Signed-off-by: Frans Pop <elendil@planet.nl> Cc: linuxppc-dev@ozlabs.org Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
		
			
				
	
	
		
			711 lines
		
	
	
	
		
			19 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			711 lines
		
	
	
	
		
			19 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 *    Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com>
 | 
						|
 *    Copyright (c) 1999-2000 Grant Erickson <grant@lcse.umn.edu>
 | 
						|
 *
 | 
						|
 *    Description:
 | 
						|
 *      Architecture- / platform-specific boot-time initialization code for
 | 
						|
 *      the IBM iSeries LPAR.  Adapted from original code by Grant Erickson and
 | 
						|
 *      code by Gary Thomas, Cort Dougan <cort@fsmlabs.com>, and Dan Malek
 | 
						|
 *      <dan@net4x.com>.
 | 
						|
 *
 | 
						|
 *      This program is free software; you can redistribute it and/or
 | 
						|
 *      modify it under the terms of the GNU General Public License
 | 
						|
 *      as published by the Free Software Foundation; either version
 | 
						|
 *      2 of the License, or (at your option) any later version.
 | 
						|
 */
 | 
						|
 | 
						|
#undef DEBUG
 | 
						|
 | 
						|
#include <linux/init.h>
 | 
						|
#include <linux/threads.h>
 | 
						|
#include <linux/smp.h>
 | 
						|
#include <linux/param.h>
 | 
						|
#include <linux/string.h>
 | 
						|
#include <linux/seq_file.h>
 | 
						|
#include <linux/kdev_t.h>
 | 
						|
#include <linux/kexec.h>
 | 
						|
#include <linux/major.h>
 | 
						|
#include <linux/root_dev.h>
 | 
						|
#include <linux/kernel.h>
 | 
						|
#include <linux/hrtimer.h>
 | 
						|
#include <linux/tick.h>
 | 
						|
 | 
						|
#include <asm/processor.h>
 | 
						|
#include <asm/machdep.h>
 | 
						|
#include <asm/page.h>
 | 
						|
#include <asm/mmu.h>
 | 
						|
#include <asm/pgtable.h>
 | 
						|
#include <asm/mmu_context.h>
 | 
						|
#include <asm/cputable.h>
 | 
						|
#include <asm/sections.h>
 | 
						|
#include <asm/iommu.h>
 | 
						|
#include <asm/firmware.h>
 | 
						|
#include <asm/system.h>
 | 
						|
#include <asm/time.h>
 | 
						|
#include <asm/paca.h>
 | 
						|
#include <asm/cache.h>
 | 
						|
#include <asm/abs_addr.h>
 | 
						|
#include <asm/iseries/hv_lp_config.h>
 | 
						|
#include <asm/iseries/hv_call_event.h>
 | 
						|
#include <asm/iseries/hv_call_xm.h>
 | 
						|
#include <asm/iseries/it_lp_queue.h>
 | 
						|
#include <asm/iseries/mf.h>
 | 
						|
#include <asm/iseries/hv_lp_event.h>
 | 
						|
#include <asm/iseries/lpar_map.h>
 | 
						|
#include <asm/udbg.h>
 | 
						|
#include <asm/irq.h>
 | 
						|
 | 
						|
#include "naca.h"
 | 
						|
#include "setup.h"
 | 
						|
#include "irq.h"
 | 
						|
#include "vpd_areas.h"
 | 
						|
#include "processor_vpd.h"
 | 
						|
#include "it_lp_naca.h"
 | 
						|
#include "main_store.h"
 | 
						|
#include "call_sm.h"
 | 
						|
#include "call_hpt.h"
 | 
						|
#include "pci.h"
 | 
						|
 | 
						|
#ifdef DEBUG
 | 
						|
#define DBG(fmt...) udbg_printf(fmt)
 | 
						|
#else
 | 
						|
#define DBG(fmt...)
 | 
						|
#endif
 | 
						|
 | 
						|
/* Function Prototypes */
 | 
						|
static unsigned long build_iSeries_Memory_Map(void);
 | 
						|
static void iseries_shared_idle(void);
 | 
						|
static void iseries_dedicated_idle(void);
 | 
						|
 | 
						|
 | 
						|
struct MemoryBlock {
 | 
						|
	unsigned long absStart;
 | 
						|
	unsigned long absEnd;
 | 
						|
	unsigned long logicalStart;
 | 
						|
	unsigned long logicalEnd;
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
 * Process the main store vpd to determine where the holes in memory are
 | 
						|
 * and return the number of physical blocks and fill in the array of
 | 
						|
 * block data.
