 df8a39defa
			
		
	
	
	df8a39defa
	
	
	
		
			
			The same macros are used for rx as well. So rename it. Signed-off-by: Jiri Pirko <jiri@resnulli.us> Signed-off-by: David S. Miller <davem@davemloft.net>
		
			
				
	
	
		
			1976 lines
		
	
	
	
		
			52 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1976 lines
		
	
	
	
		
			52 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /* Intel Ethernet Switch Host Interface Driver
 | |
|  * Copyright(c) 2013 - 2014 Intel Corporation.
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify it
 | |
|  * under the terms and conditions of the GNU General Public License,
 | |
|  * version 2, as published by the Free Software Foundation.
 | |
|  *
 | |
|  * This program is distributed in the hope it will be useful, but WITHOUT
 | |
|  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 | |
|  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 | |
|  * more details.
 | |
|  *
 | |
|  * The full GNU General Public License is included in this distribution in
 | |
|  * the file called "COPYING".
 | |
|  *
 | |
|  * Contact Information:
 | |
|  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
 | |
|  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
 | |
|  */
 | |
| 
 | |
| #include <linux/types.h>
 | |
| #include <linux/module.h>
 | |
| #include <net/ipv6.h>
 | |
| #include <net/ip.h>
 | |
| #include <net/tcp.h>
 | |
| #include <linux/if_macvlan.h>
 | |
| #include <linux/prefetch.h>
 | |
| 
 | |
| #include "fm10k.h"
 | |
| 
 | |
| #define DRV_VERSION	"0.12.2-k"
 | |
| const char fm10k_driver_version[] = DRV_VERSION;
 | |
| char fm10k_driver_name[] = "fm10k";
 | |
| static const char fm10k_driver_string[] =
 | |
| 	"Intel(R) Ethernet Switch Host Interface Driver";
 | |
| static const char fm10k_copyright[] =
 | |
| 	"Copyright (c) 2013 Intel Corporation.";
 | |
| 
 | |
| MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
 | |
| MODULE_DESCRIPTION("Intel(R) Ethernet Switch Host Interface Driver");
 | |
| MODULE_LICENSE("GPL");
 | |
| MODULE_VERSION(DRV_VERSION);
 | |
| 
 | |
| /**
 | |
|  * fm10k_init_module - Driver Registration Routine
 | |
|  *
 | |
|  * fm10k_init_module is the first routine called when the driver is
 | |
|  * loaded.  All it does is register with the PCI subsystem.
 | |
|  **/
 | |
| static int __init fm10k_init_module(void)
 | |
| {
 | |
| 	pr_info("%s - version %s\n", fm10k_driver_string, fm10k_driver_version);
 | |
| 	pr_info("%s\n", fm10k_copyright);
 | |
| 
 | |
| 	fm10k_dbg_init();
 | |
| 
 | |
| 	return fm10k_register_pci_driver();
 | |
| }
 | |
| module_init(fm10k_init_module);
 | |
| 
 | |
| /**
 | |
|  * fm10k_exit_module - Driver Exit Cleanup Routine
 | |
|  *
 | |
|  * fm10k_exit_module is called just before the driver is removed
 | |
|  * from memory.
 | |
|  **/
 | |
| static void __exit fm10k_exit_module(void)
 | |
| {
 | |
| 	fm10k_unregister_pci_driver();
 | |
| 
 | |
| 	fm10k_dbg_exit();
 | |
| }
 | |
| module_exit(fm10k_exit_module);
 | |
| 
 | |
| static bool fm10k_alloc_mapped_page(struct fm10k_ring *rx_ring,
 | |
| 				    struct fm10k_rx_buffer *bi)
 | |
| {
 | |
| 	struct page *page = bi->page;
 | |
| 	dma_addr_t dma;
 | |
| 
 | |
| 	/* Only page will be NULL if buffer was consumed */
 | |
| 	if (likely(page))
 | |
| 		return true;
 | |
| 
 | |
| 	/* alloc new page for storage */
 | |
| 	page = dev_alloc_page();
 | |
| 	if (unlikely(!page)) {
 | |
| 		rx_ring->rx_stats.alloc_failed++;
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	/* map page for use */
 | |
| 	dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
 | |
| 
 | |
| 	/* if mapping failed free memory back to system since
 | |
| 	 * there isn't much point in holding memory we can't use
 | |
| 	 */
 | |
| 	if (dma_mapping_error(rx_ring->dev, dma)) {
 | |
| 		__free_page(page);
 | |
| 		bi->page = NULL;
 | |
| 
 | |
| 		rx_ring->rx_stats.alloc_failed++;
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	bi->dma = dma;
 | |
| 	bi->page = page;
 | |
| 	bi->page_offset = 0;
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * fm10k_alloc_rx_buffers - Replace used receive buffers
 | |
|  * @rx_ring: ring to place buffers on
 | |
|  * @cleaned_count: number of buffers to replace
 | |
|  **/
 | |
| void fm10k_alloc_rx_buffers(struct fm10k_ring *rx_ring, u16 cleaned_count)
 | |
| {
 | |
| 	union fm10k_rx_desc *rx_desc;
 | |
| 	struct fm10k_rx_buffer *bi;
 | |
| 	u16 i = rx_ring->next_to_use;
 | |
| 
 | |
| 	/* nothing to do */
 | |
| 	if (!cleaned_count)
 | |
| 		return;
 | |
| 
 | |
| 	rx_desc = FM10K_RX_DESC(rx_ring, i);
 | |
| 	bi = &rx_ring->rx_buffer[i];
 | |
| 	i -= rx_ring->count;
 | |
| 
 | |
| 	do {
 | |
| 		if (!fm10k_alloc_mapped_page(rx_ring, bi))
 | |
| 			break;
 | |
| 
 | |
| 		/* Refresh the desc even if buffer_addrs didn't change
 | |
| 		 * because each write-back erases this info.
 | |
| 		 */
 | |
| 		rx_desc->q.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
 | |
| 
 | |
| 		rx_desc++;
 | |
| 		bi++;
 | |
| 		i++;
 | |
| 		if (unlikely(!i)) {
 | |
| 			rx_desc = FM10K_RX_DESC(rx_ring, 0);
 | |
| 			bi = rx_ring->rx_buffer;
 | |
| 			i -= rx_ring->count;
 | |
| 		}
 | |
| 
 | |
| 		/* clear the hdr_addr for the next_to_use descriptor */
 | |
| 		rx_desc->q.hdr_addr = 0;
 | |
| 
 | |
| 		cleaned_count--;
 | |
| 	} while (cleaned_count);
 | |
| 
 | |
| 	i += rx_ring->count;
 | |
| 
 | |
| 	if (rx_ring->next_to_use != i) {
 | |
| 		/* record the next descriptor to use */
 | |
| 		rx_ring->next_to_use = i;
 | |
| 
 | |
| 		/* update next to alloc since we have filled the ring */
 | |
| 		rx_ring->next_to_alloc = i;
 | |
| 
 | |
| 		/* Force memory writes to complete before letting h/w
 | |
| 		 * know there are new descriptors to fetch.  (Only
 | |
| 		 * applicable for weak-ordered memory model archs,
 | |
| 		 * such as IA-64).
 | |
| 		 */
 | |
| 		wmb();
 | |
| 
 | |
| 		/* notify hardware of new descriptors */
 | |
| 		writel(i, rx_ring->tail);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * fm10k_reuse_rx_page - page flip buffer and store it back on the ring
 | |
|  * @rx_ring: rx descriptor ring to store buffers on
 | |
|  * @old_buff: donor buffer to have page reused
 | |
|  *
 | |
|  * Synchronizes page for reuse by the interface
 | |
|  **/
 | |
| static void fm10k_reuse_rx_page(struct fm10k_ring *rx_ring,
 | |
| 				struct fm10k_rx_buffer *old_buff)
 | |
| {
 | |
| 	struct fm10k_rx_buffer *new_buff;
 | |
| 	u16 nta = rx_ring->next_to_alloc;
 | |
| 
 | |
| 	new_buff = &rx_ring->rx_buffer[nta];
 | |
| 
 | |
| 	/* update, and store next to alloc */
 | |
| 	nta++;
 | |
| 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
 | |
| 
 | |
| 	/* transfer page from old buffer to new buffer */
 | |
| 	memcpy(new_buff, old_buff, sizeof(struct fm10k_rx_buffer));
 | |
| 
 | |
| 	/* sync the buffer for use by the device */
 | |
| 	dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
 | |
| 					 old_buff->page_offset,
 | |
| 					 FM10K_RX_BUFSZ,
 | |
| 					 DMA_FROM_DEVICE);
 | |
| }
 | |
| 
 | |
| static bool fm10k_can_reuse_rx_page(struct fm10k_rx_buffer *rx_buffer,
 | |
| 				    struct page *page,
 | |
| 				    unsigned int truesize)
 | |
| {
 | |
| 	/* avoid re-using remote pages */
 | |
| 	if (unlikely(page_to_nid(page) != numa_mem_id()))
 | |
| 		return false;
 | |
| 
 | |
| #if (PAGE_SIZE < 8192)
 | |
| 	/* if we are only owner of page we can reuse it */
 | |
| 	if (unlikely(page_count(page) != 1))
 | |
| 		return false;
 | |
| 
 | |
| 	/* flip page offset to other buffer */
 | |
| 	rx_buffer->page_offset ^= FM10K_RX_BUFSZ;
 | |
| 
 | |
| 	/* Even if we own the page, we are not allowed to use atomic_set()
 | |
| 	 * This would break get_page_unless_zero() users.
 | |
| 	 */
 | |
| 	atomic_inc(&page->_count);
 | |
| #else
 | |
| 	/* move offset up to the next cache line */
 | |
| 	rx_buffer->page_offset += truesize;
 | |
| 
 | |
| 	if (rx_buffer->page_offset > (PAGE_SIZE - FM10K_RX_BUFSZ))
 | |
| 		return false;
 | |
| 
 | |
| 	/* bump ref count on page before it is given to the stack */
 | |
| 	get_page(page);
 | |
| #endif
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * fm10k_add_rx_frag - Add contents of Rx buffer to sk_buff
 | |
|  * @rx_ring: rx descriptor ring to transact packets on
 | |
|  * @rx_buffer: buffer containing page to add
 | |
|  * @rx_desc: descriptor containing length of buffer written by hardware
 | |
|  * @skb: sk_buff to place the data into
 | |
|  *
 | |
|  * This function will add the data contained in rx_buffer->page to the skb.
 | |
|  * This is done either through a direct copy if the data in the buffer is
 | |
|  * less than the skb header size, otherwise it will just attach the page as
 | |
|  * a frag to the skb.
 | |
|  *
 | |
|  * The function will then update the page offset if necessary and return
 | |
|  * true if the buffer can be reused by the interface.
