 9afa3195b9
			
		
	
	
	9afa3195b9
	
	
	
		
			
			Pull trivial tree from Jiri Kosina: "Assorted tiny fixes queued in trivial tree" * 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial: (22 commits) DocBook: update EXPORT_SYMBOL entry to point at export.h Documentation: update top level 00-INDEX file with new additions ARM: at91/ide: remove unsused at91-ide Kconfig entry percpu_counter.h: comment code for better readability x86, efi: fix comment typo in head_32.S IB: cxgb3: delay freeing mem untill entirely done with it net: mvneta: remove unneeded version.h include time: x86: report_lost_ticks doesn't exist any more pcmcia: avoid static analysis complaint about use-after-free fs/jfs: Fix typo in comment : 'how may' -> 'how many' of: add missing documentation for of_platform_populate() btrfs: remove unnecessary cur_trans set before goto loop in join_transaction sound: soc: Fix typo in sound/codecs treewide: Fix typo in various drivers btrfs: fix comment typos Update ibmvscsi module name in Kconfig. powerpc: fix typo (utilties -> utilities) of: fix spelling mistake in comment h8300: Fix home page URL in h8300/README xtensa: Fix home page URL in Kconfig ...
		
			
				
	
	
		
			13445 lines
		
	
	
	
		
			363 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			13445 lines
		
	
	
	
		
			363 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /* bnx2x_main.c: Broadcom Everest network driver.
 | |
|  *
 | |
|  * Copyright (c) 2007-2013 Broadcom Corporation
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License as published by
 | |
|  * the Free Software Foundation.
 | |
|  *
 | |
|  * Maintained by: Eilon Greenstein <eilong@broadcom.com>
 | |
|  * Written by: Eliezer Tamir
 | |
|  * Based on code from Michael Chan's bnx2 driver
 | |
|  * UDP CSUM errata workaround by Arik Gendelman
 | |
|  * Slowpath and fastpath rework by Vladislav Zolotarov
 | |
|  * Statistics and Link management by Yitchak Gertner
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 | |
| 
 | |
| #include <linux/module.h>
 | |
| #include <linux/moduleparam.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/device.h>  /* for dev_info() */
 | |
| #include <linux/timer.h>
 | |
| #include <linux/errno.h>
 | |
| #include <linux/ioport.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/pci.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/netdevice.h>
 | |
| #include <linux/etherdevice.h>
 | |
| #include <linux/skbuff.h>
 | |
| #include <linux/dma-mapping.h>
 | |
| #include <linux/bitops.h>
 | |
| #include <linux/irq.h>
 | |
| #include <linux/delay.h>
 | |
| #include <asm/byteorder.h>
 | |
| #include <linux/time.h>
 | |
| #include <linux/ethtool.h>
 | |
| #include <linux/mii.h>
 | |
| #include <linux/if_vlan.h>
 | |
| #include <net/ip.h>
 | |
| #include <net/ipv6.h>
 | |
| #include <net/tcp.h>
 | |
| #include <net/checksum.h>
 | |
| #include <net/ip6_checksum.h>
 | |
| #include <linux/workqueue.h>
 | |
| #include <linux/crc32.h>
 | |
| #include <linux/crc32c.h>
 | |
| #include <linux/prefetch.h>
 | |
| #include <linux/zlib.h>
 | |
| #include <linux/io.h>
 | |
| #include <linux/semaphore.h>
 | |
| #include <linux/stringify.h>
 | |
| #include <linux/vmalloc.h>
 | |
| 
 | |
| #include "bnx2x.h"
 | |
| #include "bnx2x_init.h"
 | |
| #include "bnx2x_init_ops.h"
 | |
| #include "bnx2x_cmn.h"
 | |
| #include "bnx2x_vfpf.h"
 | |
| #include "bnx2x_dcb.h"
 | |
| #include "bnx2x_sp.h"
 | |
| 
 | |
| #include <linux/firmware.h>
 | |
| #include "bnx2x_fw_file_hdr.h"
 | |
| /* FW files */
 | |
| #define FW_FILE_VERSION					\
 | |
| 	__stringify(BCM_5710_FW_MAJOR_VERSION) "."	\
 | |
| 	__stringify(BCM_5710_FW_MINOR_VERSION) "."	\
 | |
| 	__stringify(BCM_5710_FW_REVISION_VERSION) "."	\
 | |
| 	__stringify(BCM_5710_FW_ENGINEERING_VERSION)
 | |
| #define FW_FILE_NAME_E1		"bnx2x/bnx2x-e1-" FW_FILE_VERSION ".fw"
 | |
| #define FW_FILE_NAME_E1H	"bnx2x/bnx2x-e1h-" FW_FILE_VERSION ".fw"
 | |
| #define FW_FILE_NAME_E2		"bnx2x/bnx2x-e2-" FW_FILE_VERSION ".fw"
 | |
| 
 | |
| #define MAC_LEADING_ZERO_CNT (ALIGN(ETH_ALEN, sizeof(u32)) - ETH_ALEN)
 | |
| 
 | |
| /* Time in jiffies before concluding the transmitter is hung */
 | |
| #define TX_TIMEOUT		(5*HZ)
 | |
| 
 | |
| static char version[] =
 | |
| 	"Broadcom NetXtreme II 5771x/578xx 10/20-Gigabit Ethernet Driver "
 | |
| 	DRV_MODULE_NAME " " DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
 | |
| 
 | |
| MODULE_AUTHOR("Eliezer Tamir");
 | |
| MODULE_DESCRIPTION("Broadcom NetXtreme II "
 | |
| 		   "BCM57710/57711/57711E/"
 | |
| 		   "57712/57712_MF/57800/57800_MF/57810/57810_MF/"
 | |
| 		   "57840/57840_MF Driver");
 | |
| MODULE_LICENSE("GPL");
 | |
| MODULE_VERSION(DRV_MODULE_VERSION);
 | |
| MODULE_FIRMWARE(FW_FILE_NAME_E1);
 | |
| MODULE_FIRMWARE(FW_FILE_NAME_E1H);
 | |
| MODULE_FIRMWARE(FW_FILE_NAME_E2);
 | |
| 
 | |
| 
 | |
| int num_queues;
 | |
| module_param(num_queues, int, 0);
 | |
| MODULE_PARM_DESC(num_queues,
 | |
| 		 " Set number of queues (default is as a number of CPUs)");
 | |
| 
 | |
| static int disable_tpa;
 | |
| module_param(disable_tpa, int, 0);
 | |
| MODULE_PARM_DESC(disable_tpa, " Disable the TPA (LRO) feature");
 | |
| 
 | |
| #define INT_MODE_INTx			1
 | |
| #define INT_MODE_MSI			2
 | |
| int int_mode;
 | |
| module_param(int_mode, int, 0);
 | |
| MODULE_PARM_DESC(int_mode, " Force interrupt mode other than MSI-X "
 | |
| 				"(1 INT#x; 2 MSI)");
 | |
| 
 | |
| static int dropless_fc;
 | |
| module_param(dropless_fc, int, 0);
 | |
| MODULE_PARM_DESC(dropless_fc, " Pause on exhausted host ring");
 | |
| 
 | |
| static int mrrs = -1;
 | |
| module_param(mrrs, int, 0);
 | |
| MODULE_PARM_DESC(mrrs, " Force Max Read Req Size (0..3) (for debug)");
 | |
| 
 | |
| static int debug;
 | |
| module_param(debug, int, 0);
 | |
| MODULE_PARM_DESC(debug, " Default debug msglevel");
 | |
| 
 | |
| 
 | |
| 
 | |
| struct workqueue_struct *bnx2x_wq;
 | |
| 
 | |
| struct bnx2x_mac_vals {
 | |
| 	u32 xmac_addr;
 | |
| 	u32 xmac_val;
 | |
| 	u32 emac_addr;
 | |
| 	u32 emac_val;
 | |
| 	u32 umac_addr;
 | |
| 	u32 umac_val;
 | |
| 	u32 bmac_addr;
 | |
| 	u32 bmac_val[2];
 | |
| };
 | |
| 
 | |
| enum bnx2x_board_type {
 | |
| 	BCM57710 = 0,
 | |
| 	BCM57711,
 | |
| 	BCM57711E,
 | |
| 	BCM57712,
 | |
| 	BCM57712_MF,
 | |
| 	BCM57712_VF,
 | |
| 	BCM57800,
 | |
| 	BCM57800_MF,
 | |
| 	BCM57800_VF,
 | |
| 	BCM57810,
 | |
| 	BCM57810_MF,
 | |
| 	BCM57810_VF,
 | |
| 	BCM57840_4_10,
 | |
| 	BCM57840_2_20,
 | |
| 	BCM57840_MF,
 | |
| 	BCM57840_VF,
 | |
| 	BCM57811,
 | |
| 	BCM57811_MF,
 | |
| 	BCM57840_O,
 | |
| 	BCM57840_MFO,
 | |
| 	BCM57811_VF
 | |
| };
 | |
| 
 | |
| /* indexed by board_type, above */
 | |
| static struct {
 | |
| 	char *name;
 | |
| } board_info[] = {
 | |
| 	[BCM57710]	= { "Broadcom NetXtreme II BCM57710 10 Gigabit PCIe [Everest]" },
 | |
| 	[BCM57711]	= { "Broadcom NetXtreme II BCM57711 10 Gigabit PCIe" },
 | |
| 	[BCM57711E]	= { "Broadcom NetXtreme II BCM57711E 10 Gigabit PCIe" },
 | |
| 	[BCM57712]	= { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet" },
 | |
| 	[BCM57712_MF]	= { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet Multi Function" },
 | |
| 	[BCM57712_VF]	= { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet Virtual Function" },
 | |
| 	[BCM57800]	= { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet" },
 | |
| 	[BCM57800_MF]	= { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet Multi Function" },
 | |
| 	[BCM57800_VF]	= { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet Virtual Function" },
 | |
| 	[BCM57810]	= { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet" },
 | |
| 	[BCM57810_MF]	= { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet Multi Function" },
 | |
| 	[BCM57810_VF]	= { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet Virtual Function" },
 | |
| 	[BCM57840_4_10]	= { "Broadcom NetXtreme II BCM57840 10 Gigabit Ethernet" },
 | |
| 	[BCM57840_2_20]	= { "Broadcom NetXtreme II BCM57840 20 Gigabit Ethernet" },
 | |
| 	[BCM57840_MF]	= { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Multi Function" },
 | |
| 	[BCM57840_VF]	= { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Virtual Function" },
 | |
| 	[BCM57811]	= { "Broadcom NetXtreme II BCM57811 10 Gigabit Ethernet" },
 | |
| 	[BCM57811_MF]	= { "Broadcom NetXtreme II BCM57811 10 Gigabit Ethernet Multi Function" },
 | |
| 	[BCM57840_O]	= { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet" },
 | |
| 	[BCM57840_MFO]	= { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Multi Function" },
 | |
| 	[BCM57811_VF]	= { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Virtual Function" }
 | |
| };
 | |
| 
 | |
| #ifndef PCI_DEVICE_ID_NX2_57710
 | |
| #define PCI_DEVICE_ID_NX2_57710		CHIP_NUM_57710
 | |
| #endif
 | |
| #ifndef PCI_DEVICE_ID_NX2_57711
 | |
| #define PCI_DEVICE_ID_NX2_57711		CHIP_NUM_57711
 | |
| #endif
 | |
| #ifndef PCI_DEVICE_ID_NX2_57711E
 | |
| #define PCI_DEVICE_ID_NX2_57711E	CHIP_NUM_57711E
 | |
| #endif
 | |
| #ifndef PCI_DEVICE_ID_NX2_57712
 | |
| #define PCI_DEVICE_ID_NX2_57712		CHIP_NUM_57712
 | |
| #endif
 | |
| #ifndef PCI_DEVICE_ID_NX2_57712_MF
 | |
| #define PCI_DEVICE_ID_NX2_57712_MF	CHIP_NUM_57712_MF
 | |
| #endif
 | |
| #ifndef PCI_DEVICE_ID_NX2_57712_VF
 | |
| #define PCI_DEVICE_ID_NX2_57712_VF	CHIP_NUM_57712_VF
 | |
| #endif
 | |
| #ifndef PCI_DEVICE_ID_NX2_57800
 | |
| #define PCI_DEVICE_ID_NX2_57800		CHIP_NUM_57800
 | |
| #endif
 | |
| #ifndef PCI_DEVICE_ID_NX2_57800_MF
 | |
| #define PCI_DEVICE_ID_NX2_57800_MF	CHIP_NUM_57800_MF
 | |
| #endif
 | |
| #ifndef PCI_DEVICE_ID_NX2_57800_VF
 | |
| #define PCI_DEVICE_ID_NX2_57800_VF	CHIP_NUM_57800_VF
 | |
| #endif
 | |
| #ifndef PCI_DEVICE_ID_NX2_57810
 | |
| #define PCI_DEVICE_ID_NX2_57810		CHIP_NUM_57810
 | |
| #endif
 | |
| #ifndef PCI_DEVICE_ID_NX2_57810_MF
 | |
| #define PCI_DEVICE_ID_NX2_57810_MF	CHIP_NUM_57810_MF
 | |
| #endif
 | |
| #ifndef PCI_DEVICE_ID_NX2_57840_O
 | |
| #define PCI_DEVICE_ID_NX2_57840_O	CHIP_NUM_57840_OBSOLETE
 | |
| #endif
 | |
| #ifndef PCI_DEVICE_ID_NX2_57810_VF
 | |
| #define PCI_DEVICE_ID_NX2_57810_VF	CHIP_NUM_57810_VF
 | |
| #endif
 | |
| #ifndef PCI_DEVICE_ID_NX2_57840_4_10
 | |
| #define PCI_DEVICE_ID_NX2_57840_4_10	CHIP_NUM_57840_4_10
 | |
| #endif
 | |
| #ifndef PCI_DEVICE_ID_NX2_57840_2_20
 | |
| #define PCI_DEVICE_ID_NX2_57840_2_20	CHIP_NUM_57840_2_20
 | |
| #endif
 | |
| #ifndef PCI_DEVICE_ID_NX2_57840_MFO
 | |
| #define PCI_DEVICE_ID_NX2_57840_MFO	CHIP_NUM_57840_MF_OBSOLETE
 | |
| #endif
 | |
| #ifndef PCI_DEVICE_ID_NX2_57840_MF
 | |
| #define PCI_DEVICE_ID_NX2_57840_MF	CHIP_NUM_57840_MF
 | |
| #endif
 | |
| #ifndef PCI_DEVICE_ID_NX2_57840_VF
 | |
| #define PCI_DEVICE_ID_NX2_57840_VF	CHIP_NUM_57840_VF
 | |
| #endif
 | |
| #ifndef PCI_DEVICE_ID_NX2_57811
 | |
| #define PCI_DEVICE_ID_NX2_57811		CHIP_NUM_57811
 | |
| #endif
 | |
| #ifndef PCI_DEVICE_ID_NX2_57811_MF
 | |
| #define PCI_DEVICE_ID_NX2_57811_MF	CHIP_NUM_57811_MF
 | |
| #endif
 | |
| #ifndef PCI_DEVICE_ID_NX2_57811_VF
 | |
| #define PCI_DEVICE_ID_NX2_57811_VF	CHIP_NUM_57811_VF
 | |
| #endif
 | |
| 
 | |
| static DEFINE_PCI_DEVICE_TABLE(bnx2x_pci_tbl) = {
 | |
| 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57710), BCM57710 },
 | |
| 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711), BCM57711 },
 | |
| 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711E), BCM57711E },
 | |
| 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712), BCM57712 },
 | |
| 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_MF), BCM57712_MF },
 | |
| 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_VF), BCM57712_VF },
 | |
| 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800), BCM57800 },
 | |
| 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_MF), BCM57800_MF },
 | |
| 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_VF), BCM57800_VF },
 | |
| 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810), BCM57810 },
 | |
| 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_MF), BCM57810_MF },
 | |
| 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_O), BCM57840_O },
 | |
| 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 },
 | |
| 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_2_20), BCM57840_2_20 },
 | |
| 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_VF), BCM57810_VF },
 | |
| 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MFO), BCM57840_MFO },
 | |
| 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
 | |
| 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF },
 | |
| 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811), BCM57811 },
 | |
| 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_MF), BCM57811_MF },
 | |
| 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_VF), BCM57811_VF },
 | |
| 	{ 0 }
 | |
| };
 | |
| 
 | |
| MODULE_DEVICE_TABLE(pci, bnx2x_pci_tbl);
 | |
| 
 | |
| /* Global resources for unloading a previously loaded device */
 | |
| #define BNX2X_PREV_WAIT_NEEDED 1
 | |
| static DEFINE_SEMAPHORE(bnx2x_prev_sem);
 | |
| static LIST_HEAD(bnx2x_prev_list);
 | |
| /****************************************************************************
 | |
| * General service functions
 | |
| ****************************************************************************/
 | |
| 
 | |
| static void __storm_memset_dma_mapping(struct bnx2x *bp,
 | |
| 				       u32 addr, dma_addr_t mapping)
 | |
| {
 | |
| 	REG_WR(bp,  addr, U64_LO(mapping));
 | |
| 	REG_WR(bp,  addr + 4, U64_HI(mapping));
 | |
| }
 | |
| 
 | |
| static void storm_memset_spq_addr(struct bnx2x *bp,
 | |
| 				  dma_addr_t mapping, u16 abs_fid)
 | |
| {
 | |
| 	u32 addr = XSEM_REG_FAST_MEMORY +
 | |
| 			XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid);
 | |
| 
 | |
| 	__storm_memset_dma_mapping(bp, addr, mapping);
 | |
| }
 | |
| 
 | |
| static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
 | |
| 				  u16 pf_id)
 | |
| {
 | |
| 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
 | |
| 		pf_id);
 | |
| 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
 | |
| 		pf_id);
 | |
| 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
 | |
| 		pf_id);
 | |
| 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
 | |
| 		pf_id);
 | |
| }
 | |
| 
 | |
| static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
 | |
| 				 u8 enable)
 | |
| {
 | |
| 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
 | |
| 		enable);
 | |
| 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
 | |
| 		enable);
 | |
| 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
 | |
| 		enable);
 | |
| 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
 | |
| 		enable);
 | |
| }
 | |
| 
 | |
| static void storm_memset_eq_data(struct bnx2x *bp,
 | |
| 				 struct event_ring_data *eq_data,
 | |
| 				u16 pfid)
 | |
| {
 | |
| 	size_t size = sizeof(struct event_ring_data);
 | |
| 
 | |
| 	u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid);
 | |
| 
 | |
| 	__storm_memset_struct(bp, addr, size, (u32 *)eq_data);
 | |
| }
 | |
| 
 | |
| static void storm_memset_eq_prod(struct bnx2x *bp, u16 eq_prod,
 | |
| 				 u16 pfid)
 | |
| {
 | |
| 	u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_PROD_OFFSET(pfid);
 | |
| 	REG_WR16(bp, addr, eq_prod);
 | |
| }
 | |
| 
 | |
| /* used only at init
 | |
|  * locking is done by mcp
 | |
|  */
 | |
| static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val)
 | |
| {
 | |
| 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
 | |
| 	pci_write_config_dword(bp->pdev, PCICFG_GRC_DATA, val);
 | |
| 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
 | |
| 			       PCICFG_VENDOR_ID_OFFSET);
 | |
| }
 | |
| 
 | |
| static u32 bnx2x_reg_rd_ind(struct bnx2x *bp, u32 addr)
 | |
| {
 | |
| 	u32 val;
 | |
| 
 | |
| 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
 | |
| 	pci_read_config_dword(bp->pdev, PCICFG_GRC_DATA, &val);
 | |
| 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
 | |
| 			       PCICFG_VENDOR_ID_OFFSET);
 | |
| 
 | |
| 	return val;
 | |
| }
 | |
| 
 | |
| #define DMAE_DP_SRC_GRC		"grc src_addr [%08x]"
 | |
| #define DMAE_DP_SRC_PCI		"pci src_addr [%x:%08x]"
 | |
| #define DMAE_DP_DST_GRC		"grc dst_addr [%08x]"
 | |
| #define DMAE_DP_DST_PCI		"pci dst_addr [%x:%08x]"
 | |
| #define DMAE_DP_DST_NONE	"dst_addr [none]"
 | |
| 
 | |
| void bnx2x_dp_dmae(struct bnx2x *bp, struct dmae_command *dmae, int msglvl)
 | |
| {
 | |
| 	u32 src_type = dmae->opcode & DMAE_COMMAND_SRC;
 | |
| 
 | |
| 	switch (dmae->opcode & DMAE_COMMAND_DST) {
 | |
| 	case DMAE_CMD_DST_PCI:
 | |
| 		if (src_type == DMAE_CMD_SRC_PCI)
 | |
| 			DP(msglvl, "DMAE: opcode 0x%08x\n"
 | |
| 			   "src [%x:%08x], len [%d*4], dst [%x:%08x]\n"
 | |
| 			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
 | |
| 			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
 | |
| 			   dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
 | |
| 			   dmae->comp_addr_hi, dmae->comp_addr_lo,
 | |
| 			   dmae->comp_val);
 | |
| 		else
 | |
| 			DP(msglvl, "DMAE: opcode 0x%08x\n"
 | |
| 			   "src [%08x], len [%d*4], dst [%x:%08x]\n"
 | |
| 			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
 | |
| 			   dmae->opcode, dmae->src_addr_lo >> 2,
 | |
| 			   dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
 | |
| 			   dmae->comp_addr_hi, dmae->comp_addr_lo,
 | |
| 			   dmae->comp_val);
 | |
| 		break;
 | |
| 	case DMAE_CMD_DST_GRC:
 | |
| 		if (src_type == DMAE_CMD_SRC_PCI)
 | |
| 			DP(msglvl, "DMAE: opcode 0x%08x\n"
 | |
| 			   "src [%x:%08x], len [%d*4], dst_addr [%08x]\n"
 | |
| 			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
 | |
| 			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
 | |
| 			   dmae->len, dmae->dst_addr_lo >> 2,
 | |
| 			   dmae->comp_addr_hi, dmae->comp_addr_lo,
 | |
| 			   dmae->comp_val);
 | |
| 		else
 | |
| 			DP(msglvl, "DMAE: opcode 0x%08x\n"
 | |
| 			   "src [%08x], len [%d*4], dst [%08x]\n"
 | |
| 			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
 | |
| 			   dmae->opcode, dmae->src_addr_lo >> 2,
 | |
| 			   dmae->len, dmae->dst_addr_lo >> 2,
 | |
| 			   dmae->comp_addr_hi, dmae->comp_addr_lo,
 | |
| 			   dmae->comp_val);
 | |
| 		break;
 | |
| 	default:
 | |
| 		if (src_type == DMAE_CMD_SRC_PCI)
 | |
| 			DP(msglvl, "DMAE: opcode 0x%08x\n"
 | |
| 			   "src_addr [%x:%08x]  len [%d * 4]  dst_addr [none]\n"
 | |
| 			   "comp_addr [%x:%08x]  comp_val 0x%08x\n",
 | |
| 			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
 | |
| 			   dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
 | |
| 			   dmae->comp_val);
 | |
| 		else
 | |
| 			DP(msglvl, "DMAE: opcode 0x%08x\n"
 | |
| 			   "src_addr [%08x]  len [%d * 4]  dst_addr [none]\n"
 | |
| 			   "comp_addr [%x:%08x]  comp_val 0x%08x\n",
 | |
| 			   dmae->opcode, dmae->src_addr_lo >> 2,
 | |
| 			   dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
 | |
| 			   dmae->comp_val);
 | |
| 		break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* copy command into DMAE command memory and set DMAE command go */
 | |
| void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx)
 | |
| {
 | |
| 	u32 cmd_offset;
 | |
| 	int i;
 | |
| 
 | |
| 	cmd_offset = (DMAE_REG_CMD_MEM + sizeof(struct dmae_command) * idx);
 | |
| 	for (i = 0; i < (sizeof(struct dmae_command)/4); i++) {
 | |
| 		REG_WR(bp, cmd_offset + i*4, *(((u32 *)dmae) + i));
 | |
| 	}
 | |
| 	REG_WR(bp, dmae_reg_go_c[idx], 1);
 | |
| }
 | |
| 
 | |
| u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type)
 | |
| {
 | |
| 	return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
 | |
| 			   DMAE_CMD_C_ENABLE);
 | |
| }
 | |
| 
 | |
| u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode)
 | |
| {
 | |
| 	return opcode & ~DMAE_CMD_SRC_RESET;
 | |
| }
 | |
| 
 | |
| u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type,
 | |
| 			     bool with_comp, u8 comp_type)
 | |
| {
 | |
| 	u32 opcode = 0;
 | |
| 
 | |
| 	opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
 | |
| 		   (dst_type << DMAE_COMMAND_DST_SHIFT));
 | |
| 
 | |
| 	opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET);
 | |
| 
 | |
| 	opcode |= (BP_PORT(bp) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
 | |
| 	opcode |= ((BP_VN(bp) << DMAE_CMD_E1HVN_SHIFT) |
 | |
| 		   (BP_VN(bp) << DMAE_COMMAND_DST_VN_SHIFT));
 | |
| 	opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
 | |
| 
 | |
| #ifdef __BIG_ENDIAN
 | |
| 	opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
 | |
| #else
 | |
| 	opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
 | |
| #endif
 | |
| 	if (with_comp)
 | |
| 		opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type);
 | |
| 	return opcode;
 | |
| }
 | |
| 
 | |
| void bnx2x_prep_dmae_with_comp(struct bnx2x *bp,
 | |
| 				      struct dmae_command *dmae,
 | |
| 				      u8 src_type, u8 dst_type)
 | |
| {
 | |
| 	memset(dmae, 0, sizeof(struct dmae_command));
 | |
| 
 | |
| 	/* set the opcode */
 | |
| 	dmae->opcode = bnx2x_dmae_opcode(bp, src_type, dst_type,
 | |
| 					 true, DMAE_COMP_PCI);
 | |
| 
 | |
| 	/* fill in the completion parameters */
 | |
| 	dmae->comp_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_comp));
 | |
| 	dmae->comp_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_comp));
 | |
| 	dmae->comp_val = DMAE_COMP_VAL;
 | |
| }
 | |
| 
 | |
| /* issue a dmae command over the init-channel and wait for completion */
 | |
| int bnx2x_issue_dmae_with_comp(struct bnx2x *bp, struct dmae_command *dmae)
 | |
| {
 | |
| 	u32 *wb_comp = bnx2x_sp(bp, wb_comp);
 | |
| 	int cnt = CHIP_REV_IS_SLOW(bp) ? (400000) : 4000;
 | |
| 	int rc = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Lock the dmae channel. Disable BHs to prevent a dead-lock
 | |
| 	 * as long as this code is called both from syscall context and
 | |
| 	 * from ndo_set_rx_mode() flow that may be called from BH.
