(&davinci_nand_lock);
 | |
| 
 | |
| 	/* put CSxNAND into NAND mode */
 | |
| 	val = davinci_nand_readl(info, NANDFCR_OFFSET);
 | |
| 	val |= BIT(info->core_chipsel);
 | |
| 	davinci_nand_writel(info, NANDFCR_OFFSET, val);
 | |
| 
 | |
| 	spin_unlock_irq(&davinci_nand_lock);
 | |
| 
 | |
| 	/* Scan to find existence of the device(s) */
 | |
| 	ret = nand_scan_ident(&info->mtd, pdata->mask_chipsel ? 2 : 1, NULL);
 | |
| 	if (ret < 0) {
 | |
| 		dev_dbg(&pdev->dev, "no NAND chip(s) found\n");
 | |
| 		goto err_scan;
 | |
| 	}
 | |
| 
 | |
| 	/* Update ECC layout if needed ... for 1-bit HW ECC, the default
 | |
| 	 * is OK, but it allocates 6 bytes when only 3 are needed (for
 | |
| 	 * each 512 bytes).  For the 4-bit HW ECC, that default is not
 | |
| 	 * usable:  10 bytes are needed, not 6.
 | |
| 	 */
 | |
| 	if (pdata->ecc_bits == 4) {
 | |
| 		int	chunks = info->mtd.writesize / 512;
 | |
| 
 | |
| 		if (!chunks || info->mtd.oobsize < 16) {
 | |
| 			dev_dbg(&pdev->dev, "too small\n");
 | |
| 			ret = -EINVAL;
 | |
| 			goto err_scan;
 | |
| 		}
 | |
| 
 | |
| 		/* For small page chips, preserve the manufacturer's
 | |
| 		 * badblock marking data ... and make sure a flash BBT
 | |
| 		 * table marker fits in the free bytes.
 | |
| 		 */
 | |
| 		if (chunks == 1) {
 | |
| 			info->ecclayout = hwecc4_small;
 | |
| 			info->ecclayout.oobfree[1].length =
 | |
| 				info->mtd.oobsize - 16;
 | |
| 			goto syndrome_done;
 | |
| 		}
 | |
| 		if (chunks == 4) {
 | |
| 			info->ecclayout = hwecc4_2048;
 | |
| 			info->chip.ecc.mode = NAND_ECC_HW_OOB_FIRST;
 | |
| 			goto syndrome_done;
 | |
| 		}
 | |
| 
 | |
| 		/* 4KiB page chips are not yet supported. The eccpos from
 | |
| 		 * nand_ecclayout cannot hold 80 bytes and change to eccpos[]
 | |
| 		 * breaks userspace ioctl interface with mtd-utils. Once we
 | |
| 		 * resolve this issue, NAND_ECC_HW_OOB_FIRST mode can be used
 | |
| 		 * for the 4KiB page chips.
 | |
| 		 */
 | |
| 		dev_warn(&pdev->dev, "no 4-bit ECC support yet "
 | |
| 				"for 4KiB-page NAND\n");
 | |
| 		ret = -EIO;
 | |
| 		goto err_scan;
 | |
| 
 | |
| syndrome_done:
 | |
| 		info->chip.ecc.layout = &info->ecclayout;
 | |
| 	}
 | |
| 
 | |
| 	ret = nand_scan_tail(&info->mtd);
 | |
| 	if (ret < 0)
 | |
| 		goto err_scan;
 | |
| 
 | |
| 	if (mtd_has_partitions()) {
 | |
| 		struct mtd_partition	*mtd_parts = NULL;
 | |
| 		int			mtd_parts_nb = 0;
 | |
| 
 | |
| 		if (mtd_has_cmdlinepart()) {
 | |
| 			static const char *probes[] __initconst =
 | |
| 				{ "cmdlinepart", NULL };
 | |
| 
 | |
| 			mtd_parts_nb = parse_mtd_partitions(&info->mtd, probes,
 | |
| 							    &mtd_parts, 0);
 | |
| 		}
 | |
| 
 | |
| 		if (mtd_parts_nb <= 0) {
 | |
| 			mtd_parts = pdata->parts;
 | |
| 			mtd_parts_nb = pdata->nr_parts;
 | |
| 		}
 | |
| 
 | |
| 		/* Register any partitions */
 | |
| 		if (mtd_parts_nb > 0) {
 | |
| 			ret = add_mtd_partitions(&info->mtd,
 | |
| 					mtd_parts, mtd_parts_nb);
 | |
| 			if (ret == 0)
 | |
| 				info->partitioned = true;
 | |
| 		}
 | |
| 
 | |
| 	} else if (pdata->nr_parts) {
 | |
| 		dev_warn(&pdev->dev, "ignoring %d default partitions on %s\n",
 | |
| 				pdata->nr_parts, info->mtd.name);
 | |
| 	}
 | |
| 
 | |
| 	/* If there's no partition info, just package the whole chip
 | |
| 	 * as a single MTD device.