 | 
						|
 */
 | 
						|
static unsigned long iSeries_process_Condor_mainstore_vpd(
 | 
						|
		struct MemoryBlock *mb_array, unsigned long max_entries)
 | 
						|
{
 | 
						|
	unsigned long holeFirstChunk, holeSizeChunks;
 | 
						|
	unsigned long numMemoryBlocks = 1;
 | 
						|
	struct IoHriMainStoreSegment4 *msVpd =
 | 
						|
		(struct IoHriMainStoreSegment4 *)xMsVpd;
 | 
						|
	unsigned long holeStart = msVpd->nonInterleavedBlocksStartAdr;
 | 
						|
	unsigned long holeEnd = msVpd->nonInterleavedBlocksEndAdr;
 | 
						|
	unsigned long holeSize = holeEnd - holeStart;
 | 
						|
 | 
						|
	printk("Mainstore_VPD: Condor\n");
 | 
						|
	/*
 | 
						|
	 * Determine if absolute memory has any
 | 
						|
	 * holes so that we can interpret the
 | 
						|
	 * access map we get back from the hypervisor
 | 
						|
	 * correctly.
 | 
						|
	 */
 | 
						|
	mb_array[0].logicalStart = 0;
 | 
						|
	mb_array[0].logicalEnd = 0x100000000UL;
 | 
						|
	mb_array[0].absStart = 0;
 | 
						|
	mb_array[0].absEnd = 0x100000000UL;
 | 
						|
 | 
						|
	if (holeSize) {
 | 
						|
		numMemoryBlocks = 2;
 | 
						|
		holeStart = holeStart & 0x000fffffffffffffUL;
 | 
						|
		holeStart = addr_to_chunk(holeStart);
 | 
						|
		holeFirstChunk = holeStart;
 | 
						|
		holeSize = addr_to_chunk(holeSize);
 | 
						|
		holeSizeChunks = holeSize;
 | 
						|
		printk( "Main store hole: start chunk = %0lx, size = %0lx chunks\n",
 | 
						|
				holeFirstChunk, holeSizeChunks );
 | 
						|
		mb_array[0].logicalEnd = holeFirstChunk;
 | 
						|
		mb_array[0].absEnd = holeFirstChunk;
 | 
						|
		mb_array[1].logicalStart = holeFirstChunk;
 | 
						|
		mb_array[1].logicalEnd = 0x100000000UL - holeSizeChunks;
 | 
						|
		mb_array[1].absStart = holeFirstChunk + holeSizeChunks;
 | 
						|
		mb_array[1].absEnd = 0x100000000UL;
 | 
						|
	}
 | 
						|
	return numMemoryBlocks;
 | 
						|
}
 | 
						|
 | 
						|
#define MaxSegmentAreas			32
 | 
						|
#define MaxSegmentAdrRangeBlocks	128
 | 
						|
#define MaxAreaRangeBlocks		4
 | 
						|
 | 
						|
static unsigned long iSeries_process_Regatta_mainstore_vpd(
 | 
						|
		struct MemoryBlock *mb_array, unsigned long max_entries)
 | 
						|
{
 | 
						|
	struct IoHriMainStoreSegment5 *msVpdP =
 | 
						|
		(struct IoHriMainStoreSegment5 *)xMsVpd;
 | 
						|
	unsigned long numSegmentBlocks = 0;
 | 
						|
	u32 existsBits = msVpdP->msAreaExists;
 | 
						|
	unsigned long area_num;
 | 
						|
 | 
						|
	printk("Mainstore_VPD: Regatta\n");
 | 
						|
 | 
						|
	for (area_num = 0; area_num < MaxSegmentAreas; ++area_num ) {
 | 
						|
		unsigned long numAreaBlocks;
 | 
						|
		struct IoHriMainStoreArea4 *currentArea;
 | 
						|
 | 
						|
		if (existsBits & 0x80000000) {
 | 
						|
			unsigned long block_num;
 | 
						|
 | 
						|
			currentArea = &msVpdP->msAreaArray[area_num];
 | 
						|
			numAreaBlocks = currentArea->numAdrRangeBlocks;
 | 
						|
			printk("ms_vpd: processing area %2ld  blocks=%ld",
 | 
						|
					area_num, numAreaBlocks);
 | 
						|
			for (block_num = 0; block_num < numAreaBlocks;
 | 
						|
					++block_num ) {
 | 
						|
				/* Process an address range block */
 | 
						|
				struct MemoryBlock tempBlock;
 | 
						|
				unsigned long i;
 | 
						|
 | 
						|
				tempBlock.absStart =
 | 
						|
					(unsigned long)currentArea->xAdrRangeBlock[block_num].blockStart;
