Pull MIPS updates from Ralf Baechle:
 "This is an unusually large pull request for MIPS - in parts because
  lots of patches missed the 3.18 deadline but primarily because some
  folks opened the flood gates.
   - Retire the MIPS-specific phys_t with the generic phys_addr_t.
   - Improvments for the backtrace code used by oprofile.
   - Better backtraces on SMP systems.
   - Cleanups for the Octeon platform code.
   - Cleanups and fixes for the Loongson platform code.
   - Cleanups and fixes to the firmware library.
   - Switch ATH79 platform to use the firmware library.
   - Grand overhault to the SEAD3 and Malta interrupt code.
   - Move the GIC interrupt code to drivers/irqchip
   - Lots of GIC cleanups and updates to the GIC code to use modern IRQ
     infrastructures and features of the kernel.
   - OF documentation updates for the GIC bindings
   - Move GIC clocksource driver to drivers/clocksource
   - Merge GIC clocksource driver with clockevent driver.
   - Further updates to bring the GIC clocksource driver up to date.
   - R3000 TLB code cleanups
   - Improvments to the Loongson 3 platform code.
   - Convert pr_warning to pr_warn.
   - Merge a bunch of small lantiq and ralink fixes that have been
     staged/lingering inside the openwrt tree for a while.
   - Update archhelp for IP22/IP32
   - Fix a number of issues for Loongson 1B.
   - New clocksource and clockevent driver for Loongson 1B.
   - Further work on clk handling for Loongson 1B.
   - Platform work for Broadcom BMIPS.
   - Error handling cleanups for TurboChannel.
   - Fixes and optimization to the microMIPS support.
   - Option to disable the FTLB.
   - Dump more relevant information on machine check exception
   - Change binfmt to allow arch to examine PT_*PROC headers
   - Support for new style FPU register model in O32
   - VDSO randomization.
   - BCM47xx cleanups
   - BCM47xx reimplement the way the kernel accesses NVRAM information.
   - Random cleanups
   - Add support for ATH25 platforms
   - Remove pointless locking code in some PCI platforms.
   - Some improvments to EVA support
   - Minor Alchemy cleanup"
* 'upstream' of git://git.linux-mips.org/pub/scm/ralf/upstream-linus: (185 commits)
  MIPS: Add MFHC0 and MTHC0 instructions to uasm.
  MIPS: Cosmetic cleanups of page table headers.
  MIPS: Add CP0 macros for extended EntryLo registers
  MIPS: Remove now unused definition of phys_t.
  MIPS: Replace use of phys_t with phys_addr_t.
  MIPS: Replace MIPS-specific 64BIT_PHYS_ADDR with generic PHYS_ADDR_T_64BIT
  PCMCIA: Alchemy Don't select 64BIT_PHYS_ADDR in Kconfig.
  MIPS: lib: memset: Clean up some MIPS{EL,EB} ifdefery
  MIPS: iomap: Use __mem_{read,write}{b,w,l} for MMIO
  MIPS: <asm/types.h> fix indentation.
  MAINTAINERS: Add entry for BMIPS multiplatform kernel
  MIPS: Enable VDSO randomization
  MIPS: Remove a temporary hack for debugging cache flushes in SMTC configuration
  MIPS: Remove declaration of obsolete arch_init_clk_ops()
  MIPS: atomic.h: Reformat to fit in 79 columns
  MIPS: Apply `.insn' to fixup labels throughout
  MIPS: Fix microMIPS LL/SC immediate offsets
  MIPS: Kconfig: Only allow 32-bit microMIPS builds
  MIPS: signal.c: Fix an invalid cast in ISA mode bit handling
  MIPS: mm: Only build one microassembler that is suitable
  ...
		
	
			
		
			
				
	
	
		
			2330 lines
		
	
	
	
		
			61 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2330 lines
		
	
	
	
		