 | |
| 	 */
 | |
| 	spin_lock_bh(&bp->dmae_lock);
 | |
| 
 | |
| 	/* reset completion */
 | |
| 	*wb_comp = 0;
 | |
| 
 | |
| 	/* post the command on the channel used for initializations */
 | |
| 	bnx2x_post_dmae(bp, dmae, INIT_DMAE_C(bp));
 | |
| 
 | |
| 	/* wait for completion */
 | |
| 	udelay(5);
 | |
| 	while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
 | |
| 
 | |
| 		if (!cnt ||
 | |
| 		    (bp->recovery_state != BNX2X_RECOVERY_DONE &&
 | |
| 		     bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
 | |
| 			BNX2X_ERR("DMAE timeout!\n");
 | |
| 			rc = DMAE_TIMEOUT;
 | |
| 			goto unlock;
 | |
| 		}
 | |
| 		cnt--;
 | |
| 		udelay(50);
 | |
| 	}
 | |
| 	if (*wb_comp & DMAE_PCI_ERR_FLAG) {
 | |
| 		BNX2X_ERR("DMAE PCI error!\n");
 | |
| 		rc = DMAE_PCI_ERROR;
 | |
| 	}
 | |
| 
 | |
| unlock:
 | |
| 	spin_unlock_bh(&bp->dmae_lock);
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr,
 | |
| 		      u32 len32)
 | |
| {
 | |
| 	struct dmae_command dmae;
 | |
| 
 | |
| 	if (!bp->dmae_ready) {
 | |
| 		u32 *data = bnx2x_sp(bp, wb_data[0]);
 | |
| 
 | |
| 		if (CHIP_IS_E1(bp))
 | |
| 			bnx2x_init_ind_wr(bp, dst_addr, data, len32);
 | |
| 		else
 | |
| 			bnx2x_init_str_wr(bp, dst_addr, data, len32);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* set opcode and fixed command fields */
 | |
| 	bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
 | |
| 
 | |
| 	/* fill in addresses and len */
 | |
| 	dmae.src_addr_lo = U64_LO(dma_addr);
 | |
| 	dmae.src_addr_hi = U64_HI(dma_addr);
 | |
| 	dmae.dst_addr_lo = dst_addr >> 2;
 | |
| 	dmae.dst_addr_hi = 0;
 | |
| 	dmae.len = len32;
 | |
| 
 | |
| 	/* issue the command and wait for completion */
 | |
| 	bnx2x_issue_dmae_with_comp(bp, &dmae);
 | |
| }
 | |
| 
 | |
| void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32)
 | |
| {
 | |
| 	struct dmae_command dmae;
 | |
| 
 | |
| 	if (!bp->dmae_ready) {
 | |
| 		u32 *data = bnx2x_sp(bp, wb_data[0]);
 | |
| 		int i;
 | |
| 
 | |
| 		if (CHIP_IS_E1(bp))
 | |
| 			for (i = 0; i < len32; i++)
 | |
| 				data[i] = bnx2x_reg_rd_ind(bp, src_addr + i*4);
 | |
| 		else
 | |
| 			for (i = 0; i < len32; i++)
 | |
| 				data[i] = REG_RD(bp, src_addr + i*4);
 | |
| 
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* set opcode and fixed command fields */
 | |
| 	bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
 | |
| 
 | |
| 	/* fill in addresses and len */
 | |
| 	dmae.src_addr_lo = src_addr >> 2;
 | |
| 	dmae.src_addr_hi = 0;
 | |
| 	dmae.dst_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_data));
 | |
| 	dmae.dst_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_data));
 | |
| 	dmae.len = len32;
 | |
| 
 | |
| 	/* issue the command and wait for completion */
 | |
| 	bnx2x_issue_dmae_with_comp(bp, &dmae);
 | |
| }
 | |
| 
 | |
| static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr,
 | |
| 				      u32 addr, u32 len)
 | |
| {
 | |
| 	int dmae_wr_max = DMAE_LEN32_WR_MAX(bp);
 | |
| 	int offset = 0;
 | |
| 
 | |
| 	while (len > dmae_wr_max) {
 | |
| 		bnx2x_write_dmae(bp, phys_addr + offset,
 | |
| 				 addr + offset, dmae_wr_max);
 | |
| 		offset += dmae_wr_max * 4;
 | |
| 		len -= dmae_wr_max;
 | |
| 	}
 | |
| 
 | |
| 	bnx2x_write_dmae(bp, phys_addr + offset, addr + offset, len);
 | |
| }
 | |
| 
 | |
| static int bnx2x_mc_assert(struct bnx2x *bp)
 | |
| {
 | |
| 	char last_idx;
 | |
| 	int i, rc = 0;
 | |
| 	u32 row0, row1, row2, row3;
 | |
| 
 | |
| 	/* XSTORM */
 | |
| 	last_idx = REG_RD8(bp, BAR_XSTRORM_INTMEM +
 | |
| 			   XSTORM_ASSERT_LIST_INDEX_OFFSET);
 | |
| 	if (last_idx)
 | |
| 		BNX2X_ERR("XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
 | |
| 
 | |
| 	/* print the asserts */
 | |
| 	for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
 | |
| 
 | |
| 		row0 = REG_RD(bp, BAR_XSTRORM_INTMEM +
 | |
| 			      XSTORM_ASSERT_LIST_OFFSET(i));
 | |
| 		row1 = REG_RD(bp, BAR_XSTRORM_INTMEM +
 | |
| 			      XSTORM_ASSERT_LIST_OFFSET(i) + 4);
 | |
| 		row2 = REG_RD(bp, BAR_XSTRORM_INTMEM +
 | |
| 			      XSTORM_ASSERT_LIST_OFFSET(i) + 8);
 | |
| 		row3 = REG_RD(bp, BAR_XSTRORM_INTMEM +
 | |
| 			      XSTORM_ASSERT_LIST_OFFSET(i) + 12);
 | |
| 
 | |
| 		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
 | |
| 			BNX2X_ERR("XSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
 | |
| 				  i, row3, row2, row1, row0);
 | |
| 			rc++;
 | |
| 		} else {
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* TSTORM */
 | |
| 	last_idx = REG_RD8(bp, BAR_TSTRORM_INTMEM +
 | |
| 			   TSTORM_ASSERT_LIST_INDEX_OFFSET);
 | |
| 	if (last_idx)
 | |
| 		BNX2X_ERR("TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
 | |
| 
 | |
| 	/* print the asserts */
 | |
| 	for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
 | |
| 
 | |
| 		row0 = REG_RD(bp, BAR_TSTRORM_INTMEM +
 | |
| 			      TSTORM_ASSERT_LIST_OFFSET(i));
 | |
| 		row1 = REG_RD(bp, BAR_TSTRORM_INTMEM +
 | |
| 			      TSTORM_ASSERT_LIST_OFFSET(i) + 4);
 | |
| 		row2 = REG_RD(bp, BAR_TSTRORM_INTMEM +
 | |
| 			      TSTORM_ASSERT_LIST_OFFSET(i) + 8);
 | |
| 		row3 = REG_RD(bp, BAR_TSTRORM_INTMEM +
 | |
| 			      TSTORM_ASSERT_LIST_OFFSET(i) + 12);
 | |
| 
 | |
| 		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
 | |
| 			BNX2X_ERR("TSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
 | |
| 				  i, row3, row2, row1, row0);
 | |
| 			rc++;
 | |
| 		} else {
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* CSTORM */
 | |
| 	last_idx = REG_RD8(bp, BAR_CSTRORM_INTMEM +
 | |
| 			   CSTORM_ASSERT_LIST_INDEX_OFFSET);
 | |
| 	if (last_idx)
 | |
| 		BNX2X_ERR("CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
 | |
| 
 | |
| 	/* print the asserts */
 | |
| 	for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
 | |
| 
 | |
| 		row0 = REG_RD(bp, BAR_CSTRORM_INTMEM +
 | |
| 			      CSTORM_ASSERT_LIST_OFFSET(i));
 | |
| 		row1 = REG_RD(bp, BAR_CSTRORM_INTMEM +
 | |
| 			      CSTORM_ASSERT_LIST_OFFSET(i) + 4);
 | |
| 		row2 = REG_RD(bp, BAR_CSTRORM_INTMEM +
 | |
| 			      CSTORM_ASSERT_LIST_OFFSET(i) + 8);
 | |
| 		row3 = REG_RD(bp, BAR_CSTRORM_INTMEM +
 | |
| 			      CSTORM_ASSERT_LIST_OFFSET(i) + 12);
 | |
| 
 | |
| 		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
 | |
| 			BNX2X_ERR("CSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
 | |
| 				  i, row3, row2, row1, row0);
 | |
| 			rc++;
 | |
| 		} else {
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* USTORM */
 | |
| 	last_idx = REG_RD8(bp, BAR_USTRORM_INTMEM +
 | |
| 			   USTORM_ASSERT_LIST_INDEX_OFFSET);
 | |
| 	if (last_idx)
 | |
| 		BNX2X_ERR("USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
 | |
| 
 | |
| 	/* print the asserts */
 | |
| 	for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
 | |
| 
 | |
| 		row0 = REG_RD(bp, BAR_USTRORM_INTMEM +
 | |
| 			      USTORM_ASSERT_LIST_OFFSET(i));
 | |
| 		row1 = REG_RD(bp, BAR_USTRORM_INTMEM +
 | |
| 			      USTORM_ASSERT_LIST_OFFSET(i) + 4);
 | |
| 		row2 = REG_RD(bp, BAR_USTRORM_INTMEM +
 | |
| 			      USTORM_ASSERT_LIST_OFFSET(i) + 8);
 | |
| 		row3 = REG_RD(bp, BAR_USTRORM_INTMEM +
 | |
| 			      USTORM_ASSERT_LIST_OFFSET(i) + 12);
 | |
| 
 | |
| 		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
 | |
| 			BNX2X_ERR("USTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
 | |
| 				  i, row3, row2, row1, row0);
 | |
| 			rc++;
 | |
| 		} else {
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| void bnx2x_fw_dump_lvl(struct bnx2x *bp, const char *lvl)
 | |
| {
 | |
| 	u32 addr, val;
 | |
| 	u32 mark, offset;
 | |
| 	__be32 data[9];
 | |
| 	int word;
 | |
| 	u32 trace_shmem_base;
 | |
| 	if (BP_NOMCP(bp)) {
 | |
| 		BNX2X_ERR("NO MCP - can not dump\n");
 | |
| 		return;
 | |
| 	}
 | |
| 	netdev_printk(lvl, bp->dev, "bc %d.%d.%d\n",
 | |
| 		(bp->common.bc_ver & 0xff0000) >> 16,
 | |
| 		(bp->common.bc_ver & 0xff00) >> 8,
 | |
| 		(bp->common.bc_ver & 0xff));
 | |
| 
 | |
| 	val = REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER);
 | |
| 	if (val == REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER))
 | |
| 		BNX2X_ERR("%s" "MCP PC at 0x%x\n", lvl, val);
 | |
| 
 | |
| 	if (BP_PATH(bp) == 0)
 | |
| 		trace_shmem_base = bp->common.shmem_base;
 | |
| 	else
 | |
| 		trace_shmem_base = SHMEM2_RD(bp, other_shmem_base_addr);
 | |
| 	addr = trace_shmem_base - 0x800;
 | |
| 
 | |
| 	/* validate TRCB signature */
 | |
| 	mark = REG_RD(bp, addr);
 | |
| 	if (mark != MFW_TRACE_SIGNATURE) {
 | |
| 		BNX2X_ERR("Trace buffer signature is missing.");
 | |
| 		return ;
 | |
| 	}
 | |
| 
 | |
| 	/* read cyclic buffer pointer */
 | |
| 	addr += 4;
 | |
| 	mark = REG_RD(bp, addr);
 | |
| 	mark = (CHIP_IS_E1x(bp) ? MCP_REG_MCPR_SCRATCH : MCP_A_REG_MCPR_SCRATCH)
 | |
| 			+ ((mark + 0x3) & ~0x3) - 0x08000000;
 | |
| 	printk("%s" "begin fw dump (mark 0x%x)\n", lvl, mark);
 | |
| 
 | |
| 	printk("%s", lvl);
 | |
| 
 | |
| 	/* dump buffer after the mark */
 | |
| 	for (offset = mark; offset <= trace_shmem_base; offset += 0x8*4) {
 | |
| 		for (word = 0; word < 8; word++)
 | |
| 			data[word] = htonl(REG_RD(bp, offset + 4*word));
 | |
| 		data[8] = 0x0;
 | |
| 		pr_cont("%s", (char *)data);
 | |
| 	}
 | |
| 
 | |
| 	/* dump buffer before the mark */
 | |
| 	for (offset = addr + 4; offset <= mark; offset += 0x8*4) {
 | |
| 		for (word = 0; word < 8; word++)
 | |
| 			data[word] = htonl(REG_RD(bp, offset + 4*word));
 | |
| 		data[8] = 0x0;
 | |
| 		pr_cont("%s", (char *)data);
 | |
| 	}
 | |
| 	printk("%s" "end of fw dump\n", lvl);
 | |
| }
 | |
| 
 | |
| static void bnx2x_fw_dump(struct bnx2x *bp)
 | |
| {
 | |
| 	bnx2x_fw_dump_lvl(bp, KERN_ERR);
 | |
| }
 | |
| 
 | |
| static void bnx2x_hc_int_disable(struct bnx2x *bp)
 | |
| {
 | |
| 	int port = BP_PORT(bp);
 | |
| 	u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
 | |
| 	u32 val = REG_RD(bp, addr);
 | |
| 
 | |
| 	/* in E1 we must use only PCI configuration space to disable
 | |
| 	 * MSI/MSIX capablility
 | |
| 	 * It's forbitten to disable IGU_PF_CONF_MSI_MSIX_EN in HC block
 | |
| 	 */
 | |
| 	if (CHIP_IS_E1(bp)) {
 | |
| 		/* Since IGU_PF_CONF_MSI_MSIX_EN still always on
 | |
| 		 * Use mask register to prevent from HC sending interrupts
 | |
| 		 * after we exit the function
 | |
| 		 */
 | |
| 		REG_WR(bp, HC_REG_INT_MASK + port*4, 0);
 | |
| 
 | |
| 		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
 | |
| 			 HC_CONFIG_0_REG_INT_LINE_EN_0 |
 | |
| 			 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
 | |
| 	} else
 | |
| 		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
 | |
| 			 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
 | |
| 			 HC_CONFIG_0_REG_INT_LINE_EN_0 |
 | |
| 			 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
 | |
| 
 | |
| 	DP(NETIF_MSG_IFDOWN,
 | |
| 	   "write %x to HC %d (addr 0x%x)\n",
 | |
| 	   val, port, addr);
 | |
| 
 | |
| 	/* flush all outstanding writes */
 | |
| 	mmiowb();
 | |
| 
 | |
| 	REG_WR(bp, addr, val);
 | |
| 	if (REG_RD(bp, addr) != val)
 | |
| 		BNX2X_ERR("BUG! proper val not read from IGU!\n");
 | |
| }
 | |
| 
 | |
| static void bnx2x_igu_int_disable(struct bnx2x *bp)
 | |
| {
 | |
| 	u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
 | |
| 
 | |
| 	val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
 | |
| 		 IGU_PF_CONF_INT_LINE_EN |
 | |
| 		 IGU_PF_CONF_ATTN_BIT_EN);
 | |
| 
 | |
| 	DP(NETIF_MSG_IFDOWN, "write %x to IGU\n", val);
 | |
| 
 | |
| 	/* flush all outstanding writes */
 | |
| 	mmiowb();
 | |
| 
 | |
| 	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
 | |
| 	if (REG_RD(bp, IGU_REG_PF_CONFIGURATION) != val)
 | |
| 		BNX2X_ERR("BUG! proper val not read from IGU!\n");
 | |
| }
 | |
| 
 | |
| static void bnx2x_int_disable(struct bnx2x *bp)
 | |
| {
 | |
| 	if (bp->common.int_block == INT_BLOCK_HC)
 | |
| 		bnx2x_hc_int_disable(bp);
 | |
| 	else
 | |
| 		bnx2x_igu_int_disable(bp);
 | |
| }
 | |
| 
 | |
| void bnx2x_panic_dump(struct bnx2x *bp, bool disable_int)
 | |
| {
 | |
| 	int i;
 | |
| 	u16 j;
 | |
| 	struct hc_sp_status_block_data sp_sb_data;
 | |
| 	int func = BP_FUNC(bp);
 | |
| #ifdef BNX2X_STOP_ON_ERROR
 | |
| 	u16 start = 0, end = 0;
 | |
| 	u8 cos;
 | |
| #endif
 | |
| 	if (disable_int)
 | |
| 		bnx2x_int_disable(bp);
 | |
| 
 | |
| 	bp->stats_state = STATS_STATE_DISABLED;
 | |
| 	bp->eth_stats.unrecoverable_error++;
 | |
| 	DP(BNX2X_MSG_STATS, "stats_state - DISABLED\n");
 | |
| 
 | |
| 	BNX2X_ERR("begin crash dump -----------------\n");
 | |
| 
 | |
| 	/* Indices */
 | |
| 	/* Common */
 | |
| 	BNX2X_ERR("def_idx(0x%x)  def_att_idx(0x%x)  attn_state(0x%x)  spq_prod_idx(0x%x) next_stats_cnt(0x%x)\n",
 | |
| 		  bp->def_idx, bp->def_att_idx, bp->attn_state,
 | |
| 		  bp->spq_prod_idx, bp->stats_counter);
 | |
| 	BNX2X_ERR("DSB: attn bits(0x%x)  ack(0x%x)  id(0x%x)  idx(0x%x)\n",
 | |
| 		  bp->def_status_blk->atten_status_block.attn_bits,
 | |
| 		  bp->def_status_blk->atten_status_block.attn_bits_ack,
 | |
| 		  bp->def_status_blk->atten_status_block.status_block_id,
 | |
| 		  bp->def_status_blk->atten_status_block.attn_bits_index);
 | |
| 	BNX2X_ERR("     def (");
 | |
| 	for (i = 0; i < HC_SP_SB_MAX_INDICES; i++)
 | |
| 		pr_cont("0x%x%s",
 | |
| 			bp->def_status_blk->sp_sb.index_values[i],
 | |
| 			(i == HC_SP_SB_MAX_INDICES - 1) ? ")  " : " ");
 | |
| 
 | |
| 	for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
 | |
| 		*((u32 *)&sp_sb_data + i) = REG_RD(bp, BAR_CSTRORM_INTMEM +
 | |
| 			CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
 | |
| 			i*sizeof(u32));
 | |
| 
 | |
| 	pr_cont("igu_sb_id(0x%x)  igu_seg_id(0x%x) pf_id(0x%x)  vnic_id(0x%x)  vf_id(0x%x)  vf_valid (0x%x) state(0x%x)\n",
 | |
| 	       sp_sb_data.igu_sb_id,
 | |
| 	       sp_sb_data.igu_seg_id,
 | |
| 	       sp_sb_data.p_func.pf_id,
 | |
| 	       sp_sb_data.p_func.vnic_id,
 | |
| 	       sp_sb_data.p_func.vf_id,
 | |
| 	       sp_sb_data.p_func.vf_valid,
 | |
| 	       sp_sb_data.state);
 | |
| 
 | |
| 
 | |
| 	for_each_eth_queue(bp, i) {
 | |
| 		struct bnx2x_fastpath *fp = &bp->fp[i];
 | |
| 		int loop;
 | |
| 		struct hc_status_block_data_e2 sb_data_e2;
 | |
| 		struct hc_status_block_data_e1x sb_data_e1x;
 | |
| 		struct hc_status_block_sm  *hc_sm_p =
 | |
| 			CHIP_IS_E1x(bp) ?
 | |
| 			sb_data_e1x.common.state_machine :
 | |
| 			sb_data_e2.common.state_machine;
 | |
| 		struct hc_index_data *hc_index_p =
 | |
| 			CHIP_IS_E1x(bp) ?