 | |
|  **/
 | |
| static bool fm10k_add_rx_frag(struct fm10k_ring *rx_ring,
 | |
| 			      struct fm10k_rx_buffer *rx_buffer,
 | |
| 			      union fm10k_rx_desc *rx_desc,
 | |
| 			      struct sk_buff *skb)
 | |
| {
 | |
| 	struct page *page = rx_buffer->page;
 | |
| 	unsigned int size = le16_to_cpu(rx_desc->w.length);
 | |
| #if (PAGE_SIZE < 8192)
 | |
| 	unsigned int truesize = FM10K_RX_BUFSZ;
 | |
| #else
 | |
| 	unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
 | |
| #endif
 | |
| 
 | |
| 	if ((size <= FM10K_RX_HDR_LEN) && !skb_is_nonlinear(skb)) {
 | |
| 		unsigned char *va = page_address(page) + rx_buffer->page_offset;
 | |
| 
 | |
| 		memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
 | |
| 
 | |
| 		/* we can reuse buffer as-is, just make sure it is local */
 | |
| 		if (likely(page_to_nid(page) == numa_mem_id()))
 | |
| 			return true;
 | |
| 
 | |
| 		/* this page cannot be reused so discard it */
 | |
| 		put_page(page);
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
 | |
| 			rx_buffer->page_offset, size, truesize);
 | |
| 
 | |
| 	return fm10k_can_reuse_rx_page(rx_buffer, page, truesize);
 | |
| }
 | |
| 
 | |
| static struct sk_buff *fm10k_fetch_rx_buffer(struct fm10k_ring *rx_ring,
 | |
| 					     union fm10k_rx_desc *rx_desc,
 | |
| 					     struct sk_buff *skb)
 | |
| {
 | |
| 	struct fm10k_rx_buffer *rx_buffer;
 | |
| 	struct page *page;
 | |
| 
 | |
| 	rx_buffer = &rx_ring->rx_buffer[rx_ring->next_to_clean];
 | |
| 
 | |
| 	page = rx_buffer->page;
 | |
| 	prefetchw(page);
 | |
| 
 | |
| 	if (likely(!skb)) {
 | |
| 		void *page_addr = page_address(page) +
 | |
| 				  rx_buffer->page_offset;
 | |
| 
 | |
| 		/* prefetch first cache line of first page */
 | |
| 		prefetch(page_addr);
 | |
| #if L1_CACHE_BYTES < 128
 | |
| 		prefetch(page_addr + L1_CACHE_BYTES);
 | |
| #endif
 | |
| 
 | |
| 		/* allocate a skb to store the frags */
 | |
| 		skb = napi_alloc_skb(&rx_ring->q_vector->napi,
 | |
| 				     FM10K_RX_HDR_LEN);
 | |
| 		if (unlikely(!skb)) {
 | |
| 			rx_ring->rx_stats.alloc_failed++;
 | |
| 			return NULL;
 | |
| 		}
 | |
| 
 | |
| 		/* we will be copying header into skb->data in
 | |
| 		 * pskb_may_pull so it is in our interest to prefetch
 | |
| 		 * it now to avoid a possible cache miss
 | |
| 		 */
 | |
| 		prefetchw(skb->data);
 | |
| 	}
 | |
| 
 | |
| 	/* we are reusing so sync this buffer for CPU use */
 | |
| 	dma_sync_single_range_for_cpu(rx_ring->dev,
 | |
| 				      rx_buffer->dma,
 | |
| 				      rx_buffer->page_offset,
 | |
| 				      FM10K_RX_BUFSZ,
 | |
| 				      DMA_FROM_DEVICE);
 | |
| 
 | |
| 	/* pull page into skb */
 | |
| 	if (fm10k_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
 | |
| 		/* hand second half of page back to the ring */
 | |
| 		fm10k_reuse_rx_page(rx_ring, rx_buffer);
 | |
| 	} else {
 | |
| 		/* we are not reusing the buffer so unmap it */
 | |
| 		dma_unmap_page(rx_ring->dev, rx_buffer->dma,
 | |
| 			       PAGE_SIZE, DMA_FROM_DEVICE);
 | |
| 	}
 | |
| 
 | |
| 	/* clear contents of rx_buffer */
 | |
| 	rx_buffer->page = NULL;
 | |
| 
 | |
| 	return skb;
 | |
| }
 | |
| 
 | |
| static inline void fm10k_rx_checksum(struct fm10k_ring *ring,
 | |
| 				     union fm10k_rx_desc *rx_desc,
 | |
| 				     struct sk_buff *skb)
 | |
| {
 | |
| 	skb_checksum_none_assert(skb);
 | |
| 
 | |
| 	/* Rx checksum disabled via ethtool */
 | |
| 	if (!(ring->netdev->features & NETIF_F_RXCSUM))
 | |
| 		return;
 | |
| 
 | |
| 	/* TCP/UDP checksum error bit is set */
 | |
| 	if (fm10k_test_staterr(rx_desc,
 | |
| 			       FM10K_RXD_STATUS_L4E |
 | |
| 			       FM10K_RXD_STATUS_L4E2 |
 | |
| 			       FM10K_RXD_STATUS_IPE |
 | |
| 			       FM10K_RXD_STATUS_IPE2)) {
 | |
| 		ring->rx_stats.csum_err++;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* It must be a TCP or UDP packet with a valid checksum */
 | |
| 	if (fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS2))
 | |
| 		skb->encapsulation = true;
 | |
| 	else if (!fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS))
 | |
| 		return;
 | |
| 
 | |
| 	skb->ip_summed = CHECKSUM_UNNECESSARY;
 | |
| }
 | |
| 
 | |
| #define FM10K_RSS_L4_TYPES_MASK \
 | |
| 	((1ul << FM10K_RSSTYPE_IPV4_TCP) | \
 | |
| 	 (1ul << FM10K_RSSTYPE_IPV4_UDP) | \
 | |
| 	 (1ul << FM10K_RSSTYPE_IPV6_TCP) | \
 | |
| 	 (1ul << FM10K_RSSTYPE_IPV6_UDP))
 | |
| 
 | |
| static inline void fm10k_rx_hash(struct fm10k_ring *ring,
 | |
| 				 union fm10k_rx_desc *rx_desc,
 | |
| 				 struct sk_buff *skb)
 | |
| {
 | |
| 	u16 rss_type;
 | |
| 
 | |
| 	if (!(ring->netdev->features & NETIF_F_RXHASH))
 | |
| 		return;
 | |
| 
 | |
| 	rss_type = le16_to_cpu(rx_desc->w.pkt_info) & FM10K_RXD_RSSTYPE_MASK;
 | |
| 	if (!rss_type)
 | |
| 		return;
 | |
| 
 | |
| 	skb_set_hash(skb, le32_to_cpu(rx_desc->d.rss),
 | |
| 		     (FM10K_RSS_L4_TYPES_MASK & (1ul << rss_type)) ?
 | |
| 		     PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3);
 | |
| }
 | |
| 
 | |
| static void fm10k_rx_hwtstamp(struct fm10k_ring *rx_ring,
 | |
| 			      union fm10k_rx_desc *rx_desc,
 | |
| 			      struct sk_buff *skb)
 | |
| {
 | |
| 	struct fm10k_intfc *interface = rx_ring->q_vector->interface;
 | |
| 
 | |
| 	FM10K_CB(skb)->tstamp = rx_desc->q.timestamp;
 | |
| 
 | |
| 	if (unlikely(interface->flags & FM10K_FLAG_RX_TS_ENABLED))
 | |
| 		fm10k_systime_to_hwtstamp(interface, skb_hwtstamps(skb),
 | |
| 					  le64_to_cpu(rx_desc->q.timestamp));
 | |
| }
 | |
| 
 | |
| static void fm10k_type_trans(struct fm10k_ring *rx_ring,
 | |
| 			     union fm10k_rx_desc *rx_desc,
 | |
| 			     struct sk_buff *skb)
 | |
| {
 | |
| 	struct net_device *dev = rx_ring->netdev;
 | |
| 	struct fm10k_l2_accel *l2_accel = rcu_dereference_bh(rx_ring->l2_accel);
 | |
| 
 | |
| 	/* check to see if DGLORT belongs to a MACVLAN */
 | |
| 	if (l2_accel) {
 | |
| 		u16 idx = le16_to_cpu(FM10K_CB(skb)->fi.w.dglort) - 1;
 | |
| 
 | |
| 		idx -= l2_accel->dglort;
 | |
| 		if (idx < l2_accel->size && l2_accel->macvlan[idx])
 | |
| 			dev = l2_accel->macvlan[idx];
 | |
| 		else
 | |
| 			l2_accel = NULL;
 | |
| 	}
 | |
| 
 | |
| 	skb->protocol = eth_type_trans(skb, dev);
 | |
| 
 | |
| 	if (!l2_accel)
 | |
| 		return;
 | |
| 
 | |
| 	/* update MACVLAN statistics */
 | |
| 	macvlan_count_rx(netdev_priv(dev), skb->len + ETH_HLEN, 1,
 | |
| 			 !!(rx_desc->w.hdr_info &
 | |
| 			    cpu_to_le16(FM10K_RXD_HDR_INFO_XC_MASK)));
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * fm10k_process_skb_fields - Populate skb header fields from Rx descriptor
 | |
|  * @rx_ring: rx descriptor ring packet is being transacted on
 | |
|  * @rx_desc: pointer to the EOP Rx descriptor
 | |
|  * @skb: pointer to current skb being populated
 | |
|  *
 | |
|  * This function checks the ring, descriptor, and packet information in
 | |
|  * order to populate the hash, checksum, VLAN, timestamp, protocol, and
 | |
|  * other fields within the skb.
 | |
|  **/
 | |
| static unsigned int fm10k_process_skb_fields(struct fm10k_ring *rx_ring,
 | |
| 					     union fm10k_rx_desc *rx_desc,
 | |
| 					     struct sk_buff *skb)
 | |
| {
 | |
| 	unsigned int len = skb->len;
 | |
| 
 | |
| 	fm10k_rx_hash(rx_ring, rx_desc, skb);
 | |
| 
 | |
| 	fm10k_rx_checksum(rx_ring, rx_desc, skb);
 | |
| 
 | |
| 	fm10k_rx_hwtstamp(rx_ring, rx_desc, skb);
 | |
| 
 | |
| 	FM10K_CB(skb)->fi.w.vlan = rx_desc->w.vlan;
 | |
| 
 | |
| 	skb_record_rx_queue(skb, rx_ring->queue_index);
 | |
| 
 | |
| 	FM10K_CB(skb)->fi.d.glort = rx_desc->d.glort;
 | |
| 
 | |
| 	if (rx_desc->w.vlan) {
 | |
| 		u16 vid = le16_to_cpu(rx_desc->w.vlan);
 | |
| 
 | |
| 		if (vid != rx_ring->vid)
 | |
| 			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
 | |
| 	}
 | |
| 
 | |
| 	fm10k_type_trans(rx_ring, rx_desc, skb);
 | |
| 
 | |
| 	return len;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * fm10k_is_non_eop - process handling of non-EOP buffers
 | |
|  * @rx_ring: Rx ring being processed
 | |
|  * @rx_desc: Rx descriptor for current buffer
 | |
|  *
 | |
|  * This function updates next to clean.  If the buffer is an EOP buffer
 | |
|  * this function exits returning false, otherwise it will place the
 | |
|  * sk_buff in the next buffer to be chained and return true indicating
 | |
|  * that this is in fact a non-EOP buffer.