			61 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * linux/fs/binfmt_elf.c
 | 
						|
 *
 | 
						|
 * These are the functions used to load ELF format executables as used
 | 
						|
 * on SVr4 machines.  Information on the format may be found in the book
 | 
						|
 * "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support
 | 
						|
 * Tools".
 | 
						|
 *
 | 
						|
 * Copyright 1993, 1994: Eric Youngdale (ericy@cais.com).
 | 
						|
 */
 | 
						|
 | 
						|
#include <linux/module.h>
 | 
						|
#include <linux/kernel.h>
 | 
						|
#include <linux/fs.h>
 | 
						|
#include <linux/mm.h>
 | 
						|
#include <linux/mman.h>
 | 
						|
#include <linux/errno.h>
 | 
						|
#include <linux/signal.h>
 | 
						|
#include <linux/binfmts.h>
 | 
						|
#include <linux/string.h>
 | 
						|
#include <linux/file.h>
 | 
						|
#include <linux/slab.h>
 | 
						|
#include <linux/personality.h>
 | 
						|
#include <linux/elfcore.h>
 | 
						|
#include <linux/init.h>
 | 
						|
#include <linux/highuid.h>
 | 
						|
#include <linux/compiler.h>
 | 
						|
#include <linux/highmem.h>
 | 
						|
#include <linux/pagemap.h>
 | 
						|
#include <linux/vmalloc.h>
 | 
						|
#include <linux/security.h>
 | 
						|
#include <linux/random.h>
 | 
						|
#include <linux/elf.h>
 | 
						|
#include <linux/utsname.h>
 | 
						|
#include <linux/coredump.h>
 | 
						|
#include <linux/sched.h>
 | 
						|
#include <asm/uaccess.h>
 | 
						|
#include <asm/param.h>
 | 
						|
#include <asm/page.h>
 | 
						|
 | 
						|
#ifndef user_long_t
 | 
						|
#define user_long_t long
 | 
						|
#endif
 | 
						|
#ifndef user_siginfo_t
 | 
						|
#define user_siginfo_t siginfo_t
 | 
						|
#endif
 | 
						|
 | 
						|
static int load_elf_binary(struct linux_binprm *bprm);
 | 
						|
static unsigned long elf_map(struct file *, unsigned long, struct elf_phdr *,
 | 
						|
				int, int, unsigned long);
 | 
						|
 | 
						|
#ifdef CONFIG_USELIB
 | 
						|
static int load_elf_library(struct file *);
 | 
						|
#else
 | 
						|
#define load_elf_library NULL
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
 * If we don't support core dumping, then supply a NULL so we
 | 
						|
 * don't even try.
 | 
						|
 */
 | 
						|
#ifdef CONFIG_ELF_CORE
 | 
						|
static int elf_core_dump(struct coredump_params *cprm);
 | 
						|
#else
 | 
						|
#define elf_core_dump	NULL
 | 
						|
#endif
 | 
						|
 | 
						|
#if ELF_EXEC_PAGESIZE > PAGE_SIZE
 | 
						|
#define ELF_MIN_ALIGN	ELF_EXEC_PAGESIZE
 | 
						|
#else
 | 
						|
#define ELF_MIN_ALIGN	PAGE_SIZE
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef ELF_CORE_EFLAGS
 | 
						|
#define ELF_CORE_EFLAGS	0
 | 
						|
#endif
 | 
						|
 | 
						|
#define ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(ELF_MIN_ALIGN-1))
 | 
						|
#define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1))
 | 
						|
#define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1))
 | 
						|
 | 
						|
static struct linux_binfmt elf_format = {
 | 
						|
	.module		= THIS_MODULE,
 | 
						|
	.load_binary	= load_elf_binary,
 | 
						|
	.load_shlib	= load_elf_library,
 | 
						|
	.core_dump	= elf_core_dump,
 | 
						|
	.min_coredump	= ELF_EXEC_PAGESIZE,
 | 
						|
};
 | 
						|
 | 
						|
#define BAD_ADDR(x) ((unsigned long)(x) >= TASK_SIZE)
 | 
						|
 | 
						|
static int set_brk(unsigned long start, unsigned long end)
 | 
						|
{
 | 
						|
	start = ELF_PAGEALIGN(start);
 | 
						|
	end = ELF_PAGEALIGN(end);
 | 
						|
	if (end > start) {
 | 
						|
		unsigned long addr;
 | 
						|
		addr = vm_brk(start, end - start);
 | 
						|
		if (BAD_ADDR(addr))
 | 
						|
			return addr;
 | 
						|
	}
 | 
						|
	current->mm->start_brk = current->mm->brk = end;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/* We need to explicitly zero any fractional pages
 | 
						|
   after the data section (i.e. bss).  This would
 | 
						|
   contain the junk from the file that should not
 | 
						|
   be in memory
 | 
						|
 */
 | 
						|
static int padzero(unsigned long elf_bss)
 | 
						|
{
 | 
						|
	unsigned long nbyte;
 | 
						|
 | 
						|
	nbyte = ELF_PAGEOFFSET(elf_bss);
 | 
						|
	if (nbyte) {
 | 
						|
		nbyte = ELF_MIN_ALIGN - nbyte;
 | 
						|
		if (clear_user((void __user *) elf_bss, nbyte))
 | 
						|
			return -EFAULT;
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/* Let's use some macros to make this stack manipulation a little clearer */
 | 
						|
#ifdef CONFIG_STACK_GROWSUP
 | 
						|
#define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items))
 | 
						|
#define STACK_ROUND(sp, items) \
 | 
						|
	((15 + (unsigned long) ((sp) + (items))) &~ 15UL)
 | 
						|
#define STACK_ALLOC(sp, len) ({ \
 | 
						|
	elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; \
 | 
						|
	old_sp; })
 | 
						|
#else
 | 
						|
#define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items))
 | 
						|
#define STACK_ROUND(sp, items) \
 | 
						|
	(((unsigned long) (sp - items)) &~ 15UL)
 | 
						|
#define STACK_ALLOC(sp, len) ({ sp -= len ; sp; })
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef ELF_BASE_PLATFORM
 | 
						|
/*
 | 
						|
 * AT_BASE_PLATFORM indicates the "real" hardware/microarchitecture.
 | 
						|
 * If the arch defines ELF_BASE_PLATFORM (in asm/elf.h), the value
 | 
						|
 * will be copied to the user stack in the same manner as AT_PLATFORM.
 | 
						|
 */
 | 
						|
#define ELF_BASE_PLATFORM NULL
 | 
						|
#endif
 | 
						|
 | 
						|
static int
 | 
						|
create_elf_tables(struct linux_binprm *bprm, struct elfhdr *exec,
 | 
						|
		unsigned long load_addr, unsigned long interp_load_addr)
 | 
						|
{
 | 
						|
	unsigned long p = bprm->p;
 | 
						|
	int argc = bprm->argc;
 | 
						|
	int envc = bprm->envc;
 | 
						|
	elf_addr_t __user *argv;
 | 
						|
	elf_addr_t __user *envp;
 | 
						|
	elf_addr_t __user *sp;
 | 
						|
	elf_addr_t __user *u_platform;
 | 
						|
	elf_addr_t __user *u_base_platform;
 | 
						|
	elf_addr_t __user *u_rand_bytes;
 | 
						|
	const char *k_platform = ELF_PLATFORM;
 | 
						|
	const char *k_base_platform = ELF_BASE_PLATFORM;
 | 
						|
	unsigned char k_rand_bytes[16];
 | 
						|
	int items;
 | 
						|
	elf_addr_t *elf_info;
 | 
						|
	int ei_index = 0;
 | 
						|
	const struct cred *cred = current_cred();
 | 
						|
	struct vm_area_struct *vma;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * In some cases (e.g. Hyper-Threading), we want to avoid L1
 | 
						|
	 * evictions by the processes running on the same package. One
 | 
						|
	 * thing we can do is to shuffle the initial stack for them.
 | 
						|
	 */
 | 
						|
 | 
						|
	p = arch_align_stack(p);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If this architecture has a platform capability string, copy it
 | 
						|
	 * to userspace.  In some cases (Sparc), this info is impossible
 | 
						|
	 * for userspace to get any other way, in others (i386) it is
 | 
						|
	 * merely difficult.
 | 
						|
	 */
 | 
						|
	u_platform = NULL;
 | 
						|
	if (k_platform) {
 | 
						|
		size_t len = strlen(k_platform) + 1;
 | 
						|
 | 
						|
		u_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
 | 
						|
		if (__copy_to_user(u_platform, k_platform, len))
 | 
						|
			return -EFAULT;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If this architecture has a "base" platform capability
 | 
						|
	 * string, copy it to userspace.
 | 
						|
	 */
 | 
						|
	u_base_platform = NULL;
 | 
						|
	if (k_base_platform) {
 | 
						|
		size_t len = strlen(k_base_platform) + 1;
 | 
						|
 | 
						|
		u_base_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
 | 
						|
		if (__copy_to_user(u_base_platform, k_base_platform, len))
 | 
						|
			return -EFAULT;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Generate 16 random bytes for userspace PRNG seeding.
 | 
						|
	 */
 | 
						|
	get_random_bytes(k_rand_bytes, sizeof(k_rand_bytes));
 | 
						|
	u_rand_bytes = (elf_addr_t __user *)
 | 
						|
		       STACK_ALLOC(p, sizeof(k_rand_bytes));
 | 
						|
	if (__copy_to_user(u_rand_bytes, k_rand_bytes, sizeof(k_rand_bytes)))
 | 
						|
		return -EFAULT;
 | 
						|
 | 
						|
	/* Create the ELF interpreter info */
 | 
						|
	elf_info = (elf_addr_t *)current->mm->saved_auxv;
 | 
						|
	/* update AT_VECTOR_SIZE_BASE if the number of NEW_AUX_ENT() changes */
 | 
						|
#define NEW_AUX_ENT(id, val) \
 | 
						|
	do { \
 | 
						|
		elf_info[ei_index++] = id; \
 | 
						|
		elf_info[ei_index++] = val; \
 | 
						|
	} while (0)
 | 
						|
 | 
						|
#ifdef ARCH_DLINFO
 | 
						|
	/* 
 | 
						|
	 * ARCH_DLINFO must come first so PPC can do its special alignment of
 | 
						|
	 * AUXV.
 | 
						|
	 * update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT() in
 | 
						|
	 * ARCH_DLINFO changes
 | 
						|
	 */
 | 
						|
	ARCH_DLINFO;
 | 
						|
#endif
 | 
						|
	NEW_AUX_ENT(AT_HWCAP, ELF_HWCAP);
 | 
						|
	NEW_AUX_ENT(AT_PAGESZ, ELF_EXEC_PAGESIZE);
 | 
						|
	NEW_AUX_ENT(AT_CLKTCK, CLOCKS_PER_SEC);
 | 
						|
	NEW_AUX_ENT(AT_PHDR, load_addr + exec->e_phoff);
 | 
						|
	NEW_AUX_ENT(AT_PHENT, sizeof(struct elf_phdr));
 | 
						|
	NEW_AUX_ENT(AT_PHNUM, exec->e_phnum);
 | 
						|
	NEW_AUX_ENT(AT_BASE, interp_load_addr);
 | 
						|
	NEW_AUX_ENT(AT_FLAGS, 0);
 | 
						|
	NEW_AUX_ENT(AT_ENTRY, exec->e_entry);
 | 
						|
	NEW_AUX_ENT(AT_UID, from_kuid_munged(cred->user_ns, cred->uid));
 | 
						|
	NEW_AUX_ENT(AT_EUID, from_kuid_munged(cred->user_ns, cred->euid));
 | 
						|
	NEW_AUX_ENT(AT_GID, from_kgid_munged(cred->user_ns, cred->gid));
 | 
						|
	NEW_AUX_ENT(AT_EGID, from_kgid_munged(cred->user_ns, cred->egid));
 | 
						|
 	NEW_AUX_ENT(AT_SECURE, security_bprm_secureexec(bprm));
 | 
						|
	NEW_AUX_ENT(AT_RANDOM, (elf_addr_t)(unsigned long)u_rand_bytes);
 | 
						|
#ifdef ELF_HWCAP2
 | 
						|
	NEW_AUX_ENT(AT_HWCAP2, ELF_HWCAP2);
 | 
						|
#endif
 | 
						|
	NEW_AUX_ENT(AT_EXECFN, bprm->exec);
 | 
						|
	if (k_platform) {
 | 
						|
		NEW_AUX_ENT(AT_PLATFORM,
 | 
						|
			    (elf_addr_t)(unsigned long)u_platform);
 | 
						|
	}
 | 
						|
	if (k_base_platform) {
 | 
						|
		NEW_AUX_ENT(AT_BASE_PLATFORM,
 | 
						|
			    (elf_addr_t)(unsigned long)u_base_platform);
 | 
						|
	}
 | 
						|
	if (bprm->interp_flags & BINPRM_FLAGS_EXECFD) {
 | 
						|
		NEW_AUX_ENT(AT_EXECFD, bprm->interp_data);
 | 
						|
	}
 | 
						|
#undef NEW_AUX_ENT
 | 
						|
	/* AT_NULL is zero; clear the rest too */
 | 
						|
	memset(&elf_info[ei_index], 0,
 | 
						|
	       sizeof current->mm->saved_auxv - ei_index * sizeof elf_info[0]);
 | 
						|
 | 
						|
	/* And advance past the AT_NULL entry.  */
 | 
						|
	ei_index += 2;
 | 
						|
 | 
						|
	sp = STACK_ADD(p, ei_index);
 | 
						|
 | 
						|
	items = (argc + 1) + (envc + 1) + 1;
 | 
						|
	bprm->p = STACK_ROUND(sp, items);
 | 
						|
 | 
						|
	/* Point sp at the lowest address on the stack */
 | 
						|
#ifdef CONFIG_STACK_GROWSUP
 | 
						|
	sp = (elf_addr_t __user *)bprm->p - items - ei_index;
 | 
						|
	bprm->exec = (unsigned long)sp; /* XXX: PARISC HACK */
 | 
						|
#else
 | 
						|
	sp = (elf_addr_t __user *)bprm->p;
 | 
						|
#endif
 | 
						|
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Grow the stack manually; some architectures have a limit on how
 | 
						|
	 * far ahead a user-space access may be in order to grow the stack.
 | 
						|
	 */
 | 
						|
	vma = find_extend_vma(current->mm, bprm->p);
 | 
						|
	if (!vma)
 | 
						|
		return -EFAULT;
 | 
						|
 | 
						|
	/* Now, let's put argc (and argv, envp if appropriate) on the stack */
 | 
						|
	if (__put_user(argc, sp++))
 | 
						|
		return -EFAULT;
 | 
						|
	argv = sp;
 | 
						|
	envp = argv + argc + 1;
 | 
						|
 | 
						|
	/* Populate argv and envp */
 | 
						|
	p = current->mm->arg_end = current->mm->arg_start;
 | 
						|
	while (argc-- > 0) {
 | 
						|
		size_t len;
 | 
						|
		if (__put_user((elf_addr_t)p, argv++))
 | 
						|
			return -EFAULT;
 | 
						|
		len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
 | 
						|
		if (!len || len > MAX_ARG_STRLEN)
 | 
						|
			return -EINVAL;
 | 
						|
		p += len;
 | 
						|
	}
 | 
						|
	if (__put_user(0, argv))
 | 
						|
		return -EFAULT;
 | 
						|
	current->mm->arg_end = current->mm->env_start = p;
 | 
						|
	while (envc-- > 0) {
 | 
						|
		size_t len;
 | 
						|
		if (__put_user((elf_addr_t)p, envp++))
 | 
						|
			return -EFAULT;
 | 
						|
		len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
 | 
						|
		if (!len || len > MAX_ARG_STRLEN)
 | 
						|
			return -EINVAL;
 | 
						|
		p += len;
 | 
						|
	}
 | 
						|
	if (__put_user(0, envp))
 | 
						|
		return -EFAULT;
 | 
						|
	current->mm->env_end = p;
 | 
						|
 | 
						|
	/* Put the elf_info on the stack in the right place.  */
 | 
						|
	sp = (elf_addr_t __user *)envp + 1;
 | 
						|
	if (copy_to_user(sp, elf_info, ei_index * sizeof(elf_addr_t)))
 | 
						|
		return -EFAULT;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
#ifndef elf_map
 | 
						|
 | 
						|
static unsigned long elf_map(struct file *filep, unsigned long addr,
 | 
						|
		struct elf_phdr *eppnt, int prot, int type,
 | 
						|
		unsigned long total_size)
 | 
						|
{
 | 
						|
	unsigned long map_addr;
 | 
						|
	unsigned long size = eppnt->p_filesz + ELF_PAGEOFFSET(eppnt->p_vaddr);
 | 
						|
	unsigned long off = eppnt->p_offset - ELF_PAGEOFFSET(eppnt->p_vaddr);
 | 
						|
	addr = ELF_PAGESTART(addr);
 | 
						|
	size = ELF_PAGEALIGN(size);
 | 
						|
 | 
						|