 | |
| 			sb_data_e1x.index_data :
 | |
| 			sb_data_e2.index_data;
 | |
| 		u8 data_size, cos;
 | |
| 		u32 *sb_data_p;
 | |
| 		struct bnx2x_fp_txdata txdata;
 | |
| 
 | |
| 		/* Rx */
 | |
| 		BNX2X_ERR("fp%d: rx_bd_prod(0x%x)  rx_bd_cons(0x%x)  rx_comp_prod(0x%x)  rx_comp_cons(0x%x)  *rx_cons_sb(0x%x)\n",
 | |
| 			  i, fp->rx_bd_prod, fp->rx_bd_cons,
 | |
| 			  fp->rx_comp_prod,
 | |
| 			  fp->rx_comp_cons, le16_to_cpu(*fp->rx_cons_sb));
 | |
| 		BNX2X_ERR("     rx_sge_prod(0x%x)  last_max_sge(0x%x)  fp_hc_idx(0x%x)\n",
 | |
| 			  fp->rx_sge_prod, fp->last_max_sge,
 | |
| 			  le16_to_cpu(fp->fp_hc_idx));
 | |
| 
 | |
| 		/* Tx */
 | |
| 		for_each_cos_in_tx_queue(fp, cos)
 | |
| 		{
 | |
| 			txdata = *fp->txdata_ptr[cos];
 | |
| 			BNX2X_ERR("fp%d: tx_pkt_prod(0x%x)  tx_pkt_cons(0x%x)  tx_bd_prod(0x%x)  tx_bd_cons(0x%x)  *tx_cons_sb(0x%x)\n",
 | |
| 				  i, txdata.tx_pkt_prod,
 | |
| 				  txdata.tx_pkt_cons, txdata.tx_bd_prod,
 | |
| 				  txdata.tx_bd_cons,
 | |
| 				  le16_to_cpu(*txdata.tx_cons_sb));
 | |
| 		}
 | |
| 
 | |
| 		loop = CHIP_IS_E1x(bp) ?
 | |
| 			HC_SB_MAX_INDICES_E1X : HC_SB_MAX_INDICES_E2;
 | |
| 
 | |
| 		/* host sb data */
 | |
| 
 | |
| 		if (IS_FCOE_FP(fp))
 | |
| 			continue;
 | |
| 
 | |
| 		BNX2X_ERR("     run indexes (");
 | |
| 		for (j = 0; j < HC_SB_MAX_SM; j++)
 | |
| 			pr_cont("0x%x%s",
 | |
| 			       fp->sb_running_index[j],
 | |
| 			       (j == HC_SB_MAX_SM - 1) ? ")" : " ");
 | |
| 
 | |
| 		BNX2X_ERR("     indexes (");
 | |
| 		for (j = 0; j < loop; j++)
 | |
| 			pr_cont("0x%x%s",
 | |
| 			       fp->sb_index_values[j],
 | |
| 			       (j == loop - 1) ? ")" : " ");
 | |
| 		/* fw sb data */
 | |
| 		data_size = CHIP_IS_E1x(bp) ?
 | |
| 			sizeof(struct hc_status_block_data_e1x) :
 | |
| 			sizeof(struct hc_status_block_data_e2);
 | |
| 		data_size /= sizeof(u32);
 | |
| 		sb_data_p = CHIP_IS_E1x(bp) ?
 | |
| 			(u32 *)&sb_data_e1x :
 | |
| 			(u32 *)&sb_data_e2;
 | |
| 		/* copy sb data in here */
 | |
| 		for (j = 0; j < data_size; j++)
 | |
| 			*(sb_data_p + j) = REG_RD(bp, BAR_CSTRORM_INTMEM +
 | |
| 				CSTORM_STATUS_BLOCK_DATA_OFFSET(fp->fw_sb_id) +
 | |
| 				j * sizeof(u32));
 | |
| 
 | |
| 		if (!CHIP_IS_E1x(bp)) {
 | |
| 			pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
 | |
| 				sb_data_e2.common.p_func.pf_id,
 | |
| 				sb_data_e2.common.p_func.vf_id,
 | |
| 				sb_data_e2.common.p_func.vf_valid,
 | |
| 				sb_data_e2.common.p_func.vnic_id,
 | |
| 				sb_data_e2.common.same_igu_sb_1b,
 | |
| 				sb_data_e2.common.state);
 | |
| 		} else {
 | |
| 			pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
 | |
| 				sb_data_e1x.common.p_func.pf_id,
 | |
| 				sb_data_e1x.common.p_func.vf_id,
 | |
| 				sb_data_e1x.common.p_func.vf_valid,
 | |
| 				sb_data_e1x.common.p_func.vnic_id,
 | |
| 				sb_data_e1x.common.same_igu_sb_1b,
 | |
| 				sb_data_e1x.common.state);
 | |
| 		}
 | |
| 
 | |
| 		/* SB_SMs data */
 | |
| 		for (j = 0; j < HC_SB_MAX_SM; j++) {
 | |
| 			pr_cont("SM[%d] __flags (0x%x) igu_sb_id (0x%x)  igu_seg_id(0x%x) time_to_expire (0x%x) timer_value(0x%x)\n",
 | |
| 				j, hc_sm_p[j].__flags,
 | |
| 				hc_sm_p[j].igu_sb_id,
 | |
| 				hc_sm_p[j].igu_seg_id,
 | |
| 				hc_sm_p[j].time_to_expire,
 | |
| 				hc_sm_p[j].timer_value);
 | |
| 		}
 | |
| 
 | |
| 		/* Indecies data */
 | |
| 		for (j = 0; j < loop; j++) {
 | |
| 			pr_cont("INDEX[%d] flags (0x%x) timeout (0x%x)\n", j,
 | |
| 			       hc_index_p[j].flags,
 | |
| 			       hc_index_p[j].timeout);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| #ifdef BNX2X_STOP_ON_ERROR
 | |
| 
 | |
| 	/* event queue */
 | |
| 	for (i = 0; i < NUM_EQ_DESC; i++) {
 | |
| 		u32 *data = (u32 *)&bp->eq_ring[i].message.data;
 | |
| 
 | |
| 		BNX2X_ERR("event queue [%d]: header: opcode %d, error %d\n",
 | |
| 			  i, bp->eq_ring[i].message.opcode,
 | |
| 			  bp->eq_ring[i].message.error);
 | |
| 		BNX2X_ERR("data: %x %x %x\n", data[0], data[1], data[2]);
 | |
| 	}
 | |
| 
 | |
| 	/* Rings */
 | |
| 	/* Rx */
 | |
| 	for_each_valid_rx_queue(bp, i) {
 | |
| 		struct bnx2x_fastpath *fp = &bp->fp[i];
 | |
| 
 | |
| 		start = RX_BD(le16_to_cpu(*fp->rx_cons_sb) - 10);
 | |
| 		end = RX_BD(le16_to_cpu(*fp->rx_cons_sb) + 503);
 | |
| 		for (j = start; j != end; j = RX_BD(j + 1)) {
 | |
| 			u32 *rx_bd = (u32 *)&fp->rx_desc_ring[j];
 | |
| 			struct sw_rx_bd *sw_bd = &fp->rx_buf_ring[j];
 | |
| 
 | |
| 			BNX2X_ERR("fp%d: rx_bd[%x]=[%x:%x]  sw_bd=[%p]\n",
 | |
| 				  i, j, rx_bd[1], rx_bd[0], sw_bd->data);
 | |
| 		}
 | |
| 
 | |
| 		start = RX_SGE(fp->rx_sge_prod);
 | |
| 		end = RX_SGE(fp->last_max_sge);
 | |
| 		for (j = start; j != end; j = RX_SGE(j + 1)) {
 | |
| 			u32 *rx_sge = (u32 *)&fp->rx_sge_ring[j];
 | |
| 			struct sw_rx_page *sw_page = &fp->rx_page_ring[j];
 | |
| 
 | |
| 			BNX2X_ERR("fp%d: rx_sge[%x]=[%x:%x]  sw_page=[%p]\n",
 | |
| 				  i, j, rx_sge[1], rx_sge[0], sw_page->page);
 | |
| 		}
 | |
| 
 | |
| 		start = RCQ_BD(fp->rx_comp_cons - 10);
 | |
| 		end = RCQ_BD(fp->rx_comp_cons + 503);
 | |
| 		for (j = start; j != end; j = RCQ_BD(j + 1)) {
 | |
| 			u32 *cqe = (u32 *)&fp->rx_comp_ring[j];
 | |
| 
 | |
| 			BNX2X_ERR("fp%d: cqe[%x]=[%x:%x:%x:%x]\n",
 | |
| 				  i, j, cqe[0], cqe[1], cqe[2], cqe[3]);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Tx */
 | |
| 	for_each_valid_tx_queue(bp, i) {
 | |
| 		struct bnx2x_fastpath *fp = &bp->fp[i];
 | |
| 		for_each_cos_in_tx_queue(fp, cos) {
 | |
| 			struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
 | |
| 
 | |
| 			start = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) - 10);
 | |
| 			end = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) + 245);
 | |
| 			for (j = start; j != end; j = TX_BD(j + 1)) {
 | |
| 				struct sw_tx_bd *sw_bd =
 | |
| 					&txdata->tx_buf_ring[j];
 | |
| 
 | |
| 				BNX2X_ERR("fp%d: txdata %d, packet[%x]=[%p,%x]\n",
 | |
| 					  i, cos, j, sw_bd->skb,
 | |
| 					  sw_bd->first_bd);
 | |
| 			}
 | |
| 
 | |
| 			start = TX_BD(txdata->tx_bd_cons - 10);
 | |
| 			end = TX_BD(txdata->tx_bd_cons + 254);
 | |
| 			for (j = start; j != end; j = TX_BD(j + 1)) {
 | |
| 				u32 *tx_bd = (u32 *)&txdata->tx_desc_ring[j];
 | |
| 
 | |
| 				BNX2X_ERR("fp%d: txdata %d, tx_bd[%x]=[%x:%x:%x:%x]\n",
 | |
| 					  i, cos, j, tx_bd[0], tx_bd[1],
 | |
| 					  tx_bd[2], tx_bd[3]);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| #endif
 | |
| 	bnx2x_fw_dump(bp);
 | |
| 	bnx2x_mc_assert(bp);
 | |
| 	BNX2X_ERR("end crash dump -----------------\n");
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * FLR Support for E2
 | |
|  *
 | |
|  * bnx2x_pf_flr_clnup() is called during nic_load in the per function HW
 | |
|  * initialization.
 | |
|  */
 | |
| #define FLR_WAIT_USEC		10000	/* 10 miliseconds */
 | |
| #define FLR_WAIT_INTERVAL	50	/* usec */
 | |
| #define	FLR_POLL_CNT		(FLR_WAIT_USEC/FLR_WAIT_INTERVAL) /* 200 */
 | |
| 
 | |
| struct pbf_pN_buf_regs {
 | |
| 	int pN;
 | |
| 	u32 init_crd;
 | |
| 	u32 crd;
 | |
| 	u32 crd_freed;
 | |
| };
 | |
| 
 | |
| struct pbf_pN_cmd_regs {
 | |
| 	int pN;
 | |
| 	u32 lines_occup;
 | |
| 	u32 lines_freed;
 | |
| };
 | |
| 
 | |
| static void bnx2x_pbf_pN_buf_flushed(struct bnx2x *bp,
 | |
| 				     struct pbf_pN_buf_regs *regs,
 | |
| 				     u32 poll_count)
 | |
| {
 | |
| 	u32 init_crd, crd, crd_start, crd_freed, crd_freed_start;
 | |
| 	u32 cur_cnt = poll_count;
 | |
| 
 | |
| 	crd_freed = crd_freed_start = REG_RD(bp, regs->crd_freed);
 | |
| 	crd = crd_start = REG_RD(bp, regs->crd);
 | |
| 	init_crd = REG_RD(bp, regs->init_crd);
 | |
| 
 | |
| 	DP(BNX2X_MSG_SP, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
 | |
| 	DP(BNX2X_MSG_SP, "CREDIT[%d]      : s:%x\n", regs->pN, crd);
 | |
| 	DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
 | |
| 
 | |
| 	while ((crd != init_crd) && ((u32)SUB_S32(crd_freed, crd_freed_start) <
 | |
| 	       (init_crd - crd_start))) {
 | |
| 		if (cur_cnt--) {
 | |
| 			udelay(FLR_WAIT_INTERVAL);
 | |
| 			crd = REG_RD(bp, regs->crd);
 | |
| 			crd_freed = REG_RD(bp, regs->crd_freed);
 | |
| 		} else {
 | |
| 			DP(BNX2X_MSG_SP, "PBF tx buffer[%d] timed out\n",
 | |
| 			   regs->pN);
 | |
| 			DP(BNX2X_MSG_SP, "CREDIT[%d]      : c:%x\n",
 | |
| 			   regs->pN, crd);
 | |
| 			DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: c:%x\n",
 | |
| 			   regs->pN, crd_freed);
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF tx buffer[%d]\n",
 | |
| 	   poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
 | |
| }
 | |
| 
 | |
| static void bnx2x_pbf_pN_cmd_flushed(struct bnx2x *bp,
 | |
| 				     struct pbf_pN_cmd_regs *regs,
 | |
| 				     u32 poll_count)
 | |
| {
 | |
| 	u32 occup, to_free, freed, freed_start;
 | |
| 	u32 cur_cnt = poll_count;
 | |
| 
 | |
| 	occup = to_free = REG_RD(bp, regs->lines_occup);
 | |
| 	freed = freed_start = REG_RD(bp, regs->lines_freed);
 | |
| 
 | |
| 	DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
 | |
| 	DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
 | |
| 
 | |
| 	while (occup && ((u32)SUB_S32(freed, freed_start) < to_free)) {
 | |
| 		if (cur_cnt--) {
 | |
| 			udelay(FLR_WAIT_INTERVAL);
 | |
| 			occup = REG_RD(bp, regs->lines_occup);
 | |
| 			freed = REG_RD(bp, regs->lines_freed);
 | |
| 		} else {
 | |
| 			DP(BNX2X_MSG_SP, "PBF cmd queue[%d] timed out\n",
 | |
| 			   regs->pN);
 | |
| 			DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n",
 | |
| 			   regs->pN, occup);
 | |
| 			DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n",
 | |
| 			   regs->pN, freed);
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF cmd queue[%d]\n",
 | |
| 	   poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
 | |
| }
 | |
| 
 | |
| static u32 bnx2x_flr_clnup_reg_poll(struct bnx2x *bp, u32 reg,
 | |
| 				    u32 expected, u32 poll_count)
 | |
| {
 | |
| 	u32 cur_cnt = poll_count;
 | |
| 	u32 val;
 | |
| 
 | |
| 	while ((val = REG_RD(bp, reg)) != expected && cur_cnt--)
 | |
| 		udelay(FLR_WAIT_INTERVAL);
 | |
| 
 | |
| 	return val;
 | |
| }
 | |
| 
 | |
| int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg,
 | |
| 				    char *msg, u32 poll_cnt)
 | |
| {
 | |
| 	u32 val = bnx2x_flr_clnup_reg_poll(bp, reg, 0, poll_cnt);
 | |
| 	if (val != 0) {
 | |
| 		BNX2X_ERR("%s usage count=%d\n", msg, val);
 | |
| 		return 1;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Common routines with VF FLR cleanup */
 | |
| u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp)
 | |
| {
 | |
| 	/* adjust polling timeout */
 | |
| 	if (CHIP_REV_IS_EMUL(bp))
 | |
| 		return FLR_POLL_CNT * 2000;
 | |
| 
 | |
| 	if (CHIP_REV_IS_FPGA(bp))
 | |
| 		return FLR_POLL_CNT * 120;
 | |
| 
 | |
| 	return FLR_POLL_CNT;
 | |
| }
 | |
| 
 | |
| void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count)
 | |
| {
 | |
| 	struct pbf_pN_cmd_regs cmd_regs[] = {
 | |
| 		{0, (CHIP_IS_E3B0(bp)) ?
 | |
| 			PBF_REG_TQ_OCCUPANCY_Q0 :
 | |
| 			PBF_REG_P0_TQ_OCCUPANCY,
 | |
| 		    (CHIP_IS_E3B0(bp)) ?
 | |
| 			PBF_REG_TQ_LINES_FREED_CNT_Q0 :
 | |
| 			PBF_REG_P0_TQ_LINES_FREED_CNT},
 | |
| 		{1, (CHIP_IS_E3B0(bp)) ?
 | |
| 			PBF_REG_TQ_OCCUPANCY_Q1 :
 | |
| 			PBF_REG_P1_TQ_OCCUPANCY,
 | |
| 		    (CHIP_IS_E3B0(bp)) ?
 | |
| 			PBF_REG_TQ_LINES_FREED_CNT_Q1 :
 | |
| 			PBF_REG_P1_TQ_LINES_FREED_CNT},
 | |
| 		{4, (CHIP_IS_E3B0(bp)) ?
 | |
| 			PBF_REG_TQ_OCCUPANCY_LB_Q :
 | |
| 			PBF_REG_P4_TQ_OCCUPANCY,
 | |
| 		    (CHIP_IS_E3B0(bp)) ?
 | |
| 			PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
 | |
| 			PBF_REG_P4_TQ_LINES_FREED_CNT}
 | |
| 	};
 | |
| 
 | |
| 	struct pbf_pN_buf_regs buf_regs[] = {
 | |
| 		{0, (CHIP_IS_E3B0(bp)) ?
 | |
| 			PBF_REG_INIT_CRD_Q0 :
 | |
| 			PBF_REG_P0_INIT_CRD ,
 | |
| 		    (CHIP_IS_E3B0(bp)) ?
 | |
| 			PBF_REG_CREDIT_Q0 :
 | |
| 			PBF_REG_P0_CREDIT,
 | |
| 		    (CHIP_IS_E3B0(bp)) ?
 | |
| 			PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
 | |
| 			PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
 | |
| 		{1, (CHIP_IS_E3B0(bp)) ?
 | |
| 			PBF_REG_INIT_CRD_Q1 :
 | |
| 			PBF_REG_P1_INIT_CRD,
 | |
| 		    (CHIP_IS_E3B0(bp)) ?
 | |
| 			PBF_REG_CREDIT_Q1 :
 | |
| 			PBF_REG_P1_CREDIT,
 | |
| 		    (CHIP_IS_E3B0(bp)) ?
 | |
| 			PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
 | |
| 			PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
 | |
| 		{4, (CHIP_IS_E3B0(bp)) ?
 | |
| 			PBF_REG_INIT_CRD_LB_Q :
 | |
| 			PBF_REG_P4_INIT_CRD,
 | |
| 		    (CHIP_IS_E3B0(bp)) ?
 | |
| 			PBF_REG_CREDIT_LB_Q :
 | |
| 			PBF_REG_P4_CREDIT,
 | |
| 		    (CHIP_IS_E3B0(bp)) ?