 | |
| 	 */
 | |
| 	if (!info->partitioned)
 | |
| 		ret = add_mtd_device(&info->mtd) ? -ENODEV : 0;
 | |
| 
 | |
| 	if (ret < 0)
 | |
| 		goto err_scan;
 | |
| 
 | |
| 	val = davinci_nand_readl(info, NRCSR_OFFSET);
 | |
| 	dev_info(&pdev->dev, "controller rev. %d.%d\n",
 | |
| 	       (val >> 8) & 0xff, val & 0xff);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| err_scan:
 | |
| 	clk_disable(info->clk);
 | |
| 
 | |
| err_clk_enable:
 | |
| 	clk_put(info->clk);
 | |
| 
 | |
| 	spin_lock_irq(&davinci_nand_lock);
 | |
| 	if (ecc_mode == NAND_ECC_HW_SYNDROME)
 | |
| 		ecc4_busy = false;
 | |
| 	spin_unlock_irq(&davinci_nand_lock);
 | |
| 
 | |
| err_ecc:
 | |
| err_clk:
 | |
| err_ioremap:
 | |
| 	if (base)
 | |
| 		iounmap(base);
 | |
| 	if (vaddr)
 | |
| 		iounmap(vaddr);
 | |
| 
 | |
| err_nomem:
 | |
| 	kfree(info);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int __exit nand_davinci_remove(struct platform_device *pdev)
 | |
| {
 | |
| 	struct davinci_nand_info *info = platform_get_drvdata(pdev);
 | |
| 	int status;
 | |
| 
 | |
| 	if (mtd_has_partitions() && info->partitioned)
 | |
| 		status = del_mtd_partitions(&info->mtd);
 | |
| 	else
 | |
| 		status = del_mtd_device(&info->mtd);
 | |
| 
 | |
| 	spin_lock_irq(&davinci_nand_lock);
 | |
| 	if (info->chip.ecc.mode == NAND_ECC_HW_SYNDROME)
 | |
| 		ecc4_busy = false;
 | |
| 	spin_unlock_irq(&davinci_nand_lock);
 | |
| 
 | |
| 	iounmap(info->base);
 | |
| 	iounmap(info->vaddr);
 | |
| 
 | |
| 	nand_release(&info->mtd);
 | |
| 
 | |
| 	clk_disable(info->clk);
 | |
| 	clk_put(info->clk);
 | |
| 
 | |
| 	kfree(info);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static struct platform_driver nand_davinci_driver = {
 | |
| 	.remove		= __exit_p(nand_davinci_remove),
 | |
| 	.driver		= {
 | |
| 		.name	= "davinci_nand",
 | |
| 	},
 | |
| };
 | |
| MODULE_ALIAS("platform:davinci_nand");
 | |
| 
 | |
| static int __init nand_davinci_init(void)
 | |
| {
 | |
| 	return platform_driver_probe(&nand_davinci_driver, nand_davinci_probe);
 | |
| }
 | |
| module_init(nand_davinci_init);
 | |
| 
 | |
| static void __exit nand_davinci_exit(void)
 | |
| {
 | |
| 	platform_driver_unregister(&nand_davinci_driver);
 | |
| }
 | |
| module_exit(nand_davinci_exit);
 | |
| 
 | |
| MODULE_LICENSE("GPL");
 | |
| MODULE_AUTHOR("Texas Instruments");
 | |
| MODULE_DESCRIPTION("Davinci NAND flash driver");
 | |
| 
 |