	/* mmap() will return -EINVAL if given a zero size, but a
 | 
						|
	 * segment with zero filesize is perfectly valid */
 | 
						|
	if (!size)
 | 
						|
		return addr;
 | 
						|
 | 
						|
	/*
 | 
						|
	* total_size is the size of the ELF (interpreter) image.
 | 
						|
	* The _first_ mmap needs to know the full size, otherwise
 | 
						|
	* randomization might put this image into an overlapping
 | 
						|
	* position with the ELF binary image. (since size < total_size)
 | 
						|
	* So we first map the 'big' image - and unmap the remainder at
 | 
						|
	* the end. (which unmap is needed for ELF images with holes.)
 | 
						|
	*/
 | 
						|
	if (total_size) {
 | 
						|
		total_size = ELF_PAGEALIGN(total_size);
 | 
						|
		map_addr = vm_mmap(filep, addr, total_size, prot, type, off);
 | 
						|
		if (!BAD_ADDR(map_addr))
 | 
						|
			vm_munmap(map_addr+size, total_size-size);
 | 
						|
	} else
 | 
						|
		map_addr = vm_mmap(filep, addr, size, prot, type, off);
 | 
						|
 | 
						|
	return(map_addr);
 | 
						|
}
 | 
						|
 | 
						|
#endif /* !elf_map */
 | 
						|
 | 
						|
static unsigned long total_mapping_size(struct elf_phdr *cmds, int nr)
 | 
						|
{
 | 
						|
	int i, first_idx = -1, last_idx = -1;
 | 
						|
 | 
						|
	for (i = 0; i < nr; i++) {
 | 
						|
		if (cmds[i].p_type == PT_LOAD) {
 | 
						|
			last_idx = i;
 | 
						|
			if (first_idx == -1)
 | 
						|
				first_idx = i;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	if (first_idx == -1)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	return cmds[last_idx].p_vaddr + cmds[last_idx].p_memsz -
 | 
						|
				ELF_PAGESTART(cmds[first_idx].p_vaddr);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * load_elf_phdrs() - load ELF program headers
 | 
						|
 * @elf_ex:   ELF header of the binary whose program headers should be loaded
 | 
						|
 * @elf_file: the opened ELF binary file
 | 
						|
 *
 | 
						|
 * Loads ELF program headers from the binary file elf_file, which has the ELF
 | 
						|
 * header pointed to by elf_ex, into a newly allocated array. The caller is
 | 
						|
 * responsible for freeing the allocated data. Returns an ERR_PTR upon failure.
 | 
						|
 */
 | 
						|
static struct elf_phdr *load_elf_phdrs(struct elfhdr *elf_ex,
 | 
						|
				       struct file *elf_file)
 | 
						|
{
 | 
						|
	struct elf_phdr *elf_phdata = NULL;
 | 
						|
	int retval, size, err = -1;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If the size of this structure has changed, then punt, since
 | 
						|
	 * we will be doing the wrong thing.
 | 
						|
	 */
 | 
						|
	if (elf_ex->e_phentsize != sizeof(struct elf_phdr))
 | 
						|
		goto out;
 | 
						|
 | 
						|
	/* Sanity check the number of program headers... */
 | 
						|
	if (elf_ex->e_phnum < 1 ||
 | 
						|
		elf_ex->e_phnum > 65536U / sizeof(struct elf_phdr))
 | 
						|
		goto out;
 | 
						|
 | 
						|
	/* ...and their total size. */
 | 
						|
	size = sizeof(struct elf_phdr) * elf_ex->e_phnum;
 | 
						|
	if (size > ELF_MIN_ALIGN)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	elf_phdata = kmalloc(size, GFP_KERNEL);
 | 
						|
	if (!elf_phdata)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	/* Read in the program headers */
 | 
						|
	retval = kernel_read(elf_file, elf_ex->e_phoff,
 | 
						|
			     (char *)elf_phdata, size);
 | 
						|
	if (retval != size) {
 | 
						|
		err = (retval < 0) ? retval : -EIO;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Success! */
 | 
						|
	err = 0;
 | 
						|
out:
 | 
						|
	if (err) {
 | 
						|
		kfree(elf_phdata);
 | 
						|
		elf_phdata = NULL;
 | 
						|
	}
 | 
						|
	return elf_phdata;
 | 
						|
}
 | 
						|
 | 
						|
#ifndef CONFIG_ARCH_BINFMT_ELF_STATE
 | 
						|
 | 
						|
/**
 | 
						|
 * struct arch_elf_state - arch-specific ELF loading state
 | 
						|
 *
 | 
						|
 * This structure is used to preserve architecture specific data during
 | 
						|
 * the loading of an ELF file, throughout the checking of architecture
 | 
						|
 * specific ELF headers & through to the point where the ELF load is
 | 
						|
 * known to be proceeding (ie. SET_PERSONALITY).
 | 
						|
 *
 | 
						|
 * This implementation is a dummy for architectures which require no
 | 
						|
 * specific state.
 | 
						|
 */
 | 
						|
struct arch_elf_state {
 | 
						|
};
 | 
						|
 | 
						|
#define INIT_ARCH_ELF_STATE {}
 | 
						|
 | 
						|
/**
 | 
						|
 * arch_elf_pt_proc() - check a PT_LOPROC..PT_HIPROC ELF program header
 | 
						|
 * @ehdr:	The main ELF header
 | 
						|
 * @phdr:	The program header to check
 | 
						|
 * @elf:	The open ELF file
 | 
						|
 * @is_interp:	True if the phdr is from the interpreter of the ELF being
 | 
						|
 *		loaded, else false.
 | 
						|
 * @state:	Architecture-specific state preserved throughout the process
 | 
						|
 *		of loading the ELF.
 | 
						|
 *
 | 
						|
 * Inspects the program header phdr to validate its correctness and/or
 | 
						|
 * suitability for the system. Called once per ELF program header in the
 | 
						|
 * range PT_LOPROC to PT_HIPROC, for both the ELF being loaded and its
 | 
						|
 * interpreter.
 | 
						|
 *
 | 
						|
 * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load
 | 
						|
 *         with that return code.
 | 
						|
 */
 | 
						|
static inline int arch_elf_pt_proc(struct elfhdr *ehdr,
 | 
						|
				   struct elf_phdr *phdr,
 | 
						|
				   struct file *elf, bool is_interp,
 | 
						|
				   struct arch_elf_state *state)
 | 
						|
{
 | 
						|
	/* Dummy implementation, always proceed */
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * arch_check_elf() - check a PT_LOPROC..PT_HIPROC ELF program header
 | 
						|
 * @ehdr:	The main ELF header
 | 
						|
 * @has_interp:	True if the ELF has an interpreter, else false.
 | 
						|
 * @state:	Architecture-specific state preserved throughout the process
 | 
						|
 *		of loading the ELF.
 | 
						|
 *
 | 
						|
 * Provides a final opportunity for architecture code to reject the loading
 | 
						|
 * of the ELF & cause an exec syscall to return an error. This is called after
 | 
						|
 * all program headers to be checked by arch_elf_pt_proc have been.
 | 
						|
 *
 | 
						|
 * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load
 | 
						|
 *         with that return code.
 | 
						|
 */
 | 
						|
static inline int arch_check_elf(struct elfhdr *ehdr, bool has_interp,
 | 
						|
				 struct arch_elf_state *state)
 | 
						|
{
 | 
						|
	/* Dummy implementation, always proceed */
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
#endif /* !CONFIG_ARCH_BINFMT_ELF_STATE */
 | 
						|
 | 
						|
/* This is much more generalized than the library routine read function,
 | 
						|
   so we keep this separate.  Technically the library read function
 | 
						|
   is only provided so that we can read a.out libraries that have
 | 
						|
   an ELF header */
 | 
						|
 | 
						|
static unsigned long load_elf_interp(struct elfhdr *interp_elf_ex,
 | 
						|
		struct file *interpreter, unsigned long *interp_map_addr,
 | 
						|
		unsigned long no_base, struct elf_phdr *interp_elf_phdata)
 | 
						|
{
 | 
						|
	struct elf_phdr *eppnt;
 | 
						|
	unsigned long load_addr = 0;
 | 
						|
	int load_addr_set = 0;
 | 
						|
	unsigned long last_bss = 0, elf_bss = 0;
 | 
						|
	unsigned long error = ~0UL;
 | 
						|
	unsigned long total_size;
 | 
						|
	int i;
 | 
						|
 | 
						|
	/* First of all, some simple consistency checks */
 | 
						|
	if (interp_elf_ex->e_type != ET_EXEC &&
 | 
						|
	    interp_elf_ex->e_type != ET_DYN)
 | 
						|
		goto out;
 | 
						|
	if (!elf_check_arch(interp_elf_ex))
 | 
						|
		goto out;
 | 
						|
	if (!interpreter->f_op->mmap)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	total_size = total_mapping_size(interp_elf_phdata,
 | 
						|
					interp_elf_ex->e_phnum);
 | 
						|
	if (!total_size) {
 | 
						|
		error = -EINVAL;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	eppnt = interp_elf_phdata;
 | 
						|
	for (i = 0; i < interp_elf_ex->e_phnum; i++, eppnt++) {
 | 
						|
		if (eppnt->p_type == PT_LOAD) {
 | 
						|
			int elf_type = MAP_PRIVATE | MAP_DENYWRITE;
 | 
						|
			int elf_prot = 0;
 | 
						|
			unsigned long vaddr = 0;
 | 
						|
			unsigned long k, map_addr;
 | 
						|
 | 
						|
			if (eppnt->p_flags & PF_R)
 | 
						|
		    		elf_prot = PROT_READ;
 | 
						|
			if (eppnt->p_flags & PF_W)
 | 
						|
				elf_prot |= PROT_WRITE;
 | 
						|
			if (eppnt->p_flags & PF_X)
 | 
						|
				elf_prot |= PROT_EXEC;
 | 
						|
			vaddr = eppnt->p_vaddr;
 | 
						|
			if (interp_elf_ex->e_type == ET_EXEC || load_addr_set)
 | 
						|
				elf_type |= MAP_FIXED;
 | 
						|
			else if (no_base && interp_elf_ex->e_type == ET_DYN)
 | 
						|
				load_addr = -vaddr;
 | 
						|
 | 
						|
			map_addr = elf_map(interpreter, load_addr + vaddr,
 | 
						|
					eppnt, elf_prot, elf_type, total_size);
 | 
						|
			total_size = 0;
 | 
						|
			if (!*interp_map_addr)
 | 
						|
				*interp_map_addr = map_addr;
 | 
						|
			error = map_addr;
 | 
						|
			if (BAD_ADDR(map_addr))
 | 
						|
				goto out;
 | 
						|
 | 
						|
			if (!load_addr_set &&
 | 
						|
			    interp_elf_ex->e_type == ET_DYN) {
 | 
						|
				load_addr = map_addr - ELF_PAGESTART(vaddr);
 | 
						|
				load_addr_set = 1;
 | 
						|
			}
 | 
						|
 | 
						|
			/*
 | 
						|
			 * Check to see if the section's size will overflow the
 | 
						|
			 * allowed task size. Note that p_filesz must always be
 | 
						|
			 * <= p_memsize so it's only necessary to check p_memsz.
 | 
						|
			 */
 | 
						|
			k = load_addr + eppnt->p_vaddr;
 | 
						|
			if (BAD_ADDR(k) ||
 | 
						|
			    eppnt->p_filesz > eppnt->p_memsz ||
 | 
						|
			    eppnt->p_memsz > TASK_SIZE ||
 | 
						|
			    TASK_SIZE - eppnt->p_memsz < k) {
 | 
						|
				error = -ENOMEM;
 | 
						|
				goto out;
 | 
						|
			}
 | 
						|
 | 
						|
			/*
 | 
						|
			 * Find the end of the file mapping for this phdr, and
 | 
						|
			 * keep track of the largest address we see for this.
 | 
						|
			 */
 | 
						|
			k = load_addr + eppnt->p_vaddr + eppnt->p_filesz;
 | 
						|
			if (k > elf_bss)
 | 
						|
				elf_bss = k;
 | 
						|
 | 
						|
			/*
 | 
						|
			 * Do the same thing for the memory mapping - between
 | 
						|
			 * elf_bss and last_bss is the bss section.
 | 
						|
			 */
 | 
						|
			k = load_addr + eppnt->p_memsz + eppnt->p_vaddr;
 | 
						|
			if (k > last_bss)
 | 
						|
				last_bss = k;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if (last_bss > elf_bss) {
 | 
						|
		/*
 | 
						|
		 * Now fill out the bss section.  First pad the last page up
 | 
						|
		 * to the page boundary, and then perform a mmap to make sure
 | 
						|
		 * that there are zero-mapped pages up to and including the
 | 
						|
		 * last bss page.
 | 
						|
		 */
 | 
						|
		if (padzero(elf_bss)) {
 | 
						|
			error = -EFAULT;
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
 | 
						|
		/* What we have mapped so far */
 | 
						|
		elf_bss = ELF_PAGESTART(elf_bss + ELF_MIN_ALIGN - 1);
 | 
						|
 | 
						|
		/* Map the last of the bss segment */
 | 
						|
		error = vm_brk(elf_bss, last_bss - elf_bss);
 | 
						|
		if (BAD_ADDR(error))
 | 
						|
			goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	error = load_addr;
 | 
						|
out:
 | 
						|
	return error;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * These are the functions used to load ELF style executables and shared
 | 
						|
 * libraries.  There is no binary dependent code anywhere else.
 | 
						|
 */
 | 
						|
 | 
						|
#ifndef STACK_RND_MASK
 | 
						|
#define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12))	/* 8MB of VA */
 | 
						|
#endif
 | 
						|
 | 
						|
static unsigned long randomize_stack_top(unsigned long stack_top)
 | 
						|
{
 | 
						|
	unsigned int random_variable = 0;
 | 
						|
 | 
						|
	if ((current->flags & PF_RANDOMIZE) &&
 | 
						|
		!(current->personality & ADDR_NO_RANDOMIZE)) {
 | 
						|
		random_variable = get_random_int() & STACK_RND_MASK;
 | 
						|
		random_variable <<= PAGE_SHIFT;
 | 
						|
	}
 | 
						|
#ifdef CONFIG_STACK_GROWSUP
 | 
						|
	return PAGE_ALIGN(stack_top) + random_variable;
 | 
						|
#else
 | 
						|
	return PAGE_ALIGN(stack_top) - random_variable;
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
static int load_elf_binary(struct linux_binprm *bprm)
 | 
						|
{
 | 
						|
	struct file *interpreter = NULL; /* to shut gcc up */
 | 
						|
 	unsigned long load_addr = 0, load_bias = 0;
 | 
						|
	int load_addr_set = 0;
 | 
						|
	char * elf_interpreter = NULL;
 | 
						|
	unsigned long error;
 | 
						|
	struct elf_phdr *elf_ppnt, *elf_phdata, *interp_elf_phdata = NULL;
 | 
						|
	unsigned long elf_bss, elf_brk;
 | 
						|
	int retval, i;
 | 
						|
	unsigned long elf_entry;
 | 
						|
	unsigned long interp_load_addr = 0;
 | 
						|
	unsigned long start_code, end_code, start_data, end_data;
 | 
						|
	unsigned long reloc_func_desc __maybe_unused = 0;
 | 
						|
	int executable_stack = EXSTACK_DEFAULT;
 | 
						|
	struct pt_regs *regs = current_pt_regs();
 | 
						|
	struct {
 | 
						|
		struct elfhdr elf_ex;
 | 
						|
		struct elfhdr interp_elf_ex;
 | 
						|
	} *loc;
 | 
						|
	struct arch_elf_state arch_state = INIT_ARCH_ELF_STATE;
 | 
						|
 | 
						|
	loc = kmalloc(sizeof(*loc), GFP_KERNEL);
 | 
						|
	if (!loc) {
 | 
						|
		retval = -ENOMEM;
 | 
						|
		goto out_ret;
 | 
						|
	}
 | 
						|
	