 | |
| 			PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
 | |
| 			PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
 | |
| 	};
 | |
| 
 | |
| 	int i;
 | |
| 
 | |
| 	/* Verify the command queues are flushed P0, P1, P4 */
 | |
| 	for (i = 0; i < ARRAY_SIZE(cmd_regs); i++)
 | |
| 		bnx2x_pbf_pN_cmd_flushed(bp, &cmd_regs[i], poll_count);
 | |
| 
 | |
| 
 | |
| 	/* Verify the transmission buffers are flushed P0, P1, P4 */
 | |
| 	for (i = 0; i < ARRAY_SIZE(buf_regs); i++)
 | |
| 		bnx2x_pbf_pN_buf_flushed(bp, &buf_regs[i], poll_count);
 | |
| }
 | |
| 
 | |
| #define OP_GEN_PARAM(param) \
 | |
| 	(((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
 | |
| 
 | |
| #define OP_GEN_TYPE(type) \
 | |
| 	(((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
 | |
| 
 | |
| #define OP_GEN_AGG_VECT(index) \
 | |
| 	(((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
 | |
| 
 | |
| 
 | |
| int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func, u32 poll_cnt)
 | |
| {
 | |
| 	u32 op_gen_command = 0;
 | |
| 
 | |
| 	u32 comp_addr = BAR_CSTRORM_INTMEM +
 | |
| 			CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func);
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	if (REG_RD(bp, comp_addr)) {
 | |
| 		BNX2X_ERR("Cleanup complete was not 0 before sending\n");
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
 | |
| 	op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
 | |
| 	op_gen_command |= OP_GEN_AGG_VECT(clnup_func);
 | |
| 	op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
 | |
| 
 | |
| 	DP(BNX2X_MSG_SP, "sending FW Final cleanup\n");
 | |
| 	REG_WR(bp, XSDM_REG_OPERATION_GEN, op_gen_command);
 | |
| 
 | |
| 	if (bnx2x_flr_clnup_reg_poll(bp, comp_addr, 1, poll_cnt) != 1) {
 | |
| 		BNX2X_ERR("FW final cleanup did not succeed\n");
 | |
| 		DP(BNX2X_MSG_SP, "At timeout completion address contained %x\n",
 | |
| 		   (REG_RD(bp, comp_addr)));
 | |
| 		bnx2x_panic();
 | |
| 		return 1;
 | |
| 	}
 | |
| 	/* Zero completion for nxt FLR */
 | |
| 	REG_WR(bp, comp_addr, 0);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| u8 bnx2x_is_pcie_pending(struct pci_dev *dev)
 | |
| {
 | |
| 	u16 status;
 | |
| 
 | |
| 	pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status);
 | |
| 	return status & PCI_EXP_DEVSTA_TRPND;
 | |
| }
 | |
| 
 | |
| /* PF FLR specific routines
 | |
| */
 | |
| static int bnx2x_poll_hw_usage_counters(struct bnx2x *bp, u32 poll_cnt)
 | |
| {
 | |
| 
 | |
| 	/* wait for CFC PF usage-counter to zero (includes all the VFs) */
 | |
| 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
 | |
| 			CFC_REG_NUM_LCIDS_INSIDE_PF,
 | |
| 			"CFC PF usage counter timed out",
 | |
| 			poll_cnt))
 | |
| 		return 1;
 | |
| 
 | |
| 
 | |
| 	/* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
 | |
| 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
 | |
| 			DORQ_REG_PF_USAGE_CNT,
 | |
| 			"DQ PF usage counter timed out",
 | |
| 			poll_cnt))
 | |
| 		return 1;
 | |
| 
 | |
| 	/* Wait for QM PF usage-counter to zero (until DQ cleanup) */
 | |
| 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
 | |
| 			QM_REG_PF_USG_CNT_0 + 4*BP_FUNC(bp),
 | |
| 			"QM PF usage counter timed out",
 | |
| 			poll_cnt))
 | |
| 		return 1;
 | |
| 
 | |
| 	/* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
 | |
| 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
 | |
| 			TM_REG_LIN0_VNIC_UC + 4*BP_PORT(bp),
 | |
| 			"Timers VNIC usage counter timed out",
 | |
| 			poll_cnt))
 | |
| 		return 1;
 | |
| 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
 | |
| 			TM_REG_LIN0_NUM_SCANS + 4*BP_PORT(bp),
 | |
| 			"Timers NUM_SCANS usage counter timed out",
 | |
| 			poll_cnt))
 | |
| 		return 1;
 | |
| 
 | |
| 	/* Wait DMAE PF usage counter to zero */
 | |
| 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
 | |
| 			dmae_reg_go_c[INIT_DMAE_C(bp)],
 | |
| 			"DMAE dommand register timed out",
 | |
| 			poll_cnt))
 | |
| 		return 1;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void bnx2x_hw_enable_status(struct bnx2x *bp)
 | |
| {
 | |
| 	u32 val;
 | |
| 
 | |
| 	val = REG_RD(bp, CFC_REG_WEAK_ENABLE_PF);
 | |
| 	DP(BNX2X_MSG_SP, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
 | |
| 
 | |
| 	val = REG_RD(bp, PBF_REG_DISABLE_PF);
 | |
| 	DP(BNX2X_MSG_SP, "PBF_REG_DISABLE_PF is 0x%x\n", val);
 | |
| 
 | |
| 	val = REG_RD(bp, IGU_REG_PCI_PF_MSI_EN);
 | |
| 	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
 | |
| 
 | |
| 	val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_EN);
 | |
| 	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
 | |
| 
 | |
| 	val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
 | |
| 	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
 | |
| 
 | |
| 	val = REG_RD(bp, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
 | |
| 	DP(BNX2X_MSG_SP, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
 | |
| 
 | |
| 	val = REG_RD(bp, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
 | |
| 	DP(BNX2X_MSG_SP, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
 | |
| 
 | |
| 	val = REG_RD(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
 | |
| 	DP(BNX2X_MSG_SP, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n",
 | |
| 	   val);
 | |
| }
 | |
| 
 | |
| static int bnx2x_pf_flr_clnup(struct bnx2x *bp)
 | |
| {
 | |
| 	u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
 | |
| 
 | |
| 	DP(BNX2X_MSG_SP, "Cleanup after FLR PF[%d]\n", BP_ABS_FUNC(bp));
 | |
| 
 | |
| 	/* Re-enable PF target read access */
 | |
| 	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
 | |
| 
 | |
| 	/* Poll HW usage counters */
 | |
| 	DP(BNX2X_MSG_SP, "Polling usage counters\n");
 | |
| 	if (bnx2x_poll_hw_usage_counters(bp, poll_cnt))
 | |
| 		return -EBUSY;
 | |
| 
 | |
| 	/* Zero the igu 'trailing edge' and 'leading edge' */
 | |
| 
 | |
| 	/* Send the FW cleanup command */
 | |
| 	if (bnx2x_send_final_clnup(bp, (u8)BP_FUNC(bp), poll_cnt))
 | |
| 		return -EBUSY;
 | |
| 
 | |
| 	/* ATC cleanup */
 | |
| 
 | |
| 	/* Verify TX hw is flushed */
 | |
| 	bnx2x_tx_hw_flushed(bp, poll_cnt);
 | |
| 
 | |
| 	/* Wait 100ms (not adjusted according to platform) */
 | |
| 	msleep(100);
 | |
| 
 | |
| 	/* Verify no pending pci transactions */
 | |
| 	if (bnx2x_is_pcie_pending(bp->pdev))
 | |
| 		BNX2X_ERR("PCIE Transactions still pending\n");
 | |
| 
 | |
| 	/* Debug */
 | |
| 	bnx2x_hw_enable_status(bp);
 | |
| 
 | |
| 	/*
 | |
| 	 * Master enable - Due to WB DMAE writes performed before this
 | |
| 	 * register is re-initialized as part of the regular function init
 | |
| 	 */
 | |
| 	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void bnx2x_hc_int_enable(struct bnx2x *bp)
 | |
| {
 | |
| 	int port = BP_PORT(bp);
 | |
| 	u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
 | |
| 	u32 val = REG_RD(bp, addr);
 | |
| 	bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
 | |
| 	bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
 | |
| 	bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
 | |
| 
 | |
| 	if (msix) {
 | |
| 		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
 | |
| 			 HC_CONFIG_0_REG_INT_LINE_EN_0);
 | |
| 		val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
 | |
| 			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
 | |
| 		if (single_msix)
 | |
| 			val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
 | |
| 	} else if (msi) {
 | |
| 		val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
 | |
| 		val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
 | |
| 			HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
 | |
| 			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
 | |
| 	} else {
 | |
| 		val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
 | |
| 			HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
 | |
| 			HC_CONFIG_0_REG_INT_LINE_EN_0 |
 | |
| 			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
 | |
| 
 | |
| 		if (!CHIP_IS_E1(bp)) {
 | |
| 			DP(NETIF_MSG_IFUP,
 | |
| 			   "write %x to HC %d (addr 0x%x)\n", val, port, addr);
 | |
| 
 | |
| 			REG_WR(bp, addr, val);
 | |
| 
 | |
| 			val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (CHIP_IS_E1(bp))
 | |
| 		REG_WR(bp, HC_REG_INT_MASK + port*4, 0x1FFFF);
 | |
| 
 | |
| 	DP(NETIF_MSG_IFUP,
 | |
| 	   "write %x to HC %d (addr 0x%x) mode %s\n", val, port, addr,
 | |
| 	   (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
 | |
| 
 | |
| 	REG_WR(bp, addr, val);
 | |
| 	/*
 | |
| 	 * Ensure that HC_CONFIG is written before leading/trailing edge config
 | |
| 	 */
 | |
| 	mmiowb();
 | |
| 	barrier();
 | |
| 
 | |
| 	if (!CHIP_IS_E1(bp)) {
 | |
| 		/* init leading/trailing edge */
 | |
| 		if (IS_MF(bp)) {
 | |
| 			val = (0xee0f | (1 << (BP_VN(bp) + 4)));
 | |
| 			if (bp->port.pmf)
 | |
| 				/* enable nig and gpio3 attention */
 | |
| 				val |= 0x1100;
 | |
| 		} else
 | |
| 			val = 0xffff;
 | |
| 
 | |
| 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
 | |
| 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
 | |
| 	}
 | |
| 
 | |
| 	/* Make sure that interrupts are indeed enabled from here on */
 | |
| 	mmiowb();
 | |
| }
 | |
| 
 | |
| static void bnx2x_igu_int_enable(struct bnx2x *bp)
 | |
| {
 | |
| 	u32 val;
 | |
| 	bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
 | |
| 	bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
 | |
| 	bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
 | |
| 
 | |
| 	val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
 | |
| 
 | |
| 	if (msix) {
 | |
| 		val &= ~(IGU_PF_CONF_INT_LINE_EN |
 | |
| 			 IGU_PF_CONF_SINGLE_ISR_EN);
 | |
| 		val |= (IGU_PF_CONF_MSI_MSIX_EN |
 | |
| 			IGU_PF_CONF_ATTN_BIT_EN);
 | |
| 
 | |
| 		if (single_msix)
 | |
| 			val |= IGU_PF_CONF_SINGLE_ISR_EN;
 | |
| 	} else if (msi) {
 | |
| 		val &= ~IGU_PF_CONF_INT_LINE_EN;
 | |
| 		val |= (IGU_PF_CONF_MSI_MSIX_EN |
 | |
| 			IGU_PF_CONF_ATTN_BIT_EN |
 | |
| 			IGU_PF_CONF_SINGLE_ISR_EN);
 | |
| 	} else {
 | |
| 		val &= ~IGU_PF_CONF_MSI_MSIX_EN;
 | |
| 		val |= (IGU_PF_CONF_INT_LINE_EN |
 | |
| 			IGU_PF_CONF_ATTN_BIT_EN |
 | |
| 			IGU_PF_CONF_SINGLE_ISR_EN);
 | |
| 	}
 | |
| 
 | |
| 	/* Clean previous status - need to configure igu prior to ack*/
 | |
| 	if ((!msix) || single_msix) {
 | |
| 		REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
 | |
| 		bnx2x_ack_int(bp);
 | |
| 	}
 | |
| 
 | |
| 	val |= IGU_PF_CONF_FUNC_EN;
 | |
| 
 | |
| 	DP(NETIF_MSG_IFUP, "write 0x%x to IGU  mode %s\n",
 | |
| 	   val, (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
 | |
| 
 | |
| 	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
 | |
| 
 | |
| 	if (val & IGU_PF_CONF_INT_LINE_EN)
 | |
| 		pci_intx(bp->pdev, true);
 | |
| 
 | |
| 	barrier();
 | |
| 
 | |
| 	/* init leading/trailing edge */
 | |
| 	if (IS_MF(bp)) {
 | |
| 		val = (0xee0f | (1 << (BP_VN(bp) + 4)));
 | |
| 		if (bp->port.pmf)
 | |
| 			/* enable nig and gpio3 attention */
 | |
| 			val |= 0x1100;
 | |
| 	} else
 | |
| 		val = 0xffff;
 | |
| 
 | |
| 	REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
 | |
| 	REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
 | |
| 
 | |
| 	/* Make sure that interrupts are indeed enabled from here on */
 | |
| 	mmiowb();
 | |
| }
 | |
| 
 | |
| void bnx2x_int_enable(struct bnx2x *bp)
 | |
| {
 | |
| 	if (bp->common.int_block == INT_BLOCK_HC)
 | |
| 		bnx2x_hc_int_enable(bp);
 | |
| 	else
 | |
| 		bnx2x_igu_int_enable(bp);
 | |
| }
 | |
| 
 | |
| void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw)
 | |
| {
 | |
| 	int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
 | |
| 	int i, offset;
 | |
| 
 | |
| 	if (disable_hw)
 | |
| 		/* prevent the HW from sending interrupts */
 | |
| 		bnx2x_int_disable(bp);
 | |
| 
 | |
| 	/* make sure all ISRs are done */
 | |
| 	if (msix) {
 | |
| 		synchronize_irq(bp->msix_table[0].vector);
 | |
| 		offset = 1;
 | |
| 		if (CNIC_SUPPORT(bp))
 | |
| 			offset++;
 | |
| 		for_each_eth_queue(bp, i)
 | |
| 			synchronize_irq(bp->msix_table[offset++].vector);
 | |
| 	} else
 | |
| 		synchronize_irq(bp->pdev->irq);
 | |
| 
 | |
| 	/* make sure sp_task is not running */
 | |
| 	cancel_delayed_work(&bp->sp_task);
 | |
| 	cancel_delayed_work(&bp->period_task);
 | |
| 	flush_workqueue(bnx2x_wq);
 | |
| }
 | |
| 
 | |
| /* fast path */
 | |
| 
 | |
| /*
 | |
|  * General service functions
 | |
|  */
 | |
| 
 | |
| /* Return true if succeeded to acquire the lock */
 | |
| static bool bnx2x_trylock_hw_lock(struct bnx2x *bp, u32 resource)
 | |
| {
 | |
| 	u32 lock_status;
 | |
| 	u32 resource_bit = (1 << resource);
 | |
| 	int func = BP_FUNC(bp);
 | |
| 	u32 hw_lock_control_reg;
 | |
| 
 | |
| 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
 | |
| 	   "Trying to take a lock on resource %d\n", resource);
 | |
| 
 | |
| 	/* Validating that the resource is within range */
 | |
| 	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
 | |
| 		DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
 | |
| 		   "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
 | |
| 		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	if (func <= 5)
 | |
| 		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
 | |
| 	else
 | |
| 		hw_lock_control_reg =
 | |
| 				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
 | |
| 
 | |
| 	/* Try to acquire the lock */
 | |
| 	REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
 | |
| 	lock_status = REG_RD(bp, hw_lock_control_reg);
 | |
| 	if (lock_status & resource_bit)
 | |
| 		return true;
 | |
| 
 | |
| 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
 | |
| 	   "Failed to get a lock on resource %d\n", resource);
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * bnx2x_get_leader_lock_resource - get the recovery leader resource id
 | |
|  *
 | |
|  * @bp:	driver handle
 | |
|  *
 | |
|  * Returns the recovery leader resource id according to the engine this function
 | |
|  * belongs to. Currently only only 2 engines is supported.
 | |
|  */
 | |
| static int bnx2x_get_leader_lock_resource(struct bnx2x *bp)
 | |
| {
 | |
| 	if (BP_PATH(bp))
 | |
| 		return HW_LOCK_RESOURCE_RECOVERY_LEADER_1;
 | |
| 	else
 | |
| 		return HW_LOCK_RESOURCE_RECOVERY_LEADER_0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * bnx2x_trylock_leader_lock- try to acquire a leader lock.
 | |
|  *
 | |
|  * @bp: driver handle
 | |
|  *
 | |
|  * Tries to acquire a leader lock for current engine.
 | |
|  */
 | |
| static bool bnx2x_trylock_leader_lock(struct bnx2x *bp)
 | |
| {
 | |
| 	return bnx2x_trylock_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
 | |
| }
 | |
| 
 | |
| static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err);
 | |
| 
 | |
| /* schedule the sp task and mark that interrupt occurred (runs from ISR) */
 | |
| static int bnx2x_schedule_sp_task(struct bnx2x *bp)
 | |
| {
 | |
| 	/* Set the interrupt occurred bit for the sp-task to recognize it
 | |
| 	 * must ack the interrupt and transition according to the IGU
 | |
| 	 * state machine.
 | |
| 	 */
 | |
| 	atomic_set(&bp->interrupt_occurred, 1);
 | |
| 
 | |
| 	/* The sp_task must execute only after this bit
 | |
| 	 * is set, otherwise we will get out of sync and miss all
 | |
| 	 * further interrupts. Hence, the barrier.
 | |
| 	 */
 | |
| 	smp_wmb();
 | |
| 
 | |
| 	/* schedule sp_task to workqueue */
 | |
| 	return queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
 | |
| }
 | |
| 
 | |
| void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe)
 | |
| {
 | |
| 	struct bnx2x *bp = fp->bp;
 | |
| 	int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
 | |
| 	int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
 | |
| 	enum bnx2x_queue_cmd drv_cmd = BNX2X_Q_CMD_MAX;
 | |
| 	struct bnx2x_queue_sp_obj *q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
 | |
| 
 | |
| 	DP(BNX2X_MSG_SP,
 | |
| 	   "fp %d  cid %d  got ramrod #%d  state is %x  type is %d\n",
 | |
| 	   fp->index, cid, command, bp->state,
 | |
| 	   rr_cqe->ramrod_cqe.ramrod_type);
 | |
| 
 | |
| 	/* If cid is within VF range, replace the slowpath object with the
 | |
| 	 * one corresponding to this VF
 | |
| 	 */
 | |
| 	if (cid >= BNX2X_FIRST_VF_CID  &&
 | |
| 	    cid < BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)
 | |
| 		bnx2x_iov_set_queue_sp_obj(bp, cid, &q_obj);
 | |
| 
 | |
| 	switch (command) {
 | |
| 	case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
 | |
| 		DP(BNX2X_MSG_SP, "got UPDATE ramrod. CID %d\n", cid);
 | |
| 		drv_cmd = BNX2X_Q_CMD_UPDATE;
 | |
| 		break;
 | |
| 
 | |
| 	case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
 | |
| 		DP(BNX2X_MSG_SP, "got MULTI[%d] setup ramrod\n", cid);
 | |
| 		drv_cmd = BNX2X_Q_CMD_SETUP;
 | |
| 		break;
 | |
| 
 | |
| 	case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
 | |
| 		DP(BNX2X_MSG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid);
 | |
| 		drv_cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
 | |
| 		break;
 | |
| 
 | |
| 	case (RAMROD_CMD_ID_ETH_HALT):
 | |
| 		DP(BNX2X_MSG_SP, "got MULTI[%d] halt ramrod\n", cid);
 | |
| 		drv_cmd = BNX2X_Q_CMD_HALT;
 | |
| 		break;
 | |
| 
 | |
| 	case (RAMROD_CMD_ID_ETH_TERMINATE):
 | |
| 		DP(BNX2X_MSG_SP, "got MULTI[%d] teminate ramrod\n", cid);
 | |
| 		drv_cmd = BNX2X_Q_CMD_TERMINATE;
 | |
| 		break;
 | |
| 
 | |
| 	case (RAMROD_CMD_ID_ETH_EMPTY):
 | |
| 		DP(BNX2X_MSG_SP, "got MULTI[%d] empty ramrod\n", cid);
 | |
| 		drv_cmd = BNX2X_Q_CMD_EMPTY;
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		BNX2X_ERR("unexpected MC reply (%d) on fp[%d]\n",
 | |
| 			  command, fp->index);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if ((drv_cmd != BNX2X_Q_CMD_MAX) &&
 | |
| 	    q_obj->complete_cmd(bp, q_obj, drv_cmd))
 | |
| 		/* q_obj->complete_cmd() failure means that this was
 | |
| 		 * an unexpected completion.
 | |
| 		 *
 | |
| 		 * In this case we don't want to increase the bp->spq_left
 | |
| 		 * because apparently we haven't sent this command the first
 | |
| 		 * place.
 | |
| 		 */
 | |
| #ifdef BNX2X_STOP_ON_ERROR
 | |
| 		bnx2x_panic();
 | |
| #else
 | |
| 		return;
 | |
| #endif
 | |
| 	/* SRIOV: reschedule any 'in_progress' operations */
 | |
| 	bnx2x_iov_sp_event(bp, cid, true);
 | |
| 
 | |
| 	smp_mb__before_atomic_inc();
 | |
| 	atomic_inc(&bp->cq_spq_left);
 | |
| 	/* push the change in bp->spq_left and towards the memory */
 | |
| 	smp_mb__after_atomic_inc();
 | |
| 
 | |
| 	DP(BNX2X_MSG_SP, "bp->cq_spq_left %x\n", atomic_read(&bp->cq_spq_left));
 | |
| 
 | |
| 	if ((drv_cmd == BNX2X_Q_CMD_UPDATE) && (IS_FCOE_FP(fp)) &&
 | |
| 	    (!!test_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state))) {
 | |
| 		/* if Q update ramrod is completed for last Q in AFEX vif set
 | |
| 		 * flow, then ACK MCP at the end
 | |
| 		 *
 | |
| 		 * mark pending ACK to MCP bit.
 | |
| 		 * prevent case that both bits are cleared.
 | |
| 		 * At the end of load/unload driver checks that
 | |
| 		 * sp_state is cleared, and this order prevents
 | |
| 		 * races
 | |
| 		 */
 | |
| 		smp_mb__before_clear_bit();
 | |
| 		set_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK, &bp->sp_state);
 | |
| 		wmb();
 | |
| 		clear_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
 | |
| 		smp_mb__after_clear_bit();
 | |
| 
 | |
| 		/* schedule the sp task as mcp ack is required */
 | |
| 		bnx2x_schedule_sp_task(bp);
 | |
| 	}
 | |
| 
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| irqreturn_t bnx2x_interrupt(int irq, void *dev_instance)
 | |
| {
 | |
| 	struct bnx2x *bp = netdev_priv(dev_instance);
 | |
| 	u16 status = bnx2x_ack_int(bp);
 | |
| 	u16 mask;
 | |
| 	int i;
 | |
| 	u8 cos;
 | |
| 
 | |
| 	/* Return here if interrupt is shared and it's not for us */
 | |
| 	if (unlikely(status == 0)) {
 | |
| 		DP(NETIF_MSG_INTR, "not our interrupt!\n");
 | |
| 		return IRQ_NONE;
 | |
| 	}
 | |
| 	DP(NETIF_MSG_INTR, "got an interrupt  status 0x%x\n", status);
 | |
| 
 | |
| #ifdef BNX2X_STOP_ON_ERROR
 | |
| 	if (unlikely(bp->panic))
 | |
| 		return IRQ_HANDLED;
 | |
| #endif
 | |
| 
 | |
| 	for_each_eth_queue(bp, i) {
 | |
| 		struct bnx2x_fastpath *fp = &bp->fp[i];
 | |
| 
 | |
| 		mask = 0x2 << (fp->index + CNIC_SUPPORT(bp));
 | |
| 		if (status & mask) {
 | |
| 			/* Handle Rx or Tx according to SB id */
 | |
| 			prefetch(fp->rx_cons_sb);
 | |
| 			for_each_cos_in_tx_queue(fp, cos)
 | |
| 				prefetch(fp->txdata_ptr[cos]->tx_cons_sb);
 | |
| 			prefetch(&fp->sb_running_index[SM_RX_ID]);
 | |
| 			napi_schedule(&bnx2x_fp(bp, fp->index, napi));
 | |
| 			status &= ~mask;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (CNIC_SUPPORT(bp)) {
 | |
| 		mask = 0x2;
 | |
| 		if (status & (mask | 0x1)) {
 | |
| 			struct cnic_ops *c_ops = NULL;
 | |
| 
 | |
| 			rcu_read_lock();
 | |
| 			c_ops = rcu_dereference(bp->cnic_ops);
 | |
| 			if (c_ops && (bp->cnic_eth_dev.drv_state &
 | |
| 				      CNIC_DRV_STATE_HANDLES_IRQ))
 | |
| 				c_ops->cnic_handler(bp->cnic_data, NULL);
 | |
| 			rcu_read_unlock();
 | |
| 
 | |
| 			status &= ~mask;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(status & 0x1)) {
 | |
| 
 | |
| 		/* schedule sp task to perform default status block work, ack
 | |
| 		 * attentions and enable interrupts.