 | |
|  **/
 | |
| static bool fm10k_is_non_eop(struct fm10k_ring *rx_ring,
 | |
| 			     union fm10k_rx_desc *rx_desc)
 | |
| {
 | |
| 	u32 ntc = rx_ring->next_to_clean + 1;
 | |
| 
 | |
| 	/* fetch, update, and store next to clean */
 | |
| 	ntc = (ntc < rx_ring->count) ? ntc : 0;
 | |
| 	rx_ring->next_to_clean = ntc;
 | |
| 
 | |
| 	prefetch(FM10K_RX_DESC(rx_ring, ntc));
 | |
| 
 | |
| 	if (likely(fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_EOP)))
 | |
| 		return false;
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * fm10k_pull_tail - fm10k specific version of skb_pull_tail
 | |
|  * @rx_ring: rx descriptor ring packet is being transacted on
 | |
|  * @rx_desc: pointer to the EOP Rx descriptor
 | |
|  * @skb: pointer to current skb being adjusted
 | |
|  *
 | |
|  * This function is an fm10k specific version of __pskb_pull_tail.  The
 | |
|  * main difference between this version and the original function is that
 | |
|  * this function can make several assumptions about the state of things
 | |
|  * that allow for significant optimizations versus the standard function.
 | |
|  * As a result we can do things like drop a frag and maintain an accurate
 | |
|  * truesize for the skb.
 | |
|  */
 | |
| static void fm10k_pull_tail(struct fm10k_ring *rx_ring,
 | |
| 			    union fm10k_rx_desc *rx_desc,
 | |
| 			    struct sk_buff *skb)
 | |
| {
 | |
| 	struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
 | |
| 	unsigned char *va;
 | |
| 	unsigned int pull_len;
 | |
| 
 | |
| 	/* it is valid to use page_address instead of kmap since we are
 | |
| 	 * working with pages allocated out of the lomem pool per
 | |
| 	 * alloc_page(GFP_ATOMIC)
 | |
| 	 */
 | |
| 	va = skb_frag_address(frag);
 | |
| 
 | |
| 	/* we need the header to contain the greater of either ETH_HLEN or
 | |
| 	 * 60 bytes if the skb->len is less than 60 for skb_pad.
 | |
| 	 */
 | |
| 	pull_len = eth_get_headlen(va, FM10K_RX_HDR_LEN);
 | |
| 
 | |
| 	/* align pull length to size of long to optimize memcpy performance */
 | |
| 	skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));
 | |
| 
 | |
| 	/* update all of the pointers */
 | |
| 	skb_frag_size_sub(frag, pull_len);
 | |
| 	frag->page_offset += pull_len;
 | |
| 	skb->data_len -= pull_len;
 | |
| 	skb->tail += pull_len;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * fm10k_cleanup_headers - Correct corrupted or empty headers
 | |
|  * @rx_ring: rx descriptor ring packet is being transacted on
 | |
|  * @rx_desc: pointer to the EOP Rx descriptor
 | |
|  * @skb: pointer to current skb being fixed
 | |
|  *
 | |
|  * Address the case where we are pulling data in on pages only
 | |
|  * and as such no data is present in the skb header.
 | |
|  *
 | |
|  * In addition if skb is not at least 60 bytes we need to pad it so that
 | |
|  * it is large enough to qualify as a valid Ethernet frame.
 | |
|  *
 | |
|  * Returns true if an error was encountered and skb was freed.
 | |
|  **/
 | |
| static bool fm10k_cleanup_headers(struct fm10k_ring *rx_ring,
 | |
| 				  union fm10k_rx_desc *rx_desc,
 | |
| 				  struct sk_buff *skb)
 | |
| {
 | |
| 	if (unlikely((fm10k_test_staterr(rx_desc,
 | |
| 					 FM10K_RXD_STATUS_RXE)))) {
 | |
| 		dev_kfree_skb_any(skb);
 | |
| 		rx_ring->rx_stats.errors++;
 | |
| 		return true;
 | |
| 	}
 | |
| 
 | |
| 	/* place header in linear portion of buffer */
 | |
| 	if (skb_is_nonlinear(skb))
 | |
| 		fm10k_pull_tail(rx_ring, rx_desc, skb);
 | |
| 
 | |
| 	/* if eth_skb_pad returns an error the skb was freed */
 | |
| 	if (eth_skb_pad(skb))
 | |
| 		return true;
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * fm10k_receive_skb - helper function to handle rx indications
 | |
|  * @q_vector: structure containing interrupt and ring information
 | |
|  * @skb: packet to send up
 | |
|  **/
 | |
| static void fm10k_receive_skb(struct fm10k_q_vector *q_vector,
 | |
| 			      struct sk_buff *skb)
 | |
| {
 | |
| 	napi_gro_receive(&q_vector->napi, skb);
 | |
| }
 | |
| 
 | |
| static bool fm10k_clean_rx_irq(struct fm10k_q_vector *q_vector,
 | |
| 			       struct fm10k_ring *rx_ring,
 | |
| 			       int budget)
 | |
| {
 | |
| 	struct sk_buff *skb = rx_ring->skb;
 | |
| 	unsigned int total_bytes = 0, total_packets = 0;
 | |
| 	u16 cleaned_count = fm10k_desc_unused(rx_ring);
 | |
| 
 | |
| 	do {
 | |
| 		union fm10k_rx_desc *rx_desc;
 | |
| 
 | |
| 		/* return some buffers to hardware, one at a time is too slow */
 | |
| 		if (cleaned_count >= FM10K_RX_BUFFER_WRITE) {
 | |
| 			fm10k_alloc_rx_buffers(rx_ring, cleaned_count);
 | |
| 			cleaned_count = 0;
 | |
| 		}
 | |
| 
 | |
| 		rx_desc = FM10K_RX_DESC(rx_ring, rx_ring->next_to_clean);
 | |
| 
 | |
| 		if (!rx_desc->d.staterr)
 | |
| 			break;
 | |
| 
 | |
| 		/* This memory barrier is needed to keep us from reading
 | |
| 		 * any other fields out of the rx_desc until we know the
 | |
| 		 * descriptor has been written back
 | |
| 		 */
 | |
| 		dma_rmb();
 | |
| 
 | |
| 		/* retrieve a buffer from the ring */
 | |
| 		skb = fm10k_fetch_rx_buffer(rx_ring, rx_desc, skb);
 | |
| 
 | |
| 		/* exit if we failed to retrieve a buffer */
 | |
| 		if (!skb)
 | |
| 			break;
 | |
| 
 | |
| 		cleaned_count++;
 | |
| 
 | |
| 		/* fetch next buffer in frame if non-eop */
 | |
| 		if (fm10k_is_non_eop(rx_ring, rx_desc))
 | |
| 			continue;
 | |
| 
 | |
| 		/* verify the packet layout is correct */
 | |
| 		if (fm10k_cleanup_headers(rx_ring, rx_desc, skb)) {
 | |
| 			skb = NULL;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/* populate checksum, timestamp, VLAN, and protocol */
 | |
| 		total_bytes += fm10k_process_skb_fields(rx_ring, rx_desc, skb);
 | |
| 
 | |
| 		fm10k_receive_skb(q_vector, skb);
 | |
| 
 | |
| 		/* reset skb pointer */
 | |
| 		skb = NULL;
 | |
| 
 | |
| 		/* update budget accounting */
 | |
| 		total_packets++;
 | |
| 	} while (likely(total_packets < budget));
 | |
| 
 | |
| 	/* place incomplete frames back on ring for completion */
 | |
| 	rx_ring->skb = skb;
 | |
| 
 | |
| 	u64_stats_update_begin(&rx_ring->syncp);
 | |
| 	rx_ring->stats.packets += total_packets;
 | |
| 	rx_ring->stats.bytes += total_bytes;
 | |
| 	u64_stats_update_end(&rx_ring->syncp);
 | |
| 	q_vector->rx.total_packets += total_packets;
 | |
| 	q_vector->rx.total_bytes += total_bytes;
 | |
| 
 | |
| 	return total_packets < budget;
 | |
| }
 | |
| 
 | |
| #define VXLAN_HLEN (sizeof(struct udphdr) + 8)
 | |
| static struct ethhdr *fm10k_port_is_vxlan(struct sk_buff *skb)
 | |
| {
 | |
| 	struct fm10k_intfc *interface = netdev_priv(skb->dev);
 | |
| 	struct fm10k_vxlan_port *vxlan_port;
 | |
| 
 | |
| 	/* we can only offload a vxlan if we recognize it as such */
 | |
| 	vxlan_port = list_first_entry_or_null(&interface->vxlan_port,
 | |
| 					      struct fm10k_vxlan_port, list);
 | |
| 
 | |
| 	if (!vxlan_port)
 | |
| 		return NULL;
 | |
| 	if (vxlan_port->port != udp_hdr(skb)->dest)
 | |
| 		return NULL;
 | |
| 
 | |
| 	/* return offset of udp_hdr plus 8 bytes for VXLAN header */
 | |
| 	return (struct ethhdr *)(skb_transport_header(skb) + VXLAN_HLEN);
 | |
| }
 | |
| 
 | |
| #define FM10K_NVGRE_RESERVED0_FLAGS htons(0x9FFF)
 | |
| #define NVGRE_TNI htons(0x2000)
 | |
| struct fm10k_nvgre_hdr {
 | |
| 	__be16 flags;
 | |
| 	__be16 proto;
 | |
| 	__be32 tni;
 | |
| };
 | |
| 
 | |
| static struct ethhdr *fm10k_gre_is_nvgre(struct sk_buff *skb)
 | |
| {
 | |
| 	struct fm10k_nvgre_hdr *nvgre_hdr;
 | |
| 	int hlen = ip_hdrlen(skb);
 | |
| 
 | |
| 	/* currently only IPv4 is supported due to hlen above */
 | |
| 	if (vlan_get_protocol(skb) != htons(ETH_P_IP))
 | |
| 		return NULL;
 | |
| 
 | |
| 	/* our transport header should be NVGRE */
 | |
| 	nvgre_hdr = (struct fm10k_nvgre_hdr *)(skb_network_header(skb) + hlen);
 | |
| 
 | |
| 	/* verify all reserved flags are 0 */
 | |
| 	if (nvgre_hdr->flags & FM10K_NVGRE_RESERVED0_FLAGS)
 | |
| 		return NULL;
 | |
| 
 | |
| 	/* verify protocol is transparent Ethernet bridging */
 | |
| 	if (nvgre_hdr->proto != htons(ETH_P_TEB))
 | |
| 		return NULL;
 | |
| 
 | |
| 	/* report start of ethernet header */
 | |
| 	if (nvgre_hdr->flags & NVGRE_TNI)
 | |
| 		return (struct ethhdr *)(nvgre_hdr + 1);
 | |
| 
 | |
| 	return (struct ethhdr *)(&nvgre_hdr->tni);
 | |
| }
 | |
| 
 | |
| static __be16 fm10k_tx_encap_offload(struct sk_buff *skb)
 | |
| {
 | |
| 	struct ethhdr *eth_hdr;
 | |
| 	u8 l4_hdr = 0;
 | |
| 
 | |
| 	switch (vlan_get_protocol(skb)) {
 | |
| 	case htons(ETH_P_IP):
 | |
| 		l4_hdr = ip_hdr(skb)->protocol;
 | |
| 		break;
 | |
| 	case htons(ETH_P_IPV6):
 | |
| 		l4_hdr = ipv6_hdr(skb)->nexthdr;
 | |
| 		break;
 | |
| 	default:
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	switch (l4_hdr) {
 | |
| 	case IPPROTO_UDP:
 | |
| 		eth_hdr = fm10k_port_is_vxlan(skb);
 | |
| 		break;
 | |
| 	case IPPROTO_GRE:
 | |
| 		eth_hdr = fm10k_gre_is_nvgre(skb);
 | |
| 		break;
 | |
| 	default:
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (!eth_hdr)
 | |
| 		return 0;
 | |
| 
 | |