 | 
						|
				tempBlock.absEnd =
 | 
						|
					(unsigned long)currentArea->xAdrRangeBlock[block_num].blockEnd;
 | 
						|
				tempBlock.logicalStart = 0;
 | 
						|
				tempBlock.logicalEnd   = 0;
 | 
						|
				printk("\n          block %ld absStart=%016lx absEnd=%016lx",
 | 
						|
						block_num, tempBlock.absStart,
 | 
						|
						tempBlock.absEnd);
 | 
						|
 | 
						|
				for (i = 0; i < numSegmentBlocks; ++i) {
 | 
						|
					if (mb_array[i].absStart ==
 | 
						|
							tempBlock.absStart)
 | 
						|
						break;
 | 
						|
				}
 | 
						|
				if (i == numSegmentBlocks) {
 | 
						|
					if (numSegmentBlocks == max_entries)
 | 
						|
						panic("iSeries_process_mainstore_vpd: too many memory blocks");
 | 
						|
					mb_array[numSegmentBlocks] = tempBlock;
 | 
						|
					++numSegmentBlocks;
 | 
						|
				} else
 | 
						|
					printk(" (duplicate)");
 | 
						|
			}
 | 
						|
			printk("\n");
 | 
						|
		}
 | 
						|
		existsBits <<= 1;
 | 
						|
	}
 | 
						|
	/* Now sort the blocks found into ascending sequence */
 | 
						|
	if (numSegmentBlocks > 1) {
 | 
						|
		unsigned long m, n;
 | 
						|
 | 
						|
		for (m = 0; m < numSegmentBlocks - 1; ++m) {
 | 
						|
			for (n = numSegmentBlocks - 1; m < n; --n) {
 | 
						|
				if (mb_array[n].absStart <
 | 
						|
						mb_array[n-1].absStart) {
 | 
						|
					struct MemoryBlock tempBlock;
 | 
						|
 | 
						|
					tempBlock = mb_array[n];
 | 
						|
					mb_array[n] = mb_array[n-1];
 | 
						|
					mb_array[n-1] = tempBlock;
 | 
						|
				}
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
	/*
 | 
						|
	 * Assign "logical" addresses to each block.  These
 | 
						|
	 * addresses correspond to the hypervisor "bitmap" space.
 | 
						|
	 * Convert all addresses into units of 256K chunks.
 | 
						|
	 */
 | 
						|
	{
 | 
						|
	unsigned long i, nextBitmapAddress;
 | 
						|
 | 
						|
	printk("ms_vpd: %ld sorted memory blocks\n", numSegmentBlocks);
 | 
						|
	nextBitmapAddress = 0;
 | 
						|
	for (i = 0; i < numSegmentBlocks; ++i) {
 | 
						|
		unsigned long length = mb_array[i].absEnd -
 | 
						|
			mb_array[i].absStart;
 | 
						|
 | 
						|
		mb_array[i].logicalStart = nextBitmapAddress;
 | 
						|
		mb_array[i].logicalEnd = nextBitmapAddress + length;
 | 
						|
		nextBitmapAddress += length;
 | 
						|
		printk("          Bitmap range: %016lx - %016lx\n"
 | 
						|
				"        Absolute range: %016lx - %016lx\n",
 | 
						|
				mb_array[i].logicalStart,
 | 
						|
				mb_array[i].logicalEnd,
 | 
						|
				mb_array[i].absStart, mb_array[i].absEnd);
 | 
						|
		mb_array[i].absStart = addr_to_chunk(mb_array[i].absStart &
 | 
						|
				0x000fffffffffffffUL);
 | 
						|
		mb_array[i].absEnd = addr_to_chunk(mb_array[i].absEnd &
 | 
						|
				0x000fffffffffffffUL);
 | 
						|
		mb_array[i].logicalStart =
 | 
						|
			addr_to_chunk(mb_array[i].logicalStart);
 | 
						|
		mb_array[i].logicalEnd = addr_to_chunk(mb_array[i].logicalEnd);
 | 
						|
	}
 | 
						|
	}
 | 
						|
 | 
						|
	return numSegmentBlocks;
 | 
						|
}
 | 
						|
 | 
						|
static unsigned long iSeries_process_mainstore_vpd(struct MemoryBlock *mb_array,
 | 
						|
		unsigned long max_entries)
 | 
						|
{
 | 
						|
	unsigned long i;
 | 
						|
	unsigned long mem_blocks = 0;
 | 
