 a93ace487a
			
		
	
	
	a93ace487a
	
	
	
		
			
			Previously, pcpu_[de]populate_chunk() were called with the range which may contain multiple target regions in it and pcpu_[de]populate_chunk() iterated over the regions. This has the benefit of batching up cache flushes for all the regions; however, we're planning to add more bookkeeping logic around [de]population to support atomic allocations and this delegation of iterations gets in the way. This patch moves the region iterations out of pcpu_[de]populate_chunk() into its callers - pcpu_alloc() and pcpu_reclaim() - so that we can later add logic to track more states around them. This change may make cache and tlb flushes more frequent but multi-region [de]populations are rare anyway and if this actually becomes a problem, it's not difficult to factor out cache flushes as separate callbacks which are directly invoked from percpu.c. Signed-off-by: Tejun Heo <tj@kernel.org>
		
			
				
	
	
		
			366 lines
		
	
	
	
		
			10 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			366 lines
		
	
	
	
		
			10 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * mm/percpu-vm.c - vmalloc area based chunk allocation
 | |
|  *
 | |
|  * Copyright (C) 2010		SUSE Linux Products GmbH
 | |
|  * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
 | |
|  *
 | |
|  * This file is released under the GPLv2.
 | |
|  *
 | |
|  * Chunks are mapped into vmalloc areas and populated page by page.
 | |
|  * This is the default chunk allocator.
 | |
|  */
 | |
| 
 | |
| static struct page *pcpu_chunk_page(struct pcpu_chunk *chunk,
 | |
| 				    unsigned int cpu, int page_idx)
 | |
| {
 | |
| 	/* must not be used on pre-mapped chunk */
 | |
| 	WARN_ON(chunk->immutable);
 | |
| 
 | |
| 	return vmalloc_to_page((void *)pcpu_chunk_addr(chunk, cpu, page_idx));
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * pcpu_get_pages - get temp pages array
 | |
|  * @chunk: chunk of interest
 | |
|  *
 | |
|  * Returns pointer to array of pointers to struct page which can be indexed
 | |
|  * with pcpu_page_idx().  Note that there is only one array and accesses
 | |
|  * should be serialized by pcpu_alloc_mutex.
 | |
|  *
 | |
|  * RETURNS:
 | |
|  * Pointer to temp pages array on success.
 | |
|  */
 | |
| static struct page **pcpu_get_pages(struct pcpu_chunk *chunk_alloc)
 | |
| {
 | |
| 	static struct page **pages;
 | |
| 	size_t pages_size = pcpu_nr_units * pcpu_unit_pages * sizeof(pages[0]);
 | |
| 
 | |
| 	lockdep_assert_held(&pcpu_alloc_mutex);
 | |
| 
 | |
| 	if (!pages)
 | |
| 		pages = pcpu_mem_zalloc(pages_size);
 | |
| 	return pages;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * pcpu_free_pages - free pages which were allocated for @chunk
 | |
|  * @chunk: chunk pages were allocated for
 | |
|  * @pages: array of pages to be freed, indexed by pcpu_page_idx()
 | |
|  * @page_start: page index of the first page to be freed
 | |
|  * @page_end: page index of the last page to be freed + 1
 | |
|  *
 | |
|  * Free pages [@page_start and @page_end) in @pages for all units.
 | |
|  * The pages were allocated for @chunk.
 | |
|  */
 | |
| static void pcpu_free_pages(struct pcpu_chunk *chunk,
 | |
| 			    struct page **pages, int page_start, int page_end)
 | |
| {
 | |
| 	unsigned int cpu;
 | |
| 	int i;
 | |
| 
 | |
| 	for_each_possible_cpu(cpu) {
 | |
| 		for (i = page_start; i < page_end; i++) {
 | |
| 			struct page *page = pages[pcpu_page_idx(cpu, i)];
 | |
| 
 | |
| 			if (page)
 | |