| 	switch (eth_hdr->h_proto) {
 | |
| 	case htons(ETH_P_IP):
 | |
| 	case htons(ETH_P_IPV6):
 | |
| 		break;
 | |
| 	default:
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	return eth_hdr->h_proto;
 | |
| }
 | |
| 
 | |
| static int fm10k_tso(struct fm10k_ring *tx_ring,
 | |
| 		     struct fm10k_tx_buffer *first)
 | |
| {
 | |
| 	struct sk_buff *skb = first->skb;
 | |
| 	struct fm10k_tx_desc *tx_desc;
 | |
| 	unsigned char *th;
 | |
| 	u8 hdrlen;
 | |
| 
 | |
| 	if (skb->ip_summed != CHECKSUM_PARTIAL)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (!skb_is_gso(skb))
 | |
| 		return 0;
 | |
| 
 | |
| 	/* compute header lengths */
 | |
| 	if (skb->encapsulation) {
 | |
| 		if (!fm10k_tx_encap_offload(skb))
 | |
| 			goto err_vxlan;
 | |
| 		th = skb_inner_transport_header(skb);
 | |
| 	} else {
 | |
| 		th = skb_transport_header(skb);
 | |
| 	}
 | |
| 
 | |
| 	/* compute offset from SOF to transport header and add header len */
 | |
| 	hdrlen = (th - skb->data) + (((struct tcphdr *)th)->doff << 2);
 | |
| 
 | |
| 	first->tx_flags |= FM10K_TX_FLAGS_CSUM;
 | |
| 
 | |
| 	/* update gso size and bytecount with header size */
 | |
| 	first->gso_segs = skb_shinfo(skb)->gso_segs;
 | |
| 	first->bytecount += (first->gso_segs - 1) * hdrlen;
 | |
| 
 | |
| 	/* populate Tx descriptor header size and mss */
 | |
| 	tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use);
 | |
| 	tx_desc->hdrlen = hdrlen;
 | |
| 	tx_desc->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
 | |
| 
 | |
| 	return 1;
 | |
| err_vxlan:
 | |
| 	tx_ring->netdev->features &= ~NETIF_F_GSO_UDP_TUNNEL;
 | |
| 	if (!net_ratelimit())
 | |
| 		netdev_err(tx_ring->netdev,
 | |
| 			   "TSO requested for unsupported tunnel, disabling offload\n");
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| static void fm10k_tx_csum(struct fm10k_ring *tx_ring,
 | |
| 			  struct fm10k_tx_buffer *first)
 | |
| {
 | |
| 	struct sk_buff *skb = first->skb;
 | |
| 	struct fm10k_tx_desc *tx_desc;
 | |
| 	union {
 | |
| 		struct iphdr *ipv4;
 | |
| 		struct ipv6hdr *ipv6;
 | |
| 		u8 *raw;
 | |
| 	} network_hdr;
 | |
| 	__be16 protocol;
 | |
| 	u8 l4_hdr = 0;
 | |
| 
 | |
| 	if (skb->ip_summed != CHECKSUM_PARTIAL)
 | |
| 		goto no_csum;
 | |
| 
 | |
| 	if (skb->encapsulation) {
 | |
| 		protocol = fm10k_tx_encap_offload(skb);
 | |
| 		if (!protocol) {
 | |
| 			if (skb_checksum_help(skb)) {
 | |
| 				dev_warn(tx_ring->dev,
 | |
| 					 "failed to offload encap csum!\n");
 | |
| 				tx_ring->tx_stats.csum_err++;
 | |
| 			}
 | |
| 			goto no_csum;
 | |
| 		}
 | |
| 		network_hdr.raw = skb_inner_network_header(skb);
 | |
| 	} else {
 | |
| 		protocol = vlan_get_protocol(skb);
 | |
| 		network_hdr.raw = skb_network_header(skb);
 | |
| 	}
 | |
| 
 | |
| 	switch (protocol) {
 | |
| 	case htons(ETH_P_IP):
 | |
| 		l4_hdr = network_hdr.ipv4->protocol;
 | |
| 		break;
 | |
| 	case htons(ETH_P_IPV6):
 | |
| 		l4_hdr = network_hdr.ipv6->nexthdr;
 | |
| 		break;
 | |
| 	default:
 | |
| 		if (unlikely(net_ratelimit())) {
 | |
| 			dev_warn(tx_ring->dev,
 | |
| 				 "partial checksum but ip version=%x!\n",
 | |
| 				 protocol);
 | |
| 		}
 | |
| 		tx_ring->tx_stats.csum_err++;
 | |
| 		goto no_csum;
 | |
| 	}
 | |
| 
 | |
| 	switch (l4_hdr) {
 | |
| 	case IPPROTO_TCP:
 | |
| 	case IPPROTO_UDP:
 | |
| 		break;
 | |
| 	case IPPROTO_GRE:
 | |
| 		if (skb->encapsulation)
 | |
| 			break;
 | |
| 	default:
 | |
| 		if (unlikely(net_ratelimit())) {
 | |
| 			dev_warn(tx_ring->dev,
 | |
| 				 "partial checksum but l4 proto=%x!\n",
 | |
| 				 l4_hdr);
 | |
| 		}
 | |
| 		tx_ring->tx_stats.csum_err++;
 | |
| 		goto no_csum;
 | |
| 	}
 | |
| 
 | |
| 	/* update TX checksum flag */
 | |
| 	first->tx_flags |= FM10K_TX_FLAGS_CSUM;
 | |
| 
 | |
| no_csum:
 | |
| 	/* populate Tx descriptor header size and mss */
 | |
| 	tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use);
 | |
| 	tx_desc->hdrlen = 0;
 | |
| 	tx_desc->mss = 0;
 | |
| }
 | |
| 
 | |
| #define FM10K_SET_FLAG(_input, _flag, _result) \
 | |
| 	((_flag <= _result) ? \
 | |
| 	 ((u32)(_input & _flag) * (_result / _flag)) : \
 | |
| 	 ((u32)(_input & _flag) / (_flag / _result)))
 | |
| 
 | |
| static u8 fm10k_tx_desc_flags(struct sk_buff *skb, u32 tx_flags)
 | |
| {
 | |
| 	/* set type for advanced descriptor with frame checksum insertion */
 | |
| 	u32 desc_flags = 0;
 | |
| 
 | |
| 	/* set timestamping bits */
 | |
| 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
 | |
| 	    likely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
 | |
| 			desc_flags |= FM10K_TXD_FLAG_TIME;
 | |
| 
 | |
| 	/* set checksum offload bits */
 | |
| 	desc_flags |= FM10K_SET_FLAG(tx_flags, FM10K_TX_FLAGS_CSUM,
 | |
| 				     FM10K_TXD_FLAG_CSUM);
 | |
| 
 | |
| 	return desc_flags;
 | |
| }
 | |
| 
 | |
| static bool fm10k_tx_desc_push(struct fm10k_ring *tx_ring,
 | |
| 			       struct fm10k_tx_desc *tx_desc, u16 i,
 | |
| 			       dma_addr_t dma, unsigned int size, u8 desc_flags)
 | |
| {
 | |
| 	/* set RS and INT for last frame in a cache line */
 | |
| 	if ((++i & (FM10K_TXD_WB_FIFO_SIZE - 1)) == 0)
 | |
| 		desc_flags |= FM10K_TXD_FLAG_RS | FM10K_TXD_FLAG_INT;
 | |
| 
 | |
| 	/* record values to descriptor */
 | |
| 	tx_desc->buffer_addr = cpu_to_le64(dma);
 | |
| 	tx_desc->flags = desc_flags;
 | |
| 	tx_desc->buflen = cpu_to_le16(size);
 | |
| 
 | |
| 	/* return true if we just wrapped the ring */
 | |
| 	return i == tx_ring->count;
 | |
| }
 | |
| 
 | |
| static int __fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size)
 | |
| {
 | |
| 	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
 | |
| 
 | |
| 	smp_mb();
 | |
| 
 | |
| 	/* We need to check again in a case another CPU has just
 | |
| 	 * made room available. */
 | |
| 	if (likely(fm10k_desc_unused(tx_ring) < size))
 | |
| 		return -EBUSY;
 | |
| 
 | |
| 	/* A reprieve! - use start_queue because it doesn't call schedule */
 | |
| 	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
 | |
| 	++tx_ring->tx_stats.restart_queue;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline int fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size)
 | |
| {
 | |
| 	if (likely(fm10k_desc_unused(tx_ring) >= size))
 | |
| 		return 0;
 | |
| 	return __fm10k_maybe_stop_tx(tx_ring, size);
 | |
| }
 | |
| 
 | |
| static void fm10k_tx_map(struct fm10k_ring *tx_ring,
 | |
| 			 struct fm10k_tx_buffer *first)
 | |
| {
 | |
| 	struct sk_buff *skb = first->skb;
 | |
| 	struct fm10k_tx_buffer *tx_buffer;
 | |
| 	struct fm10k_tx_desc *tx_desc;
 | |
| 	struct skb_frag_struct *frag;
 | |
| 	unsigned char *data;
 | |
| 	dma_addr_t dma;
 | |
| 	unsigned int data_len, size;
 | |
| 	u32 tx_flags = first->tx_flags;
 | |
| 	u16 i = tx_ring->next_to_use;
 | |
| 	u8 flags = fm10k_tx_desc_flags(skb, tx_flags);
 | |
| 
 | |
| 	tx_desc = FM10K_TX_DESC(tx_ring, i);
 | |
| 
 | |
| 	/* add HW VLAN tag */
 | |
| 	if (skb_vlan_tag_present(skb))
 | |
| 		tx_desc->vlan = cpu_to_le16(skb_vlan_tag_get(skb));
 | |
| 	else
 | |
| 		tx_desc->vlan = 0;
 | |
| 
 | |
| 	size = skb_headlen(skb);
 | |
| 	data = skb->data;
 | |
| 
 | |
| 	dma = dma_map_single(tx_ring->dev, data, size, DMA_TO_DEVICE);
 | |
| 
 | |
| 	data_len = skb->data_len;
 | |
| 	tx_buffer = first;
 | |
| 
 | |
| 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
 | |
| 		if (dma_mapping_error(tx_ring->dev, dma))
 | |
| 			goto dma_error;
 | |
| 
 | |
| 		/* record length, and DMA address */
 | |
| 		dma_unmap_len_set(tx_buffer, len, size);
 | |
| 		dma_unmap_addr_set(tx_buffer, dma, dma);
 | |
| 
 | |
| 		while (unlikely(size > FM10K_MAX_DATA_PER_TXD)) {
 | |
| 			if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++, dma,
 | |
| 					       FM10K_MAX_DATA_PER_TXD, flags)) {
 | |
| 				tx_desc = FM10K_TX_DESC(tx_ring, 0);
 | |
| 				i = 0;
 | |
| 			}
 | |
| 
 | |
| 			dma += FM10K_MAX_DATA_PER_TXD;
 | |
| 			size -= FM10K_MAX_DATA_PER_TXD;
 | |
| 		}
 | |
| 
 | |
| 		if (likely(!data_len))
 | |
| 			break;
 | |
| 
 | |
| 		if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++,
 | |
| 				       dma, size, flags)) {
 | |
| 			tx_desc = FM10K_TX_DESC(tx_ring, 0);
 | |
| 			i = 0;
 | |
| 		}
 | |
| 
 | |
| 		size = skb_frag_size(frag);
 | |
| 		data_len -= size;
 | |
| 
 | |
| 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
 | |
| 				       DMA_TO_DEVICE);
 | |
| 
 | |
| 		tx_buffer = &tx_ring->tx_buffer[i];
 | |
| 	}
 | |
| 
 | |
| 	/* write last descriptor with LAST bit set */
 | |
| 	flags |= FM10K_TXD_FLAG_LAST;
 | |
| 
 | |
| 	if (fm10k_tx_desc_push(tx_ring, tx_desc, i++, dma, size, flags))
 | |
| 		i = 0;
 | |
| 
 | |
| 	/* record bytecount for BQL */
 | |
| 	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
 | |
| 
 | |
| 	/* record SW timestamp if HW timestamp is not available */
 | |
| 	skb_tx_timestamp(first->skb);
 | |
| 
 | |
| 	/* Force memory writes to complete before letting h/w know there
 | |
| 	 * are new descriptors to fetch.  (Only applicable for weak-ordered
 | |
| 	 * memory model archs, such as IA-64).