 | |
| 		 */
 | |
| 		bnx2x_schedule_sp_task(bp);
 | |
| 
 | |
| 		status &= ~0x1;
 | |
| 		if (!status)
 | |
| 			return IRQ_HANDLED;
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(status))
 | |
| 		DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
 | |
| 		   status);
 | |
| 
 | |
| 	return IRQ_HANDLED;
 | |
| }
 | |
| 
 | |
| /* Link */
 | |
| 
 | |
| /*
 | |
|  * General service functions
 | |
|  */
 | |
| 
 | |
| int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource)
 | |
| {
 | |
| 	u32 lock_status;
 | |
| 	u32 resource_bit = (1 << resource);
 | |
| 	int func = BP_FUNC(bp);
 | |
| 	u32 hw_lock_control_reg;
 | |
| 	int cnt;
 | |
| 
 | |
| 	/* Validating that the resource is within range */
 | |
| 	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
 | |
| 		BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
 | |
| 		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (func <= 5) {
 | |
| 		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
 | |
| 	} else {
 | |
| 		hw_lock_control_reg =
 | |
| 				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
 | |
| 	}
 | |
| 
 | |
| 	/* Validating that the resource is not already taken */
 | |
| 	lock_status = REG_RD(bp, hw_lock_control_reg);
 | |
| 	if (lock_status & resource_bit) {
 | |
| 		BNX2X_ERR("lock_status 0x%x  resource_bit 0x%x\n",
 | |
| 		   lock_status, resource_bit);
 | |
| 		return -EEXIST;
 | |
| 	}
 | |
| 
 | |
| 	/* Try for 5 second every 5ms */
 | |
| 	for (cnt = 0; cnt < 1000; cnt++) {
 | |
| 		/* Try to acquire the lock */
 | |
| 		REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
 | |
| 		lock_status = REG_RD(bp, hw_lock_control_reg);
 | |
| 		if (lock_status & resource_bit)
 | |
| 			return 0;
 | |
| 
 | |
| 		msleep(5);
 | |
| 	}
 | |
| 	BNX2X_ERR("Timeout\n");
 | |
| 	return -EAGAIN;
 | |
| }
 | |
| 
 | |
| int bnx2x_release_leader_lock(struct bnx2x *bp)
 | |
| {
 | |
| 	return bnx2x_release_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
 | |
| }
 | |
| 
 | |
| int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource)
 | |
| {
 | |
| 	u32 lock_status;
 | |
| 	u32 resource_bit = (1 << resource);
 | |
| 	int func = BP_FUNC(bp);
 | |
| 	u32 hw_lock_control_reg;
 | |
| 
 | |
| 	/* Validating that the resource is within range */
 | |
| 	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
 | |
| 		BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
 | |
| 		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (func <= 5) {
 | |
| 		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
 | |
| 	} else {
 | |
| 		hw_lock_control_reg =
 | |
| 				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
 | |
| 	}
 | |
| 
 | |
| 	/* Validating that the resource is currently taken */
 | |
| 	lock_status = REG_RD(bp, hw_lock_control_reg);
 | |
| 	if (!(lock_status & resource_bit)) {
 | |
| 		BNX2X_ERR("lock_status 0x%x resource_bit 0x%x. unlock was called but lock wasn't taken!\n",
 | |
| 		   lock_status, resource_bit);
 | |
| 		return -EFAULT;
 | |
| 	}
 | |
| 
 | |
| 	REG_WR(bp, hw_lock_control_reg, resource_bit);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port)
 | |
| {
 | |
| 	/* The GPIO should be swapped if swap register is set and active */
 | |
| 	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
 | |
| 			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
 | |
| 	int gpio_shift = gpio_num +
 | |
| 			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
 | |
| 	u32 gpio_mask = (1 << gpio_shift);
 | |
| 	u32 gpio_reg;
 | |
| 	int value;
 | |
| 
 | |
| 	if (gpio_num > MISC_REGISTERS_GPIO_3) {
 | |
| 		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/* read GPIO value */
 | |
| 	gpio_reg = REG_RD(bp, MISC_REG_GPIO);
 | |
| 
 | |
| 	/* get the requested pin value */
 | |
| 	if ((gpio_reg & gpio_mask) == gpio_mask)
 | |
| 		value = 1;
 | |
| 	else
 | |
| 		value = 0;
 | |
| 
 | |
| 	DP(NETIF_MSG_LINK, "pin %d  value 0x%x\n", gpio_num, value);
 | |
| 
 | |
| 	return value;
 | |
| }
 | |
| 
 | |
| int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
 | |
| {
 | |
| 	/* The GPIO should be swapped if swap register is set and active */
 | |
| 	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
 | |
| 			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
 | |
| 	int gpio_shift = gpio_num +
 | |
| 			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
 | |
| 	u32 gpio_mask = (1 << gpio_shift);
 | |
| 	u32 gpio_reg;
 | |
| 
 | |
| 	if (gpio_num > MISC_REGISTERS_GPIO_3) {
 | |
| 		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
 | |
| 	/* read GPIO and mask except the float bits */
 | |
| 	gpio_reg = (REG_RD(bp, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
 | |
| 
 | |
| 	switch (mode) {
 | |
| 	case MISC_REGISTERS_GPIO_OUTPUT_LOW:
 | |
| 		DP(NETIF_MSG_LINK,
 | |
| 		   "Set GPIO %d (shift %d) -> output low\n",
 | |
| 		   gpio_num, gpio_shift);
 | |
| 		/* clear FLOAT and set CLR */
 | |
| 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
 | |
| 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
 | |
| 		break;
 | |
| 
 | |
| 	case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
 | |
| 		DP(NETIF_MSG_LINK,
 | |
| 		   "Set GPIO %d (shift %d) -> output high\n",
 | |
| 		   gpio_num, gpio_shift);
 | |
| 		/* clear FLOAT and set SET */
 | |
| 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
 | |
| 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
 | |
| 		break;
 | |
| 
 | |
| 	case MISC_REGISTERS_GPIO_INPUT_HI_Z:
 | |
| 		DP(NETIF_MSG_LINK,
 | |
| 		   "Set GPIO %d (shift %d) -> input\n",
 | |
| 		   gpio_num, gpio_shift);
 | |
| 		/* set FLOAT */
 | |
| 		gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	REG_WR(bp, MISC_REG_GPIO, gpio_reg);
 | |
| 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode)
 | |
| {
 | |
| 	u32 gpio_reg = 0;
 | |
| 	int rc = 0;
 | |
| 
 | |
| 	/* Any port swapping should be handled by caller. */
 | |
| 
 | |
| 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
 | |
| 	/* read GPIO and mask except the float bits */
 | |
| 	gpio_reg = REG_RD(bp, MISC_REG_GPIO);
 | |
| 	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
 | |
| 	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
 | |
| 	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
 | |
| 
 | |
| 	switch (mode) {
 | |
| 	case MISC_REGISTERS_GPIO_OUTPUT_LOW:
 | |
| 		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output low\n", pins);
 | |
| 		/* set CLR */
 | |
| 		gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
 | |
| 		break;
 | |
| 
 | |
| 	case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
 | |
| 		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output high\n", pins);
 | |
| 		/* set SET */
 | |
| 		gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
 | |
| 		break;
 | |
| 
 | |
| 	case MISC_REGISTERS_GPIO_INPUT_HI_Z:
 | |
| 		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> input\n", pins);
 | |
| 		/* set FLOAT */
 | |
| 		gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		BNX2X_ERR("Invalid GPIO mode assignment %d\n", mode);
 | |
| 		rc = -EINVAL;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	if (rc == 0)
 | |
| 		REG_WR(bp, MISC_REG_GPIO, gpio_reg);
 | |
| 
 | |
| 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
 | |
| 
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
 | |
| {
 | |
| 	/* The GPIO should be swapped if swap register is set and active */
 | |
| 	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
 | |
| 			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
 | |
| 	int gpio_shift = gpio_num +
 | |
| 			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
 | |
| 	u32 gpio_mask = (1 << gpio_shift);
 | |
| 	u32 gpio_reg;
 | |
| 
 | |
| 	if (gpio_num > MISC_REGISTERS_GPIO_3) {
 | |
| 		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
 | |
| 	/* read GPIO int */
 | |
| 	gpio_reg = REG_RD(bp, MISC_REG_GPIO_INT);
 | |
| 
 | |
| 	switch (mode) {
 | |
| 	case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
 | |
| 		DP(NETIF_MSG_LINK,
 | |
| 		   "Clear GPIO INT %d (shift %d) -> output low\n",
 | |
| 		   gpio_num, gpio_shift);
 | |
| 		/* clear SET and set CLR */
 | |
| 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
 | |
| 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
 | |
| 		break;
 | |
| 
 | |
| 	case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
 | |
| 		DP(NETIF_MSG_LINK,
 | |
| 		   "Set GPIO INT %d (shift %d) -> output high\n",
 | |
| 		   gpio_num, gpio_shift);
 | |
| 		/* clear CLR and set SET */
 | |
| 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
 | |
| 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	REG_WR(bp, MISC_REG_GPIO_INT, gpio_reg);
 | |
| 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int bnx2x_set_spio(struct bnx2x *bp, int spio, u32 mode)
 | |
| {
 | |
| 	u32 spio_reg;
 | |
| 
 | |
| 	/* Only 2 SPIOs are configurable */
 | |
| 	if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
 | |
| 		BNX2X_ERR("Invalid SPIO 0x%x\n", spio);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
 | |
| 	/* read SPIO and mask except the float bits */
 | |
| 	spio_reg = (REG_RD(bp, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
 | |
| 
 | |
| 	switch (mode) {
 | |
| 	case MISC_SPIO_OUTPUT_LOW:
 | |
| 		DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output low\n", spio);
 | |
| 		/* clear FLOAT and set CLR */
 | |
| 		spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
 | |
| 		spio_reg |=  (spio << MISC_SPIO_CLR_POS);
 | |
| 		break;
 | |
| 
 | |
| 	case MISC_SPIO_OUTPUT_HIGH:
 | |
| 		DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output high\n", spio);
 | |
| 		/* clear FLOAT and set SET */
 | |
| 		spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
 | |
| 		spio_reg |=  (spio << MISC_SPIO_SET_POS);
 | |
| 		break;
 | |
| 
 | |
| 	case MISC_SPIO_INPUT_HI_Z:
 | |
| 		DP(NETIF_MSG_HW, "Set SPIO 0x%x -> input\n", spio);
 | |
| 		/* set FLOAT */
 | |
| 		spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	REG_WR(bp, MISC_REG_SPIO, spio_reg);
 | |
| 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void bnx2x_calc_fc_adv(struct bnx2x *bp)
 | |
| {
 | |
| 	u8 cfg_idx = bnx2x_get_link_cfg_idx(bp);
 | |
| 	switch (bp->link_vars.ieee_fc &
 | |
| 		MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
 | |
| 	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE:
 | |
| 		bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
 | |
| 						   ADVERTISED_Pause);
 | |
| 		break;
 | |
| 
 | |
| 	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
 | |
| 		bp->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
 | |
| 						  ADVERTISED_Pause);
 | |
| 		break;
 | |
| 
 | |
| 	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
 | |
| 		bp->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
 | |
| 						   ADVERTISED_Pause);
 | |
| 		break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void bnx2x_set_requested_fc(struct bnx2x *bp)
 | |
| {
 | |
| 	/* Initialize link parameters structure variables
 | |
| 	 * It is recommended to turn off RX FC for jumbo frames
 | |
| 	 *  for better performance
 | |
| 	 */
 | |
| 	if (CHIP_IS_E1x(bp) && (bp->dev->mtu > 5000))
 | |
| 		bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_TX;
 | |
| 	else
 | |
| 		bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_BOTH;
 | |
| }
 | |
| 
 | |
| int bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode)
 | |
| {
 | |
| 	int rc, cfx_idx = bnx2x_get_link_cfg_idx(bp);
 | |
| 	u16 req_line_speed = bp->link_params.req_line_speed[cfx_idx];
 | |
| 
 | |
| 	if (!BP_NOMCP(bp)) {
 | |
| 		bnx2x_set_requested_fc(bp);
 | |
| 		bnx2x_acquire_phy_lock(bp);
 | |
| 
 | |
| 		if (load_mode == LOAD_DIAG) {
 | |
| 			struct link_params *lp = &bp->link_params;
 | |
| 			lp->loopback_mode = LOOPBACK_XGXS;
 | |
| 			/* do PHY loopback at 10G speed, if possible */
 | |
| 			if (lp->req_line_speed[cfx_idx] < SPEED_10000) {
 | |
| 				if (lp->speed_cap_mask[cfx_idx] &
 | |
| 				    PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)
 | |
| 					lp->req_line_speed[cfx_idx] =
 | |
| 					SPEED_10000;
 | |
| 				else
 | |
| 					lp->req_line_speed[cfx_idx] =
 | |
| 					SPEED_1000;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (load_mode == LOAD_LOOPBACK_EXT) {
 | |
| 			struct link_params *lp = &bp->link_params;
 | |
| 			lp->loopback_mode = LOOPBACK_EXT;
 | |
| 		}
 | |
| 
 | |
| 		rc = bnx2x_phy_init(&bp->link_params, &bp->link_vars);
 | |
| 
 | |
| 		bnx2x_release_phy_lock(bp);
 | |
| 
 | |
| 		bnx2x_calc_fc_adv(bp);
 | |
| 
 | |
| 		if (bp->link_vars.link_up) {
 | |
| 			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
 | |
| 			bnx2x_link_report(bp);
 | |
| 		}
 | |
| 		queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
 | |
| 		bp->link_params.req_line_speed[cfx_idx] = req_line_speed;
 | |
| 		return rc;
 | |
| 	}
 | |
| 	BNX2X_ERR("Bootcode is missing - can not initialize link\n");
 | |
| 	return -EINVAL;
 | |
| }
 | |
| 
 | |
| void bnx2x_link_set(struct bnx2x *bp)
 | |
| {
 | |
| 	if (!BP_NOMCP(bp)) {
 | |
| 		bnx2x_acquire_phy_lock(bp);
 | |
| 		bnx2x_phy_init(&bp->link_params, &bp->link_vars);
 | |
| 		bnx2x_release_phy_lock(bp);
 | |
| 
 | |
| 		bnx2x_calc_fc_adv(bp);
 | |
| 	} else
 | |
| 		BNX2X_ERR("Bootcode is missing - can not set link\n");
 | |
| }
 | |
| 
 | |
| static void bnx2x__link_reset(struct bnx2x *bp)
 | |
| {
 | |
| 	if (!BP_NOMCP(bp)) {
 | |
| 		bnx2x_acquire_phy_lock(bp);
 | |
| 		bnx2x_lfa_reset(&bp->link_params, &bp->link_vars);
 | |
| 		bnx2x_release_phy_lock(bp);
 | |
| 	} else
 | |
| 		BNX2X_ERR("Bootcode is missing - can not reset link\n");
 | |
| }
 | |
| 
 | |
| void bnx2x_force_link_reset(struct bnx2x *bp)
 | |
| {
 | |
| 	bnx2x_acquire_phy_lock(bp);
 | |
| 	bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
 | |
| 	bnx2x_release_phy_lock(bp);
 | |
| }
 | |
| 
 | |
| u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes)
 | |
| {
 | |
| 	u8 rc = 0;
 | |
| 
 | |
| 	if (!BP_NOMCP(bp)) {
 | |
| 		bnx2x_acquire_phy_lock(bp);
 | |
| 		rc = bnx2x_test_link(&bp->link_params, &bp->link_vars,
 | |
| 				     is_serdes);
 | |
| 		bnx2x_release_phy_lock(bp);
 | |
| 	} else
 | |
| 		BNX2X_ERR("Bootcode is missing - can not test link\n");
 | |
| 
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Calculates the sum of vn_min_rates.
 | |
|    It's needed for further normalizing of the min_rates.
 | |
|    Returns:
 | |
|      sum of vn_min_rates.
 | |
|        or
 | |
|      0 - if all the min_rates are 0.
 | |
|      In the later case fainess algorithm should be deactivated.
 | |
|      If not all min_rates are zero then those that are zeroes will be set to 1.
 | |
|  */
 | |
| static void bnx2x_calc_vn_min(struct bnx2x *bp,
 | |
| 				      struct cmng_init_input *input)
 | |
| {
 | |
| 	int all_zero = 1;
 | |
| 	int vn;
 | |
| 
 | |
| 	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
 | |
| 		u32 vn_cfg = bp->mf_config[vn];
 | |
| 		u32 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
 | |
| 				   FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
 | |
| 
 | |
| 		/* Skip hidden vns */
 | |
| 		if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
 | |
| 			vn_min_rate = 0;
 | |
| 		/* If min rate is zero - set it to 1 */
 | |
| 		else if (!vn_min_rate)
 | |
| 			vn_min_rate = DEF_MIN_RATE;
 | |
| 		else
 | |
| 			all_zero = 0;
 | |
| 
 | |
| 		input->vnic_min_rate[vn] = vn_min_rate;
 | |
| 	}
 | |
| 
 | |
| 	/* if ETS or all min rates are zeros - disable fairness */
 | |
| 	if (BNX2X_IS_ETS_ENABLED(bp)) {
 | |
| 		input->flags.cmng_enables &=
 | |
| 					~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
 | |
| 		DP(NETIF_MSG_IFUP, "Fairness will be disabled due to ETS\n");
 | |
| 	} else if (all_zero) {
 | |
| 		input->flags.cmng_enables &=
 | |
| 					~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
 | |
| 		DP(NETIF_MSG_IFUP,
 | |
| 		   "All MIN values are zeroes fairness will be disabled\n");
 | |
| 	} else
 | |
| 		input->flags.cmng_enables |=
 | |
| 					CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
 | |
| }
 | |
| 
 | |
| static void bnx2x_calc_vn_max(struct bnx2x *bp, int vn,
 | |
| 				    struct cmng_init_input *input)
 | |
| {
 | |
| 	u16 vn_max_rate;
 | |
| 	u32 vn_cfg = bp->mf_config[vn];
 | |
| 
 | |
| 	if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
 | |
| 		vn_max_rate = 0;
 | |
| 	else {
 | |
| 		u32 maxCfg = bnx2x_extract_max_cfg(bp, vn_cfg);
 | |
| 
 | |
| 		if (IS_MF_SI(bp)) {
 | |
| 			/* maxCfg in percents of linkspeed */
 | |
| 			vn_max_rate = (bp->link_vars.line_speed * maxCfg) / 100;
 | |
| 		} else /* SD modes */
 | |
| 			/* maxCfg is absolute in 100Mb units */
 | |
| 			vn_max_rate = maxCfg * 100;
 | |
| 	}
 | |
| 
 | |
| 	DP(NETIF_MSG_IFUP, "vn %d: vn_max_rate %d\n", vn, vn_max_rate);
 | |
| 
 | |
| 	input->vnic_max_rate[vn] = vn_max_rate;
 | |
| }
 | |
| 
 | |
| 
 | |
| static int bnx2x_get_cmng_fns_mode(struct bnx2x *bp)
 | |
| {
 | |
| 	if (CHIP_REV_IS_SLOW(bp))
 | |
| 		return CMNG_FNS_NONE;
 | |
| 	if (IS_MF(bp))
 | |
| 		return CMNG_FNS_MINMAX;
 | |
| 
 | |
| 	return CMNG_FNS_NONE;
 | |
| }
 | |
| 
 | |
| void bnx2x_read_mf_cfg(struct bnx2x *bp)
 | |
| {
 | |
| 	int vn, n = (CHIP_MODE_IS_4_PORT(bp) ? 2 : 1);
 | |
| 
 | |
| 	if (BP_NOMCP(bp))
 | |
| 		return; /* what should be the default bvalue in this case */
 | |
| 
 | |
| 	/* For 2 port configuration the absolute function number formula
 | |
| 	 * is:
 | |
| 	 *      abs_func = 2 * vn + BP_PORT + BP_PATH
 | |
| 	 *
 | |
| 	 *      and there are 4 functions per port
 | |
| 	 *
 | |
| 	 * For 4 port configuration it is
 | |
| 	 *      abs_func = 4 * vn + 2 * BP_PORT + BP_PATH
 | |
| 	 *
 | |
| 	 *      and there are 2 functions per port
 | |
| 	 */
 | |
| 	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
 | |
| 		int /*abs*/func = n * (2 * vn + BP_PORT(bp)) + BP_PATH(bp);
 | |
| 
 | |
| 		if (func >= E1H_FUNC_MAX)
 | |
| 			break;
 | |
| 
 | |
| 		bp->mf_config[vn] =
 | |
| 			MF_CFG_RD(bp, func_mf_config[func].config);
 | |
| 	}
 | |
| 	if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
 | |
| 		DP(NETIF_MSG_IFUP, "mf_cfg function disabled\n");
 | |
| 		bp->flags |= MF_FUNC_DIS;
 | |
| 	} else {
 | |
| 		DP(NETIF_MSG_IFUP, "mf_cfg function enabled\n");
 | |
| 		bp->flags &= ~MF_FUNC_DIS;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void bnx2x_cmng_fns_init(struct bnx2x *bp, u8 read_cfg, u8 cmng_type)
 | |
| {
 | |
| 	struct cmng_init_input input;
 | |
| 	memset(&input, 0, sizeof(struct cmng_init_input));
 | |
| 
 | |
| 	input.port_rate = bp->link_vars.line_speed;
 | |
| 
 | |
| 	if (cmng_type == CMNG_FNS_MINMAX) {
 | |
| 		int vn;
 | |
| 
 | |
| 		/* read mf conf from shmem */
 | |
| 		if (read_cfg)
 | |
| 			bnx2x_read_mf_cfg(bp);
 | |
| 
 | |
| 		/* vn_weight_sum and enable fairness if not 0 */
 | |
| 		bnx2x_calc_vn_min(bp, &input);
 | |
| 
 | |
| 		/* calculate and set min-max rate for each vn */
 | |
| 		if (bp->port.pmf)
 | |
| 			for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++)
 | |
| 				bnx2x_calc_vn_max(bp, vn, &input);
 | |
| 
 | |
| 		/* always enable rate shaping and fairness */
 | |
| 		input.flags.cmng_enables |=
 | |
| 					CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
 | |
| 
 | |
| 		bnx2x_init_cmng(&input, &bp->cmng);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* rate shaping and fairness are disabled */
 | |
| 	DP(NETIF_MSG_IFUP,
 | |
| 	   "rate shaping and fairness are disabled\n");
 | |
| }
 | |
| 
 | |
| static void storm_memset_cmng(struct bnx2x *bp,
 | |
| 			      struct cmng_init *cmng,
 | |
| 			      u8 port)
 | |
| {
 | |
| 	int vn;
 | |
| 	size_t size = sizeof(struct cmng_struct_per_port);
 | |
| 
 | |
| 	u32 addr = BAR_XSTRORM_INTMEM +
 | |
| 			XSTORM_CMNG_PER_PORT_VARS_OFFSET(port);
 | |
| 
 | |
| 	__storm_memset_struct(bp, addr, size, (u32 *)&cmng->port);
 | |
| 
 | |
| 	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
 | |
| 		int func = func_by_vn(bp, vn);
 | |
| 
 | |
| 		addr = BAR_XSTRORM_INTMEM +
 | |
| 		       XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func);
 | |
| 		size = sizeof(struct rate_shaping_vars_per_vn);
 | |
| 		__storm_memset_struct(bp, addr, size,
 | |
| 				      (u32 *)&cmng->vnic.vnic_max_rate[vn]);
 | |
| 
 | |
| 		addr = BAR_XSTRORM_INTMEM +
 | |
| 		       XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func);
 | |
| 		size = sizeof(struct fairness_vars_per_vn);
 | |
| 		__storm_memset_struct(bp, addr, size,
 | |
| 				      (u32 *)&cmng->vnic.vnic_min_rate[vn]);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* This function is called upon link interrupt */
 | |
| static void bnx2x_link_attn(struct bnx2x *bp)
 | |
| {
 | |
| 	/* Make sure that we are synced with the current statistics */
 | |
| 	bnx2x_stats_handle(bp, STATS_EVENT_STOP);
 | |
| 
 | |
| 	bnx2x_link_update(&bp->link_params, &bp->link_vars);
 | |
| 
 | |
| 	if (bp->link_vars.link_up) {
 | |
| 
 | |
| 		/* dropless flow control */
 | |
| 		if (!CHIP_IS_E1(bp) && bp->dropless_fc) {
 | |
| 			int port = BP_PORT(bp);
 | |
| 			u32 pause_enabled = 0;
 | |
| 
 | |
| 			if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
 | |
| 				pause_enabled = 1;
 | |
| 
 | |
| 			REG_WR(bp, BAR_USTRORM_INTMEM +
 | |
| 			       USTORM_ETH_PAUSE_ENABLED_OFFSET(port),
 | |
| 			       pause_enabled);
 | |
| 		}
 | |
| 
 | |
| 		if (bp->link_vars.mac_type != MAC_TYPE_EMAC) {
 | |
| 			struct host_port_stats *pstats;
 | |
| 
 | |
| 			pstats = bnx2x_sp(bp, port_stats);
 | |
| 			/* reset old mac stats */
 | |
| 			memset(&(pstats->mac_stx[0]), 0,
 | |
| 			       sizeof(struct mac_stx));
 | |
| 		}
 | |
| 		if (bp->state == BNX2X_STATE_OPEN)
 | |
| 			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
 | |
| 	}
 | |
| 
 | |
| 	if (bp->link_vars.link_up && bp->link_vars.line_speed) {
 | |
| 		int cmng_fns = bnx2x_get_cmng_fns_mode(bp);
 | |
| 
 | |
| 		if (cmng_fns != CMNG_FNS_NONE) {
 | |
| 			bnx2x_cmng_fns_init(bp, false, cmng_fns);
 | |
| 			storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
 | |
| 		} else
 | |
| 			/* rate shaping and fairness are disabled */
 | |
| 			DP(NETIF_MSG_IFUP,
 | |
| 			   "single function mode without fairness\n");
 | |
| 	}
 | |
| 
 | |
| 	__bnx2x_link_report(bp);
 | |
| 
 | |
| 	if (IS_MF(bp))
 | |
| 		bnx2x_link_sync_notify(bp);
 | |
| }
 | |
| 
 | |
| void bnx2x__link_status_update(struct bnx2x *bp)
 | |
| {
 | |
| 	if (bp->state != BNX2X_STATE_OPEN)
 | |
| 		return;
 | |
| 
 | |
| 	/* read updated dcb configuration */
 | |
| 	if (IS_PF(bp)) {
 | |
| 		bnx2x_dcbx_pmf_update(bp);
 | |
| 		bnx2x_link_status_update(&bp->link_params, &bp->link_vars);
 | |
| 		if (bp->link_vars.link_up)
 | |
| 			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
 | |
| 		else
 | |
| 			bnx2x_stats_handle(bp, STATS_EVENT_STOP);
 | |
| 			/* indicate link status */
 | |
| 		bnx2x_link_report(bp);
 | |
| 
 | |
| 	} else { /* VF */
 | |
| 		bp->port.supported[0] |= (SUPPORTED_10baseT_Half |
 | |
| 					  SUPPORTED_10baseT_Full |
 | |
| 					  SUPPORTED_100baseT_Half |
 | |
| 					  SUPPORTED_100baseT_Full |
 | |
| 					  SUPPORTED_1000baseT_Full |
 | |
| 					  SUPPORTED_2500baseX_Full |
 | |
| 					  SUPPORTED_10000baseT_Full |
 | |
| 					  SUPPORTED_TP |
 | |
| 					  SUPPORTED_FIBRE |
 | |
| 					  SUPPORTED_Autoneg |
 | |
| 					  SUPPORTED_Pause |
 | |
| 					  SUPPORTED_Asym_Pause);
 | |
| 		bp->port.advertising[0] = bp->port.supported[0];
 | |
| 
 | |
| 		bp->link_params.bp = bp;
 | |
| 		bp->link_params.port = BP_PORT(bp);
 | |
| 		bp->link_params.req_duplex[0] = DUPLEX_FULL;
 | |
| 		bp->link_params.req_flow_ctrl[0] = BNX2X_FLOW_CTRL_NONE;
 | |
| 		bp->link_params.req_line_speed[0] = SPEED_10000;
 | |
| 		bp->link_params.speed_cap_mask[0] = 0x7f0000;
 | |
| 		bp->link_params.switch_cfg = SWITCH_CFG_10G;
 | |
| 		bp->link_vars.mac_type = MAC_TYPE_BMAC;
 | |
| 		bp->link_vars.line_speed = SPEED_10000;
 | |
| 		bp->link_vars.link_status =
 | |
| 			(LINK_STATUS_LINK_UP |
 | |
| 			 LINK_STATUS_SPEED_AND_DUPLEX_10GTFD);
 | |
| 		bp->link_vars.link_up = 1;
 | |
| 		bp->link_vars.duplex = DUPLEX_FULL;
 | |
| 		bp->link_vars.flow_ctrl = BNX2X_FLOW_CTRL_NONE;
 | |
| 		__bnx2x_link_report(bp);
 | |
| 		bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int bnx2x_afex_func_update(struct bnx2x *bp, u16 vifid,
 | |
| 				  u16 vlan_val, u8 allowed_prio)
 | |
| {
 | |
| 	struct bnx2x_func_state_params func_params = {NULL};
 | |
| 	struct bnx2x_func_afex_update_params *f_update_params =
 | |
| 		&func_params.params.afex_update;
 | |
| 
 | |
| 	func_params.f_obj = &bp->func_obj;
 | |
| 	func_params.cmd = BNX2X_F_CMD_AFEX_UPDATE;
 | |
| 
 | |
| 	/* no need to wait for RAMROD completion, so don't
 | |
| 	 * set RAMROD_COMP_WAIT flag
 | |
| 	 */
 | |
| 
 | |
| 	f_update_params->vif_id = vifid;
 | |
| 	f_update_params->afex_default_vlan = vlan_val;
 | |
| 	f_update_params->allowed_priorities = allowed_prio;
 | |
| 
 | |
| 	/* if ramrod can not be sent, response to MCP immediately */
 | |
| 	if (bnx2x_func_state_change(bp, &func_params) < 0)
 | |
| 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int bnx2x_afex_handle_vif_list_cmd(struct bnx2x *bp, u8 cmd_type,
 | |
| 					  u16 vif_index, u8 func_bit_map)
 | |
| {
 | |
| 	struct bnx2x_func_state_params func_params = {NULL};
 | |
| 	struct bnx2x_func_afex_viflists_params *update_params =
 | |
| 		&func_params.params.afex_viflists;
 | |
| 	int rc;
 | |
| 	u32 drv_msg_code;
 | |
| 
 | |
| 	/* validate only LIST_SET and LIST_GET are received from switch */
 | |
| 	if ((cmd_type != VIF_LIST_RULE_GET) && (cmd_type != VIF_LIST_RULE_SET))
 | |
| 		BNX2X_ERR("BUG! afex_handle_vif_list_cmd invalid type 0x%x\n",
 | |
| 			  cmd_type);
 | |
| 
 | |
| 	func_params.f_obj = &bp->func_obj;
 | |
| 	func_params.cmd = BNX2X_F_CMD_AFEX_VIFLISTS;
 | |
| 
 | |
| 	/* set parameters according to cmd_type */
 | |
| 	update_params->afex_vif_list_command = cmd_type;
 | |
| 	update_params->vif_list_index = vif_index;
 | |
| 	update_params->func_bit_map =
 | |
| 		(cmd_type == VIF_LIST_RULE_GET) ? 0 : func_bit_map;
 | |
| 	update_params->func_to_clear = 0;
 | |
| 	drv_msg_code =
 | |
| 		(cmd_type == VIF_LIST_RULE_GET) ?