| 				__free_page(page);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * pcpu_alloc_pages - allocates pages for @chunk
 | |
|  * @chunk: target chunk
 | |
|  * @pages: array to put the allocated pages into, indexed by pcpu_page_idx()
 | |
|  * @page_start: page index of the first page to be allocated
 | |
|  * @page_end: page index of the last page to be allocated + 1
 | |
|  *
 | |
|  * Allocate pages [@page_start,@page_end) into @pages for all units.
 | |
|  * The allocation is for @chunk.  Percpu core doesn't care about the
 | |
|  * content of @pages and will pass it verbatim to pcpu_map_pages().
 | |
|  */
 | |
| static int pcpu_alloc_pages(struct pcpu_chunk *chunk,
 | |
| 			    struct page **pages, int page_start, int page_end)
 | |
| {
 | |
| 	const gfp_t gfp = GFP_KERNEL | __GFP_HIGHMEM | __GFP_COLD;
 | |
| 	unsigned int cpu, tcpu;
 | |
| 	int i;
 | |
| 
 | |
| 	for_each_possible_cpu(cpu) {
 | |
| 		for (i = page_start; i < page_end; i++) {
 | |
| 			struct page **pagep = &pages[pcpu_page_idx(cpu, i)];
 | |
| 
 | |
| 			*pagep = alloc_pages_node(cpu_to_node(cpu), gfp, 0);
 | |
| 			if (!*pagep)
 | |
| 				goto err;
 | |
| 		}
 | |
| 	}
 | |
| 	return 0;
 | |
| 
 | |
| err:
 | |
| 	while (--i >= page_start)
 | |
| 		__free_page(pages[pcpu_page_idx(cpu, i)]);
 | |
| 
 | |
| 	for_each_possible_cpu(tcpu) {
 | |
| 		if (tcpu == cpu)
 | |
| 			break;
 | |
| 		for (i = page_start; i < page_end; i++)
 | |
| 			__free_page(pages[pcpu_page_idx(tcpu, i)]);
 | |
| 	}
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * pcpu_pre_unmap_flush - flush cache prior to unmapping
 | |
|  * @chunk: chunk the regions to be flushed belongs to
 | |
|  * @page_start: page index of the first page to be flushed
 | |
|  * @page_end: page index of the last page to be flushed + 1
 | |
|  *
 | |
|  * Pages in [@page_start,@page_end) of @chunk are about to be
 | |
|  * unmapped.  Flush cache.  As each flushing trial can be very
 | |
|  * expensive, issue flush on the whole region at once rather than
 | |
|  * doing it for each cpu.  This could be an overkill but is more
 | |
|  * scalable.
 | |
|  */
 | |
| static void pcpu_pre_unmap_flush(struct pcpu_chunk *chunk,
 | |
| 				 int page_start, int page_end)
 | |
| {
 | |
| 	flush_cache_vunmap(
 | |
| 		pcpu_chunk_addr(chunk, pcpu_low_unit_cpu, page_start),
 | |
| 		pcpu_chunk_addr(chunk, pcpu_high_unit_cpu, page_end));
 | |
| }
 | |
| 
 | |
| static void __pcpu_unmap_pages(unsigned long addr, int nr_pages)
 | |
| {
 | |
| 	unmap_kernel_range_noflush(addr, nr_pages << PAGE_SHIFT);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * pcpu_unmap_pages - unmap pages out of a pcpu_chunk
 | |
|  * @chunk: chunk of interest
 | |
|  * @pages: pages array which can be used to pass information to free
 | |
|  * @page_start: page index of the first page to unmap
 | |
|  * @page_end: page index of the last page to unmap + 1
 | |
|  *
 | |
|  * For each cpu, unmap pages [@page_start,@page_end) out of @chunk.
 | |
|  * Corresponding elements in @pages were cleared by the caller and can
 | |
|  * be used to carry information to pcpu_free_pages() which will be
 | |
|  * called after all unmaps are finished.  The caller should call
 | |
|  * proper pre/post flush functions.
 | |
|  */
 | |
| static void pcpu_unmap_pages(struct pcpu_chunk *chunk,
 | |
| 			     struct page **pages, int page_start, int page_end)
 | |
| {
 | |
| 	unsigned int cpu;
 | |
| 	int i;
 | |
| 
 | |
| 	for_each_possible_cpu(cpu) {
 | |
| 		for (i = page_start; i < page_end; i++) {