 | |
| 	 *
 | |
| 	 * We also need this memory barrier to make certain all of the
 | |
| 	 * status bits have been updated before next_to_watch is written.
 | |
| 	 */
 | |
| 	wmb();
 | |
| 
 | |
| 	/* set next_to_watch value indicating a packet is present */
 | |
| 	first->next_to_watch = tx_desc;
 | |
| 
 | |
| 	tx_ring->next_to_use = i;
 | |
| 
 | |
| 	/* Make sure there is space in the ring for the next send. */
 | |
| 	fm10k_maybe_stop_tx(tx_ring, DESC_NEEDED);
 | |
| 
 | |
| 	/* notify HW of packet */
 | |
| 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
 | |
| 		writel(i, tx_ring->tail);
 | |
| 
 | |
| 		/* we need this if more than one processor can write to our tail
 | |
| 		 * at a time, it synchronizes IO on IA64/Altix systems
 | |
| 		 */
 | |
| 		mmiowb();
 | |
| 	}
 | |
| 
 | |
| 	return;
 | |
| dma_error:
 | |
| 	dev_err(tx_ring->dev, "TX DMA map failed\n");
 | |
| 
 | |
| 	/* clear dma mappings for failed tx_buffer map */
 | |
| 	for (;;) {
 | |
| 		tx_buffer = &tx_ring->tx_buffer[i];
 | |
| 		fm10k_unmap_and_free_tx_resource(tx_ring, tx_buffer);
 | |
| 		if (tx_buffer == first)
 | |
| 			break;
 | |
| 		if (i == 0)
 | |
| 			i = tx_ring->count;
 | |
| 		i--;
 | |
| 	}
 | |
| 
 | |
| 	tx_ring->next_to_use = i;
 | |
| }
 | |
| 
 | |
| netdev_tx_t fm10k_xmit_frame_ring(struct sk_buff *skb,
 | |
| 				  struct fm10k_ring *tx_ring)
 | |
| {
 | |
| 	struct fm10k_tx_buffer *first;
 | |
| 	int tso;
 | |
| 	u32 tx_flags = 0;
 | |
| #if PAGE_SIZE > FM10K_MAX_DATA_PER_TXD
 | |
| 	unsigned short f;
 | |
| #endif
 | |
| 	u16 count = TXD_USE_COUNT(skb_headlen(skb));
 | |
| 
 | |
| 	/* need: 1 descriptor per page * PAGE_SIZE/FM10K_MAX_DATA_PER_TXD,
 | |
| 	 *       + 1 desc for skb_headlen/FM10K_MAX_DATA_PER_TXD,
 | |
| 	 *       + 2 desc gap to keep tail from touching head
 | |
| 	 * otherwise try next time
 | |
| 	 */
 | |
| #if PAGE_SIZE > FM10K_MAX_DATA_PER_TXD
 | |
| 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
 | |
| 		count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
 | |
| #else
 | |
| 	count += skb_shinfo(skb)->nr_frags;
 | |
| #endif
 | |
| 	if (fm10k_maybe_stop_tx(tx_ring, count + 3)) {
 | |
| 		tx_ring->tx_stats.tx_busy++;
 | |
| 		return NETDEV_TX_BUSY;
 | |
| 	}
 | |
| 
 | |
| 	/* record the location of the first descriptor for this packet */
 | |
| 	first = &tx_ring->tx_buffer[tx_ring->next_to_use];
 | |
| 	first->skb = skb;
 | |
| 	first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN);
 | |
| 	first->gso_segs = 1;
 | |
| 
 | |
| 	/* record initial flags and protocol */
 | |
| 	first->tx_flags = tx_flags;
 | |
| 
 | |
| 	tso = fm10k_tso(tx_ring, first);
 | |
| 	if (tso < 0)
 | |
| 		goto out_drop;
 | |
| 	else if (!tso)
 | |
| 		fm10k_tx_csum(tx_ring, first);
 | |
| 
 | |
| 	fm10k_tx_map(tx_ring, first);
 | |
| 
 | |
| 	return NETDEV_TX_OK;
 | |
| 
 | |
| out_drop:
 | |
| 	dev_kfree_skb_any(first->skb);
 | |
| 	first->skb = NULL;
 | |
| 
 | |
| 	return NETDEV_TX_OK;
 | |
| }
 | |
| 
 | |
| static u64 fm10k_get_tx_completed(struct fm10k_ring *ring)
 | |
| {
 | |
| 	return ring->stats.packets;
 | |
| }
 | |
| 
 | |
| static u64 fm10k_get_tx_pending(struct fm10k_ring *ring)
 | |
| {
 | |
| 	/* use SW head and tail until we have real hardware */
 | |
| 	u32 head = ring->next_to_clean;
 | |
| 	u32 tail = ring->next_to_use;
 | |
| 
 | |
| 	return ((head <= tail) ? tail : tail + ring->count) - head;
 | |
| }
 | |
| 
 | |
| bool fm10k_check_tx_hang(struct fm10k_ring *tx_ring)
 | |
| {
 | |
| 	u32 tx_done = fm10k_get_tx_completed(tx_ring);
 | |
| 	u32 tx_done_old = tx_ring->tx_stats.tx_done_old;
 | |
| 	u32 tx_pending = fm10k_get_tx_pending(tx_ring);
 | |
| 
 | |
| 	clear_check_for_tx_hang(tx_ring);
 | |
| 
 | |
| 	/* Check for a hung queue, but be thorough. This verifies
 | |
| 	 * that a transmit has been completed since the previous
 | |
| 	 * check AND there is at least one packet pending. By
 | |
| 	 * requiring this to fail twice we avoid races with
 | |
| 	 * clearing the ARMED bit and conditions where we
 | |
| 	 * run the check_tx_hang logic with a transmit completion
 | |
| 	 * pending but without time to complete it yet.
