Power throttling make deterministic delay loops impossible. Re-implement delays using the cycle counter. This also allows us to get rid of the code that calculates loops per jiffy. Signed-off-by: David Daney <ddaney@caviumnetworks.com> To: linux-mips@linux-mips.org Patchwork: https://patchwork.linux-mips.org/patch/1317/ Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
		
			
				
	
	
		
			137 lines
		
	
	
	
		
			3 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			137 lines
		
	
	
	
		
			3 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * This file is subject to the terms and conditions of the GNU General Public
 | 
						|
 * License.  See the file "COPYING" in the main directory of this archive
 | 
						|
 * for more details.
 | 
						|
 *
 | 
						|
 * Copyright (C) 2007 by Ralf Baechle
 | 
						|
 */
 | 
						|
#include <linux/clocksource.h>
 | 
						|
#include <linux/init.h>
 | 
						|
 | 
						|
#include <asm/time.h>
 | 
						|
 | 
						|
#include <asm/octeon/octeon.h>
 | 
						|
#include <asm/octeon/cvmx-ipd-defs.h>
 | 
						|
 | 
						|
/*
 | 
						|
 * Set the current core's cvmcount counter to the value of the
 | 
						|
 * IPD_CLK_COUNT.  We do this on all cores as they are brought
 | 
						|
 * on-line.  This allows for a read from a local cpu register to
 | 
						|
 * access a synchronized counter.
 | 
						|
 *
 | 
						|
 */
 | 
						|
void octeon_init_cvmcount(void)
 | 
						|
{
 | 
						|
	unsigned long flags;
 | 
						|
	unsigned loops = 2;
 | 
						|
 | 
						|
	/* Clobber loops so GCC will not unroll the following while loop. */
 | 
						|
	asm("" : "+r" (loops));
 | 
						|
 | 
						|
	local_irq_save(flags);
 | 
						|
	/*
 | 
						|
	 * Loop several times so we are executing from the cache,
 | 
						|
	 * which should give more deterministic timing.
 | 
						|
	 */
 | 
						|
	while (loops--)
 | 
						|
		write_c0_cvmcount(cvmx_read_csr(CVMX_IPD_CLK_COUNT));
 | 
						|
	local_irq_restore(flags);
 | 
						|
}
 | 
						|
 | 
						|
static cycle_t octeon_cvmcount_read(struct clocksource *cs)
 | 
						|
{
 | 
						|
	return read_c0_cvmcount();
 | 
						|
}
 | 
						|
 | 
						|
static struct clocksource clocksource_mips = {
 | 
						|
	.name		= "OCTEON_CVMCOUNT",
 | 
						|
	.read		= octeon_cvmcount_read,
 | 
						|
	.mask		= CLOCKSOURCE_MASK(64),
 | 
						|
	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
 | 
						|
};
 | 
						|
 | 
						|
unsigned long long notrace sched_clock(void)
 | 
						|
{
 | 
						|
	/* 64-bit arithmatic can overflow, so use 128-bit.  */
 | 
						|
	u64 t1, t2, t3;
 | 
						|
	unsigned long long rv;
 | 
						|
	u64 mult = clocksource_mips.mult;
 | 
						|
	u64 shift = clocksource_mips.shift;
 | 
						|
	u64 cnt = read_c0_cvmcount();
 | 
						|
 | 
						|
	asm (
 | 
						|
		"dmultu\t%[cnt],%[mult]\n\t"
 | 
						|
		"nor\t%[t1],$0,%[shift]\n\t"
 | 
						|
		"mfhi\t%[t2]\n\t"
 | 
						|
		"mflo\t%[t3]\n\t"
 | 
						|
		"dsll\t%[t2],%[t2],1\n\t"
 | 
						|
		"dsrlv\t%[rv],%[t3],%[shift]\n\t"
 | 
						|
		"dsllv\t%[t1],%[t2],%[t1]\n\t"
 | 
						|
		"or\t%[rv],%[t1],%[rv]\n\t"
 | 
						|
		: [rv] "=&r" (rv), [t1] "=&r" (t1), [t2] "=&r" (t2), [t3] "=&r" (t3)
 | 
						|
		: [cnt] "r" (cnt), [mult] "r" (mult), [shift] "r" (shift)
 | 
						|
		: "hi", "lo");
 | 
						|
	return rv;
 | 
						|
}
 | 
						|
 | 
						|
void __init plat_time_init(void)
 | 
						|
{
 | 
						|
	clocksource_mips.rating = 300;
 | 
						|
	clocksource_set_clock(&clocksource_mips, mips_hpt_frequency);
 | 
						|
	clocksource_register(&clocksource_mips);
 | 
						|
}
 | 
						|
 | 
						|
static u64 octeon_udelay_factor;
 | 
						|
static u64 octeon_ndelay_factor;
 | 
						|
 | 
						|
void __init octeon_setup_delays(void)
 | 
						|
{
 | 
						|
	octeon_udelay_factor = octeon_get_clock_rate() / 1000000;
 | 
						|
	/*
 | 
						|
	 * For __ndelay we divide by 2^16, so the factor is multiplied
 | 
						|
	 * by the same amount.
 | 
						|
	 */
 | 
						|
	octeon_ndelay_factor = (octeon_udelay_factor * 0x10000ull) / 1000ull;
 | 
						|
 | 
						|
	preset_lpj = octeon_get_clock_rate() / HZ;
 | 
						|
}
 | 
						|
 | 
						|
void __udelay(unsigned long us)
 | 
						|
{
 | 
						|
	u64 cur, end, inc;
 | 
						|
 | 
						|
	cur = read_c0_cvmcount();
 | 
						|
 | 
						|
	inc = us * octeon_udelay_factor;
 | 
						|
	end = cur + inc;
 | 
						|
 | 
						|
	while (end > cur)
 | 
						|
		cur = read_c0_cvmcount();
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(__udelay);
 | 
						|
 | 
						|
void __ndelay(unsigned long ns)
 | 
						|
{
 | 
						|
	u64 cur, end, inc;
 | 
						|
 | 
						|
	cur = read_c0_cvmcount();
 | 
						|
 | 
						|
	inc = ((ns * octeon_ndelay_factor) >> 16);
 | 
						|
	end = cur + inc;
 | 
						|
 | 
						|
	while (end > cur)
 | 
						|
		cur = read_c0_cvmcount();
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(__ndelay);
 | 
						|
 | 
						|
void __delay(unsigned long loops)
 | 
						|
{
 | 
						|
	u64 cur, end;
 | 
						|
 | 
						|
	cur = read_c0_cvmcount();
 | 
						|
	end = cur + loops;
 | 
						|
 | 
						|
	while (end > cur)
 | 
						|
		cur = read_c0_cvmcount();
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(__delay);
 |