 | 
						|
	/* Get the exec-header */
 | 
						|
	loc->elf_ex = *((struct elfhdr *)bprm->buf);
 | 
						|
 | 
						|
	retval = -ENOEXEC;
 | 
						|
	/* First of all, some simple consistency checks */
 | 
						|
	if (memcmp(loc->elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	if (loc->elf_ex.e_type != ET_EXEC && loc->elf_ex.e_type != ET_DYN)
 | 
						|
		goto out;
 | 
						|
	if (!elf_check_arch(&loc->elf_ex))
 | 
						|
		goto out;
 | 
						|
	if (!bprm->file->f_op->mmap)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	elf_phdata = load_elf_phdrs(&loc->elf_ex, bprm->file);
 | 
						|
	if (!elf_phdata)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	elf_ppnt = elf_phdata;
 | 
						|
	elf_bss = 0;
 | 
						|
	elf_brk = 0;
 | 
						|
 | 
						|
	start_code = ~0UL;
 | 
						|
	end_code = 0;
 | 
						|
	start_data = 0;
 | 
						|
	end_data = 0;
 | 
						|
 | 
						|
	for (i = 0; i < loc->elf_ex.e_phnum; i++) {
 | 
						|
		if (elf_ppnt->p_type == PT_INTERP) {
 | 
						|
			/* This is the program interpreter used for
 | 
						|
			 * shared libraries - for now assume that this
 | 
						|
			 * is an a.out format binary
 | 
						|
			 */
 | 
						|
			retval = -ENOEXEC;
 | 
						|
			if (elf_ppnt->p_filesz > PATH_MAX || 
 | 
						|
			    elf_ppnt->p_filesz < 2)
 | 
						|
				goto out_free_ph;
 | 
						|
 | 
						|
			retval = -ENOMEM;
 | 
						|
			elf_interpreter = kmalloc(elf_ppnt->p_filesz,
 | 
						|
						  GFP_KERNEL);
 | 
						|
			if (!elf_interpreter)
 | 
						|
				goto out_free_ph;
 | 
						|
 | 
						|
			retval = kernel_read(bprm->file, elf_ppnt->p_offset,
 | 
						|
					     elf_interpreter,
 | 
						|
					     elf_ppnt->p_filesz);
 | 
						|
			if (retval != elf_ppnt->p_filesz) {
 | 
						|
				if (retval >= 0)
 | 
						|
					retval = -EIO;
 | 
						|
				goto out_free_interp;
 | 
						|
			}
 | 
						|
			/* make sure path is NULL terminated */
 | 
						|
			retval = -ENOEXEC;
 | 
						|
			if (elf_interpreter[elf_ppnt->p_filesz - 1] != '\0')
 | 
						|
				goto out_free_interp;
 | 
						|
 | 
						|
			interpreter = open_exec(elf_interpreter);
 | 
						|
			retval = PTR_ERR(interpreter);
 | 
						|
			if (IS_ERR(interpreter))
 | 
						|
				goto out_free_interp;
 | 
						|
 | 
						|
			/*
 | 
						|
			 * If the binary is not readable then enforce
 | 
						|
			 * mm->dumpable = 0 regardless of the interpreter's
 | 
						|
			 * permissions.
 | 
						|
			 */
 | 
						|
			would_dump(bprm, interpreter);
 | 
						|
 | 
						|
			retval = kernel_read(interpreter, 0, bprm->buf,
 | 
						|
					     BINPRM_BUF_SIZE);
 | 
						|
			if (retval != BINPRM_BUF_SIZE) {
 | 
						|
				if (retval >= 0)
 | 
						|
					retval = -EIO;
 | 
						|
				goto out_free_dentry;
 | 
						|
			}
 | 
						|
 | 
						|
			/* Get the exec headers */
 | 
						|
			loc->interp_elf_ex = *((struct elfhdr *)bprm->buf);
 | 
						|
			break;
 | 
						|
		}
 | 
						|
		elf_ppnt++;
 | 
						|
	}
 | 
						|
 | 
						|
	elf_ppnt = elf_phdata;
 | 
						|
	for (i = 0; i < loc->elf_ex.e_phnum; i++, elf_ppnt++)
 | 
						|
		switch (elf_ppnt->p_type) {
 | 
						|
		case PT_GNU_STACK:
 | 
						|
			if (elf_ppnt->p_flags & PF_X)
 | 
						|
				executable_stack = EXSTACK_ENABLE_X;
 | 
						|
			else
 | 
						|
				executable_stack = EXSTACK_DISABLE_X;
 | 
						|
			break;
 | 
						|
 | 
						|
		case PT_LOPROC ... PT_HIPROC:
 | 
						|
			retval = arch_elf_pt_proc(&loc->elf_ex, elf_ppnt,
 | 
						|
						  bprm->file, false,
 | 
						|
						  &arch_state);
 | 
						|
			if (retval)
 | 
						|
				goto out_free_dentry;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
 | 
						|
	/* Some simple consistency checks for the interpreter */
 | 
						|
	if (elf_interpreter) {
 | 
						|
		retval = -ELIBBAD;
 | 
						|
		/* Not an ELF interpreter */
 | 
						|
		if (memcmp(loc->interp_elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
 | 
						|
			goto out_free_dentry;
 | 
						|
		/* Verify the interpreter has a valid arch */
 | 
						|
		if (!elf_check_arch(&loc->interp_elf_ex))
 | 
						|
			goto out_free_dentry;
 | 
						|
 | 
						|
		/* Load the interpreter program headers */
 | 
						|
		interp_elf_phdata = load_elf_phdrs(&loc->interp_elf_ex,
 | 
						|
						   interpreter);
 | 
						|
		if (!interp_elf_phdata)
 | 
						|
			goto out_free_dentry;
 | 
						|
 | 
						|
		/* Pass PT_LOPROC..PT_HIPROC headers to arch code */
 | 
						|
		elf_ppnt = interp_elf_phdata;
 | 
						|
		for (i = 0; i < loc->interp_elf_ex.e_phnum; i++, elf_ppnt++)
 | 
						|
			switch (elf_ppnt->p_type) {
 | 
						|
			case PT_LOPROC ... PT_HIPROC:
 | 
						|
				retval = arch_elf_pt_proc(&loc->interp_elf_ex,
 | 
						|
							  elf_ppnt, interpreter,
 | 
						|
							  true, &arch_state);
 | 
						|
				if (retval)
 | 
						|
					goto out_free_dentry;
 | 
						|
				break;
 | 
						|
			}
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Allow arch code to reject the ELF at this point, whilst it's
 | 
						|
	 * still possible to return an error to the code that invoked
 | 
						|
	 * the exec syscall.
 | 
						|
	 */
 | 
						|
	retval = arch_check_elf(&loc->elf_ex, !!interpreter, &arch_state);
 | 
						|
	if (retval)
 | 
						|
		goto out_free_dentry;
 | 
						|
 | 
						|
	/* Flush all traces of the currently running executable */
 | 
						|
	retval = flush_old_exec(bprm);
 | 
						|
	if (retval)
 | 
						|
		goto out_free_dentry;
 | 
						|
 | 
						|
	/* Do this immediately, since STACK_TOP as used in setup_arg_pages
 | 
						|
	   may depend on the personality.  */
 | 
						|
	SET_PERSONALITY2(loc->elf_ex, &arch_state);
 | 
						|
	if (elf_read_implies_exec(loc->elf_ex, executable_stack))
 | 
						|
		current->personality |= READ_IMPLIES_EXEC;
 | 
						|
 | 
						|
	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
 | 
						|
		current->flags |= PF_RANDOMIZE;
 | 
						|
 | 
						|
	setup_new_exec(bprm);
 | 
						|
 | 
						|
	/* Do this so that we can load the interpreter, if need be.  We will
 | 
						|
	   change some of these later */
 | 
						|
	retval = setup_arg_pages(bprm, randomize_stack_top(STACK_TOP),
 | 
						|
				 executable_stack);
 | 
						|
	if (retval < 0)
 | 
						|
		goto out_free_dentry;
 | 
						|
	