						|
 | 
						|
	if (cpu_has_feature(CPU_FTR_SLB))
 | 
						|
		mem_blocks = iSeries_process_Regatta_mainstore_vpd(mb_array,
 | 
						|
				max_entries);
 | 
						|
	else
 | 
						|
		mem_blocks = iSeries_process_Condor_mainstore_vpd(mb_array,
 | 
						|
				max_entries);
 | 
						|
 | 
						|
	printk("Mainstore_VPD: numMemoryBlocks = %ld\n", mem_blocks);
 | 
						|
	for (i = 0; i < mem_blocks; ++i) {
 | 
						|
		printk("Mainstore_VPD: block %3ld logical chunks %016lx - %016lx\n"
 | 
						|
		       "                             abs chunks %016lx - %016lx\n",
 | 
						|
			i, mb_array[i].logicalStart, mb_array[i].logicalEnd,
 | 
						|
			mb_array[i].absStart, mb_array[i].absEnd);
 | 
						|
	}
 | 
						|
	return mem_blocks;
 | 
						|
}
 | 
						|
 | 
						|
static void __init iSeries_get_cmdline(void)
 | 
						|
{
 | 
						|
	char *p, *q;
 | 
						|
 | 
						|
	/* copy the command line parameter from the primary VSP  */
 | 
						|
	HvCallEvent_dmaToSp(cmd_line, 2 * 64* 1024, 256,
 | 
						|
			HvLpDma_Direction_RemoteToLocal);
 | 
						|
 | 
						|
	p = cmd_line;
 | 
						|
	q = cmd_line + 255;
 | 
						|
	while(p < q) {
 | 
						|
		if (!*p || *p == '\n')
 | 
						|
			break;
 | 
						|
		++p;
 | 
						|
	}
 | 
						|
	*p = 0;
 | 
						|
}
 | 
						|
 | 
						|
static void __init iSeries_init_early(void)
 | 
						|
{
 | 
						|
	DBG(" -> iSeries_init_early()\n");
 | 
						|
 | 
						|
	/* Snapshot the timebase, for use in later recalibration */
 | 
						|
	iSeries_time_init_early();
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Initialize the DMA/TCE management
 | 
						|
	 */
 | 
						|
	iommu_init_early_iSeries();
 | 
						|
 | 
						|
	/* Initialize machine-dependency vectors */
 | 
						|
#ifdef CONFIG_SMP
 | 
						|
	smp_init_iSeries();
 | 
						|
#endif
 | 
						|
 | 
						|
	/* Associate Lp Event Queue 0 with processor 0 */
 | 
						|
	HvCallEvent_setLpEventQueueInterruptProc(0, 0);
 | 
						|
 | 
						|
	mf_init();
 | 
						|
 | 
						|
	DBG(" <- iSeries_init_early()\n");
 | 
						|
}
 | 
						|
 | 
						|
struct mschunks_map mschunks_map = {
 | 
						|
	/* XXX We don't use these, but Piranha might need them. */
 | 
						|
	.chunk_size  = MSCHUNKS_CHUNK_SIZE,
 | 
						|
	.chunk_shift = MSCHUNKS_CHUNK_SHIFT,
 | 
						|
	.chunk_mask  = MSCHUNKS_OFFSET_MASK,
 | 
						|
};
 | 
						|
EXPORT_SYMBOL(mschunks_map);
 | 
						|
 | 
						|
static void mschunks_alloc(unsigned long num_chunks)
 | 
						|
{
 | 
						|
	klimit = _ALIGN(klimit, sizeof(u32));
 | 
						|
	mschunks_map.mapping = (u32 *)klimit;
 | 
						|
	klimit += num_chunks * sizeof(u32);
 | 
						|
	mschunks_map.num_chunks = num_chunks;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * The iSeries may have very large memories ( > 128 GB ) and a partition
 | 
						|
 * may get memory in "chunks" that may be anywhere in the 2**52 real
 | 
						|
 * address space.  The chunks are 256K in size.  To map this to the
 | 
						|
 * memory model Linux expects, the AS/400 specific code builds a
 | 
						|
 * translation table to translate what Linux thinks are "physical"
 | 
						|
 * addresses to the actual real addresses.  This allows us to make
 | 
						|
 * it appear to Linux that we have contiguous memory starting at
 | 
						|
 * physical address zero while in fact this could be far from the truth.