 | |
| 	 */
 | |
| 	if (!tx_pending || (tx_done_old != tx_done)) {
 | |
| 		/* update completed stats and continue */
 | |
| 		tx_ring->tx_stats.tx_done_old = tx_done;
 | |
| 		/* reset the countdown */
 | |
| 		clear_bit(__FM10K_HANG_CHECK_ARMED, &tx_ring->state);
 | |
| 
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	/* make sure it is true for two checks in a row */
 | |
| 	return test_and_set_bit(__FM10K_HANG_CHECK_ARMED, &tx_ring->state);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * fm10k_tx_timeout_reset - initiate reset due to Tx timeout
 | |
|  * @interface: driver private struct
 | |
|  **/
 | |
| void fm10k_tx_timeout_reset(struct fm10k_intfc *interface)
 | |
| {
 | |
| 	/* Do the reset outside of interrupt context */
 | |
| 	if (!test_bit(__FM10K_DOWN, &interface->state)) {
 | |
| 		netdev_err(interface->netdev, "Reset interface\n");
 | |
| 		interface->tx_timeout_count++;
 | |
| 		interface->flags |= FM10K_FLAG_RESET_REQUESTED;
 | |
| 		fm10k_service_event_schedule(interface);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * fm10k_clean_tx_irq - Reclaim resources after transmit completes
 | |
|  * @q_vector: structure containing interrupt and ring information
 | |
|  * @tx_ring: tx ring to clean
 | |
|  **/
 | |
| static bool fm10k_clean_tx_irq(struct fm10k_q_vector *q_vector,
 | |
| 			       struct fm10k_ring *tx_ring)
 | |
| {
 | |
| 	struct fm10k_intfc *interface = q_vector->interface;
 | |
| 	struct fm10k_tx_buffer *tx_buffer;
 | |
| 	struct fm10k_tx_desc *tx_desc;
 | |
| 	unsigned int total_bytes = 0, total_packets = 0;
 | |
| 	unsigned int budget = q_vector->tx.work_limit;
 | |
| 	unsigned int i = tx_ring->next_to_clean;
 | |
| 
 | |
| 	if (test_bit(__FM10K_DOWN, &interface->state))
 | |
| 		return true;
 | |
| 
 | |
| 	tx_buffer = &tx_ring->tx_buffer[i];
 | |
| 	tx_desc = FM10K_TX_DESC(tx_ring, i);
 | |
| 	i -= tx_ring->count;
 | |
| 
 | |
| 	do {
 | |
| 		struct fm10k_tx_desc *eop_desc = tx_buffer->next_to_watch;
 | |
| 
 | |
| 		/* if next_to_watch is not set then there is no work pending */
 | |
| 		if (!eop_desc)
 | |
| 			break;
 | |
| 
 | |
| 		/* prevent any other reads prior to eop_desc */
 | |
| 		read_barrier_depends();
 | |
| 
 | |
| 		/* if DD is not set pending work has not been completed */
 | |
| 		if (!(eop_desc->flags & FM10K_TXD_FLAG_DONE))
 | |
| 			break;
 | |
| 
 | |
| 		/* clear next_to_watch to prevent false hangs */
 | |
| 		tx_buffer->next_to_watch = NULL;
 | |
| 
 | |
| 		/* update the statistics for this packet */
 | |
| 		total_bytes += tx_buffer->bytecount;
 | |
| 		total_packets += tx_buffer->gso_segs;
 | |
| 
 | |
| 		/* free the skb */
 | |
| 		dev_consume_skb_any(tx_buffer->skb);
 | |
| 
 | |
| 		/* unmap skb header data */
 | |
| 		dma_unmap_single(tx_ring->dev,
 | |
| 				 dma_unmap_addr(tx_buffer, dma),
 | |
| 				 dma_unmap_len(tx_buffer, len),
 | |
| 				 DMA_TO_DEVICE);
 | |
| 
 | |
| 		/* clear tx_buffer data */
 | |
| 		tx_buffer->skb = NULL;
 | |
| 		dma_unmap_len_set(tx_buffer, len, 0);
 | |
| 
 | |
| 		/* unmap remaining buffers */
 | |
| 		while (tx_desc != eop_desc) {
 | |
| 			tx_buffer++;
 | |
| 			tx_desc++;
 | |
| 			i++;
 | |
| 			if (unlikely(!i)) {
 | |
| 				i -= tx_ring->count;
 | |
| 				tx_buffer = tx_ring->tx_buffer;
 | |
| 				tx_desc = FM10K_TX_DESC(tx_ring, 0);
 | |
| 			}
 | |
| 
 | |
| 			/* unmap any remaining paged data */
 | |
| 			if (dma_unmap_len(tx_buffer, len)) {
 | |
| 				dma_unmap_page(tx_ring->dev,
 | |
| 					       dma_unmap_addr(tx_buffer, dma),
 | |
| 					       dma_unmap_len(tx_buffer, len),
 | |
| 					       DMA_TO_DEVICE);
 | |
| 				dma_unmap_len_set(tx_buffer, len, 0);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/* move us one more past the eop_desc for start of next pkt */
 | |
| 		tx_buffer++;
 | |
| 		tx_desc++;
 | |
| 		i++;
 | |
| 		if (unlikely(!i)) {
 | |
| 			i -= tx_ring->count;
 | |
| 			tx_buffer = tx_ring->tx_buffer;
 | |
| 			tx_desc = FM10K_TX_DESC(tx_ring, 0);
 | |
| 		}
 | |
| 
 | |
| 		/* issue prefetch for next Tx descriptor */
 | |
| 		prefetch(tx_desc);
 | |
| 
 | |
| 		/* update budget accounting */
 | |
| 		budget--;
 | |
| 	} while (likely(budget));
 | |
| 
 | |
| 	i += tx_ring->count;
 | |
| 	tx_ring->next_to_clean = i;
 | |
| 	u64_stats_update_begin(&tx_ring->syncp);
 | |
| 	tx_ring->stats.bytes += total_bytes;
 | |
| 	tx_ring->stats.packets += total_packets;
 | |
| 	u64_stats_update_end(&tx_ring->syncp);
 | |
| 	q_vector->tx.total_bytes += total_bytes;
 | |
| 	q_vector->tx.total_packets += total_packets;
 | |
| 
 | |
| 	if (check_for_tx_hang(tx_ring) && fm10k_check_tx_hang(tx_ring)) {
 | |
| 		/* schedule immediate reset if we believe we hung */
 | |
| 		struct fm10k_hw *hw = &interface->hw;
 | |
| 
 | |
| 		netif_err(interface, drv, tx_ring->netdev,
 | |
| 			  "Detected Tx Unit Hang\n"
 | |
| 			  "  Tx Queue             <%d>\n"
 | |
| 			  "  TDH, TDT             <%x>, <%x>\n"
 | |
| 			  "  next_to_use          <%x>\n"
 | |
| 			  "  next_to_clean        <%x>\n",
 | |
| 			  tx_ring->queue_index,
 | |
| 			  fm10k_read_reg(hw, FM10K_TDH(tx_ring->reg_idx)),
 | |
| 			  fm10k_read_reg(hw, FM10K_TDT(tx_ring->reg_idx)),
 | |
| 			  tx_ring->next_to_use, i);
 | |
| 
 | |
| 		netif_stop_subqueue(tx_ring->netdev,
 | |
| 				    tx_ring->queue_index);
 | |
| 
 | |
| 		netif_info(interface, probe, tx_ring->netdev,
 | |
| 			   "tx hang %d detected on queue %d, resetting interface\n",
 | |
| 			   interface->tx_timeout_count + 1,
 | |
| 			   tx_ring->queue_index);
 | |
| 
 | |
| 		fm10k_tx_timeout_reset(interface);
 | |
| 
 | |
| 		/* the netdev is about to reset, no point in enabling stuff */
 | |
| 		return true;
 | |
| 	}
 | |
| 
 | |
| 	/* notify netdev of completed buffers */
 | |
| 	netdev_tx_completed_queue(txring_txq(tx_ring),
 | |
| 				  total_packets, total_bytes);
 | |
| 
 | |
| #define TX_WAKE_THRESHOLD min_t(u16, FM10K_MIN_TXD - 1, DESC_NEEDED * 2)
 | |
| 	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
 | |
| 		     (fm10k_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) {
 | |
| 		/* Make sure that anybody stopping the queue after this
 | |
| 		 * sees the new next_to_clean.
 | |
| 		 */
 | |
| 		smp_mb();
 | |
| 		if (__netif_subqueue_stopped(tx_ring->netdev,
 | |
| 					     tx_ring->queue_index) &&
 | |
| 		    !test_bit(__FM10K_DOWN, &interface->state)) {
 | |
| 			netif_wake_subqueue(tx_ring->netdev,
 | |
| 					    tx_ring->queue_index);
 | |
| 			++tx_ring->tx_stats.restart_queue;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return !!budget;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * fm10k_update_itr - update the dynamic ITR value based on packet size
 | |
|  *
 | |
|  *      Stores a new ITR value based on strictly on packet size.  The
 | |
|  *      divisors and thresholds used by this function were determined based
 | |
|  *      on theoretical maximum wire speed and testing data, in order to
 | |
|  *      minimize response time while increasing bulk throughput.
 | |
|  *
 | |
|  * @ring_container: Container for rings to have ITR updated
 | |
|  **/
 | |
| static void fm10k_update_itr(struct fm10k_ring_container *ring_container)
 | |
| {
 | |
| 	unsigned int avg_wire_size, packets;
 | |
| 
 | |
| 	/* Only update ITR if we are using adaptive setting */
 | |
| 	if (!(ring_container->itr & FM10K_ITR_ADAPTIVE))
 | |
| 		goto clear_counts;
 | |
| 
 | |
| 	packets = ring_container->total_packets;
 | |
| 	if (!packets)
 | |
| 		goto clear_counts;
 | |
| 
 | |
| 	avg_wire_size = ring_container->total_bytes / packets;
 | |
| 
 | |
| 	/* Add 24 bytes to size to account for CRC, preamble, and gap */
 | |
| 	avg_wire_size += 24;
 | |
| 
 | |
| 	/* Don't starve jumbo frames */
 | |
| 	if (avg_wire_size > 3000)
 | |
| 		avg_wire_size = 3000;
 | |
| 
 | |
| 	/* Give a little boost to mid-size frames */
 | |
| 	if ((avg_wire_size > 300) && (avg_wire_size < 1200))
 | |
| 		avg_wire_size /= 3;
 | |
| 	else
 | |
| 		avg_wire_size /= 2;
 | |
| 
 | |
| 	/* write back value and retain adaptive flag */
 | |
| 	ring_container->itr = avg_wire_size | FM10K_ITR_ADAPTIVE;
 | |
| 
 | |
| clear_counts:
 | |
| 	ring_container->total_bytes = 0;
 | |
| 	ring_container->total_packets = 0;
 | |
| }
 | |
| 
 | |
| static void fm10k_qv_enable(struct fm10k_q_vector *q_vector)
 | |
| {
 | |
| 	/* Enable auto-mask and clear the current mask */
 | |
| 	u32 itr = FM10K_ITR_ENABLE;
 | |
| 
 | |
| 	/* Update Tx ITR */
 | |
| 	fm10k_update_itr(&q_vector->tx);
 | |
| 
 | |
| 	/* Update Rx ITR */
 | |
| 	fm10k_update_itr(&q_vector->rx);
 | |
| 
 | |
| 	/* Store Tx itr in timer slot 0 */
 | |
| 	itr |= (q_vector->tx.itr & FM10K_ITR_MAX);
 | |
| 
 | |
| 	/* Shift Rx itr to timer slot 1 */
 | |
| 	itr |= (q_vector->rx.itr & FM10K_ITR_MAX) << FM10K_ITR_INTERVAL1_SHIFT;
 | |
| 
 | |
| 	/* Write the final value to the ITR register */
 | |
| 	writel(itr, q_vector->itr);
 | |
| }
 | |
| 
 | |
| static int fm10k_poll(struct napi_struct *napi, int budget)
 | |
| {
 | |
| 	struct fm10k_q_vector *q_vector =
 | |
| 			       container_of(napi, struct fm10k_q_vector, napi);
 | |
| 	struct fm10k_ring *ring;
 | |
| 	int per_ring_budget;
 | |
| 	bool clean_complete = true;
 | |
| 
 | |
| 	fm10k_for_each_ring(ring, q_vector->tx)
 | |
| 		clean_complete &= fm10k_clean_tx_irq(q_vector, ring);
 | |
| 
 | |
| 	/* attempt to distribute budget to each queue fairly, but don't
 | |
| 	 * allow the budget to go below 1 because we'll exit polling
 | |
| 	 */
 | |
| 	if (q_vector->rx.count > 1)
 | |
| 		per_ring_budget = max(budget/q_vector->rx.count, 1);
 | |
| 	else
 | |
| 		per_ring_budget = budget;
 | |
| 
 | |
| 	fm10k_for_each_ring(ring, q_vector->rx)
 | |
| 		clean_complete &= fm10k_clean_rx_irq(q_vector, ring,
 | |
| 						     per_ring_budget);
 | |
| 
 | |
| 	/* If all work not completed, return budget and keep polling */
 | |
| 	if (!clean_complete)
 | |
| 		return budget;
 | |
| 
 | |
| 	/* all work done, exit the polling mode */
 | |
| 	napi_complete(napi);
 | |
| 
 | |
| 	/* re-enable the q_vector */
 | |
| 	fm10k_qv_enable(q_vector);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * fm10k_set_qos_queues: Allocate queues for a QOS-enabled device
 | |
|  * @interface: board private structure to initialize
 | |
|  *
 | |
|  * When QoS (Quality of Service) is enabled, allocate queues for
 | |
|  * each traffic class.  If multiqueue isn't available,then abort QoS
 | |
|  * initialization.
 | |
|  *
 | |
|  * This function handles all combinations of Qos and RSS.