 | |
| 			struct page *page;
 | |
| 
 | |
| 			page = pcpu_chunk_page(chunk, cpu, i);
 | |
| 			WARN_ON(!page);
 | |
| 			pages[pcpu_page_idx(cpu, i)] = page;
 | |
| 		}
 | |
| 		__pcpu_unmap_pages(pcpu_chunk_addr(chunk, cpu, page_start),
 | |
| 				   page_end - page_start);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * pcpu_post_unmap_tlb_flush - flush TLB after unmapping
 | |
|  * @chunk: pcpu_chunk the regions to be flushed belong to
 | |
|  * @page_start: page index of the first page to be flushed
 | |
|  * @page_end: page index of the last page to be flushed + 1
 | |
|  *
 | |
|  * Pages [@page_start,@page_end) of @chunk have been unmapped.  Flush
 | |
|  * TLB for the regions.  This can be skipped if the area is to be
 | |
|  * returned to vmalloc as vmalloc will handle TLB flushing lazily.
 | |
|  *
 | |
|  * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once
 | |
|  * for the whole region.
 | |
|  */
 | |
| static void pcpu_post_unmap_tlb_flush(struct pcpu_chunk *chunk,
 | |
| 				      int page_start, int page_end)
 | |
| {
 | |
| 	flush_tlb_kernel_range(
 | |
| 		pcpu_chunk_addr(chunk, pcpu_low_unit_cpu, page_start),
 | |
| 		pcpu_chunk_addr(chunk, pcpu_high_unit_cpu, page_end));
 | |
| }
 | |
| 
 | |
| static int __pcpu_map_pages(unsigned long addr, struct page **pages,
 | |
| 			    int nr_pages)
 | |
| {
 | |
| 	return map_kernel_range_noflush(addr, nr_pages << PAGE_SHIFT,
 | |
| 					PAGE_KERNEL, pages);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * pcpu_map_pages - map pages into a pcpu_chunk
 | |
|  * @chunk: chunk of interest
 | |
|  * @pages: pages array containing pages to be mapped
 | |
|  * @page_start: page index of the first page to map
 | |
|  * @page_end: page index of the last page to map + 1
 | |
|  *
 | |
|  * For each cpu, map pages [@page_start,@page_end) into @chunk.  The
 | |
|  * caller is responsible for calling pcpu_post_map_flush() after all
 | |
|  * mappings are complete.
 | |
|  *
 | |
|  * This function is responsible for setting up whatever is necessary for
 | |
|  * reverse lookup (addr -> chunk).
 | |
|  */
 | |
| static int pcpu_map_pages(struct pcpu_chunk *chunk,
 | |
| 			  struct page **pages, int page_start, int page_end)
 | |
| {
 | |
| 	unsigned int cpu, tcpu;
 | |
| 	int i, err;
 | |
| 
 | |
| 	for_each_possible_cpu(cpu) {
 | |
| 		err = __pcpu_map_pages(pcpu_chunk_addr(chunk, cpu, page_start),
 | |
| 				       &pages[pcpu_page_idx(cpu, page_start)],
 | |
| 				       page_end - page_start);
 | |
| 		if (err < 0)
 | |
| 			goto err;
 | |
| 
 | |
| 		for (i = page_start; i < page_end; i++)
 | |
| 			pcpu_set_page_chunk(pages[pcpu_page_idx(cpu, i)],
 | |
| 					    chunk);
 | |
| 	}
 | |
| 	return 0;
 | |
| err:
 | |
| 	for_each_possible_cpu(tcpu) {
 | |
| 		if (tcpu == cpu)
 | |
| 			break;
 | |
| 		__pcpu_unmap_pages(pcpu_chunk_addr(chunk, tcpu, page_start),
 | |
| 				   page_end - page_start);
 | |
| 	}
 | |
| 	pcpu_post_unmap_tlb_flush(chunk, page_start, page_end);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * pcpu_post_map_flush - flush cache after mapping
 | |
|  * @chunk: pcpu_chunk the regions to be flushed belong to
 | |
|  * @page_start: page index of the first page to be flushed
 | |
|  * @page_end: page index of the last page to be flushed + 1
 | |
|  *
 | |
|  * Pages [@page_start,@page_end) of @chunk have been mapped.  Flush
 | |
|  * cache.
 | |
|  *
 | |
|  * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once
 | |
|  * for the whole region.