 | 
						|
 * To avoid confusion, I'll let the words physical and/or real address
 | 
						|
 * apply to the Linux addresses while I'll use "absolute address" to
 | 
						|
 * refer to the actual hardware real address.
 | 
						|
 *
 | 
						|
 * build_iSeries_Memory_Map gets information from the Hypervisor and
 | 
						|
 * looks at the Main Store VPD to determine the absolute addresses
 | 
						|
 * of the memory that has been assigned to our partition and builds
 | 
						|
 * a table used to translate Linux's physical addresses to these
 | 
						|
 * absolute addresses.  Absolute addresses are needed when
 | 
						|
 * communicating with the hypervisor (e.g. to build HPT entries)
 | 
						|
 *
 | 
						|
 * Returns the physical memory size
 | 
						|
 */
 | 
						|
 | 
						|
static unsigned long __init build_iSeries_Memory_Map(void)
 | 
						|
{
 | 
						|
	u32 loadAreaFirstChunk, loadAreaLastChunk, loadAreaSize;
 | 
						|
	u32 nextPhysChunk;
 | 
						|
	u32 hptFirstChunk, hptLastChunk, hptSizeChunks, hptSizePages;
 | 
						|
	u32 totalChunks,moreChunks;
 | 
						|
	u32 currChunk, thisChunk, absChunk;
 | 
						|
	u32 currDword;
 | 
						|
	u32 chunkBit;
 | 
						|
	u64 map;
 | 
						|
	struct MemoryBlock mb[32];
 | 
						|
	unsigned long numMemoryBlocks, curBlock;
 | 
						|
 | 
						|
	/* Chunk size on iSeries is 256K bytes */
 | 
						|
	totalChunks = (u32)HvLpConfig_getMsChunks();
 | 
						|
	mschunks_alloc(totalChunks);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Get absolute address of our load area
 | 
						|
	 * and map it to physical address 0
 | 
						|
	 * This guarantees that the loadarea ends up at physical 0
 | 
						|
	 * otherwise, it might not be returned by PLIC as the first
 | 
						|
	 * chunks
 | 
						|
	 */
 | 
						|
 | 
						|
	loadAreaFirstChunk = (u32)addr_to_chunk(itLpNaca.xLoadAreaAddr);
 | 
						|
	loadAreaSize =  itLpNaca.xLoadAreaChunks;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Only add the pages already mapped here.
 | 
						|
	 * Otherwise we might add the hpt pages
 | 
						|
	 * The rest of the pages of the load area
 | 
						|
	 * aren't in the HPT yet and can still
 | 
						|
	 * be assigned an arbitrary physical address
 | 
						|
	 */
 | 
						|
	if ((loadAreaSize * 64) > HvPagesToMap)
 | 
						|
		loadAreaSize = HvPagesToMap / 64;
 | 
						|
 | 
						|
	loadAreaLastChunk = loadAreaFirstChunk + loadAreaSize - 1;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * TODO Do we need to do something if the HPT is in the 64MB load area?
 | 
						|
	 * This would be required if the itLpNaca.xLoadAreaChunks includes
 | 
						|
	 * the HPT size
 | 
						|
	 */
 | 
						|
 | 
						|
	printk("Mapping load area - physical addr = 0000000000000000\n"
 | 
						|
		"                    absolute addr = %016lx\n",
 | 
						|
		chunk_to_addr(loadAreaFirstChunk));
 | 
						|
	printk("Load area size %dK\n", loadAreaSize * 256);
 | 
						|
 | 
						|
	for (nextPhysChunk = 0; nextPhysChunk < loadAreaSize; ++nextPhysChunk)
 | 
						|
		mschunks_map.mapping[nextPhysChunk] =
 | 
						|
			loadAreaFirstChunk + nextPhysChunk;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Get absolute address of our HPT and remember it so
 | 
						|
	 * we won't map it to any physical address
 | 
						|
	 */
 | 
						|
	hptFirstChunk = (u32)addr_to_chunk(HvCallHpt_getHptAddress());
 | 
						|
	hptSizePages = (u32)HvCallHpt_getHptPages();
 | 
						|
	hptSizeChunks = hptSizePages >>
 | 
						|
		(MSCHUNKS_CHUNK_SHIFT - HW_PAGE_SHIFT);
 | 
						|
	hptLastChunk = hptFirstChunk + hptSizeChunks - 1;
 | 
						|
 | 
						|
	printk("HPT absolute addr = %016lx, size = %dK\n",
 | 
						|
			chunk_to_addr(hptFirstChunk), hptSizeChunks * 256);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Determine if absolute memory has any
 | 
						|
	 * holes so that we can interpret the
 | 
						|
	 * access map we get back from the hypervisor
 | 
						|
	 * correctly.