 | |
| 		DRV_MSG_CODE_AFEX_LISTGET_ACK :
 | |
| 		DRV_MSG_CODE_AFEX_LISTSET_ACK;
 | |
| 
 | |
| 	/* if ramrod can not be sent, respond to MCP immediately for
 | |
| 	 * SET and GET requests (other are not triggered from MCP)
 | |
| 	 */
 | |
| 	rc = bnx2x_func_state_change(bp, &func_params);
 | |
| 	if (rc < 0)
 | |
| 		bnx2x_fw_command(bp, drv_msg_code, 0);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void bnx2x_handle_afex_cmd(struct bnx2x *bp, u32 cmd)
 | |
| {
 | |
| 	struct afex_stats afex_stats;
 | |
| 	u32 func = BP_ABS_FUNC(bp);
 | |
| 	u32 mf_config;
 | |
| 	u16 vlan_val;
 | |
| 	u32 vlan_prio;
 | |
| 	u16 vif_id;
 | |
| 	u8 allowed_prio;
 | |
| 	u8 vlan_mode;
 | |
| 	u32 addr_to_write, vifid, addrs, stats_type, i;
 | |
| 
 | |
| 	if (cmd & DRV_STATUS_AFEX_LISTGET_REQ) {
 | |
| 		vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
 | |
| 		DP(BNX2X_MSG_MCP,
 | |
| 		   "afex: got MCP req LISTGET_REQ for vifid 0x%x\n", vifid);
 | |
| 		bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_GET, vifid, 0);
 | |
| 	}
 | |
| 
 | |
| 	if (cmd & DRV_STATUS_AFEX_LISTSET_REQ) {
 | |
| 		vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
 | |
| 		addrs = SHMEM2_RD(bp, afex_param2_to_driver[BP_FW_MB_IDX(bp)]);
 | |
| 		DP(BNX2X_MSG_MCP,
 | |
| 		   "afex: got MCP req LISTSET_REQ for vifid 0x%x addrs 0x%x\n",
 | |
| 		   vifid, addrs);
 | |
| 		bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_SET, vifid,
 | |
| 					       addrs);
 | |
| 	}
 | |
| 
 | |
| 	if (cmd & DRV_STATUS_AFEX_STATSGET_REQ) {
 | |
| 		addr_to_write = SHMEM2_RD(bp,
 | |
| 			afex_scratchpad_addr_to_write[BP_FW_MB_IDX(bp)]);
 | |
| 		stats_type = SHMEM2_RD(bp,
 | |
| 			afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
 | |
| 
 | |
| 		DP(BNX2X_MSG_MCP,
 | |
| 		   "afex: got MCP req STATSGET_REQ, write to addr 0x%x\n",
 | |
| 		   addr_to_write);
 | |
| 
 | |
| 		bnx2x_afex_collect_stats(bp, (void *)&afex_stats, stats_type);
 | |
| 
 | |
| 		/* write response to scratchpad, for MCP */
 | |
| 		for (i = 0; i < (sizeof(struct afex_stats)/sizeof(u32)); i++)
 | |
| 			REG_WR(bp, addr_to_write + i*sizeof(u32),
 | |
| 			       *(((u32 *)(&afex_stats))+i));
 | |
| 
 | |
| 		/* send ack message to MCP */
 | |
| 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_STATSGET_ACK, 0);
 | |
| 	}
 | |
| 
 | |
| 	if (cmd & DRV_STATUS_AFEX_VIFSET_REQ) {
 | |
| 		mf_config = MF_CFG_RD(bp, func_mf_config[func].config);
 | |
| 		bp->mf_config[BP_VN(bp)] = mf_config;
 | |
| 		DP(BNX2X_MSG_MCP,
 | |
| 		   "afex: got MCP req VIFSET_REQ, mf_config 0x%x\n",
 | |
| 		   mf_config);
 | |
| 
 | |
| 		/* if VIF_SET is "enabled" */
 | |
| 		if (!(mf_config & FUNC_MF_CFG_FUNC_DISABLED)) {
 | |
| 			/* set rate limit directly to internal RAM */
 | |
| 			struct cmng_init_input cmng_input;
 | |
| 			struct rate_shaping_vars_per_vn m_rs_vn;
 | |
| 			size_t size = sizeof(struct rate_shaping_vars_per_vn);
 | |
| 			u32 addr = BAR_XSTRORM_INTMEM +
 | |
| 			    XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(BP_FUNC(bp));
 | |
| 
 | |
| 			bp->mf_config[BP_VN(bp)] = mf_config;
 | |
| 
 | |
| 			bnx2x_calc_vn_max(bp, BP_VN(bp), &cmng_input);
 | |
| 			m_rs_vn.vn_counter.rate =
 | |
| 				cmng_input.vnic_max_rate[BP_VN(bp)];
 | |
| 			m_rs_vn.vn_counter.quota =
 | |
| 				(m_rs_vn.vn_counter.rate *
 | |
| 				 RS_PERIODIC_TIMEOUT_USEC) / 8;
 | |
| 
 | |
| 			__storm_memset_struct(bp, addr, size, (u32 *)&m_rs_vn);
 | |
| 
 | |
| 			/* read relevant values from mf_cfg struct in shmem */
 | |
| 			vif_id =
 | |
| 				(MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
 | |
| 				 FUNC_MF_CFG_E1HOV_TAG_MASK) >>
 | |
| 				FUNC_MF_CFG_E1HOV_TAG_SHIFT;
 | |
| 			vlan_val =
 | |
| 				(MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
 | |
| 				 FUNC_MF_CFG_AFEX_VLAN_MASK) >>
 | |
| 				FUNC_MF_CFG_AFEX_VLAN_SHIFT;
 | |
| 			vlan_prio = (mf_config &
 | |
| 				     FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
 | |
| 				    FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT;
 | |
| 			vlan_val |= (vlan_prio << VLAN_PRIO_SHIFT);
 | |
| 			vlan_mode =
 | |
| 				(MF_CFG_RD(bp,
 | |
| 					   func_mf_config[func].afex_config) &
 | |
| 				 FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
 | |
| 				FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT;
 | |
| 			allowed_prio =
 | |
| 				(MF_CFG_RD(bp,
 | |
| 					   func_mf_config[func].afex_config) &
 | |
| 				 FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
 | |
| 				FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT;
 | |
| 
 | |
| 			/* send ramrod to FW, return in case of failure */
 | |
| 			if (bnx2x_afex_func_update(bp, vif_id, vlan_val,
 | |
| 						   allowed_prio))
 | |
| 				return;
 | |
| 
 | |
| 			bp->afex_def_vlan_tag = vlan_val;
 | |
| 			bp->afex_vlan_mode = vlan_mode;
 | |
| 		} else {
 | |
| 			/* notify link down because BP->flags is disabled */
 | |
| 			bnx2x_link_report(bp);
 | |
| 
 | |
| 			/* send INVALID VIF ramrod to FW */
 | |
| 			bnx2x_afex_func_update(bp, 0xFFFF, 0, 0);
 | |
| 
 | |
| 			/* Reset the default afex VLAN */
 | |
| 			bp->afex_def_vlan_tag = -1;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void bnx2x_pmf_update(struct bnx2x *bp)
 | |
| {
 | |
| 	int port = BP_PORT(bp);
 | |
| 	u32 val;
 | |
| 
 | |
| 	bp->port.pmf = 1;
 | |
| 	DP(BNX2X_MSG_MCP, "pmf %d\n", bp->port.pmf);
 | |
| 
 | |
| 	/*
 | |
| 	 * We need the mb() to ensure the ordering between the writing to
 | |
| 	 * bp->port.pmf here and reading it from the bnx2x_periodic_task().
 | |
| 	 */
 | |
| 	smp_mb();
 | |
| 
 | |
| 	/* queue a periodic task */
 | |
| 	queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
 | |
| 
 | |
| 	bnx2x_dcbx_pmf_update(bp);
 | |
| 
 | |
| 	/* enable nig attention */
 | |
| 	val = (0xff0f | (1 << (BP_VN(bp) + 4)));
 | |
| 	if (bp->common.int_block == INT_BLOCK_HC) {
 | |
| 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
 | |
| 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
 | |
| 	} else if (!CHIP_IS_E1x(bp)) {
 | |
| 		REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
 | |
| 		REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
 | |
| 	}
 | |
| 
 | |
| 	bnx2x_stats_handle(bp, STATS_EVENT_PMF);
 | |
| }
 | |
| 
 | |
| /* end of Link */
 | |
| 
 | |
| /* slow path */
 | |
| 
 | |
| /*
 | |
|  * General service functions
 | |
|  */
 | |
| 
 | |
| /* send the MCP a request, block until there is a reply */
 | |
| u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param)
 | |
| {
 | |
| 	int mb_idx = BP_FW_MB_IDX(bp);
 | |
| 	u32 seq;
 | |
| 	u32 rc = 0;
 | |
| 	u32 cnt = 1;
 | |
| 	u8 delay = CHIP_REV_IS_SLOW(bp) ? 100 : 10;
 | |
| 
 | |
| 	mutex_lock(&bp->fw_mb_mutex);
 | |
| 	seq = ++bp->fw_seq;
 | |
| 	SHMEM_WR(bp, func_mb[mb_idx].drv_mb_param, param);
 | |
| 	SHMEM_WR(bp, func_mb[mb_idx].drv_mb_header, (command | seq));
 | |
| 
 | |
| 	DP(BNX2X_MSG_MCP, "wrote command (%x) to FW MB param 0x%08x\n",
 | |
| 			(command | seq), param);
 | |
| 
 | |
| 	do {
 | |
| 		/* let the FW do it's magic ... */
 | |
| 		msleep(delay);
 | |
| 
 | |
| 		rc = SHMEM_RD(bp, func_mb[mb_idx].fw_mb_header);
 | |
| 
 | |
| 		/* Give the FW up to 5 second (500*10ms) */
 | |
| 	} while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
 | |
| 
 | |
| 	DP(BNX2X_MSG_MCP, "[after %d ms] read (%x) seq is (%x) from FW MB\n",
 | |
| 	   cnt*delay, rc, seq);
 | |
| 
 | |
| 	/* is this a reply to our command? */
 | |
| 	if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK))
 | |
| 		rc &= FW_MSG_CODE_MASK;
 | |
| 	else {
 | |
| 		/* FW BUG! */
 | |
| 		BNX2X_ERR("FW failed to respond!\n");
 | |
| 		bnx2x_fw_dump(bp);
 | |
| 		rc = 0;
 | |
| 	}
 | |
| 	mutex_unlock(&bp->fw_mb_mutex);
 | |
| 
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| 
 | |
| static void storm_memset_func_cfg(struct bnx2x *bp,
 | |
| 				 struct tstorm_eth_function_common_config *tcfg,
 | |
| 				 u16 abs_fid)
 | |
| {
 | |
| 	size_t size = sizeof(struct tstorm_eth_function_common_config);
 | |
| 
 | |
| 	u32 addr = BAR_TSTRORM_INTMEM +
 | |
| 			TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid);
 | |
| 
 | |
| 	__storm_memset_struct(bp, addr, size, (u32 *)tcfg);
 | |
| }
 | |
| 
 | |
| void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p)
 | |
| {
 | |
| 	if (CHIP_IS_E1x(bp)) {
 | |
| 		struct tstorm_eth_function_common_config tcfg = {0};
 | |
| 
 | |
| 		storm_memset_func_cfg(bp, &tcfg, p->func_id);
 | |
| 	}
 | |
| 
 | |
| 	/* Enable the function in the FW */
 | |
| 	storm_memset_vf_to_pf(bp, p->func_id, p->pf_id);
 | |
| 	storm_memset_func_en(bp, p->func_id, 1);
 | |
| 
 | |
| 	/* spq */
 | |
| 	if (p->func_flgs & FUNC_FLG_SPQ) {
 | |
| 		storm_memset_spq_addr(bp, p->spq_map, p->func_id);
 | |
| 		REG_WR(bp, XSEM_REG_FAST_MEMORY +
 | |
| 		       XSTORM_SPQ_PROD_OFFSET(p->func_id), p->spq_prod);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * bnx2x_get_tx_only_flags - Return common flags
 | |
|  *
 | |
|  * @bp		device handle
 | |
|  * @fp		queue handle
 | |
|  * @zero_stats	TRUE if statistics zeroing is needed
 | |
|  *
 | |
|  * Return the flags that are common for the Tx-only and not normal connections.
 | |
|  */
 | |
| static unsigned long bnx2x_get_common_flags(struct bnx2x *bp,
 | |
| 					    struct bnx2x_fastpath *fp,
 | |
| 					    bool zero_stats)
 | |
| {
 | |
| 	unsigned long flags = 0;
 | |
| 
 | |
| 	/* PF driver will always initialize the Queue to an ACTIVE state */
 | |
| 	__set_bit(BNX2X_Q_FLG_ACTIVE, &flags);
 | |
| 
 | |
| 	/* tx only connections collect statistics (on the same index as the
 | |
| 	 *  parent connection). The statistics are zeroed when the parent
 | |
| 	 *  connection is initialized.
 | |
| 	 */
 | |
| 
 | |
| 	__set_bit(BNX2X_Q_FLG_STATS, &flags);
 | |
| 	if (zero_stats)
 | |
| 		__set_bit(BNX2X_Q_FLG_ZERO_STATS, &flags);
 | |
| 
 | |
| 
 | |
| #ifdef BNX2X_STOP_ON_ERROR
 | |
| 	__set_bit(BNX2X_Q_FLG_TX_SEC, &flags);
 | |
| #endif
 | |
| 
 | |
| 	return flags;
 | |
| }
 | |
| 
 | |
| static unsigned long bnx2x_get_q_flags(struct bnx2x *bp,
 | |
| 				       struct bnx2x_fastpath *fp,
 | |
| 				       bool leading)
 | |
| {
 | |
| 	unsigned long flags = 0;
 | |
| 
 | |
| 	/* calculate other queue flags */
 | |
| 	if (IS_MF_SD(bp))
 | |
| 		__set_bit(BNX2X_Q_FLG_OV, &flags);
 | |
| 
 | |
| 	if (IS_FCOE_FP(fp)) {
 | |
| 		__set_bit(BNX2X_Q_FLG_FCOE, &flags);
 | |
| 		/* For FCoE - force usage of default priority (for afex) */
 | |
| 		__set_bit(BNX2X_Q_FLG_FORCE_DEFAULT_PRI, &flags);
 | |
| 	}
 | |
| 
 | |
| 	if (!fp->disable_tpa) {
 | |
| 		__set_bit(BNX2X_Q_FLG_TPA, &flags);
 | |
| 		__set_bit(BNX2X_Q_FLG_TPA_IPV6, &flags);
 | |
| 		if (fp->mode == TPA_MODE_GRO)
 | |
| 			__set_bit(BNX2X_Q_FLG_TPA_GRO, &flags);
 | |
| 	}
 | |
| 
 | |
| 	if (leading) {
 | |
| 		__set_bit(BNX2X_Q_FLG_LEADING_RSS, &flags);
 | |
| 		__set_bit(BNX2X_Q_FLG_MCAST, &flags);
 | |
| 	}
 | |
| 
 | |
| 	/* Always set HW VLAN stripping */
 | |
| 	__set_bit(BNX2X_Q_FLG_VLAN, &flags);
 | |
| 
 | |
| 	/* configure silent vlan removal */
 | |
| 	if (IS_MF_AFEX(bp))
 | |
| 		__set_bit(BNX2X_Q_FLG_SILENT_VLAN_REM, &flags);
 | |
| 
 | |
| 
 | |
| 	return flags | bnx2x_get_common_flags(bp, fp, true);
 | |
| }
 | |
| 
 | |
| static void bnx2x_pf_q_prep_general(struct bnx2x *bp,
 | |
| 	struct bnx2x_fastpath *fp, struct bnx2x_general_setup_params *gen_init,
 | |
| 	u8 cos)
 | |
| {
 | |
| 	gen_init->stat_id = bnx2x_stats_id(fp);
 | |
| 	gen_init->spcl_id = fp->cl_id;
 | |
| 
 | |
| 	/* Always use mini-jumbo MTU for FCoE L2 ring */
 | |
| 	if (IS_FCOE_FP(fp))
 | |
| 		gen_init->mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
 | |
| 	else
 | |
| 		gen_init->mtu = bp->dev->mtu;
 | |
| 
 | |
| 	gen_init->cos = cos;
 | |
| }
 | |
| 
 | |
| static void bnx2x_pf_rx_q_prep(struct bnx2x *bp,
 | |
| 	struct bnx2x_fastpath *fp, struct rxq_pause_params *pause,
 | |
| 	struct bnx2x_rxq_setup_params *rxq_init)
 | |
| {
 | |
| 	u8 max_sge = 0;
 | |
| 	u16 sge_sz = 0;
 | |
| 	u16 tpa_agg_size = 0;
 | |
| 
 | |
| 	if (!fp->disable_tpa) {
 | |
| 		pause->sge_th_lo = SGE_TH_LO(bp);
 | |
| 		pause->sge_th_hi = SGE_TH_HI(bp);
 | |
| 
 | |
| 		/* validate SGE ring has enough to cross high threshold */
 | |
| 		WARN_ON(bp->dropless_fc &&
 | |
| 				pause->sge_th_hi + FW_PREFETCH_CNT >
 | |
| 				MAX_RX_SGE_CNT * NUM_RX_SGE_PAGES);
 | |
| 
 | |
| 		tpa_agg_size = TPA_AGG_SIZE;
 | |
| 		max_sge = SGE_PAGE_ALIGN(bp->dev->mtu) >>
 | |
| 			SGE_PAGE_SHIFT;
 | |
| 		max_sge = ((max_sge + PAGES_PER_SGE - 1) &
 | |
| 			  (~(PAGES_PER_SGE-1))) >> PAGES_PER_SGE_SHIFT;
 | |
| 		sge_sz = (u16)min_t(u32, SGE_PAGES, 0xffff);
 | |
| 	}
 | |
| 
 | |
| 	/* pause - not for e1 */
 | |
| 	if (!CHIP_IS_E1(bp)) {
 | |
| 		pause->bd_th_lo = BD_TH_LO(bp);
 | |
| 		pause->bd_th_hi = BD_TH_HI(bp);
 | |
| 
 | |
| 		pause->rcq_th_lo = RCQ_TH_LO(bp);
 | |
| 		pause->rcq_th_hi = RCQ_TH_HI(bp);
 | |
| 		/*
 | |
| 		 * validate that rings have enough entries to cross
 | |
| 		 * high thresholds
 | |
| 		 */
 | |
| 		WARN_ON(bp->dropless_fc &&
 | |
| 				pause->bd_th_hi + FW_PREFETCH_CNT >
 | |
| 				bp->rx_ring_size);
 | |
| 		WARN_ON(bp->dropless_fc &&
 | |
| 				pause->rcq_th_hi + FW_PREFETCH_CNT >
 | |
| 				NUM_RCQ_RINGS * MAX_RCQ_DESC_CNT);
 | |
| 
 | |
| 		pause->pri_map = 1;
 | |
| 	}
 | |
| 
 | |
| 	/* rxq setup */
 | |
| 	rxq_init->dscr_map = fp->rx_desc_mapping;
 | |
| 	rxq_init->sge_map = fp->rx_sge_mapping;
 | |
| 	rxq_init->rcq_map = fp->rx_comp_mapping;
 | |
| 	rxq_init->rcq_np_map = fp->rx_comp_mapping + BCM_PAGE_SIZE;
 | |
| 
 | |
| 	/* This should be a maximum number of data bytes that may be
 | |
| 	 * placed on the BD (not including paddings).