 | |
|  */
 | |
| static void pcpu_post_map_flush(struct pcpu_chunk *chunk,
 | |
| 				int page_start, int page_end)
 | |
| {
 | |
| 	flush_cache_vmap(
 | |
| 		pcpu_chunk_addr(chunk, pcpu_low_unit_cpu, page_start),
 | |
| 		pcpu_chunk_addr(chunk, pcpu_high_unit_cpu, page_end));
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * pcpu_populate_chunk - populate and map an area of a pcpu_chunk
 | |
|  * @chunk: chunk of interest
 | |
|  * @page_start: the start page
 | |
|  * @page_end: the end page
 | |
|  *
 | |
|  * For each cpu, populate and map pages [@page_start,@page_end) into
 | |
|  * @chunk.
 | |
|  *
 | |
|  * CONTEXT:
 | |
|  * pcpu_alloc_mutex, does GFP_KERNEL allocation.
 | |
|  */
 | |
| static int pcpu_populate_chunk(struct pcpu_chunk *chunk,
 | |
| 			       int page_start, int page_end)
 | |
| {
 | |
| 	struct page **pages;
 | |
| 
 | |
| 	pages = pcpu_get_pages(chunk);
 | |
| 	if (!pages)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	if (pcpu_alloc_pages(chunk, pages, page_start, page_end))
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	if (pcpu_map_pages(chunk, pages, page_start, page_end)) {
 | |
| 		pcpu_free_pages(chunk, pages, page_start, page_end);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 	pcpu_post_map_flush(chunk, page_start, page_end);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * pcpu_depopulate_chunk - depopulate and unmap an area of a pcpu_chunk
 | |
|  * @chunk: chunk to depopulate
 | |
|  * @page_start: the start page
 | |
|  * @page_end: the end page
 | |
|  *
 | |
|  * For each cpu, depopulate and unmap pages [@page_start,@page_end)
 | |
|  * from @chunk.
 | |
|  *
 | |
|  * CONTEXT:
 | |
|  * pcpu_alloc_mutex.
 | |
|  */
 | |
| static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk,
 | |
| 				  int page_start, int page_end)
 | |
| {
 | |
| 	struct page **pages;
 | |
| 
 | |
| 	/*
 | |
| 	 * If control reaches here, there must have been at least one
 | |
| 	 * successful population attempt so the temp pages array must
 | |
| 	 * be available now.
 | |
| 	 */
 | |
| 	pages = pcpu_get_pages(chunk);
 | |
| 	BUG_ON(!pages);
 | |
| 
 | |
| 	/* unmap and free */
 | |
| 	pcpu_pre_unmap_flush(chunk, page_start, page_end);
 | |
| 
 | |
| 	pcpu_unmap_pages(chunk, pages, page_start, page_end);
 | |
| 
 | |
| 	/* no need to flush tlb, vmalloc will handle it lazily */
 | |
| 
 | |
| 	pcpu_free_pages(chunk, pages, page_start, page_end);
 | |
| }
 | |
| 
 | |
| static struct pcpu_chunk *pcpu_create_chunk(void)
 | |
| {
 | |
| 	struct pcpu_chunk *chunk;
 | |
| 	struct vm_struct **vms;
 | |
| 
 | |
| 	chunk = pcpu_alloc_chunk();
 | |
| 	if (!chunk)
 | |
| 		return NULL;
 | |
| 
 | |
| 	vms = pcpu_get_vm_areas(pcpu_group_offsets, pcpu_group_sizes,
 | |
| 				pcpu_nr_groups, pcpu_atom_size);
 | |
| 	if (!vms) {
 | |
| 		pcpu_free_chunk(chunk);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	chunk->data = vms;
 | |
| 	chunk->base_addr = vms[0]->addr - pcpu_group_offsets[0];
 | |
| 	return chunk;
 | |
| }
 | |
| 
 | |
| static void pcpu_destroy_chunk(struct pcpu_chunk *chunk)
 | |
| {
 | |
| 	if (chunk && chunk->data)
 | |
| 		pcpu_free_vm_areas(chunk->data, pcpu_nr_groups);
 | |
| 	pcpu_free_chunk(chunk);
 | |
| }
 | |
| 
 | |
| static struct page *pcpu_addr_to_page(void *addr)
 | |
| {
 | |
| 	return vmalloc_to_page(addr);
 | |
| }
 | |
| 
 | |
| static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai)
 | |
| {
 | |
| 	/* no extra restriction */
 | |
| 	return 0;
 | |
| }
 |