 | 
						|
	 */
 | 
						|
	numMemoryBlocks = iSeries_process_mainstore_vpd(mb, 32);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Process the main store access map from the hypervisor
 | 
						|
	 * to build up our physical -> absolute translation table
 | 
						|
	 */
 | 
						|
	curBlock = 0;
 | 
						|
	currChunk = 0;
 | 
						|
	currDword = 0;
 | 
						|
	moreChunks = totalChunks;
 | 
						|
 | 
						|
	while (moreChunks) {
 | 
						|
		map = HvCallSm_get64BitsOfAccessMap(itLpNaca.xLpIndex,
 | 
						|
				currDword);
 | 
						|
		thisChunk = currChunk;
 | 
						|
		while (map) {
 | 
						|
			chunkBit = map >> 63;
 | 
						|
			map <<= 1;
 | 
						|
			if (chunkBit) {
 | 
						|
				--moreChunks;
 | 
						|
				while (thisChunk >= mb[curBlock].logicalEnd) {
 | 
						|
					++curBlock;
 | 
						|
					if (curBlock >= numMemoryBlocks)
 | 
						|
						panic("out of memory blocks");
 | 
						|
				}
 | 
						|
				if (thisChunk < mb[curBlock].logicalStart)
 | 
						|
					panic("memory block error");
 | 
						|
 | 
						|
				absChunk = mb[curBlock].absStart +
 | 
						|
					(thisChunk - mb[curBlock].logicalStart);
 | 
						|
				if (((absChunk < hptFirstChunk) ||
 | 
						|
				     (absChunk > hptLastChunk)) &&
 | 
						|
				    ((absChunk < loadAreaFirstChunk) ||
 | 
						|
				     (absChunk > loadAreaLastChunk))) {
 | 
						|
					mschunks_map.mapping[nextPhysChunk] =
 | 
						|
						absChunk;
 | 
						|
					++nextPhysChunk;
 | 
						|
				}
 | 
						|
			}
 | 
						|
			++thisChunk;
 | 
						|
		}
 | 
						|
		++currDword;
 | 
						|
		currChunk += 64;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * main store size (in chunks) is
 | 
						|
	 *   totalChunks - hptSizeChunks
 | 
						|
	 * which should be equal to
 | 
						|
	 *   nextPhysChunk
 | 
						|
	 */
 | 
						|
	return chunk_to_addr(nextPhysChunk);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Document me.