 | |
|  *
 | |
|  **/
 | |
| static bool fm10k_set_qos_queues(struct fm10k_intfc *interface)
 | |
| {
 | |
| 	struct net_device *dev = interface->netdev;
 | |
| 	struct fm10k_ring_feature *f;
 | |
| 	int rss_i, i;
 | |
| 	int pcs;
 | |
| 
 | |
| 	/* Map queue offset and counts onto allocated tx queues */
 | |
| 	pcs = netdev_get_num_tc(dev);
 | |
| 
 | |
| 	if (pcs <= 1)
 | |
| 		return false;
 | |
| 
 | |
| 	/* set QoS mask and indices */
 | |
| 	f = &interface->ring_feature[RING_F_QOS];
 | |
| 	f->indices = pcs;
 | |
| 	f->mask = (1 << fls(pcs - 1)) - 1;
 | |
| 
 | |
| 	/* determine the upper limit for our current DCB mode */
 | |
| 	rss_i = interface->hw.mac.max_queues / pcs;
 | |
| 	rss_i = 1 << (fls(rss_i) - 1);
 | |
| 
 | |
| 	/* set RSS mask and indices */
 | |
| 	f = &interface->ring_feature[RING_F_RSS];
 | |
| 	rss_i = min_t(u16, rss_i, f->limit);
 | |
| 	f->indices = rss_i;
 | |
| 	f->mask = (1 << fls(rss_i - 1)) - 1;
 | |
| 
 | |
| 	/* configure pause class to queue mapping */
 | |
| 	for (i = 0; i < pcs; i++)
 | |
| 		netdev_set_tc_queue(dev, i, rss_i, rss_i * i);
 | |
| 
 | |
| 	interface->num_rx_queues = rss_i * pcs;
 | |
| 	interface->num_tx_queues = rss_i * pcs;
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * fm10k_set_rss_queues: Allocate queues for RSS
 | |
|  * @interface: board private structure to initialize
 | |
|  *
 | |
|  * This is our "base" multiqueue mode.  RSS (Receive Side Scaling) will try
 | |
|  * to allocate one Rx queue per CPU, and if available, one Tx queue per CPU.
 | |
|  *
 | |
|  **/
 | |
| static bool fm10k_set_rss_queues(struct fm10k_intfc *interface)
 | |
| {
 | |
| 	struct fm10k_ring_feature *f;
 | |
| 	u16 rss_i;
 | |
| 
 | |
| 	f = &interface->ring_feature[RING_F_RSS];
 | |
| 	rss_i = min_t(u16, interface->hw.mac.max_queues, f->limit);
 | |
| 
 | |
| 	/* record indices and power of 2 mask for RSS */
 | |
| 	f->indices = rss_i;
 | |
| 	f->mask = (1 << fls(rss_i - 1)) - 1;
 | |
| 
 | |
| 	interface->num_rx_queues = rss_i;
 | |
| 	interface->num_tx_queues = rss_i;
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * fm10k_set_num_queues: Allocate queues for device, feature dependent
 | |
|  * @interface: board private structure to initialize
 | |
|  *
 | |
|  * This is the top level queue allocation routine.  The order here is very
 | |
|  * important, starting with the "most" number of features turned on at once,
 | |
|  * and ending with the smallest set of features.  This way large combinations
 | |
|  * can be allocated if they're turned on, and smaller combinations are the
 | |
|  * fallthrough conditions.
 | |
|  *
 | |
|  **/
 | |
| static void fm10k_set_num_queues(struct fm10k_intfc *interface)
 | |
| {
 | |
| 	/* Start with base case */
 | |
| 	interface->num_rx_queues = 1;
 | |
| 	interface->num_tx_queues = 1;
 | |
| 
 | |
| 	if (fm10k_set_qos_queues(interface))
 | |
| 		return;
 | |
| 
 | |
| 	fm10k_set_rss_queues(interface);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * fm10k_alloc_q_vector - Allocate memory for a single interrupt vector
 | |
|  * @interface: board private structure to initialize
 | |
|  * @v_count: q_vectors allocated on interface, used for ring interleaving
 | |
|  * @v_idx: index of vector in interface struct
 | |
|  * @txr_count: total number of Tx rings to allocate
 | |
|  * @txr_idx: index of first Tx ring to allocate
 | |
|  * @rxr_count: total number of Rx rings to allocate
 | |
|  * @rxr_idx: index of first Rx ring to allocate
 | |
|  *
 | |
|  * We allocate one q_vector.  If allocation fails we return -ENOMEM.
 | |
|  **/
 | |
| static int fm10k_alloc_q_vector(struct fm10k_intfc *interface,
 | |
| 				unsigned int v_count, unsigned int v_idx,
 | |
| 				unsigned int txr_count, unsigned int txr_idx,
 | |
| 				unsigned int rxr_count, unsigned int rxr_idx)
 | |
| {
 | |
| 	struct fm10k_q_vector *q_vector;
 | |
| 	struct fm10k_ring *ring;
 | |
| 	int ring_count, size;
 | |
| 
 | |
| 	ring_count = txr_count + rxr_count;
 | |
| 	size = sizeof(struct fm10k_q_vector) +
 | |
| 	       (sizeof(struct fm10k_ring) * ring_count);
 | |
| 
 | |
| 	/* allocate q_vector and rings */
 | |
| 	q_vector = kzalloc(size, GFP_KERNEL);
 | |
| 	if (!q_vector)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	/* initialize NAPI */
 | |
| 	netif_napi_add(interface->netdev, &q_vector->napi,
 | |
| 		       fm10k_poll, NAPI_POLL_WEIGHT);
 | |
| 
 | |
| 	/* tie q_vector and interface together */
 | |
| 	interface->q_vector[v_idx] = q_vector;
 | |
| 	q_vector->interface = interface;
 | |
| 	q_vector->v_idx = v_idx;
 | |
| 
 | |
| 	/* initialize pointer to rings */
 | |
| 	ring = q_vector->ring;
 | |
| 
 | |
| 	/* save Tx ring container info */
 | |
| 	q_vector->tx.ring = ring;
 | |
| 	q_vector->tx.work_limit = FM10K_DEFAULT_TX_WORK;
 | |
| 	q_vector->tx.itr = interface->tx_itr;
 | |
| 	q_vector->tx.count = txr_count;
 | |
| 
 | |
| 	while (txr_count) {
 | |
| 		/* assign generic ring traits */
 | |
| 		ring->dev = &interface->pdev->dev;
 | |
| 		ring->netdev = interface->netdev;
 | |
| 
 | |
| 		/* configure backlink on ring */
 | |
| 		ring->q_vector = q_vector;
 | |
| 
 | |
| 		/* apply Tx specific ring traits */
 | |
| 		ring->count = interface->tx_ring_count;
 | |
| 		ring->queue_index = txr_idx;
 | |
| 
 | |
| 		/* assign ring to interface */
 | |
| 		interface->tx_ring[txr_idx] = ring;
 | |
| 
 | |
| 		/* update count and index */
 | |
| 		txr_count--;
 | |
| 		txr_idx += v_count;
 | |
| 
 | |
| 		/* push pointer to next ring */
 | |
| 		ring++;
 | |
| 	}
 | |
| 
 | |
| 	/* save Rx ring container info */
 | |
| 	q_vector->rx.ring = ring;
 | |
| 	q_vector->rx.itr = interface->rx_itr;
 | |
| 	q_vector->rx.count = rxr_count;
 | |
| 
 | |
| 	while (rxr_count) {
 | |
| 		/* assign generic ring traits */
 | |
| 		ring->dev = &interface->pdev->dev;
 | |
| 		ring->netdev = interface->netdev;
 | |
| 		rcu_assign_pointer(ring->l2_accel, interface->l2_accel);
 | |
| 
 | |
| 		/* configure backlink on ring */
 | |
| 		ring->q_vector = q_vector;
 | |
| 
 | |
| 		/* apply Rx specific ring traits */
 | |
| 		ring->count = interface->rx_ring_count;
 | |
| 		ring->queue_index = rxr_idx;
 | |
| 
 | |
| 		/* assign ring to interface */
 | |
| 		interface->rx_ring[rxr_idx] = ring;
 | |
| 
 | |
| 		/* update count and index */
 | |
| 		rxr_count--;
 | |
| 		rxr_idx += v_count;
 | |
| 
 | |
| 		/* push pointer to next ring */
 | |
| 		ring++;
 | |
| 	}
 | |
| 
 | |
| 	fm10k_dbg_q_vector_init(q_vector);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * fm10k_free_q_vector - Free memory allocated for specific interrupt vector
 | |
|  * @interface: board private structure to initialize
 | |
|  * @v_idx: Index of vector to be freed
 | |
|  *
 | |
|  * This function frees the memory allocated to the q_vector.  In addition if
 | |
|  * NAPI is enabled it will delete any references to the NAPI struct prior
 | |
|  * to freeing the q_vector.
 | |
|  **/
 | |
| static void fm10k_free_q_vector(struct fm10k_intfc *interface, int v_idx)
 | |
| {
 | |
| 	struct fm10k_q_vector *q_vector = interface->q_vector[v_idx];
 | |
| 	struct fm10k_ring *ring;
 | |
| 
 | |
| 	fm10k_dbg_q_vector_exit(q_vector);
 | |
| 
 | |
| 	fm10k_for_each_ring(ring, q_vector->tx)
 | |
| 		interface->tx_ring[ring->queue_index] = NULL;
 | |
| 
 | |
| 	fm10k_for_each_ring(ring, q_vector->rx)
 | |
| 		interface->rx_ring[ring->queue_index] = NULL;
 | |
| 
 | |
| 	interface->q_vector[v_idx] = NULL;
 | |
| 	netif_napi_del(&q_vector->napi);
 | |
| 	kfree_rcu(q_vector, rcu);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * fm10k_alloc_q_vectors - Allocate memory for interrupt vectors
 | |
|  * @interface: board private structure to initialize
 | |
|  *
 | |
|  * We allocate one q_vector per queue interrupt.  If allocation fails we
 | |
|  * return -ENOMEM.