 | 
						|
	current->mm->start_stack = bprm->p;
 | 
						|
 | 
						|
	/* Now we do a little grungy work by mmapping the ELF image into
 | 
						|
	   the correct location in memory. */
 | 
						|
	for(i = 0, elf_ppnt = elf_phdata;
 | 
						|
	    i < loc->elf_ex.e_phnum; i++, elf_ppnt++) {
 | 
						|
		int elf_prot = 0, elf_flags;
 | 
						|
		unsigned long k, vaddr;
 | 
						|
 | 
						|
		if (elf_ppnt->p_type != PT_LOAD)
 | 
						|
			continue;
 | 
						|
 | 
						|
		if (unlikely (elf_brk > elf_bss)) {
 | 
						|
			unsigned long nbyte;
 | 
						|
	            
 | 
						|
			/* There was a PT_LOAD segment with p_memsz > p_filesz
 | 
						|
			   before this one. Map anonymous pages, if needed,
 | 
						|
			   and clear the area.  */
 | 
						|
			retval = set_brk(elf_bss + load_bias,
 | 
						|
					 elf_brk + load_bias);
 | 
						|
			if (retval)
 | 
						|
				goto out_free_dentry;
 | 
						|
			nbyte = ELF_PAGEOFFSET(elf_bss);
 | 
						|
			if (nbyte) {
 | 
						|
				nbyte = ELF_MIN_ALIGN - nbyte;
 | 
						|
				if (nbyte > elf_brk - elf_bss)
 | 
						|
					nbyte = elf_brk - elf_bss;
 | 
						|
				if (clear_user((void __user *)elf_bss +
 | 
						|
							load_bias, nbyte)) {
 | 
						|
					/*
 | 
						|
					 * This bss-zeroing can fail if the ELF
 | 
						|
					 * file specifies odd protections. So
 | 
						|
					 * we don't check the return value
 | 
						|
					 */
 | 
						|
				}
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		if (elf_ppnt->p_flags & PF_R)
 | 
						|
			elf_prot |= PROT_READ;
 | 
						|
		if (elf_ppnt->p_flags & PF_W)
 | 
						|
			elf_prot |= PROT_WRITE;
 | 
						|
		if (elf_ppnt->p_flags & PF_X)
 | 
						|
			elf_prot |= PROT_EXEC;
 | 
						|
 | 
						|
		elf_flags = MAP_PRIVATE | MAP_DENYWRITE | MAP_EXECUTABLE;
 | 
						|
 | 
						|
		vaddr = elf_ppnt->p_vaddr;
 | 
						|
		if (loc->elf_ex.e_type == ET_EXEC || load_addr_set) {
 | 
						|
			elf_flags |= MAP_FIXED;
 | 
						|
		} else if (loc->elf_ex.e_type == ET_DYN) {
 | 
						|
			/* Try and get dynamic programs out of the way of the
 | 
						|
			 * default mmap base, as well as whatever program they
 | 
						|
			 * might try to exec.  This is because the brk will
 | 
						|
			 * follow the loader, and is not movable.  */
 | 
						|
#ifdef CONFIG_ARCH_BINFMT_ELF_RANDOMIZE_PIE
 | 
						|
			/* Memory randomization might have been switched off
 | 
						|
			 * in runtime via sysctl or explicit setting of
 | 
						|
			 * personality flags.
 | 
						|
			 * If that is the case, retain the original non-zero
 | 
						|
			 * load_bias value in order to establish proper
 | 
						|
			 * non-randomized mappings.
 | 
						|
			 */
 | 
						|
			if (current->flags & PF_RANDOMIZE)
 | 
						|
				load_bias = 0;
 | 
						|
			else
 | 
						|
				load_bias = ELF_PAGESTART(ELF_ET_DYN_BASE - vaddr);
 | 
						|
#else
 | 
						|
			load_bias = ELF_PAGESTART(ELF_ET_DYN_BASE - vaddr);
 | 
						|
#endif
 | 
						|
		}
 | 
						|
 | 
						|
		error = elf_map(bprm->file, load_bias + vaddr, elf_ppnt,
 | 
						|
				elf_prot, elf_flags, 0);
 | 
						|
		if (BAD_ADDR(error)) {
 | 
						|
			retval = IS_ERR((void *)error) ?
 | 
						|
				PTR_ERR((void*)error) : -EINVAL;
 | 
						|
			goto out_free_dentry;
 | 
						|
		}
 | 
						|
 | 
						|
		if (!load_addr_set) {
 | 
						|
			load_addr_set = 1;
 | 
						|
			load_addr = (elf_ppnt->p_vaddr - elf_ppnt->p_offset);
 | 
						|
			if (loc->elf_ex.e_type == ET_DYN) {
 | 
						|
				load_bias += error -
 | 
						|
				             ELF_PAGESTART(load_bias + vaddr);
 | 
						|
				load_addr += load_bias;
 | 
						|
				reloc_func_desc = load_bias;
 | 
						|
			}
 | 
						|
		}
 | 
						|
		k = elf_ppnt->p_vaddr;
 | 
						|
		if (k < start_code)
 | 
						|
			start_code = k;
 | 
						|
		if (start_data < k)
 | 
						|
			start_data = k;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Check to see if the section's size will overflow the
 | 
						|
		 * allowed task size. Note that p_filesz must always be
 | 
						|
		 * <= p_memsz so it is only necessary to check p_memsz.
 | 
						|
		 */
 | 
						|
		if (BAD_ADDR(k) || elf_ppnt->p_filesz > elf_ppnt->p_memsz ||
 | 
						|
		    elf_ppnt->p_memsz > TASK_SIZE ||
 | 
						|
		    TASK_SIZE - elf_ppnt->p_memsz < k) {
 | 
						|
			/* set_brk can never work. Avoid overflows. */
 | 
						|
			retval = -EINVAL;
 | 
						|
			goto out_free_dentry;
 | 
						|
		}
 | 
						|
 | 
						|
		k = elf_ppnt->p_vaddr + elf_ppnt->p_filesz;
 | 
						|
 | 
						|
		if (k > elf_bss)
 | 
						|
			elf_bss = k;
 | 
						|
		if ((elf_ppnt->p_flags & PF_X) && end_code < k)
 | 
						|
			end_code = k;
 | 
						|
		if (end_data < k)
 | 
						|
			end_data = k;
 | 
						|
		k = elf_ppnt->p_vaddr + elf_ppnt->p_memsz;
 | 
						|
		if (k > elf_brk)
 | 
						|
			elf_brk = k;
 | 
						|
	}
 | 
						|
 | 
						|
	loc->elf_ex.e_entry += load_bias;
 | 
						|
	elf_bss += load_bias;
 | 
						|
	elf_brk += load_bias;
 | 
						|
	start_code += load_bias;
 | 
						|
	end_code += load_bias;
 | 
						|
	start_data += load_bias;
 | 
						|
	end_data += load_bias;
 | 
						|
 | 
						|
	/* Calling set_brk effectively mmaps the pages that we need
 | 
						|
	 * for the bss and break sections.  We must do this before
 | 
						|
	 * mapping in the interpreter, to make sure it doesn't wind
 | 
						|
	 * up getting placed where the bss needs to go.
 | 
						|
	 */
 | 
						|
	retval = set_brk(elf_bss, elf_brk);
 | 
						|
	if (retval)
 | 
						|
		goto out_free_dentry;
 | 
						|
	if (likely(elf_bss != elf_brk) && unlikely(padzero(elf_bss))) {
 | 
						|
		retval = -EFAULT; /* Nobody gets to see this, but.. */
 | 
						|
		goto out_free_dentry;
 | 
						|
	}
 | 
						|
 | 
						|
	if (elf_interpreter) {
 | 
						|
		unsigned long interp_map_addr = 0;
 | 
						|
 | 
						|
		elf_entry = load_elf_interp(&loc->interp_elf_ex,
 | 
						|
					    interpreter,
 | 
						|
					    &interp_map_addr,
 | 
						|
					    load_bias, interp_elf_phdata);
 | 
						|
		if (!IS_ERR((void *)elf_entry)) {
 | 
						|
			/*
 | 
						|
			 * load_elf_interp() returns relocation
 | 
						|
			 * adjustment
 | 
						|
			 */
 | 
						|
			interp_load_addr = elf_entry;
 | 
						|
			elf_entry += loc->interp_elf_ex.e_entry;
 | 
						|
		}
 | 
						|
		if (BAD_ADDR(elf_entry)) {
 | 
						|
			retval = IS_ERR((void *)elf_entry) ?
 | 
						|
					(int)elf_entry : -EINVAL;
 | 
						|
			goto out_free_dentry;
 | 
						|
		}
 | 
						|
		reloc_func_desc = interp_load_addr;
 | 
						|
 | 
						|
		allow_write_access(interpreter);
 | 
						|
		fput(interpreter);
 | 
						|
		kfree(elf_interpreter);
 | 
						|
	} else {
 | 
						|
		elf_entry = loc->elf_ex.e_entry;
 | 
						|
		if (BAD_ADDR(elf_entry)) {
 | 
						|
			retval = -EINVAL;
 | 
						|
			goto out_free_dentry;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	kfree(interp_elf_phdata);
 | 
						|
	kfree(elf_phdata);
 | 
						|
 | 
						|
	set_binfmt(&elf_format);
 | 
						|
 | 
						|
#ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGES
 | 
						|
	retval = arch_setup_additional_pages(bprm, !!elf_interpreter);
 | 
						|
	if (retval < 0)
 | 
						|
		goto out;
 | 
						|
#endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */
 | 
						|
 | 
						|
	install_exec_creds(bprm);
 | 
						|
	retval = create_elf_tables(bprm, &loc->elf_ex,
 | 
						|
			  load_addr, interp_load_addr);
 | 
						|
	if (retval < 0)
 | 
						|
		goto out;
 | 
						|
	/* N.B. passed_fileno might not be initialized? */
 | 
						|
	current->mm->end_code = end_code;
 | 
						|
	current->mm->start_code = start_code;
 | 
						|
	current->mm->start_data = start_data;
 | 
						|
	current->mm->end_data = end_data;
 | 
						|
	current->mm->start_stack = bprm->p;
 | 
						|
 | 
						|
#ifdef arch_randomize_brk
 | 
						|
	if ((current->flags & PF_RANDOMIZE) && (randomize_va_space > 1)) {
 | 
						|
		current->mm->brk = current->mm->start_brk =
 | 
						|
			arch_randomize_brk(current->mm);
 | 
						|
#ifdef CONFIG_COMPAT_BRK
 | 
						|
		current->brk_randomized = 1;
 | 
						|
#endif
 | 
						|
	}
 | 
						|
#endif
 | 
						|
 | 
						|
	if (current->personality & MMAP_PAGE_ZERO) {
 | 
						|
		/* Why this, you ask???  Well SVr4 maps page 0 as read-only,
 | 
						|
		   and some applications "depend" upon this behavior.
 | 
						|
		   Since we do not have the power to recompile these, we
 | 
						|
		   emulate the SVr4 behavior. Sigh. */
 | 
						|
		error = vm_mmap(NULL, 0, PAGE_SIZE, PROT_READ | PROT_EXEC,
 | 
						|
				MAP_FIXED | MAP_PRIVATE, 0);
 | 
						|
	}
 | 
						|
 | 
						|
#ifdef ELF_PLAT_INIT
 | 
						|
	/*
 | 
						|
	 * The ABI may specify that certain registers be set up in special
 | 
						|
	 * ways (on i386 %edx is the address of a DT_FINI function, for
 | 
						|
	 * example.  In addition, it may also specify (eg, PowerPC64 ELF)
 | 
						|
	 * that the e_entry field is the address of the function descriptor
 | 
						|
	 * for the startup routine, rather than the address of the startup
 | 
						|
	 * routine itself.  This macro performs whatever initialization to
 | 
						|
	 * the regs structure is required as well as any relocations to the
 | 
						|
	 * function descriptor entries when executing dynamically links apps.
 | 
						|
	 */
 | 
						|
	ELF_PLAT_INIT(regs, reloc_func_desc);
 | 
						|
#endif
 | 
						|
 | 
						|
	start_thread(regs, elf_entry, bprm->p);
 | 
						|
	retval = 0;
 | 
						|
out:
 | 
						|
	kfree(loc);
 | 
						|
out_ret:
 | 
						|
	return retval;
 | 
						|
 | 
						|
	/* error cleanup */
 | 
						|
out_free_dentry:
 | 
						|
	kfree(interp_elf_phdata);
 | 
						|
	allow_write_access(interpreter);
 | 
						|
	if (interpreter)
 | 
						|
		fput(interpreter);
 | 
						|
out_free_interp:
 | 
						|
	kfree(elf_interpreter);
 | 
						|
out_free_ph:
 | 
						|
	kfree(elf_phdata);
 | 
						|
	goto out;
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_USELIB
 | 
						|
/* This is really simpleminded and specialized - we are loading an
 | 
						|
   a.out library that is given an ELF header. */
 | 
						|
static int load_elf_library(struct file *file)
 | 
						|
{
 | 
						|
	struct elf_phdr *elf_phdata;
 | 
						|
	struct elf_phdr *eppnt;
 | 
						|
	unsigned long elf_bss, bss, len;
 | 
						|
	int retval, error, i, j;
 | 
						|
	struct elfhdr elf_ex;
 | 
						|
 | 
						|
	error = -ENOEXEC;
 | 
						|
	retval = kernel_read(file, 0, (char *)&elf_ex, sizeof(elf_ex));
 | 
						|
	if (retval != sizeof(elf_ex))
 | 
						|
		goto out;
 | 
						|
 | 
						|
	if (memcmp(elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	/* First of all, some simple consistency checks */
 | 
						|
	if (elf_ex.e_type != ET_EXEC || elf_ex.e_phnum > 2 ||
 | 
						|
	    !elf_check_arch(&elf_ex) || !file->f_op->mmap)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	/* Now read in all of the header information */
 | 
						|
 | 
						|
	j = sizeof(struct elf_phdr) * elf_ex.e_phnum;
 | 
						|
	/* j < ELF_MIN_ALIGN because elf_ex.e_phnum <= 2 */
 | 
						|
 | 
						|
	error = -ENOMEM;
 | 
						|
	elf_phdata = kmalloc(j, GFP_KERNEL);
 | 
						|
	if (!elf_phdata)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	eppnt = elf_phdata;
 | 
						|
	error = -ENOEXEC;
 | 
						|
	retval = kernel_read(file, elf_ex.e_phoff, (char *)eppnt, j);
 | 
						|
	if (retval != j)
 | 
						|
		goto out_free_ph;
 | 
						|
 | 
						|
	for (j = 0, i = 0; i<elf_ex.e_phnum; i++)
 | 
						|
		if ((eppnt + i)->p_type == PT_LOAD)
 | 
						|
			j++;
 | 
						|
	if (j != 1)
 | 
						|
		goto out_free_ph;
 | 
						|
 | 
						|
	while (eppnt->p_type != PT_LOAD)
 | 
						|
		eppnt++;
 | 
						|
 | 
						|
	/* Now use mmap to map the library into memory. */
 | 
						|
	error = vm_mmap(file,
 | 
						|
			ELF_PAGESTART(eppnt->p_vaddr),
 | 
						|
			(eppnt->p_filesz +
 | 
						|
			 ELF_PAGEOFFSET(eppnt->p_vaddr)),
 | 
						|
			PROT_READ | PROT_WRITE | PROT_EXEC,
 | 
						|
			MAP_FIXED | MAP_PRIVATE | MAP_DENYWRITE,
 | 
						|
			(eppnt->p_offset -
 | 
						|
			 ELF_PAGEOFFSET(eppnt->p_vaddr)));
 | 
						|
	if (error != ELF_PAGESTART(eppnt->p_vaddr))
 | 
						|
		goto out_free_ph;
 | 
						|
 | 
						|
	elf_bss = eppnt->p_vaddr + eppnt->p_filesz;
 | 
						|
	if (padzero(elf_bss)) {
 | 
						|
		error = -EFAULT;
 | 
						|
		goto out_free_ph;
 | 
						|
	}
 | 
						|
 | 
						|
	len = ELF_PAGESTART(eppnt->p_filesz + eppnt->p_vaddr +
 | 
						|
			    ELF_MIN_ALIGN - 1);
 | 
						|
	bss = eppnt->p_memsz + eppnt->p_vaddr;
 | 
						|
	if (bss > len)
 | 
						|
		vm_brk(len, bss - len);
 | 
						|
	error = 0;
 | 
						|
 | 
						|
out_free_ph:
 | 
						|
	kfree(elf_phdata);
 | 
						|
out:
 | 
						|
	return error;
 | 
						|
}
 | 
						|
#endif /* #ifdef CONFIG_USELIB */
 | 
						|
 | 
						|
#ifdef CONFIG_ELF_CORE
 | 
						|
/*
 | 
						|
 * ELF core dumper
 | 
						|
 *
 | 
						|
 * Modelled on fs/exec.c:aout_core_dump()
 | 
						|
 * Jeremy Fitzhardinge <jeremy@sw.oz.au>
 | 
						|
 */
 | 
						|
 | 
						|
/*
 | 
						|
 * The purpose of always_dump_vma() is to make sure that special kernel mappings
 | 
						|
 * that are useful for post-mortem analysis are included in every core dump.
 | 
						|
 * In that way we ensure that the core dump is fully interpretable later
 | 
						|
 * without matching up the same kernel and hardware config to see what PC values
 | 
						|
 * meant. These special mappings include - vDSO, vsyscall, and other
 | 
						|
 * architecture specific mappings
 | 
						|
 */
 | 
						|
static bool always_dump_vma(struct vm_area_struct *vma)
 | 
						|
{
 | 
						|
	/* Any vsyscall mappings? */
 | 
						|
	if (vma == get_gate_vma(vma->vm_mm))
 | 
						|
		return true;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Assume that all vmas with a .name op should always be dumped.
 | 
						|
	 * If this changes, a new vm_ops field can easily be added.
 | 
						|
	 */
 | 
						|
	if (vma->vm_ops && vma->vm_ops->name && vma->vm_ops->name(vma))
 | 
						|
		return true;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * arch_vma_name() returns non-NULL for special architecture mappings,
 | 
						|
	 * such as vDSO sections.
 | 
						|
	 */
 | 
						|
	if (arch_vma_name(vma))
 | 
						|
		return true;
 | 
						|
 | 
						|
	return false;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Decide what to dump of a segment, part, all or none.
 | 
						|
 */
 | 
						|
static unsigned long vma_dump_size(struct vm_area_struct *vma,
 | 
						|
				   unsigned long mm_flags)
 | 
						|
{
 | 
						|
#define FILTER(type)	(mm_flags & (1UL << MMF_DUMP_##type))
 | 
						|
 | 
						|
	/* always dump the vdso and vsyscall sections */
 | 
						|
	if (always_dump_vma(vma))
 | 
						|
		goto whole;
 | 
						|
 | 
						|
	if (vma->vm_flags & VM_DONTDUMP)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	/* Hugetlb memory check */
 | 
						|
	if (vma->vm_flags & VM_HUGETLB) {
 | 
						|
		if ((vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_SHARED))
 | 
						|
			goto whole;
 | 
						|
		if (!(vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_PRIVATE))
 | 
						|
			goto whole;
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Do not dump I/O mapped devices or special mappings */
 | 
						|
	if (vma->vm_flags & VM_IO)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	/* By default, dump shared memory if mapped from an anonymous file. */
 | 
						|
	if (vma->vm_flags & VM_SHARED) {
 | 
						|
		if (file_inode(vma->vm_file)->i_nlink == 0 ?
 | 
						|
		    FILTER(ANON_SHARED) : FILTER(MAPPED_SHARED))
 | 
						|
			goto whole;
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Dump segments that have been written to.  */
 | 
						|
	if (vma->anon_vma && FILTER(ANON_PRIVATE))
 | 
						|
		goto whole;
 | 
						|
	if (vma->vm_file == NULL)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	if (FILTER(MAPPED_PRIVATE))
 | 
						|
		goto whole;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If this looks like the beginning of a DSO or executable mapping,
 | 
						|
	 * check for an ELF header.  If we find one, dump the first page to
 | 
						|
	 * aid in determining what was mapped here.
 | 
						|
	 */
 | 
						|
	if (FILTER(ELF_HEADERS) &&
 | 
						|
	    vma->vm_pgoff == 0 && (vma->vm_flags & VM_READ)) {
 | 
						|
		u32 __user *header = (u32 __user *) vma->vm_start;
 | 
						|
		u32 word;
 | 
						|
		mm_segment_t fs = get_fs();
 | 
						|
		/*
 | 
						|
		 * Doing it this way gets the constant folded by GCC.
 | 
						|
		 */
 | 
						|
		union {
 | 
						|
			u32 cmp;
 | 
						|
			char elfmag[SELFMAG];
 | 
						|
		} magic;
 | 
						|
		BUILD_BUG_ON(SELFMAG != sizeof word);
 | 
						|
		magic.elfmag[EI_MAG0] = ELFMAG0;
 | 
						|
		magic.elfmag[EI_MAG1] = ELFMAG1;
 | 
						|
		magic.elfmag[EI_MAG2] = ELFMAG2;
 | 
						|
		magic.elfmag[EI_MAG3] = ELFMAG3;
 | 
						|
		/*
 | 
						|
		 * Switch to the user "segment" for get_user(),
 | 
						|
		 * then put back what elf_core_dump() had in place.
 | 
						|
		 */
 | 
						|
		set_fs(USER_DS);
 | 
						|
		if (unlikely(get_user(word, header)))
 | 
						|
			word = 0;
 | 
						|
		set_fs(fs);
 | 
						|
		if (word == magic.cmp)
 | 
						|
			return PAGE_SIZE;
 | 
						|
	}
 | 
						|
 | 
						|
#undef	FILTER
 | 
						|
 | 
						|
	return 0;
 | 
						|
 | 
						|
whole:
 | 
						|
	return vma->vm_end - vma->vm_start;
 | 
						|
}
 | 
						|
 | 
						|
/* An ELF note in memory */
 | 
						|
struct memelfnote
 | 
						|
{
 | 
						|
	const char *name;
 | 
						|
	int type;
 | 
						|
	unsigned int datasz;
 | 
						|
	void *data;
 | 
						|
};
 | 
						|
 | 
						|
static int notesize(struct memelfnote *en)
 | 
						|
{
 | 
						|
	int sz;
 | 
						|
 | 
						|
	sz = sizeof(struct elf_note);
 | 
						|
	sz += roundup(strlen(en->name) + 1, 4);
 | 
						|
	sz += roundup(en->datasz, 4);
 | 
						|
 | 
						|
	return sz;
 | 
						|
}
 | 
						|
 | 
						|
static int writenote(struct memelfnote *men, struct coredump_params *cprm)
 | 
						|
{
 | 
						|
	struct elf_note en;
 | 
						|
	en.n_namesz = strlen(men->name) + 1;
 | 
						|
	en.n_descsz = men->datasz;
 | 
						|
	en.n_type = men->type;
 | 
						|
 | 
						|
	return dump_emit(cprm, &en, sizeof(en)) &&
 | 
						|
	    dump_emit(cprm, men->name, en.n_namesz) && dump_align(cprm, 4) &&
 | 
						|
	    dump_emit(cprm, men->data, men->datasz) && dump_align(cprm, 4);
 | 
						|
}
 | 
						|
 | 
						|
static void fill_elf_header(struct elfhdr *elf, int segs,
 | 
						|
			    u16 machine, u32 flags)
 | 
						|
{
 | 
						|
	memset(elf, 0, sizeof(*elf));
 | 
						|
 | 
						|
	memcpy(elf->e_ident, ELFMAG, SELFMAG);
 | 
						|
	elf->e_ident[EI_CLASS] = ELF_CLASS;
 | 
						|
	elf->e_ident[EI_DATA] = ELF_DATA;
 | 
						|
	elf->e_ident[EI_VERSION] = EV_CURRENT;
 | 
						|
	elf->e_ident[EI_OSABI] = ELF_OSABI;
 | 
						|
 | 
						|
	elf->e_type = ET_CORE;
 | 
						|
	elf->e_machine = machine;
 | 
						|
	elf->e_version = EV_CURRENT;
 | 
						|
	elf->e_phoff = sizeof(struct elfhdr);
 | 
						|
	elf->e_flags = flags;
 | 
						|
	elf->e_ehsize = sizeof(struct elfhdr);
 | 
						|
	elf->e_phentsize = sizeof(struct elf_phdr);
 | 
						|
	elf->e_phnum = segs;
 | 
						|
 | 
						|
	return;
 | 
						|
}
 | 
						|
 | 
						|
static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, loff_t offset)
 | 
						|
{
 | 
						|
	phdr->p_type = PT_NOTE;
 | 
						|
	phdr->p_offset = offset;
 | 
						|
	phdr->p_vaddr = 0;
 | 
						|
	phdr->p_paddr = 0;
 | 
						|
	phdr->p_filesz = sz;
 | 
						|
	phdr->p_memsz = 0;
 | 
						|
	phdr->p_flags = 0;
 | 
						|
	phdr->p_align = 0;
 | 
						|
	return;
 | 
						|
}
 | 
						|
 | 
						|
static void fill_note(struct memelfnote *note, const char *name, int type, 
 | 
						|
		unsigned int sz, void *data)
 | 
						|
{
 | 
						|
	note->name = name;
 | 
						|
	note->type = type;
 | 
						|
	note->datasz = sz;
 | 
						|
	note->data = data;
 | 
						|
	return;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * fill up all the fields in prstatus from the given task struct, except
 | 
						|
 * registers which need to be filled up separately.
 | 
						|
 */
 | 
						|
static void fill_prstatus(struct elf_prstatus *prstatus,
 | 
						|
		struct task_struct *p, long signr)
 | 
						|
{
 | 
						|
	prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
 | 
						|
	prstatus->pr_sigpend = p->pending.signal.sig[0];
 | 
						|
	prstatus->pr_sighold = p->blocked.sig[0];
 | 
						|
	rcu_read_lock();
 | 
						|
	prstatus->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
 | 
						|
	rcu_read_unlock();
 | 
						|
	prstatus->pr_pid = task_pid_vnr(p);
 | 
						|
	prstatus->pr_pgrp = task_pgrp_vnr(p);
 | 
						|
	prstatus->pr_sid = task_session_vnr(p);
 | 
						|
	if (thread_group_leader(p)) {
 | 
						|
		struct task_cputime cputime;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * This is the record for the group leader.  It shows the
 | 
						|
		 * group-wide total, not its individual thread total.
 | 
						|
		 */
 | 
						|
		thread_group_cputime(p, &cputime);
 | 
						|
		cputime_to_timeval(cputime.utime, &prstatus->pr_utime);
 | 
						|
		cputime_to_timeval(cputime.stime, &prstatus->pr_stime);
 | 
						|
	} else {
 | 
						|
		cputime_t utime, stime;
 | 
						|
 | 
						|
		task_cputime(p, &utime, &stime);
 | 
						|
		cputime_to_timeval(utime, &prstatus->pr_utime);
 | 
						|
		cputime_to_timeval(stime, &prstatus->pr_stime);
 | 
						|
	}
 | 
						|
	cputime_to_timeval(p->signal->cutime, &prstatus->pr_cutime);
 | 
						|
	cputime_to_timeval(p->signal->cstime, &prstatus->pr_cstime);
 | 
						|
}
 | 
						|
 | 
						|
static int fill_psinfo(struct elf_prpsinfo *psinfo, struct task_struct *p,
 | 
						|
		       struct mm_struct *mm)
 | 
						|
{
 | 
						|
	const struct cred *cred;
 | 
						|
	unsigned int i, len;
 | 
						|
	