 | 
						|
 */
 | 
						|
static void __init iSeries_setup_arch(void)
 | 
						|
{
 | 
						|
	if (get_lppaca()->shared_proc) {
 | 
						|
		ppc_md.idle_loop = iseries_shared_idle;
 | 
						|
		printk(KERN_DEBUG "Using shared processor idle loop\n");
 | 
						|
	} else {
 | 
						|
		ppc_md.idle_loop = iseries_dedicated_idle;
 | 
						|
		printk(KERN_DEBUG "Using dedicated idle loop\n");
 | 
						|
	}
 | 
						|
 | 
						|
	/* Setup the Lp Event Queue */
 | 
						|
	setup_hvlpevent_queue();
 | 
						|
 | 
						|
	printk("Max  logical processors = %d\n",
 | 
						|
			itVpdAreas.xSlicMaxLogicalProcs);
 | 
						|
	printk("Max physical processors = %d\n",
 | 
						|
			itVpdAreas.xSlicMaxPhysicalProcs);
 | 
						|
 | 
						|
	iSeries_pcibios_init();
 | 
						|
}
 | 
						|
 | 
						|
static void iSeries_show_cpuinfo(struct seq_file *m)
 | 
						|
{
 | 
						|
	seq_printf(m, "machine\t\t: 64-bit iSeries Logical Partition\n");
 | 
						|
}
 | 
						|
 | 
						|
static void __init iSeries_progress(char * st, unsigned short code)
 | 
						|
{
 | 
						|
	printk("Progress: [%04x] - %s\n", (unsigned)code, st);
 | 
						|
	mf_display_progress(code);
 | 
						|
}
 | 
						|
 | 
						|
static void __init iSeries_fixup_klimit(void)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * Change klimit to take into account any ram disk
 | 
						|
	 * that may be included
 | 
						|
	 */
 | 
						|
	if (naca.xRamDisk)
 | 
						|
		klimit = KERNELBASE + (u64)naca.xRamDisk +
 | 
						|
			(naca.xRamDiskSize * HW_PAGE_SIZE);
 | 
						|
}
 | 
						|
 | 
						|
static int __init iSeries_src_init(void)
 | 
						|
{
 | 
						|
        /* clear the progress line */
 | 
						|
	if (firmware_has_feature(FW_FEATURE_ISERIES))
 | 
						|
		ppc_md.progress(" ", 0xffff);
 | 
						|
        return 0;
 | 
						|
}
 | 
						|
 | 
						|
late_initcall(iSeries_src_init);
 | 
						|
 | 
						|
static inline void process_iSeries_events(void)
 | 
						|
{
 | 
						|
	asm volatile ("li 0,0x5555; sc" : : : "r0", "r3");
 | 
						|
}
 | 
						|
 | 
						|
static void yield_shared_processor(void)
 | 
						|
{
 | 
						|
	unsigned long tb;
 | 
						|
 | 
						|
	HvCall_setEnabledInterrupts(HvCall_MaskIPI |
 | 
						|
				    HvCall_MaskLpEvent |
 | 
						|
				    HvCall_MaskLpProd |
 | 
						|
				    HvCall_MaskTimeout);
 | 
						|
 | 
						|
	tb = get_tb();
 | 
						|
	/* Compute future tb value when yield should expire */
 | 
						|
	HvCall_yieldProcessor(HvCall_YieldTimed, tb+tb_ticks_per_jiffy);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * The decrementer stops during the yield.  Force a fake decrementer
 | 
						|
	 * here and let the timer_interrupt code sort out the actual time.
 | 
						|
	 */
 | 
						|
	get_lppaca()->int_dword.fields.decr_int = 1;
 | 
						|
	ppc64_runlatch_on();
 | 
						|
	process_iSeries_events();
 | 
						|
}
 | 
						|
 | 
						|
static void iseries_shared_idle(void)
 | 
						|
{
 | 
						|
	while (1) {
 | 
						|
		tick_nohz_stop_sched_tick(1);
 | 
						|
		while (!need_resched() && !hvlpevent_is_pending()) {
 | 
						|
			local_irq_disable();
 | 
						|
			ppc64_runlatch_off();
 | 
						|
 | 
						|
			/* Recheck with irqs off */
 | 
						|
			if (!need_resched() && !hvlpevent_is_pending())
 | 
						|
				yield_shared_processor();
 | 
						|
 | 
						|
			HMT_medium();
 | 
						|
			local_irq_enable();
 | 
						|
		}
 | 
						|
 | 
						|
		ppc64_runlatch_on();
 | 
						|
		tick_nohz_restart_sched_tick();
 | 
						|
 | 
						|
		if (hvlpevent_is_pending())
 | 
						|
			process_iSeries_events();
 | 
						|
 | 
						|
		preempt_enable_no_resched();
 | 
						|
		schedule();
 | 
						|
		preempt_disable();
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void iseries_dedicated_idle(void)
 | 
						|
{
 | 
						|
	set_thread_flag(TIF_POLLING_NRFLAG);
 | 
						|
 | 
						|