 | |
|  **/
 | |
| static int fm10k_alloc_q_vectors(struct fm10k_intfc *interface)
 | |
| {
 | |
| 	unsigned int q_vectors = interface->num_q_vectors;
 | |
| 	unsigned int rxr_remaining = interface->num_rx_queues;
 | |
| 	unsigned int txr_remaining = interface->num_tx_queues;
 | |
| 	unsigned int rxr_idx = 0, txr_idx = 0, v_idx = 0;
 | |
| 	int err;
 | |
| 
 | |
| 	if (q_vectors >= (rxr_remaining + txr_remaining)) {
 | |
| 		for (; rxr_remaining; v_idx++) {
 | |
| 			err = fm10k_alloc_q_vector(interface, q_vectors, v_idx,
 | |
| 						   0, 0, 1, rxr_idx);
 | |
| 			if (err)
 | |
| 				goto err_out;
 | |
| 
 | |
| 			/* update counts and index */
 | |
| 			rxr_remaining--;
 | |
| 			rxr_idx++;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	for (; v_idx < q_vectors; v_idx++) {
 | |
| 		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
 | |
| 		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
 | |
| 
 | |
| 		err = fm10k_alloc_q_vector(interface, q_vectors, v_idx,
 | |
| 					   tqpv, txr_idx,
 | |
| 					   rqpv, rxr_idx);
 | |
| 
 | |
| 		if (err)
 | |
| 			goto err_out;
 | |
| 
 | |
| 		/* update counts and index */
 | |
| 		rxr_remaining -= rqpv;
 | |
| 		txr_remaining -= tqpv;
 | |
| 		rxr_idx++;
 | |
| 		txr_idx++;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| err_out:
 | |
| 	interface->num_tx_queues = 0;
 | |
| 	interface->num_rx_queues = 0;
 | |
| 	interface->num_q_vectors = 0;
 | |
| 
 | |
| 	while (v_idx--)
 | |
| 		fm10k_free_q_vector(interface, v_idx);
 | |
| 
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * fm10k_free_q_vectors - Free memory allocated for interrupt vectors
 | |
|  * @interface: board private structure to initialize
 | |
|  *
 | |
|  * This function frees the memory allocated to the q_vectors.  In addition if
 | |
|  * NAPI is enabled it will delete any references to the NAPI struct prior
 | |
|  * to freeing the q_vector.
 | |
|  **/
 | |
| static void fm10k_free_q_vectors(struct fm10k_intfc *interface)
 | |
| {
 | |
| 	int v_idx = interface->num_q_vectors;
 | |
| 
 | |
| 	interface->num_tx_queues = 0;
 | |
| 	interface->num_rx_queues = 0;
 | |
| 	interface->num_q_vectors = 0;
 | |
| 
 | |
| 	while (v_idx--)
 | |
| 		fm10k_free_q_vector(interface, v_idx);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * f10k_reset_msix_capability - reset MSI-X capability
 | |
|  * @interface: board private structure to initialize
 | |
|  *
 | |
|  * Reset the MSI-X capability back to its starting state
 | |
|  **/
 | |
| static void fm10k_reset_msix_capability(struct fm10k_intfc *interface)
 | |
| {
 | |
| 	pci_disable_msix(interface->pdev);
 | |
| 	kfree(interface->msix_entries);
 | |
| 	interface->msix_entries = NULL;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * f10k_init_msix_capability - configure MSI-X capability
 | |
|  * @interface: board private structure to initialize
 | |
|  *
 | |
|  * Attempt to configure the interrupts using the best available
 | |
|  * capabilities of the hardware and the kernel.
 | |
|  **/
 | |
| static int fm10k_init_msix_capability(struct fm10k_intfc *interface)
 | |
| {
 | |
| 	struct fm10k_hw *hw = &interface->hw;
 | |
| 	int v_budget, vector;
 | |
| 
 | |
| 	/* It's easy to be greedy for MSI-X vectors, but it really
 | |
| 	 * doesn't do us much good if we have a lot more vectors
 | |
| 	 * than CPU's.  So let's be conservative and only ask for
 | |
| 	 * (roughly) the same number of vectors as there are CPU's.
 | |
| 	 * the default is to use pairs of vectors
 | |
| 	 */
 | |
| 	v_budget = max(interface->num_rx_queues, interface->num_tx_queues);
 | |
| 	v_budget = min_t(u16, v_budget, num_online_cpus());
 | |
| 
 | |
| 	/* account for vectors not related to queues */
 | |
| 	v_budget += NON_Q_VECTORS(hw);
 | |
| 
 | |
| 	/* At the same time, hardware can only support a maximum of
 | |
| 	 * hw.mac->max_msix_vectors vectors.  With features
 | |
| 	 * such as RSS and VMDq, we can easily surpass the number of Rx and Tx
 | |
| 	 * descriptor queues supported by our device.  Thus, we cap it off in
 | |
| 	 * those rare cases where the cpu count also exceeds our vector limit.
 | |
| 	 */
 | |
| 	v_budget = min_t(int, v_budget, hw->mac.max_msix_vectors);
 | |
| 
 | |
| 	/* A failure in MSI-X entry allocation is fatal. */
 | |
| 	interface->msix_entries = kcalloc(v_budget, sizeof(struct msix_entry),
 | |
| 					  GFP_KERNEL);
 | |
| 	if (!interface->msix_entries)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	/* populate entry values */
 | |
| 	for (vector = 0; vector < v_budget; vector++)
 | |
| 		interface->msix_entries[vector].entry = vector;
 | |
| 
 | |
| 	/* Attempt to enable MSI-X with requested value */
 | |
| 	v_budget = pci_enable_msix_range(interface->pdev,
 | |
| 					 interface->msix_entries,
 | |
| 					 MIN_MSIX_COUNT(hw),
 | |
| 					 v_budget);
 | |
| 	if (v_budget < 0) {
 | |
| 		kfree(interface->msix_entries);
 | |
| 		interface->msix_entries = NULL;
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	/* record the number of queues available for q_vectors */
 | |
| 	interface->num_q_vectors = v_budget - NON_Q_VECTORS(hw);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * fm10k_cache_ring_qos - Descriptor ring to register mapping for QoS
 | |
|  * @interface: Interface structure continaining rings and devices
 | |
|  *
 | |
|  * Cache the descriptor ring offsets for Qos
 | |
|  **/
 | |
| static bool fm10k_cache_ring_qos(struct fm10k_intfc *interface)
 | |
| {
 | |
| 	struct net_device *dev = interface->netdev;
 | |
| 	int pc, offset, rss_i, i, q_idx;
 | |
| 	u16 pc_stride = interface->ring_feature[RING_F_QOS].mask + 1;
 | |
| 	u8 num_pcs = netdev_get_num_tc(dev);
 | |
| 
 | |
| 	if (num_pcs <= 1)
 | |
| 		return false;
 | |
| 
 | |
| 	rss_i = interface->ring_feature[RING_F_RSS].indices;
 | |
| 
 | |
| 	for (pc = 0, offset = 0; pc < num_pcs; pc++, offset += rss_i) {
 | |
| 		q_idx = pc;
 | |
| 		for (i = 0; i < rss_i; i++) {
 | |
| 			interface->tx_ring[offset + i]->reg_idx = q_idx;
 | |
| 			interface->tx_ring[offset + i]->qos_pc = pc;
 | |
| 			interface->rx_ring[offset + i]->reg_idx = q_idx;
 | |
| 			interface->rx_ring[offset + i]->qos_pc = pc;
 | |
| 			q_idx += pc_stride;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * fm10k_cache_ring_rss - Descriptor ring to register mapping for RSS
 | |
|  * @interface: Interface structure continaining rings and devices
 | |
|  *
 | |
|  * Cache the descriptor ring offsets for RSS
 | |
|  **/
 | |
| static void fm10k_cache_ring_rss(struct fm10k_intfc *interface)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < interface->num_rx_queues; i++)
 | |
| 		interface->rx_ring[i]->reg_idx = i;
 | |
| 
 | |
| 	for (i = 0; i < interface->num_tx_queues; i++)
 | |
| 		interface->tx_ring[i]->reg_idx = i;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * fm10k_assign_rings - Map rings to network devices
 | |
|  * @interface: Interface structure containing rings and devices
 | |
|  *
 | |
|  * This function is meant to go though and configure both the network
 | |
|  * devices so that they contain rings, and configure the rings so that
 | |
|  * they function with their network devices.
 | |
|  **/
 | |
| static void fm10k_assign_rings(struct fm10k_intfc *interface)
 | |
| {
 | |
| 	if (fm10k_cache_ring_qos(interface))
 | |
| 		return;
 | |
| 
 | |
| 	fm10k_cache_ring_rss(interface);
 | |
| }
 | |
| 
 | |
| static void fm10k_init_reta(struct fm10k_intfc *interface)
 | |
| {
 | |
| 	u16 i, rss_i = interface->ring_feature[RING_F_RSS].indices;
 | |
| 	u32 reta, base;
 | |
| 
 | |
| 	/* If the netdev is initialized we have to maintain table if possible */
 | |
| 	if (interface->netdev->reg_state) {
 | |
| 		for (i = FM10K_RETA_SIZE; i--;) {
 | |
| 			reta = interface->reta[i];
 | |
| 			if ((((reta << 24) >> 24) < rss_i) &&
 | |
| 			    (((reta << 16) >> 24) < rss_i) &&
 | |
| 			    (((reta <<  8) >> 24) < rss_i) &&
 | |
| 			    (((reta)       >> 24) < rss_i))
 | |
| 				continue;
 | |
| 			goto repopulate_reta;
 | |
| 		}
 | |
| 
 | |
| 		/* do nothing if all of the elements are in bounds */
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| repopulate_reta:
 | |
| 	/* Populate the redirection table 4 entries at a time.  To do this
 | |
| 	 * we are generating the results for n and n+2 and then interleaving
 | |
| 	 * those with the results with n+1 and n+3.
 | |
| 	 */
 | |
| 	for (i = FM10K_RETA_SIZE; i--;) {
 | |
| 		/* first pass generates n and n+2 */
 | |
| 		base = ((i * 0x00040004) + 0x00020000) * rss_i;
 | |
| 		reta = (base & 0x3F803F80) >> 7;
 | |
| 
 | |
| 		/* second pass generates n+1 and n+3 */
 | |
| 		base += 0x00010001 * rss_i;
 | |
| 		reta |= (base & 0x3F803F80) << 1;
 | |
| 
 | |
| 		interface->reta[i] = reta;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * fm10k_init_queueing_scheme - Determine proper queueing scheme
 | |
|  * @interface: board private structure to initialize
 | |
|  *
 | |
|  * We determine which queueing scheme to use based on...
 | |
|  * - Hardware queue count (num_*_queues)
 | |
|  *   - defined by miscellaneous hardware support/features (RSS, etc.)
 | |
|  **/
 | |
| int fm10k_init_queueing_scheme(struct fm10k_intfc *interface)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	/* Number of supported queues */
 | |
| 	fm10k_set_num_queues(interface);
 | |
| 
 | |
| 	/* Configure MSI-X capability */
 | |
| 	err = fm10k_init_msix_capability(interface);
 | |
| 	if (err) {
 | |
| 		dev_err(&interface->pdev->dev,
 | |
| 			"Unable to initialize MSI-X capability\n");
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	/* Allocate memory for queues */
 | |
| 	err = fm10k_alloc_q_vectors(interface);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	/* Map rings to devices, and map devices to physical queues */
 | |
| 	fm10k_assign_rings(interface);
 | |
| 
 | |
| 	/* Initialize RSS redirection table */
 | |
| 	fm10k_init_reta(interface);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * fm10k_clear_queueing_scheme - Clear the current queueing scheme settings
 | |
|  * @interface: board private structure to clear queueing scheme on
 | |
|  *
 | |
|  * We go through and clear queueing specific resources and reset the structure
 | |
|  * to pre-load conditions
 | |
|  **/
 | |
| void fm10k_clear_queueing_scheme(struct fm10k_intfc *interface)
 | |
| {
 | |
| 	fm10k_free_q_vectors(interface);
 | |
| 	fm10k_reset_msix_capability(interface);
 | |
| }
 |