 | 
						|
	/* first copy the parameters from user space */
 | 
						|
	memset(psinfo, 0, sizeof(struct elf_prpsinfo));
 | 
						|
 | 
						|
	len = mm->arg_end - mm->arg_start;
 | 
						|
	if (len >= ELF_PRARGSZ)
 | 
						|
		len = ELF_PRARGSZ-1;
 | 
						|
	if (copy_from_user(&psinfo->pr_psargs,
 | 
						|
		           (const char __user *)mm->arg_start, len))
 | 
						|
		return -EFAULT;
 | 
						|
	for(i = 0; i < len; i++)
 | 
						|
		if (psinfo->pr_psargs[i] == 0)
 | 
						|
			psinfo->pr_psargs[i] = ' ';
 | 
						|
	psinfo->pr_psargs[len] = 0;
 | 
						|
 | 
						|
	rcu_read_lock();
 | 
						|
	psinfo->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
 | 
						|
	rcu_read_unlock();
 | 
						|
	psinfo->pr_pid = task_pid_vnr(p);
 | 
						|
	psinfo->pr_pgrp = task_pgrp_vnr(p);
 | 
						|
	psinfo->pr_sid = task_session_vnr(p);
 | 
						|
 | 
						|
	i = p->state ? ffz(~p->state) + 1 : 0;
 | 
						|
	psinfo->pr_state = i;
 | 
						|
	psinfo->pr_sname = (i > 5) ? '.' : "RSDTZW"[i];
 | 
						|
	psinfo->pr_zomb = psinfo->pr_sname == 'Z';
 | 
						|
	psinfo->pr_nice = task_nice(p);
 | 
						|
	psinfo->pr_flag = p->flags;
 | 
						|
	rcu_read_lock();
 | 
						|
	cred = __task_cred(p);
 | 
						|
	SET_UID(psinfo->pr_uid, from_kuid_munged(cred->user_ns, cred->uid));
 | 
						|
	SET_GID(psinfo->pr_gid, from_kgid_munged(cred->user_ns, cred->gid));
 | 
						|
	rcu_read_unlock();
 | 
						|
	strncpy(psinfo->pr_fname, p->comm, sizeof(psinfo->pr_fname));
 | 
						|
	
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static void fill_auxv_note(struct memelfnote *note, struct mm_struct *mm)
 | 
						|
{
 | 
						|
	elf_addr_t *auxv = (elf_addr_t *) mm->saved_auxv;
 | 
						|
	int i = 0;
 | 
						|
	do
 | 
						|
		i += 2;
 | 
						|
	while (auxv[i - 2] != AT_NULL);
 | 
						|
	fill_note(note, "CORE", NT_AUXV, i * sizeof(elf_addr_t), auxv);
 | 
						|
}
 | 
						|
 | 
						|
static void fill_siginfo_note(struct memelfnote *note, user_siginfo_t *csigdata,
 | 
						|
		const siginfo_t *siginfo)
 | 
						|
{
 | 
						|
	mm_segment_t old_fs = get_fs();
 | 
						|
	set_fs(KERNEL_DS);
 | 
						|
	copy_siginfo_to_user((user_siginfo_t __user *) csigdata, siginfo);
 | 
						|
	set_fs(old_fs);
 | 
						|
	fill_note(note, "CORE", NT_SIGINFO, sizeof(*csigdata), csigdata);
 | 
						|
}
 | 
						|
 | 
						|
#define MAX_FILE_NOTE_SIZE (4*1024*1024)
 | 
						|
/*
 | 
						|
 * Format of NT_FILE note:
 | 
						|
 *
 | 
						|
 * long count     -- how many files are mapped
 | 
						|
 * long page_size -- units for file_ofs
 | 
						|
 * array of [COUNT] elements of
 | 
						|
 *   long start
 | 
						|
 *   long end
 | 
						|
 *   long file_ofs
 | 
						|
 * followed by COUNT filenames in ASCII: "FILE1" NUL "FILE2" NUL...
 | 
						|
 */
 | 
						|
static int fill_files_note(struct memelfnote *note)
 | 
						|
{
 | 
						|
	struct vm_area_struct *vma;
 | 
						|
	unsigned count, size, names_ofs, remaining, n;
 | 
						|
	user_long_t *data;
 | 
						|
	user_long_t *start_end_ofs;
 | 
						|
	char *name_base, *name_curpos;
 | 
						|
 | 
						|
	/* *Estimated* file count and total data size needed */
 | 
						|
	count = current->mm->map_count;
 | 
						|
	size = count * 64;
 | 
						|
 | 
						|
	names_ofs = (2 + 3 * count) * sizeof(data[0]);
 | 
						|
 alloc:
 | 
						|
	if (size >= MAX_FILE_NOTE_SIZE) /* paranoia check */
 | 
						|
		return -EINVAL;
 | 
						|
	size = round_up(size, PAGE_SIZE);
 | 
						|
	data = vmalloc(size);
 | 
						|
	if (!data)
 | 
						|
		return -ENOMEM;
 | 
						|
 | 
						|
	start_end_ofs = data + 2;
 | 
						|
	name_base = name_curpos = ((char *)data) + names_ofs;
 | 
						|
	remaining = size - names_ofs;
 | 
						|
	count = 0;
 | 
						|
	for (vma = current->mm->mmap; vma != NULL; vma = vma->vm_next) {
 | 
						|
		struct file *file;
 | 
						|
		const char *filename;
 | 
						|
 | 
						|
		file = vma->vm_file;
 | 
						|
		if (!file)
 | 
						|
			continue;
 | 
						|
		filename = d_path(&file->f_path, name_curpos, remaining);
 | 
						|
		if (IS_ERR(filename)) {
 | 
						|
			if (PTR_ERR(filename) == -ENAMETOOLONG) {
 | 
						|
				vfree(data);
 | 
						|
				size = size * 5 / 4;
 | 
						|
				goto alloc;
 | 
						|
			}
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		/* d_path() fills at the end, move name down */
 | 
						|
		/* n = strlen(filename) + 1: */
 | 
						|
		n = (name_curpos + remaining) - filename;
 | 
						|
		remaining = filename - name_curpos;
 | 
						|
		memmove(name_curpos, filename, n);
 | 
						|
		name_curpos += n;
 | 
						|
 | 
						|
		*start_end_ofs++ = vma->vm_start;
 | 
						|
		*start_end_ofs++ = vma->vm_end;
 | 
						|
		*start_end_ofs++ = vma->vm_pgoff;
 | 
						|
		count++;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Now we know exact count of files, can store it */
 | 
						|
	data[0] = count;
 | 
						|
	data[1] = PAGE_SIZE;
 | 
						|
	/*
 | 
						|
	 * Count usually is less than current->mm->map_count,
 | 
						|
	 * we need to move filenames down.
 | 
						|
	 */
 | 
						|
	n = current->mm->map_count - count;
 | 
						|
	if (n != 0) {
 | 
						|
		unsigned shift_bytes = n * 3 * sizeof(data[0]);
 | 
						|
		memmove(name_base - shift_bytes, name_base,
 | 
						|
			name_curpos - name_base);
 | 
						|
		name_curpos -= shift_bytes;
 | 
						|
	}
 | 
						|
 | 
						|
	size = name_curpos - (char *)data;
 | 
						|
	fill_note(note, "CORE", NT_FILE, size, data);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CORE_DUMP_USE_REGSET
 | 
						|
#include <linux/regset.h>
 | 
						|
 | 
						|
struct elf_thread_core_info {
 | 
						|
	struct elf_thread_core_info *next;
 | 
						|
	struct task_struct *task;
 | 
						|
	struct elf_prstatus prstatus;
 | 
						|
	struct memelfnote notes[0];
 | 
						|
};
 | 
						|
 | 
						|
struct elf_note_info {
 | 
						|
	struct elf_thread_core_info *thread;
 | 
						|
	struct memelfnote psinfo;
 | 
						|
	struct memelfnote signote;
 | 
						|
	struct memelfnote auxv;
 | 
						|
	struct memelfnote files;
 | 
						|
	user_siginfo_t csigdata;
 | 
						|
	size_t size;
 | 
						|
	int thread_notes;
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
 * When a regset has a writeback hook, we call it on each thread before
 | 
						|
 * dumping user memory.  On register window machines, this makes sure the
 | 
						|
 * user memory backing the register data is up to date before we read it.
 | 
						|
 */
 | 
						|
static void do_thread_regset_writeback(struct task_struct *task,
 | 
						|
				       const struct user_regset *regset)
 | 
						|
{
 | 
						|
	if (regset->writeback)
 | 
						|
		regset->writeback(task, regset, 1);
 | 
						|
}
 | 
						|
 | 
						|
#ifndef PR_REG_SIZE
 | 
						|
#define PR_REG_SIZE(S) sizeof(S)
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef PRSTATUS_SIZE
 | 
						|
#define PRSTATUS_SIZE(S) sizeof(S)
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef PR_REG_PTR
 | 
						|
#define PR_REG_PTR(S) (&((S)->pr_reg))
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef SET_PR_FPVALID
 | 
						|
#define SET_PR_FPVALID(S, V) ((S)->pr_fpvalid = (V))
 | 
						|
#endif
 | 
						|
 | 
						|
static int fill_thread_core_info(struct elf_thread_core_info *t,
 | 
						|
				 const struct user_regset_view *view,
 | 
						|
				 long signr, size_t *total)
 | 
						|
{
 | 
						|
	unsigned int i;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * NT_PRSTATUS is the one special case, because the regset data
 | 
						|
	 * goes into the pr_reg field inside the note contents, rather
 | 
						|
	 * than being the whole note contents.  We fill the reset in here.
 | 
						|
	 * We assume that regset 0 is NT_PRSTATUS.
 | 
						|
	 */
 | 
						|
	fill_prstatus(&t->prstatus, t->task, signr);
 | 
						|
	(void) view->regsets[0].get(t->task, &view->regsets[0],
 | 
						|
				    0, PR_REG_SIZE(t->prstatus.pr_reg),
 | 
						|
				    PR_REG_PTR(&t->prstatus), NULL);
 | 
						|
 | 
						|
	fill_note(&t->notes[0], "CORE", NT_PRSTATUS,
 | 
						|
		  PRSTATUS_SIZE(t->prstatus), &t->prstatus);
 | 
						|
	*total += notesize(&t->notes[0]);
 | 
						|
 | 
						|
	do_thread_regset_writeback(t->task, &view->regsets[0]);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Each other regset might generate a note too.  For each regset
 | 
						|
	 * that has no core_note_type or is inactive, we leave t->notes[i]
 | 
						|
	 * all zero and we'll know to skip writing it later.
 | 
						|
	 */
 | 
						|
	for (i = 1; i < view->n; ++i) {
 | 
						|
		const struct user_regset *regset = &view->regsets[i];
 | 
						|
		do_thread_regset_writeback(t->task, regset);
 | 
						|
		if (regset->core_note_type && regset->get &&
 | 
						|
		    (!regset->active || regset->active(t->task, regset))) {
 | 
						|
			int ret;
 | 
						|
			size_t size = regset->n * regset->size;
 | 
						|
			void *data = kmalloc(size, GFP_KERNEL);
 | 
						|
			if (unlikely(!data))
 | 
						|
				return 0;
 | 
						|
			ret = regset->get(t->task, regset,
 | 
						|
					  0, size, data, NULL);
 | 
						|
			if (unlikely(ret))
 | 
						|
				kfree(data);
 | 
						|
			else {
 | 
						|
				if (regset->core_note_type != NT_PRFPREG)
 | 
						|
					fill_note(&t->notes[i], "LINUX",
 | 
						|
						  regset->core_note_type,
 | 
						|
						  size, data);
 | 
						|
				else {
 | 
						|
					SET_PR_FPVALID(&t->prstatus, 1);
 | 
						|
					fill_note(&t->notes[i], "CORE",
 | 
						|
						  NT_PRFPREG, size, data);
 | 
						|
				}
 | 
						|
				*total += notesize(&t->notes[i]);
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
 | 
						|
static int fill_note_info(struct elfhdr *elf, int phdrs,
 | 
						|
			  struct elf_note_info *info,
 | 
						|
			  const siginfo_t *siginfo, struct pt_regs *regs)
 | 
						|
{
 | 
						|
	struct task_struct *dump_task = current;
 | 
						|
	const struct user_regset_view *view = task_user_regset_view(dump_task);
 | 
						|
	struct elf_thread_core_info *t;
 | 
						|
	struct elf_prpsinfo *psinfo;
 | 
						|
	struct core_thread *ct;
 | 
						|
	unsigned int i;
 | 
						|
 | 
						|
	info->size = 0;
 | 
						|
	info->thread = NULL;
 | 
						|
 | 
						|
	psinfo = kmalloc(sizeof(*psinfo), GFP_KERNEL);
 | 
						|
	if (psinfo == NULL) {
 | 
						|
		info->psinfo.data = NULL; /* So we don't free this wrongly */
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
 | 
						|
	fill_note(&info->psinfo, "CORE", NT_PRPSINFO, sizeof(*psinfo), psinfo);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Figure out how many notes we're going to need for each thread.
 | 
						|
	 */
 | 
						|
	info->thread_notes = 0;
 | 
						|
	for (i = 0; i < view->n; ++i)
 | 
						|
		if (view->regsets[i].core_note_type != 0)
 | 
						|
			++info->thread_notes;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Sanity check.  We rely on regset 0 being in NT_PRSTATUS,
 | 
						|
	 * since it is our one special case.
 | 
						|
	 */
 | 
						|
	if (unlikely(info->thread_notes == 0) ||
 | 
						|
	    unlikely(view->regsets[0].core_note_type != NT_PRSTATUS)) {
 | 
						|
		WARN_ON(1);
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Initialize the ELF file header.
 | 
						|
	 */
 | 
						|
	fill_elf_header(elf, phdrs,
 | 
						|
			view->e_machine, view->e_flags);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Allocate a structure for each thread.
 | 
						|
	 */
 | 
						|
	for (ct = &dump_task->mm->core_state->dumper; ct; ct = ct->next) {
 | 
						|
		t = kzalloc(offsetof(struct elf_thread_core_info,
 | 
						|
				     notes[info->thread_notes]),
 | 
						|
			    GFP_KERNEL);
 | 
						|
		if (unlikely(!t))
 | 
						|
			return 0;
 | 
						|
 | 
						|
		t->task = ct->task;
 | 
						|
		if (ct->task == dump_task || !info->thread) {
 | 
						|
			t->next = info->thread;
 | 
						|
			info->thread = t;
 | 
						|
		} else {
 | 
						|
			/*
 | 
						|
			 * Make sure to keep the original task at
 | 
						|
			 * the head of the list.
 | 
						|
			 */
 | 
						|
			t->next = info->thread->next;
 | 
						|
			info->thread->next = t;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Now fill in each thread's information.
 | 
						|
	 */
 | 
						|
	for (t = info->thread; t != NULL; t = t->next)
 | 
						|
		if (!fill_thread_core_info(t, view, siginfo->si_signo, &info->size))
 | 
						|
			return 0;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Fill in the two process-wide notes.
 | 
						|
	 */
 | 
						|
	fill_psinfo(psinfo, dump_task->group_leader, dump_task->mm);
 | 
						|
	info->size += notesize(&info->psinfo);
 | 
						|
 | 
						|
	fill_siginfo_note(&info->signote, &info->csigdata, siginfo);
 | 
						|
	info->size += notesize(&info->signote);
 | 
						|
 | 
						|
	fill_auxv_note(&info->auxv, current->mm);
 | 
						|
	info->size += notesize(&info->auxv);
 | 
						|
 | 
						|
	if (fill_files_note(&info->files) == 0)
 | 
						|
		info->size += notesize(&info->files);
 | 
						|
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
 | 
						|
static size_t get_note_info_size(struct elf_note_info *info)
 | 
						|
{
 | 
						|
	return info->size;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Write all the notes for each thread.  When writing the first thread, the
 | 
						|
 * process-wide notes are interleaved after the first thread-specific note.
 | 
						|
 */
 | 
						|
static int write_note_info(struct elf_note_info *info,
 | 
						|
			   struct coredump_params *cprm)
 | 
						|
{
 | 
						|
	bool first = true;
 | 
						|
	struct elf_thread_core_info *t = info->thread;
 | 
						|
 | 
						|
	do {
 | 
						|
		int i;
 | 
						|
 | 
						|
		if (!writenote(&t->notes[0], cprm))
 | 
						|
			return 0;
 | 
						|
 | 
						|
		if (first && !writenote(&info->psinfo, cprm))
 | 
						|
			return 0;
 | 
						|
		if (first && !writenote(&info->signote, cprm))
 | 
						|
			return 0;
 | 
						|
		if (first && !writenote(&info->auxv, cprm))
 | 
						|
			return 0;
 | 
						|
		if (first && info->files.data &&
 | 
						|
				!writenote(&info->files, cprm))
 | 
						|
			return 0;
 | 
						|
 | 
						|
		for (i = 1; i < info->thread_notes; ++i)
 | 
						|
			if (t->notes[i].data &&
 | 
						|
			    !writenote(&t->notes[i], cprm))
 | 
						|
				return 0;
 | 
						|
 | 
						|
		first = false;
 | 
						|
		t = t->next;
 | 
						|
	} while (t);
 | 
						|
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
 | 
						|
static void free_note_info(struct elf_note_info *info)
 | 
						|
{
 | 
						|
	struct elf_thread_core_info *threads = info->thread;
 | 
						|
	while (threads) {
 | 
						|
		unsigned int i;
 | 
						|
		struct elf_thread_core_info *t = threads;
 | 
						|
		threads = t->next;
 | 
						|
		WARN_ON(t->notes[0].data && t->notes[0].data != &t->prstatus);
 | 
						|
		for (i = 1; i < info->thread_notes; ++i)
 | 
						|
			kfree(t->notes[i].data);
 | 
						|
		kfree(t);
 | 
						|
	}
 | 
						|
	kfree(info->psinfo.data);
 | 
						|
	vfree(info->files.data);
 | 
						|
}
 | 
						|
 | 
						|
#else
 | 
						|
 | 
						|
/* Here is the structure in which status of each thread is captured. */
 | 
						|
struct elf_thread_status
 | 
						|
{
 | 
						|
	struct list_head list;
 | 
						|
	struct elf_prstatus prstatus;	/* NT_PRSTATUS */
 | 
						|
	elf_fpregset_t fpu;		/* NT_PRFPREG */
 | 
						|
	struct task_struct *thread;
 | 
						|
#ifdef ELF_CORE_COPY_XFPREGS
 | 
						|
	elf_fpxregset_t xfpu;		/* ELF_CORE_XFPREG_TYPE */
 | 
						|
#endif
 | 
						|
	struct memelfnote notes[3];
 | 
						|
	int num_notes;
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
 * In order to add the specific thread information for the elf file format,
 | 
						|
 * we need to keep a linked list of every threads pr_status and then create
 | 
						|
 * a single section for them in the final core file.
 | 
						|
 */
 | 
						|
static int elf_dump_thread_status(long signr, struct elf_thread_status *t)
 | 
						|
{
 | 
						|
	int sz = 0;
 | 
						|
	struct task_struct *p = t->thread;
 | 
						|
	t->num_notes = 0;
 | 
						|
 | 
						|
	fill_prstatus(&t->prstatus, p, signr);
 | 
						|
	elf_core_copy_task_regs(p, &t->prstatus.pr_reg);	
 | 
						|
	