	while (1) {
 | 
						|
		tick_nohz_stop_sched_tick(1);
 | 
						|
		if (!need_resched()) {
 | 
						|
			while (!need_resched()) {
 | 
						|
				ppc64_runlatch_off();
 | 
						|
				HMT_low();
 | 
						|
 | 
						|
				if (hvlpevent_is_pending()) {
 | 
						|
					HMT_medium();
 | 
						|
					ppc64_runlatch_on();
 | 
						|
					process_iSeries_events();
 | 
						|
				}
 | 
						|
			}
 | 
						|
 | 
						|
			HMT_medium();
 | 
						|
		}
 | 
						|
 | 
						|
		ppc64_runlatch_on();
 | 
						|
		tick_nohz_restart_sched_tick();
 | 
						|
		preempt_enable_no_resched();
 | 
						|
		schedule();
 | 
						|
		preempt_disable();
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void __iomem *iseries_ioremap(phys_addr_t address, unsigned long size,
 | 
						|
				     unsigned long flags, void *caller)
 | 
						|
{
 | 
						|
	return (void __iomem *)address;
 | 
						|
}
 | 
						|
 | 
						|
static void iseries_iounmap(volatile void __iomem *token)
 | 
						|
{
 | 
						|
}
 | 
						|
 | 
						|
static int __init iseries_probe(void)
 | 
						|
{
 | 
						|
	unsigned long root = of_get_flat_dt_root();
 | 
						|
	if (!of_flat_dt_is_compatible(root, "IBM,iSeries"))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	hpte_init_iSeries();
 | 
						|
	/* iSeries does not support 16M pages */
 | 
						|
	cur_cpu_spec->cpu_features &= ~CPU_FTR_16M_PAGE;
 | 
						|
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_KEXEC
 | 
						|
static int iseries_kexec_prepare(struct kimage *image)
 | 
						|
{
 | 
						|
	return -ENOSYS;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
define_machine(iseries) {
 | 
						|
	.name			= "iSeries",
 | 
						|
	.setup_arch		= iSeries_setup_arch,
 | 
						|
	.show_cpuinfo		= iSeries_show_cpuinfo,
 | 
						|
	.init_IRQ		= iSeries_init_IRQ,
 | 
						|
	.get_irq		= iSeries_get_irq,
 | 
						|
	.init_early		= iSeries_init_early,
 | 
						|
	.pcibios_fixup		= iSeries_pci_final_fixup,
 | 
						|
	.pcibios_fixup_resources= iSeries_pcibios_fixup_resources,
 | 
						|
	.restart		= mf_reboot,
 | 
						|
	.power_off		= mf_power_off,
 | 
						|
	.halt			= mf_power_off,
 | 
						|
	.get_boot_time		= iSeries_get_boot_time,
 | 
						|
	.set_rtc_time		= iSeries_set_rtc_time,
 | 
						|
	.get_rtc_time		= iSeries_get_rtc_time,
 | 
						|
	.calibrate_decr		= generic_calibrate_decr,
 | 
						|
	.progress		= iSeries_progress,
 | 
						|
	.probe			= iseries_probe,
 | 
						|
	.ioremap		= iseries_ioremap,
 | 
						|
	.iounmap		= iseries_iounmap,
 | 
						|
#ifdef CONFIG_KEXEC
 | 
						|
	.machine_kexec_prepare	= iseries_kexec_prepare,
 | 
						|
#endif
 | 
						|
	/* XXX Implement enable_pmcs for iSeries */
 | 
						|
};
 | 
						|
 | 
						|
void * __init iSeries_early_setup(void)
 | 
						|
{
 | 
						|
	unsigned long phys_mem_size;
 | 
						|
 | 
						|
	/* Identify CPU type. This is done again by the common code later
 | 
						|
	 * on but calling this function multiple times is fine.
 | 
						|
	 */
 | 
						|
	identify_cpu(0, mfspr(SPRN_PVR));
 | 
						|
 | 
						|
	powerpc_firmware_features |= FW_FEATURE_ISERIES;
 | 
						|
	powerpc_firmware_features |= FW_FEATURE_LPAR;
 | 
						|
 | 
						|
	iSeries_fixup_klimit();
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Initialize the table which translate Linux physical addresses to
 | 
						|
	 * AS/400 absolute addresses
 | 
						|
	 */
 | 
						|
	phys_mem_size = build_iSeries_Memory_Map();
 | 
						|
 | 
						|
	iSeries_get_cmdline();
 | 
						|
 | 
						|
	return (void *) __pa(build_flat_dt(phys_mem_size));
 | 
						|
}
 | 
						|
 | 
						|
static void hvputc(char c)
 | 
						|
{
 | 
						|
	if (c == '\n')
 | 
						|
		hvputc('\r');
 | 
						|
 | 
						|
	HvCall_writeLogBuffer(&c, 1);
 | 
						|
}
 | 
						|
 | 
						|
void __init udbg_init_iseries(void)
 | 
						|
{
 | 
						|
	udbg_putc = hvputc;
 | 
						|
}
 |