 | |
| 	 */
 | |
| 	rxq_init->buf_sz = fp->rx_buf_size - BNX2X_FW_RX_ALIGN_START -
 | |
| 		BNX2X_FW_RX_ALIGN_END -	IP_HEADER_ALIGNMENT_PADDING;
 | |
| 
 | |
| 	rxq_init->cl_qzone_id = fp->cl_qzone_id;
 | |
| 	rxq_init->tpa_agg_sz = tpa_agg_size;
 | |
| 	rxq_init->sge_buf_sz = sge_sz;
 | |
| 	rxq_init->max_sges_pkt = max_sge;
 | |
| 	rxq_init->rss_engine_id = BP_FUNC(bp);
 | |
| 	rxq_init->mcast_engine_id = BP_FUNC(bp);
 | |
| 
 | |
| 	/* Maximum number or simultaneous TPA aggregation for this Queue.
 | |
| 	 *
 | |
| 	 * For PF Clients it should be the maximum available number.
 | |
| 	 * VF driver(s) may want to define it to a smaller value.
 | |
| 	 */
 | |
| 	rxq_init->max_tpa_queues = MAX_AGG_QS(bp);
 | |
| 
 | |
| 	rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT;
 | |
| 	rxq_init->fw_sb_id = fp->fw_sb_id;
 | |
| 
 | |
| 	if (IS_FCOE_FP(fp))
 | |
| 		rxq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS;
 | |
| 	else
 | |
| 		rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
 | |
| 	/* configure silent vlan removal
 | |
| 	 * if multi function mode is afex, then mask default vlan
 | |
| 	 */
 | |
| 	if (IS_MF_AFEX(bp)) {
 | |
| 		rxq_init->silent_removal_value = bp->afex_def_vlan_tag;
 | |
| 		rxq_init->silent_removal_mask = VLAN_VID_MASK;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void bnx2x_pf_tx_q_prep(struct bnx2x *bp,
 | |
| 	struct bnx2x_fastpath *fp, struct bnx2x_txq_setup_params *txq_init,
 | |
| 	u8 cos)
 | |
| {
 | |
| 	txq_init->dscr_map = fp->txdata_ptr[cos]->tx_desc_mapping;
 | |
| 	txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
 | |
| 	txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
 | |
| 	txq_init->fw_sb_id = fp->fw_sb_id;
 | |
| 
 | |
| 	/*
 | |
| 	 * set the tss leading client id for TX classfication ==
 | |
| 	 * leading RSS client id
 | |
| 	 */
 | |
| 	txq_init->tss_leading_cl_id = bnx2x_fp(bp, 0, cl_id);
 | |
| 
 | |
| 	if (IS_FCOE_FP(fp)) {
 | |
| 		txq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS;
 | |
| 		txq_init->traffic_type = LLFC_TRAFFIC_TYPE_FCOE;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void bnx2x_pf_init(struct bnx2x *bp)
 | |
| {
 | |
| 	struct bnx2x_func_init_params func_init = {0};
 | |
| 	struct event_ring_data eq_data = { {0} };
 | |
| 	u16 flags;
 | |
| 
 | |
| 	if (!CHIP_IS_E1x(bp)) {
 | |
| 		/* reset IGU PF statistics: MSIX + ATTN */
 | |
| 		/* PF */
 | |
| 		REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
 | |
| 			   BNX2X_IGU_STAS_MSG_VF_CNT*4 +
 | |
| 			   (CHIP_MODE_IS_4_PORT(bp) ?
 | |
| 				BP_FUNC(bp) : BP_VN(bp))*4, 0);
 | |
| 		/* ATTN */
 | |
| 		REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
 | |
| 			   BNX2X_IGU_STAS_MSG_VF_CNT*4 +
 | |
| 			   BNX2X_IGU_STAS_MSG_PF_CNT*4 +
 | |
| 			   (CHIP_MODE_IS_4_PORT(bp) ?
 | |
| 				BP_FUNC(bp) : BP_VN(bp))*4, 0);
 | |
| 	}
 | |
| 
 | |
| 	/* function setup flags */
 | |
| 	flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ);
 | |
| 
 | |
| 	/* This flag is relevant for E1x only.
 | |
| 	 * E2 doesn't have a TPA configuration in a function level.
 | |
| 	 */
 | |
| 	flags |= (bp->flags & TPA_ENABLE_FLAG) ? FUNC_FLG_TPA : 0;
 | |
| 
 | |
| 	func_init.func_flgs = flags;
 | |
| 	func_init.pf_id = BP_FUNC(bp);
 | |
| 	func_init.func_id = BP_FUNC(bp);
 | |
| 	func_init.spq_map = bp->spq_mapping;
 | |
| 	func_init.spq_prod = bp->spq_prod_idx;
 | |
| 
 | |
| 	bnx2x_func_init(bp, &func_init);
 | |
| 
 | |
| 	memset(&(bp->cmng), 0, sizeof(struct cmng_struct_per_port));
 | |
| 
 | |
| 	/*
 | |
| 	 * Congestion management values depend on the link rate
 | |
| 	 * There is no active link so initial link rate is set to 10 Gbps.
 | |
| 	 * When the link comes up The congestion management values are
 | |
| 	 * re-calculated according to the actual link rate.
 | |
| 	 */
 | |
| 	bp->link_vars.line_speed = SPEED_10000;
 | |
| 	bnx2x_cmng_fns_init(bp, true, bnx2x_get_cmng_fns_mode(bp));
 | |
| 
 | |
| 	/* Only the PMF sets the HW */
 | |
| 	if (bp->port.pmf)
 | |
| 		storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
 | |
| 
 | |
| 	/* init Event Queue - PCI bus guarantees correct endianity*/
 | |
| 	eq_data.base_addr.hi = U64_HI(bp->eq_mapping);
 | |
| 	eq_data.base_addr.lo = U64_LO(bp->eq_mapping);
 | |
| 	eq_data.producer = bp->eq_prod;
 | |
| 	eq_data.index_id = HC_SP_INDEX_EQ_CONS;
 | |
| 	eq_data.sb_id = DEF_SB_ID;
 | |
| 	storm_memset_eq_data(bp, &eq_data, BP_FUNC(bp));
 | |
| }
 | |
| 
 | |
| 
 | |
| static void bnx2x_e1h_disable(struct bnx2x *bp)
 | |
| {
 | |
| 	int port = BP_PORT(bp);
 | |
| 
 | |
| 	bnx2x_tx_disable(bp);
 | |
| 
 | |
| 	REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
 | |
| }
 | |
| 
 | |
| static void bnx2x_e1h_enable(struct bnx2x *bp)
 | |
| {
 | |
| 	int port = BP_PORT(bp);
 | |
| 
 | |
| 	REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
 | |
| 
 | |
| 	/* Tx queue should be only reenabled */
 | |
| 	netif_tx_wake_all_queues(bp->dev);
 | |
| 
 | |
| 	/*
 | |
| 	 * Should not call netif_carrier_on since it will be called if the link
 | |
| 	 * is up when checking for link state
 | |
| 	 */
 | |
| }
 | |
| 
 | |
| #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
 | |
| 
 | |
| static void bnx2x_drv_info_ether_stat(struct bnx2x *bp)
 | |
| {
 | |
| 	struct eth_stats_info *ether_stat =
 | |
| 		&bp->slowpath->drv_info_to_mcp.ether_stat;
 | |
| 
 | |
| 	strlcpy(ether_stat->version, DRV_MODULE_VERSION,
 | |
| 		ETH_STAT_INFO_VERSION_LEN);
 | |
| 
 | |
| 	bp->sp_objs[0].mac_obj.get_n_elements(bp, &bp->sp_objs[0].mac_obj,
 | |
| 					DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
 | |
| 					ether_stat->mac_local);
 | |
| 
 | |
| 	ether_stat->mtu_size = bp->dev->mtu;
 | |
| 
 | |
| 	if (bp->dev->features & NETIF_F_RXCSUM)
 | |
| 		ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
 | |
| 	if (bp->dev->features & NETIF_F_TSO)
 | |
| 		ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
 | |
| 	ether_stat->feature_flags |= bp->common.boot_mode;
 | |
| 
 | |
| 	ether_stat->promiscuous_mode = (bp->dev->flags & IFF_PROMISC) ? 1 : 0;
 | |
| 
 | |
| 	ether_stat->txq_size = bp->tx_ring_size;
 | |
| 	ether_stat->rxq_size = bp->rx_ring_size;
 | |
| }
 | |
| 
 | |
| static void bnx2x_drv_info_fcoe_stat(struct bnx2x *bp)
 | |
| {
 | |
| 	struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
 | |
| 	struct fcoe_stats_info *fcoe_stat =
 | |
| 		&bp->slowpath->drv_info_to_mcp.fcoe_stat;
 | |
| 
 | |
| 	if (!CNIC_LOADED(bp))
 | |
| 		return;
 | |
| 
 | |
| 	memcpy(fcoe_stat->mac_local + MAC_LEADING_ZERO_CNT,
 | |
| 	       bp->fip_mac, ETH_ALEN);
 | |
| 
 | |
| 	fcoe_stat->qos_priority =
 | |
| 		app->traffic_type_priority[LLFC_TRAFFIC_TYPE_FCOE];
 | |
| 
 | |
| 	/* insert FCoE stats from ramrod response */
 | |
| 	if (!NO_FCOE(bp)) {
 | |
| 		struct tstorm_per_queue_stats *fcoe_q_tstorm_stats =
 | |
| 			&bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
 | |
| 			tstorm_queue_statistics;
 | |
| 
 | |
| 		struct xstorm_per_queue_stats *fcoe_q_xstorm_stats =
 | |
| 			&bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
 | |
| 			xstorm_queue_statistics;
 | |
| 
 | |
| 		struct fcoe_statistics_params *fw_fcoe_stat =
 | |
| 			&bp->fw_stats_data->fcoe;
 | |
| 
 | |
| 		ADD_64_LE(fcoe_stat->rx_bytes_hi, LE32_0,
 | |
| 			  fcoe_stat->rx_bytes_lo,
 | |
| 			  fw_fcoe_stat->rx_stat0.fcoe_rx_byte_cnt);
 | |
| 
 | |
| 		ADD_64_LE(fcoe_stat->rx_bytes_hi,
 | |
| 			  fcoe_q_tstorm_stats->rcv_ucast_bytes.hi,
 | |
| 			  fcoe_stat->rx_bytes_lo,
 | |
| 			  fcoe_q_tstorm_stats->rcv_ucast_bytes.lo);
 | |
| 
 | |
| 		ADD_64_LE(fcoe_stat->rx_bytes_hi,
 | |
| 			  fcoe_q_tstorm_stats->rcv_bcast_bytes.hi,
 | |
| 			  fcoe_stat->rx_bytes_lo,
 | |
| 			  fcoe_q_tstorm_stats->rcv_bcast_bytes.lo);
 | |
| 
 | |
| 		ADD_64_LE(fcoe_stat->rx_bytes_hi,
 | |
| 			  fcoe_q_tstorm_stats->rcv_mcast_bytes.hi,
 | |
| 			  fcoe_stat->rx_bytes_lo,
 | |
| 			  fcoe_q_tstorm_stats->rcv_mcast_bytes.lo);
 | |
| 
 | |
| 		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
 | |
| 			  fcoe_stat->rx_frames_lo,
 | |
| 			  fw_fcoe_stat->rx_stat0.fcoe_rx_pkt_cnt);
 | |
| 
 | |
| 		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
 | |
| 			  fcoe_stat->rx_frames_lo,
 | |
| 			  fcoe_q_tstorm_stats->rcv_ucast_pkts);
 | |
| 
 | |
| 		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
 | |
| 			  fcoe_stat->rx_frames_lo,
 | |
| 			  fcoe_q_tstorm_stats->rcv_bcast_pkts);
 | |
| 
 | |
| 		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
 | |
| 			  fcoe_stat->rx_frames_lo,
 | |
| 			  fcoe_q_tstorm_stats->rcv_mcast_pkts);
 | |
| 
 | |
| 		ADD_64_LE(fcoe_stat->tx_bytes_hi, LE32_0,
 | |
| 			  fcoe_stat->tx_bytes_lo,
 | |
| 			  fw_fcoe_stat->tx_stat.fcoe_tx_byte_cnt);
 | |
| 
 | |
| 		ADD_64_LE(fcoe_stat->tx_bytes_hi,
 | |
| 			  fcoe_q_xstorm_stats->ucast_bytes_sent.hi,
 | |
| 			  fcoe_stat->tx_bytes_lo,
 | |
| 			  fcoe_q_xstorm_stats->ucast_bytes_sent.lo);
 | |
| 
 | |
| 		ADD_64_LE(fcoe_stat->tx_bytes_hi,
 | |
| 			  fcoe_q_xstorm_stats->bcast_bytes_sent.hi,
 | |
| 			  fcoe_stat->tx_bytes_lo,
 | |
| 			  fcoe_q_xstorm_stats->bcast_bytes_sent.lo);
 | |
| 
 | |
| 		ADD_64_LE(fcoe_stat->tx_bytes_hi,
 | |
| 			  fcoe_q_xstorm_stats->mcast_bytes_sent.hi,
 | |
| 			  fcoe_stat->tx_bytes_lo,
 | |
| 			  fcoe_q_xstorm_stats->mcast_bytes_sent.lo);
 | |
| 
 | |
| 		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
 | |
| 			  fcoe_stat->tx_frames_lo,
 | |
| 			  fw_fcoe_stat->tx_stat.fcoe_tx_pkt_cnt);
 | |
| 
 | |
| 		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
 | |
| 			  fcoe_stat->tx_frames_lo,
 | |
| 			  fcoe_q_xstorm_stats->ucast_pkts_sent);
 | |
| 
 | |
| 		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
 | |
| 			  fcoe_stat->tx_frames_lo,
 | |
| 			  fcoe_q_xstorm_stats->bcast_pkts_sent);
 | |
| 
 | |
| 		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
 | |
| 			  fcoe_stat->tx_frames_lo,
 | |
| 			  fcoe_q_xstorm_stats->mcast_pkts_sent);
 | |
| 	}
 | |
| 
 | |
| 	/* ask L5 driver to add data to the struct */
 | |
| 	bnx2x_cnic_notify(bp, CNIC_CTL_FCOE_STATS_GET_CMD);
 | |
| }
 | |
| 
 | |
| static void bnx2x_drv_info_iscsi_stat(struct bnx2x *bp)
 | |
| {
 | |
| 	struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
 | |
| 	struct iscsi_stats_info *iscsi_stat =
 | |
| 		&bp->slowpath->drv_info_to_mcp.iscsi_stat;
 | |
| 
 | |
| 	if (!CNIC_LOADED(bp))
 | |
| 		return;
 | |
| 
 | |
| 	memcpy(iscsi_stat->mac_local + MAC_LEADING_ZERO_CNT,
 | |
| 	       bp->cnic_eth_dev.iscsi_mac, ETH_ALEN);
 | |
| 
 | |
| 	iscsi_stat->qos_priority =
 | |
| 		app->traffic_type_priority[LLFC_TRAFFIC_TYPE_ISCSI];
 | |
| 
 | |
| 	/* ask L5 driver to add data to the struct */
 | |
| 	bnx2x_cnic_notify(bp, CNIC_CTL_ISCSI_STATS_GET_CMD);
 | |
| }
 | |
| 
 | |
| /* called due to MCP event (on pmf):
 | |
|  *	reread new bandwidth configuration
 | |
|  *	configure FW
 | |
|  *	notify others function about the change
 | |
|  */
 | |
| static void bnx2x_config_mf_bw(struct bnx2x *bp)
 | |
| {
 | |
| 	if (bp->link_vars.link_up) {
 | |
| 		bnx2x_cmng_fns_init(bp, true, CMNG_FNS_MINMAX);
 | |
| 		bnx2x_link_sync_notify(bp);
 | |
| 	}
 | |
| 	storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
 | |
| }
 | |
| 
 | |
| static void bnx2x_set_mf_bw(struct bnx2x *bp)
 | |
| {
 | |
| 	bnx2x_config_mf_bw(bp);
 | |
| 	bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
 | |
| }
 | |
| 
 | |
| static void bnx2x_handle_eee_event(struct bnx2x *bp)
 | |
| {
 | |
| 	DP(BNX2X_MSG_MCP, "EEE - LLDP event\n");
 | |
| 	bnx2x_fw_command(bp, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
 | |
| }
 | |
| 
 | |
| static void bnx2x_handle_drv_info_req(struct bnx2x *bp)
 | |
| {
 | |
| 	enum drv_info_opcode op_code;
 | |
| 	u32 drv_info_ctl = SHMEM2_RD(bp, drv_info_control);
 | |
| 
 | |
| 	/* if drv_info version supported by MFW doesn't match - send NACK */
 | |
| 	if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
 | |
| 		bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	op_code = (drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
 | |
| 		  DRV_INFO_CONTROL_OP_CODE_SHIFT;
 | |
| 
 | |
| 	memset(&bp->slowpath->drv_info_to_mcp, 0,
 | |
| 	       sizeof(union drv_info_to_mcp));
 | |
| 
 | |
| 	switch (op_code) {
 | |
| 	case ETH_STATS_OPCODE:
 | |
| 		bnx2x_drv_info_ether_stat(bp);
 | |
| 		break;
 | |
| 	case FCOE_STATS_OPCODE:
 | |
| 		bnx2x_drv_info_fcoe_stat(bp);
 | |
| 		break;
 | |
| 	case ISCSI_STATS_OPCODE:
 | |
| 		bnx2x_drv_info_iscsi_stat(bp);
 | |
| 		break;
 | |
| 	default:
 | |
| 		/* if op code isn't supported - send NACK */
 | |
| 		bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* if we got drv_info attn from MFW then these fields are defined in
 | |
| 	 * shmem2 for sure
 | |
| 	 */
 | |
| 	SHMEM2_WR(bp, drv_info_host_addr_lo,
 | |
| 		U64_LO(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
 | |
| 	SHMEM2_WR(bp, drv_info_host_addr_hi,
 | |
| 		U64_HI(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
 | |
| 
 | |
| 	bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_ACK, 0);
 | |
| }
 | |
| 
 | |
| static void bnx2x_dcc_event(struct bnx2x *bp, u32 dcc_event)
 | |
| {
 | |
| 	DP(BNX2X_MSG_MCP, "dcc_event 0x%x\n", dcc_event);
 | |
| 
 | |
| 	if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) {
 | |
| 
 | |
| 		/*
 | |
| 		 * This is the only place besides the function initialization
 | |
| 		 * where the bp->flags can change so it is done without any
 | |
| 		 * locks
 | |
| 		 */
 | |
| 		if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
 | |
| 			DP(BNX2X_MSG_MCP, "mf_cfg function disabled\n");
 | |
| 			bp->flags |= MF_FUNC_DIS;
 | |
| 
 | |
| 			bnx2x_e1h_disable(bp);
 | |
| 		} else {
 | |
| 			DP(BNX2X_MSG_MCP, "mf_cfg function enabled\n");
 | |
| 			bp->flags &= ~MF_FUNC_DIS;
 | |
| 
 | |
| 			bnx2x_e1h_enable(bp);
 | |
| 		}
 | |
| 		dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF;
 | |
| 	}
 | |
| 	if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) {
 | |
| 		bnx2x_config_mf_bw(bp);
 | |
| 		dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION;
 | |
| 	}
 | |
| 
 | |
| 	/* Report results to MCP */
 | |
| 	if (dcc_event)
 | |
| 		bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_FAILURE, 0);
 | |
| 	else
 | |
| 		bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_OK, 0);
 | |
| }
 | |
| 
 | |
| /* must be called under the spq lock */
 | |
| static struct eth_spe *bnx2x_sp_get_next(struct bnx2x *bp)
 | |
| {
 | |
| 	struct eth_spe *next_spe = bp->spq_prod_bd;
 | |
| 
 | |
| 	if (bp->spq_prod_bd == bp->spq_last_bd) {
 | |
| 		bp->spq_prod_bd = bp->spq;
 | |
| 		bp->spq_prod_idx = 0;
 | |
| 		DP(BNX2X_MSG_SP, "end of spq\n");
 | |
| 	} else {
 | |
| 		bp->spq_prod_bd++;
 | |
| 		bp->spq_prod_idx++;
 | |
| 	}
 | |
| 	return next_spe;
 | |
| }
 | |
| 
 | |
| /* must be called under the spq lock */
 | |
| static void bnx2x_sp_prod_update(struct bnx2x *bp)
 | |
| {
 | |
| 	int func = BP_FUNC(bp);
 | |
| 
 | |
| 	/*
 | |
| 	 * Make sure that BD data is updated before writing the producer:
 | |
| 	 * BD data is written to the memory, the producer is read from the
 | |
| 	 * memory, thus we need a full memory barrier to ensure the ordering.
 | |
| 	 */
 | |
| 	mb();
 | |
| 
 | |
| 	REG_WR16(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func),
 | |
| 		 bp->spq_prod_idx);
 | |
| 	mmiowb();
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * bnx2x_is_contextless_ramrod - check if the current command ends on EQ
 | |
|  *
 | |
|  * @cmd:	command to check
 | |
|  * @cmd_type:	command type
 | |
|  */
 | |
| static bool bnx2x_is_contextless_ramrod(int cmd, int cmd_type)
 | |
| {
 | |
| 	if ((cmd_type == NONE_CONNECTION_TYPE) ||
 | |
| 	    (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
 | |
| 	    (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
 | |
| 	    (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
 | |
| 	    (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
 | |
| 	    (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
 | |
| 	    (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE))
 | |
| 		return true;
 | |
| 	else
 | |
| 		return false;
 | |
| 
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * bnx2x_sp_post - place a single command on an SP ring
 | |
|  *
 | |
|  * @bp:		driver handle
 | |
|  * @command:	command to place (e.g. SETUP, FILTER_RULES, etc.)
 | |
|  * @cid:	SW CID the command is related to
 | |
|  * @data_hi:	command private data address (high 32 bits)
 | |
|  * @data_lo:	command private data address (low 32 bits)
 | |
|  * @cmd_type:	command type (e.g. NONE, ETH)
 | |
|  *
 | |
|  * SP data is handled as if it's always an address pair, thus data fields are
 | |
|  * not swapped to little endian in upper functions. Instead this function swaps
 | |
|  * data as if it's two u32 fields.