 | 
						|
	fill_note(&t->notes[0], "CORE", NT_PRSTATUS, sizeof(t->prstatus),
 | 
						|
		  &(t->prstatus));
 | 
						|
	t->num_notes++;
 | 
						|
	sz += notesize(&t->notes[0]);
 | 
						|
 | 
						|
	if ((t->prstatus.pr_fpvalid = elf_core_copy_task_fpregs(p, NULL,
 | 
						|
								&t->fpu))) {
 | 
						|
		fill_note(&t->notes[1], "CORE", NT_PRFPREG, sizeof(t->fpu),
 | 
						|
			  &(t->fpu));
 | 
						|
		t->num_notes++;
 | 
						|
		sz += notesize(&t->notes[1]);
 | 
						|
	}
 | 
						|
 | 
						|
#ifdef ELF_CORE_COPY_XFPREGS
 | 
						|
	if (elf_core_copy_task_xfpregs(p, &t->xfpu)) {
 | 
						|
		fill_note(&t->notes[2], "LINUX", ELF_CORE_XFPREG_TYPE,
 | 
						|
			  sizeof(t->xfpu), &t->xfpu);
 | 
						|
		t->num_notes++;
 | 
						|
		sz += notesize(&t->notes[2]);
 | 
						|
	}
 | 
						|
#endif	
 | 
						|
	return sz;
 | 
						|
}
 | 
						|
 | 
						|
struct elf_note_info {
 | 
						|
	struct memelfnote *notes;
 | 
						|
	struct memelfnote *notes_files;
 | 
						|
	struct elf_prstatus *prstatus;	/* NT_PRSTATUS */
 | 
						|
	struct elf_prpsinfo *psinfo;	/* NT_PRPSINFO */
 | 
						|
	struct list_head thread_list;
 | 
						|
	elf_fpregset_t *fpu;
 | 
						|
#ifdef ELF_CORE_COPY_XFPREGS
 | 
						|
	elf_fpxregset_t *xfpu;
 | 
						|
#endif
 | 
						|
	user_siginfo_t csigdata;
 | 
						|
	int thread_status_size;
 | 
						|
	int numnote;
 | 
						|
};
 | 
						|
 | 
						|
static int elf_note_info_init(struct elf_note_info *info)
 | 
						|
{
 | 
						|
	memset(info, 0, sizeof(*info));
 | 
						|
	INIT_LIST_HEAD(&info->thread_list);
 | 
						|
 | 
						|
	/* Allocate space for ELF notes */
 | 
						|
	info->notes = kmalloc(8 * sizeof(struct memelfnote), GFP_KERNEL);
 | 
						|
	if (!info->notes)
 | 
						|
		return 0;
 | 
						|
	info->psinfo = kmalloc(sizeof(*info->psinfo), GFP_KERNEL);
 | 
						|
	if (!info->psinfo)
 | 
						|
		return 0;
 | 
						|
	info->prstatus = kmalloc(sizeof(*info->prstatus), GFP_KERNEL);
 | 
						|
	if (!info->prstatus)
 | 
						|
		return 0;
 | 
						|
	info->fpu = kmalloc(sizeof(*info->fpu), GFP_KERNEL);
 | 
						|
	if (!info->fpu)
 | 
						|
		return 0;
 | 
						|
#ifdef ELF_CORE_COPY_XFPREGS
 | 
						|
	info->xfpu = kmalloc(sizeof(*info->xfpu), GFP_KERNEL);
 | 
						|
	if (!info->xfpu)
 | 
						|
		return 0;
 | 
						|
#endif
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
 | 
						|
static int fill_note_info(struct elfhdr *elf, int phdrs,
 | 
						|
			  struct elf_note_info *info,
 | 
						|
			  const siginfo_t *siginfo, struct pt_regs *regs)
 | 
						|
{
 | 
						|
	struct list_head *t;
 | 
						|
	struct core_thread *ct;
 | 
						|
	struct elf_thread_status *ets;
 | 
						|
 | 
						|
	if (!elf_note_info_init(info))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	for (ct = current->mm->core_state->dumper.next;
 | 
						|
					ct; ct = ct->next) {
 | 
						|
		ets = kzalloc(sizeof(*ets), GFP_KERNEL);
 | 
						|
		if (!ets)
 | 
						|
			return 0;
 | 
						|
 | 
						|
		ets->thread = ct->task;
 | 
						|
		list_add(&ets->list, &info->thread_list);
 | 
						|
	}
 | 
						|
 | 
						|
	list_for_each(t, &info->thread_list) {
 | 
						|
		int sz;
 | 
						|
 | 
						|
		ets = list_entry(t, struct elf_thread_status, list);
 | 
						|
		sz = elf_dump_thread_status(siginfo->si_signo, ets);
 | 
						|
		info->thread_status_size += sz;
 | 
						|
	}
 | 
						|
	/* now collect the dump for the current */
 | 
						|
	memset(info->prstatus, 0, sizeof(*info->prstatus));
 | 
						|
	fill_prstatus(info->prstatus, current, siginfo->si_signo);
 | 
						|
	elf_core_copy_regs(&info->prstatus->pr_reg, regs);
 | 
						|
 | 
						|
	/* Set up header */
 | 
						|
	fill_elf_header(elf, phdrs, ELF_ARCH, ELF_CORE_EFLAGS);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Set up the notes in similar form to SVR4 core dumps made
 | 
						|
	 * with info from their /proc.
 | 
						|
	 */
 | 
						|
 | 
						|
	fill_note(info->notes + 0, "CORE", NT_PRSTATUS,
 | 
						|
		  sizeof(*info->prstatus), info->prstatus);
 | 
						|
	fill_psinfo(info->psinfo, current->group_leader, current->mm);
 | 
						|
	fill_note(info->notes + 1, "CORE", NT_PRPSINFO,
 | 
						|
		  sizeof(*info->psinfo), info->psinfo);
 | 
						|
 | 
						|
	fill_siginfo_note(info->notes + 2, &info->csigdata, siginfo);
 | 
						|
	fill_auxv_note(info->notes + 3, current->mm);
 | 
						|
	info->numnote = 4;
 | 
						|
 | 
						|
	if (fill_files_note(info->notes + info->numnote) == 0) {
 | 
						|
		info->notes_files = info->notes + info->numnote;
 | 
						|
		info->numnote++;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Try to dump the FPU. */
 | 
						|
	info->prstatus->pr_fpvalid = elf_core_copy_task_fpregs(current, regs,
 | 
						|
							       info->fpu);
 | 
						|
	if (info->prstatus->pr_fpvalid)
 | 
						|
		fill_note(info->notes + info->numnote++,
 | 
						|
			  "CORE", NT_PRFPREG, sizeof(*info->fpu), info->fpu);
 | 
						|
#ifdef ELF_CORE_COPY_XFPREGS
 | 
						|
	if (elf_core_copy_task_xfpregs(current, info->xfpu))
 | 
						|
		fill_note(info->notes + info->numnote++,
 | 
						|
			  "LINUX", ELF_CORE_XFPREG_TYPE,
 | 
						|
			  sizeof(*info->xfpu), info->xfpu);
 | 
						|
#endif
 | 
						|
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
 | 
						|
static size_t get_note_info_size(struct elf_note_info *info)
 | 
						|
{
 | 
						|
	int sz = 0;
 | 
						|
	int i;
 | 
						|
 | 
						|
	for (i = 0; i < info->numnote; i++)
 | 
						|
		sz += notesize(info->notes + i);
 | 
						|
 | 
						|
	sz += info->thread_status_size;
 | 
						|
 | 
						|
	return sz;
 | 
						|
}
 | 
						|
 | 
						|
static int write_note_info(struct elf_note_info *info,
 | 
						|
			   struct coredump_params *cprm)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
	struct list_head *t;
 | 
						|
 | 
						|
	for (i = 0; i < info->numnote; i++)
 | 
						|
		if (!writenote(info->notes + i, cprm))
 | 
						|
			return 0;
 | 
						|
 | 
						|
	/* write out the thread status notes section */
 | 
						|
	list_for_each(t, &info->thread_list) {
 | 
						|
		struct elf_thread_status *tmp =
 | 
						|
				list_entry(t, struct elf_thread_status, list);
 | 
						|
 | 
						|
		for (i = 0; i < tmp->num_notes; i++)
 | 
						|
			if (!writenote(&tmp->notes[i], cprm))
 | 
						|
				return 0;
 | 
						|
	}
 | 
						|
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
 | 
						|
static void free_note_info(struct elf_note_info *info)
 | 
						|
{
 | 
						|
	while (!list_empty(&info->thread_list)) {
 | 
						|
		struct list_head *tmp = info->thread_list.next;
 | 
						|
		list_del(tmp);
 | 
						|
		kfree(list_entry(tmp, struct elf_thread_status, list));
 | 
						|
	}
 | 
						|
 | 
						|
	/* Free data possibly allocated by fill_files_note(): */
 | 
						|
	if (info->notes_files)
 | 
						|
		vfree(info->notes_files->data);
 | 
						|
 | 
						|
	kfree(info->prstatus);
 | 
						|
	kfree(info->psinfo);
 | 
						|
	kfree(info->notes);
 | 
						|
	kfree(info->fpu);
 | 
						|
#ifdef ELF_CORE_COPY_XFPREGS
 | 
						|
	kfree(info->xfpu);
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
#endif
 | 
						|
 | 
						|
static struct vm_area_struct *first_vma(struct task_struct *tsk,
 | 
						|
					struct vm_area_struct *gate_vma)
 | 
						|
{
 | 
						|
	struct vm_area_struct *ret = tsk->mm->mmap;
 | 
						|
 | 
						|
	if (ret)
 | 
						|
		return ret;
 | 
						|
	return gate_vma;
 | 
						|
}
 | 
						|
/*
 | 
						|
 * Helper function for iterating across a vma list.  It ensures that the caller
 | 
						|
 * will visit `gate_vma' prior to terminating the search.
 | 
						|
 */
 | 
						|
static struct vm_area_struct *next_vma(struct vm_area_struct *this_vma,
 | 
						|
					struct vm_area_struct *gate_vma)
 | 
						|
{
 | 
						|
	struct vm_area_struct *ret;
 | 
						|
 | 
						|
	ret = this_vma->vm_next;
 | 
						|
	if (ret)
 | 
						|
		return ret;
 | 
						|
	if (this_vma == gate_vma)
 | 
						|
		return NULL;
 | 
						|
	return gate_vma;
 | 
						|
}
 | 
						|
 | 
						|
static void fill_extnum_info(struct elfhdr *elf, struct elf_shdr *shdr4extnum,
 | 
						|
			     elf_addr_t e_shoff, int segs)
 | 
						|
{
 | 
						|
	elf->e_shoff = e_shoff;
 | 
						|
	elf->e_shentsize = sizeof(*shdr4extnum);
 | 
						|
	elf->e_shnum = 1;
 | 
						|
	elf->e_shstrndx = SHN_UNDEF;
 | 
						|
 | 
						|
	memset(shdr4extnum, 0, sizeof(*shdr4extnum));
 | 
						|
 | 
						|
	shdr4extnum->sh_type = SHT_NULL;
 | 
						|
	shdr4extnum->sh_size = elf->e_shnum;
 | 
						|
	shdr4extnum->sh_link = elf->e_shstrndx;
 | 
						|
	shdr4extnum->sh_info = segs;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Actual dumper
 | 
						|
 *
 | 
						|
 * This is a two-pass process; first we find the offsets of the bits,
 | 
						|
 * and then they are actually written out.  If we run out of core limit
 | 
						|
 * we just truncate.
 | 
						|
 */
 | 
						|
static int elf_core_dump(struct coredump_params *cprm)
 | 
						|
{
 | 
						|
	int has_dumped = 0;
 | 
						|
	mm_segment_t fs;
 | 
						|
	int segs, i;
 | 
						|
	size_t vma_data_size = 0;
 | 
						|
	struct vm_area_struct *vma, *gate_vma;
 | 
						|
	struct elfhdr *elf = NULL;
 | 
						|
	loff_t offset = 0, dataoff;
 | 
						|
	struct elf_note_info info = { };
 | 
						|
	struct elf_phdr *phdr4note = NULL;
 | 
						|
	struct elf_shdr *shdr4extnum = NULL;
 | 
						|
	Elf_Half e_phnum;
 | 
						|
	elf_addr_t e_shoff;
 | 
						|
	elf_addr_t *vma_filesz = NULL;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We no longer stop all VM operations.
 | 
						|
	 * 
 | 
						|
	 * This is because those proceses that could possibly change map_count
 | 
						|
	 * or the mmap / vma pages are now blocked in do_exit on current
 | 
						|
	 * finishing this core dump.
 | 
						|
	 *
 | 
						|
	 * Only ptrace can touch these memory addresses, but it doesn't change
 | 
						|
	 * the map_count or the pages allocated. So no possibility of crashing
 | 
						|
	 * exists while dumping the mm->vm_next areas to the core file.
 | 
						|
	 */
 | 
						|
  
 | 
						|
	/* alloc memory for large data structures: too large to be on stack */
 | 
						|
	elf = kmalloc(sizeof(*elf), GFP_KERNEL);
 | 
						|
	if (!elf)
 | 
						|
		goto out;
 | 
						|
	/*
 | 
						|
	 * The number of segs are recored into ELF header as 16bit value.
 | 
						|
	 * Please check DEFAULT_MAX_MAP_COUNT definition when you modify here.
 | 
						|
	 */
 | 
						|
	segs = current->mm->map_count;
 | 
						|
	segs += elf_core_extra_phdrs();
 | 
						|
 | 
						|
	gate_vma = get_gate_vma(current->mm);
 | 
						|
	if (gate_vma != NULL)
 | 
						|
		segs++;
 | 
						|
 | 
						|
	/* for notes section */
 | 
						|
	segs++;
 | 
						|
 | 
						|
	/* If segs > PN_XNUM(0xffff), then e_phnum overflows. To avoid
 | 
						|
	 * this, kernel supports extended numbering. Have a look at
 | 
						|
	 * include/linux/elf.h for further information. */
 | 
						|
	e_phnum = segs > PN_XNUM ? PN_XNUM : segs;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Collect all the non-memory information about the process for the
 | 
						|
	 * notes.  This also sets up the file header.
 | 
						|
	 */
 | 
						|
	if (!fill_note_info(elf, e_phnum, &info, cprm->siginfo, cprm->regs))
 | 
						|
		goto cleanup;
 | 
						|
 | 
						|
	has_dumped = 1;
 | 
						|
 | 
						|
	fs = get_fs();
 | 
						|
	set_fs(KERNEL_DS);
 | 
						|
 | 
						|
	offset += sizeof(*elf);				/* Elf header */
 | 
						|
	offset += segs * sizeof(struct elf_phdr);	/* Program headers */
 | 
						|
 | 
						|
	/* Write notes phdr entry */
 | 
						|
	{
 | 
						|
		size_t sz = get_note_info_size(&info);
 | 
						|
 | 
						|
		sz += elf_coredump_extra_notes_size();
 | 
						|
 | 
						|
		phdr4note = kmalloc(sizeof(*phdr4note), GFP_KERNEL);
 | 
						|
		if (!phdr4note)
 | 
						|
			goto end_coredump;
 | 
						|
 | 
						|
		fill_elf_note_phdr(phdr4note, sz, offset);
 | 
						|
		offset += sz;
 | 
						|
	}
 | 
						|
 | 
						|
	dataoff = offset = roundup(offset, ELF_EXEC_PAGESIZE);
 | 
						|
 | 
						|
	vma_filesz = kmalloc_array(segs - 1, sizeof(*vma_filesz), GFP_KERNEL);
 | 
						|
	if (!vma_filesz)
 | 
						|
		goto end_coredump;
 | 
						|
 | 
						|
	for (i = 0, vma = first_vma(current, gate_vma); vma != NULL;
 | 
						|
			vma = next_vma(vma, gate_vma)) {
 | 
						|
		unsigned long dump_size;
 | 
						|
 | 
						|
		dump_size = vma_dump_size(vma, cprm->mm_flags);
 | 
						|
		vma_filesz[i++] = dump_size;
 | 
						|
		vma_data_size += dump_size;
 | 
						|
	}
 | 
						|
 | 
						|
	offset += vma_data_size;
 | 
						|
	offset += elf_core_extra_data_size();
 | 
						|
	e_shoff = offset;
 | 
						|
 | 
						|
	if (e_phnum == PN_XNUM) {
 | 
						|
		shdr4extnum = kmalloc(sizeof(*shdr4extnum), GFP_KERNEL);
 | 
						|
		if (!shdr4extnum)
 | 
						|
			goto end_coredump;
 | 
						|
		fill_extnum_info(elf, shdr4extnum, e_shoff, segs);
 | 
						|
	}
 | 
						|
 | 
						|
	offset = dataoff;
 | 
						|
 | 
						|
	if (!dump_emit(cprm, elf, sizeof(*elf)))
 | 
						|
		goto end_coredump;
 | 
						|
 | 
						|
	if (!dump_emit(cprm, phdr4note, sizeof(*phdr4note)))
 | 
						|
		goto end_coredump;
 | 
						|
 | 
						|
	/* Write program headers for segments dump */
 | 
						|
	for (i = 0, vma = first_vma(current, gate_vma); vma != NULL;
 | 
						|
			vma = next_vma(vma, gate_vma)) {
 | 
						|
		struct elf_phdr phdr;
 | 
						|
 | 
						|
		phdr.p_type = PT_LOAD;
 | 
						|
		phdr.p_offset = offset;
 | 
						|
		phdr.p_vaddr = vma->vm_start;
 | 
						|
		phdr.p_paddr = 0;
 | 
						|
		phdr.p_filesz = vma_filesz[i++];
 | 
						|
		phdr.p_memsz = vma->vm_end - vma->vm_start;
 | 
						|
		offset += phdr.p_filesz;
 | 
						|
		phdr.p_flags = vma->vm_flags & VM_READ ? PF_R : 0;
 | 
						|
		if (vma->vm_flags & VM_WRITE)
 | 
						|
			phdr.p_flags |= PF_W;
 | 
						|
		if (vma->vm_flags & VM_EXEC)
 | 
						|
			phdr.p_flags |= PF_X;
 | 
						|
		phdr.p_align = ELF_EXEC_PAGESIZE;
 | 
						|
 | 
						|
		if (!dump_emit(cprm, &phdr, sizeof(phdr)))
 | 
						|
			goto end_coredump;
 | 
						|
	}
 | 
						|
 | 
						|
	if (!elf_core_write_extra_phdrs(cprm, offset))
 | 
						|
		goto end_coredump;
 | 
						|
 | 
						|
 	/* write out the notes section */
 | 
						|
	if (!write_note_info(&info, cprm))
 | 
						|
		goto end_coredump;
 | 
						|
 | 
						|
	if (elf_coredump_extra_notes_write(cprm))
 | 
						|
		goto end_coredump;
 | 
						|
 | 
						|
	/* Align to page */
 | 
						|
	if (!dump_skip(cprm, dataoff - cprm->written))
 | 
						|
		goto end_coredump;
 | 
						|
 | 
						|
	for (i = 0, vma = first_vma(current, gate_vma); vma != NULL;
 | 
						|
			vma = next_vma(vma, gate_vma)) {
 | 
						|
		unsigned long addr;
 | 
						|
		unsigned long end;
 | 
						|
 | 
						|
		end = vma->vm_start + vma_filesz[i++];
 | 
						|
 | 
						|
		for (addr = vma->vm_start; addr < end; addr += PAGE_SIZE) {
 | 
						|
			struct page *page;
 | 
						|
			int stop;
 | 
						|
 | 
						|
			page = get_dump_page(addr);
 | 
						|
			if (page) {
 | 
						|
				void *kaddr = kmap(page);
 | 
						|
				stop = !dump_emit(cprm, kaddr, PAGE_SIZE);
 | 
						|
				kunmap(page);
 | 
						|
				page_cache_release(page);
 | 
						|
			} else
 | 
						|
				stop = !dump_skip(cprm, PAGE_SIZE);
 | 
						|
			if (stop)
 | 
						|
				goto end_coredump;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if (!elf_core_write_extra_data(cprm))
 | 
						|
		goto end_coredump;
 | 
						|
 | 
						|
	if (e_phnum == PN_XNUM) {
 | 
						|
		if (!dump_emit(cprm, shdr4extnum, sizeof(*shdr4extnum)))
 | 
						|
			goto end_coredump;
 | 
						|
	}
 | 
						|
 | 
						|
end_coredump:
 | 
						|
	set_fs(fs);
 | 
						|
 | 
						|
cleanup:
 | 
						|
	free_note_info(&info);
 | 
						|
	kfree(shdr4extnum);
 | 
						|
	kfree(vma_filesz);
 | 
						|
	kfree(phdr4note);
 | 
						|
	kfree(elf);
 | 
						|
out:
 | 
						|
	return has_dumped;
 | 
						|
}
 | 
						|
 | 
						|
#endif		/* CONFIG_ELF_CORE */
 | 
						|
 | 
						|
static int __init init_elf_binfmt(void)
 | 
						|
{
 | 
						|
	register_binfmt(&elf_format);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static void __exit exit_elf_binfmt(void)
 | 
						|
{
 | 
						|
	/* Remove the COFF and ELF loaders. */
 | 
						|
	unregister_binfmt(&elf_format);
 | 
						|
}
 | 
						|
 | 
						|
core_initcall(init_elf_binfmt);
 | 
						|
module_exit(exit_elf_binfmt);
 | 
						|
MODULE_LICENSE("GPL");
 |