 | |
|  */
 | |
| int bnx2x_sp_post(struct bnx2x *bp, int command, int cid,
 | |
| 		  u32 data_hi, u32 data_lo, int cmd_type)
 | |
| {
 | |
| 	struct eth_spe *spe;
 | |
| 	u16 type;
 | |
| 	bool common = bnx2x_is_contextless_ramrod(command, cmd_type);
 | |
| 
 | |
| #ifdef BNX2X_STOP_ON_ERROR
 | |
| 	if (unlikely(bp->panic)) {
 | |
| 		BNX2X_ERR("Can't post SP when there is panic\n");
 | |
| 		return -EIO;
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	spin_lock_bh(&bp->spq_lock);
 | |
| 
 | |
| 	if (common) {
 | |
| 		if (!atomic_read(&bp->eq_spq_left)) {
 | |
| 			BNX2X_ERR("BUG! EQ ring full!\n");
 | |
| 			spin_unlock_bh(&bp->spq_lock);
 | |
| 			bnx2x_panic();
 | |
| 			return -EBUSY;
 | |
| 		}
 | |
| 	} else if (!atomic_read(&bp->cq_spq_left)) {
 | |
| 			BNX2X_ERR("BUG! SPQ ring full!\n");
 | |
| 			spin_unlock_bh(&bp->spq_lock);
 | |
| 			bnx2x_panic();
 | |
| 			return -EBUSY;
 | |
| 	}
 | |
| 
 | |
| 	spe = bnx2x_sp_get_next(bp);
 | |
| 
 | |
| 	/* CID needs port number to be encoded int it */
 | |
| 	spe->hdr.conn_and_cmd_data =
 | |
| 			cpu_to_le32((command << SPE_HDR_CMD_ID_SHIFT) |
 | |
| 				    HW_CID(bp, cid));
 | |
| 
 | |
| 	type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) & SPE_HDR_CONN_TYPE;
 | |
| 
 | |
| 	type |= ((BP_FUNC(bp) << SPE_HDR_FUNCTION_ID_SHIFT) &
 | |
| 		 SPE_HDR_FUNCTION_ID);
 | |
| 
 | |
| 	spe->hdr.type = cpu_to_le16(type);
 | |
| 
 | |
| 	spe->data.update_data_addr.hi = cpu_to_le32(data_hi);
 | |
| 	spe->data.update_data_addr.lo = cpu_to_le32(data_lo);
 | |
| 
 | |
| 	/*
 | |
| 	 * It's ok if the actual decrement is issued towards the memory
 | |
| 	 * somewhere between the spin_lock and spin_unlock. Thus no
 | |
| 	 * more explict memory barrier is needed.
 | |
| 	 */
 | |
| 	if (common)
 | |
| 		atomic_dec(&bp->eq_spq_left);
 | |
| 	else
 | |
| 		atomic_dec(&bp->cq_spq_left);
 | |
| 
 | |
| 
 | |
| 	DP(BNX2X_MSG_SP,
 | |
| 	   "SPQE[%x] (%x:%x)  (cmd, common?) (%d,%d)  hw_cid %x  data (%x:%x) type(0x%x) left (CQ, EQ) (%x,%x)\n",
 | |
| 	   bp->spq_prod_idx, (u32)U64_HI(bp->spq_mapping),
 | |
| 	   (u32)(U64_LO(bp->spq_mapping) +
 | |
| 	   (void *)bp->spq_prod_bd - (void *)bp->spq), command, common,
 | |
| 	   HW_CID(bp, cid), data_hi, data_lo, type,
 | |
| 	   atomic_read(&bp->cq_spq_left), atomic_read(&bp->eq_spq_left));
 | |
| 
 | |
| 	bnx2x_sp_prod_update(bp);
 | |
| 	spin_unlock_bh(&bp->spq_lock);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* acquire split MCP access lock register */
 | |
| static int bnx2x_acquire_alr(struct bnx2x *bp)
 | |
| {
 | |
| 	u32 j, val;
 | |
| 	int rc = 0;
 | |
| 
 | |
| 	might_sleep();
 | |
| 	for (j = 0; j < 1000; j++) {
 | |
| 		val = (1UL << 31);
 | |
| 		REG_WR(bp, GRCBASE_MCP + 0x9c, val);
 | |
| 		val = REG_RD(bp, GRCBASE_MCP + 0x9c);
 | |
| 		if (val & (1L << 31))
 | |
| 			break;
 | |
| 
 | |
| 		msleep(5);
 | |
| 	}
 | |
| 	if (!(val & (1L << 31))) {
 | |
| 		BNX2X_ERR("Cannot acquire MCP access lock register\n");
 | |
| 		rc = -EBUSY;
 | |
| 	}
 | |
| 
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| /* release split MCP access lock register */
 | |
| static void bnx2x_release_alr(struct bnx2x *bp)
 | |
| {
 | |
| 	REG_WR(bp, GRCBASE_MCP + 0x9c, 0);
 | |
| }
 | |
| 
 | |
| #define BNX2X_DEF_SB_ATT_IDX	0x0001
 | |
| #define BNX2X_DEF_SB_IDX	0x0002
 | |
| 
 | |
| static u16 bnx2x_update_dsb_idx(struct bnx2x *bp)
 | |
| {
 | |
| 	struct host_sp_status_block *def_sb = bp->def_status_blk;
 | |
| 	u16 rc = 0;
 | |
| 
 | |
| 	barrier(); /* status block is written to by the chip */
 | |
| 	if (bp->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
 | |
| 		bp->def_att_idx = def_sb->atten_status_block.attn_bits_index;
 | |
| 		rc |= BNX2X_DEF_SB_ATT_IDX;
 | |
| 	}
 | |
| 
 | |
| 	if (bp->def_idx != def_sb->sp_sb.running_index) {
 | |
| 		bp->def_idx = def_sb->sp_sb.running_index;
 | |
| 		rc |= BNX2X_DEF_SB_IDX;
 | |
| 	}
 | |
| 
 | |
| 	/* Do not reorder: indecies reading should complete before handling */
 | |
| 	barrier();
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * slow path service functions
 | |
|  */
 | |
| 
 | |
| static void bnx2x_attn_int_asserted(struct bnx2x *bp, u32 asserted)
 | |
| {
 | |
| 	int port = BP_PORT(bp);
 | |
| 	u32 aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
 | |
| 			      MISC_REG_AEU_MASK_ATTN_FUNC_0;
 | |
| 	u32 nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
 | |
| 				       NIG_REG_MASK_INTERRUPT_PORT0;
 | |
| 	u32 aeu_mask;
 | |
| 	u32 nig_mask = 0;
 | |
| 	u32 reg_addr;
 | |
| 
 | |
| 	if (bp->attn_state & asserted)
 | |
| 		BNX2X_ERR("IGU ERROR\n");
 | |
| 
 | |
| 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
 | |
| 	aeu_mask = REG_RD(bp, aeu_addr);
 | |
| 
 | |
| 	DP(NETIF_MSG_HW, "aeu_mask %x  newly asserted %x\n",
 | |
| 	   aeu_mask, asserted);
 | |
| 	aeu_mask &= ~(asserted & 0x3ff);
 | |
| 	DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
 | |
| 
 | |
| 	REG_WR(bp, aeu_addr, aeu_mask);
 | |
| 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
 | |
| 
 | |
| 	DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
 | |
| 	bp->attn_state |= asserted;
 | |
| 	DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
 | |
| 
 | |
| 	if (asserted & ATTN_HARD_WIRED_MASK) {
 | |
| 		if (asserted & ATTN_NIG_FOR_FUNC) {
 | |
| 
 | |
| 			bnx2x_acquire_phy_lock(bp);
 | |
| 
 | |
| 			/* save nig interrupt mask */
 | |
| 			nig_mask = REG_RD(bp, nig_int_mask_addr);
 | |
| 
 | |
| 			/* If nig_mask is not set, no need to call the update
 | |
| 			 * function.
 | |
| 			 */
 | |
| 			if (nig_mask) {
 | |
| 				REG_WR(bp, nig_int_mask_addr, 0);
 | |
| 
 | |
| 				bnx2x_link_attn(bp);
 | |
| 			}
 | |
| 
 | |
| 			/* handle unicore attn? */
 | |
| 		}
 | |
| 		if (asserted & ATTN_SW_TIMER_4_FUNC)
 | |
| 			DP(NETIF_MSG_HW, "ATTN_SW_TIMER_4_FUNC!\n");
 | |
| 
 | |
| 		if (asserted & GPIO_2_FUNC)
 | |
| 			DP(NETIF_MSG_HW, "GPIO_2_FUNC!\n");
 | |
| 
 | |
| 		if (asserted & GPIO_3_FUNC)
 | |
| 			DP(NETIF_MSG_HW, "GPIO_3_FUNC!\n");
 | |
| 
 | |
| 		if (asserted & GPIO_4_FUNC)
 | |
| 			DP(NETIF_MSG_HW, "GPIO_4_FUNC!\n");
 | |
| 
 | |
| 		if (port == 0) {
 | |
| 			if (asserted & ATTN_GENERAL_ATTN_1) {
 | |
| 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_1!\n");
 | |
| 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
 | |
| 			}
 | |
| 			if (asserted & ATTN_GENERAL_ATTN_2) {
 | |
| 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_2!\n");
 | |
| 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
 | |
| 			}
 | |
| 			if (asserted & ATTN_GENERAL_ATTN_3) {
 | |
| 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_3!\n");
 | |
| 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
 | |
| 			}
 | |
| 		} else {
 | |
| 			if (asserted & ATTN_GENERAL_ATTN_4) {
 | |
| 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_4!\n");
 | |
| 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
 | |
| 			}
 | |
| 			if (asserted & ATTN_GENERAL_ATTN_5) {
 | |
| 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_5!\n");
 | |
| 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
 | |
| 			}
 | |
| 			if (asserted & ATTN_GENERAL_ATTN_6) {
 | |
| 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_6!\n");
 | |
| 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 	} /* if hardwired */
 | |
| 
 | |
| 	if (bp->common.int_block == INT_BLOCK_HC)
 | |
| 		reg_addr = (HC_REG_COMMAND_REG + port*32 +
 | |
| 			    COMMAND_REG_ATTN_BITS_SET);
 | |
| 	else
 | |
| 		reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
 | |
| 
 | |
| 	DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", asserted,
 | |
| 	   (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
 | |
| 	REG_WR(bp, reg_addr, asserted);
 | |
| 
 | |
| 	/* now set back the mask */
 | |
| 	if (asserted & ATTN_NIG_FOR_FUNC) {
 | |
| 		/* Verify that IGU ack through BAR was written before restoring
 | |
| 		 * NIG mask. This loop should exit after 2-3 iterations max.
 | |
| 		 */
 | |
| 		if (bp->common.int_block != INT_BLOCK_HC) {
 | |
| 			u32 cnt = 0, igu_acked;
 | |
| 			do {
 | |
| 				igu_acked = REG_RD(bp,
 | |
| 						   IGU_REG_ATTENTION_ACK_BITS);
 | |
| 			} while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) &&
 | |
| 				 (++cnt < MAX_IGU_ATTN_ACK_TO));
 | |
| 			if (!igu_acked)
 | |
| 				DP(NETIF_MSG_HW,
 | |
| 				   "Failed to verify IGU ack on time\n");
 | |
| 			barrier();
 | |
| 		}
 | |
| 		REG_WR(bp, nig_int_mask_addr, nig_mask);
 | |
| 		bnx2x_release_phy_lock(bp);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void bnx2x_fan_failure(struct bnx2x *bp)
 | |
| {
 | |
| 	int port = BP_PORT(bp);
 | |
| 	u32 ext_phy_config;
 | |
| 	/* mark the failure */
 | |
| 	ext_phy_config =
 | |
| 		SHMEM_RD(bp,
 | |
| 			 dev_info.port_hw_config[port].external_phy_config);
 | |
| 
 | |
| 	ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
 | |
| 	ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
 | |
| 	SHMEM_WR(bp, dev_info.port_hw_config[port].external_phy_config,
 | |
| 		 ext_phy_config);
 | |
| 
 | |
| 	/* log the failure */
 | |
| 	netdev_err(bp->dev, "Fan Failure on Network Controller has caused the driver to shutdown the card to prevent permanent damage.\n"
 | |
| 			    "Please contact OEM Support for assistance\n");
 | |
| 
 | |
| 	/*
 | |
| 	 * Schedule device reset (unload)
 | |
| 	 * This is due to some boards consuming sufficient power when driver is
 | |
| 	 * up to overheat if fan fails.
 | |
| 	 */
 | |
| 	smp_mb__before_clear_bit();
 | |
| 	set_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state);
 | |
| 	smp_mb__after_clear_bit();
 | |
| 	schedule_delayed_work(&bp->sp_rtnl_task, 0);
 | |
| 
 | |
| }
 | |
| 
 | |
| static void bnx2x_attn_int_deasserted0(struct bnx2x *bp, u32 attn)
 | |
| {
 | |
| 	int port = BP_PORT(bp);
 | |
| 	int reg_offset;
 | |
| 	u32 val;
 | |
| 
 | |
| 	reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
 | |
| 			     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
 | |
| 
 | |
| 	if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
 | |
| 
 | |
| 		val = REG_RD(bp, reg_offset);
 | |
| 		val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
 | |
| 		REG_WR(bp, reg_offset, val);
 | |
| 
 | |
| 		BNX2X_ERR("SPIO5 hw attention\n");
 | |
| 
 | |
| 		/* Fan failure attention */
 | |
| 		bnx2x_hw_reset_phy(&bp->link_params);
 | |
| 		bnx2x_fan_failure(bp);
 | |
| 	}
 | |
| 
 | |
| 	if ((attn & bp->link_vars.aeu_int_mask) && bp->port.pmf) {
 | |
| 		bnx2x_acquire_phy_lock(bp);
 | |
| 		bnx2x_handle_module_detect_int(&bp->link_params);
 | |
| 		bnx2x_release_phy_lock(bp);
 | |
| 	}
 | |
| 
 | |
| 	if (attn & HW_INTERRUT_ASSERT_SET_0) {
 | |
| 
 | |
| 		val = REG_RD(bp, reg_offset);
 | |
| 		val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
 | |
| 		REG_WR(bp, reg_offset, val);
 | |
| 
 | |
| 		BNX2X_ERR("FATAL HW block attention set0 0x%x\n",
 | |
| 			  (u32)(attn & HW_INTERRUT_ASSERT_SET_0));
 | |
| 		bnx2x_panic();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void bnx2x_attn_int_deasserted1(struct bnx2x *bp, u32 attn)
 | |
| {
 | |
| 	u32 val;
 | |
| 
 | |
| 	if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
 | |
| 
 | |
| 		val = REG_RD(bp, DORQ_REG_DORQ_INT_STS_CLR);
 | |
| 		BNX2X_ERR("DB hw attention 0x%x\n", val);
 | |
| 		/* DORQ discard attention */
 | |
| 		if (val & 0x2)
 | |
| 			BNX2X_ERR("FATAL error from DORQ\n");
 | |
| 	}
 | |
| 
 | |
| 	if (attn & HW_INTERRUT_ASSERT_SET_1) {
 | |
| 
 | |
| 		int port = BP_PORT(bp);
 | |
| 		int reg_offset;
 | |
| 
 | |
| 		reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
 | |
| 				     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
 | |
| 
 | |
| 		val = REG_RD(bp, reg_offset);
 | |
| 		val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
 | |
| 		REG_WR(bp, reg_offset, val);
 | |
| 
 | |
| 		BNX2X_ERR("FATAL HW block attention set1 0x%x\n",
 | |
| 			  (u32)(attn & HW_INTERRUT_ASSERT_SET_1));
 | |
| 		bnx2x_panic();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void bnx2x_attn_int_deasserted2(struct bnx2x *bp, u32 attn)
 | |
| {
 | |
| 	u32 val;
 | |
| 
 | |
| 	if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
 | |
| 
 | |
| 		val = REG_RD(bp, CFC_REG_CFC_INT_STS_CLR);
 | |
| 		BNX2X_ERR("CFC hw attention 0x%x\n", val);
 | |
| 		/* CFC error attention */
 | |
| 		if (val & 0x2)
 | |
| 			BNX2X_ERR("FATAL error from CFC\n");
 | |
| 	}
 | |
| 
 | |
| 	if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
 | |
| 		val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_0);
 | |
| 		BNX2X_ERR("PXP hw attention-0 0x%x\n", val);
 | |
| 		/* RQ_USDMDP_FIFO_OVERFLOW */
 | |
| 		if (val & 0x18000)
 | |
| 			BNX2X_ERR("FATAL error from PXP\n");
 | |
| 
 | |
| 		if (!CHIP_IS_E1x(bp)) {
 | |
| 			val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_1);
 | |
| 			BNX2X_ERR("PXP hw attention-1 0x%x\n", val);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (attn & HW_INTERRUT_ASSERT_SET_2) {
 | |
| 
 | |
| 		int port = BP_PORT(bp);
 | |
| 		int reg_offset;
 | |
| 
 | |
| 		reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
 | |
| 				     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
 | |
| 
 | |
| 		val = REG_RD(bp, reg_offset);
 | |
| 		val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
 | |
| 		REG_WR(bp, reg_offset, val);
 | |
| 
 | |
| 		BNX2X_ERR("FATAL HW block attention set2 0x%x\n",
 | |
| 			  (u32)(attn & HW_INTERRUT_ASSERT_SET_2));
 | |
| 		bnx2x_panic();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void bnx2x_attn_int_deasserted3(struct bnx2x *bp, u32 attn)
 | |
| {
 | |
| 	u32 val;
 | |
| 
 | |
| 	if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
 | |
| 
 | |
| 		if (attn & BNX2X_PMF_LINK_ASSERT) {
 | |
| 			int func = BP_FUNC(bp);
 | |
| 
 | |
| 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
 | |
| 			bnx2x_read_mf_cfg(bp);
 | |
| 			bp->mf_config[BP_VN(bp)] = MF_CFG_RD(bp,
 | |
| 					func_mf_config[BP_ABS_FUNC(bp)].config);
 | |
| 			val = SHMEM_RD(bp,
 | |
| 				       func_mb[BP_FW_MB_IDX(bp)].drv_status);
 | |
| 			if (val & DRV_STATUS_DCC_EVENT_MASK)
 | |
| 				bnx2x_dcc_event(bp,
 | |
| 					    (val & DRV_STATUS_DCC_EVENT_MASK));
 | |
| 
 | |
| 			if (val & DRV_STATUS_SET_MF_BW)
 | |
| 				bnx2x_set_mf_bw(bp);
 | |
| 
 | |
| 			if (val & DRV_STATUS_DRV_INFO_REQ)
 | |
| 				bnx2x_handle_drv_info_req(bp);
 | |
| 
 | |
| 			if (val & DRV_STATUS_VF_DISABLED)
 | |
| 				bnx2x_vf_handle_flr_event(bp);
 | |
| 
 | |
| 			if ((bp->port.pmf == 0) && (val & DRV_STATUS_PMF))
 | |
| 				bnx2x_pmf_update(bp);
 | |
| 
 | |
| 			if (bp->port.pmf &&
 | |
| 			    (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) &&
 | |
| 				bp->dcbx_enabled > 0)
 | |
| 				/* start dcbx state machine */
 | |
| 				bnx2x_dcbx_set_params(bp,
 | |
| 					BNX2X_DCBX_STATE_NEG_RECEIVED);
 | |
| 			if (val & DRV_STATUS_AFEX_EVENT_MASK)
 | |
| 				bnx2x_handle_afex_cmd(bp,
 | |
| 					val & DRV_STATUS_AFEX_EVENT_MASK);
 | |
| 			if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
 | |
| 				bnx2x_handle_eee_event(bp);
 | |
| 			if (bp->link_vars.periodic_flags &
 | |
| 			    PERIODIC_FLAGS_LINK_EVENT) {
 | |
| 				/*  sync with link */
 | |
| 				bnx2x_acquire_phy_lock(bp);
 | |
| 				bp->link_vars.periodic_flags &=
 | |
| 					~PERIODIC_FLAGS_LINK_EVENT;
 | |
| 				bnx2x_release_phy_lock(bp);
 | |
| 				if (IS_MF(bp))
 | |
| 					bnx2x_link_sync_notify(bp);
 | |
| 				bnx2x_link_report(bp);
 | |
| 			}
 | |
| 			/* Always call it here: bnx2x_link_report() will
 | |
| 			 * prevent the link indication duplication.
 | |
| 			 */
 | |
| 			bnx2x__link_status_update(bp);
 | |
| 		} else if (attn & BNX2X_MC_ASSERT_BITS) {
 | |
| 
 | |
| 			BNX2X_ERR("MC assert!\n");
 | |
| 			bnx2x_mc_assert(bp);
 | |
| 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_10, 0);
 | |
| 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_9, 0);
 | |
| 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_8, 0);
 | |
| 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_7, 0);
 | |
| 			bnx2x_panic();
 | |
| 
 | |
| 		} else if (attn & BNX2X_MCP_ASSERT) {
 | |
| 
 | |
| 			BNX2X_ERR("MCP assert!\n");
 | |
| 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_11, 0);
 | |
| 			bnx2x_fw_dump(bp);
 | |
| 
 | |
| 		} else
 | |
| 			BNX2X_ERR("Unknown HW assert! (attn 0x%x)\n", attn);
 | |
| 	}
 | |
| 
 | |
| 	if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
 | |
| 		BNX2X_ERR("LATCHED attention 0x%08x (masked)\n", attn);
 | |
| 		if (attn & BNX2X_GRC_TIMEOUT) {
 | |
| 			val = CHIP_IS_E1(bp) ? 0 :
 | |
| 					REG_RD(bp, MISC_REG_GRC_TIMEOUT_ATTN);
 | |
| 			BNX2X_ERR("GRC time-out 0x%08x\n", val);
 | |
| 		}
 | |
| 		if (attn & BNX2X_GRC_RSV) {
 | |
| 			val = CHIP_IS_E1(bp) ? 0 :
 | |
| 					REG_RD(bp, MISC_REG_GRC_RSV_ATTN);
 | |
| 			BNX2X_ERR("GRC reserved 0x%08x\n", val);
 | |
| 		}
 | |
| 		REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Bits map:
 | |
|  * 0-7   - Engine0 load counter.
 | |
|  * 8-15  - Engine1 load counter.
 | |
|  * 16    - Engine0 RESET_IN_PROGRESS bit.
 | |
|  * 17    - Engine1 RESET_IN_PROGRESS bit.
 | |
|  * 18    - Engine0 ONE_IS_LOADED. Set when there is at least one active function
 | |
|  *         on the engine
 | |
|  * 19    - Engine1 ONE_IS_LOADED.
 | |
|  * 20    - Chip reset flow bit. When set none-leader must wait for both engines
 | |
|  *         leader to complete (check for both RESET_IN_PROGRESS bits and not for
 | |
|  *         just the one belonging to its engine).
 | |
|  *
 | |
|  */
 | |
| #define BNX2X_RECOVERY_GLOB_REG		MISC_REG_GENERIC_POR_1
 | |
| 
 | |
| #define BNX2X_PATH0_LOAD_CNT_MASK	0x000000ff
 | |
| #define BNX2X_PATH0_LOAD_CNT_SHIFT	0
 | |
| #define BNX2X_PATH1_LOAD_CNT_MASK	0x0000ff00
 | |
| #define BNX2X_PATH1_LOAD_CNT_SHIFT	8
 | |
| #define BNX2X_PATH0_RST_IN_PROG_BIT	0x00010000
 | |
| #define BNX2X_PATH1_RST_IN_PROG_BIT	0x00020000
 | |
| #define BNX2X_GLOBAL_RESET_BIT		0x00040000
 | |
| 
 | |
| /*
 | |
|  * Set the GLOBAL_RESET bit.
 | |
|  *
 | |
|  * Should be run under rtnl lock
 | |
|  */
 | |
| void bnx2x_set_reset_global(struct bnx2x *bp)
 | |
| {
 | |
| 	u32 val;
 | |
| 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
 | |
| 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
 | |
| 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT);
 | |
| 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Clear the GLOBAL_RESET bit.
 | |
|  *
 | |
|  * Should be run under rtnl lock
 | |
|  */
 | |
| static void bnx2x_clear_reset_global(struct bnx2x *bp)
 | |
| {
 | |
| 	u32 val;
 | |
| 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
 | |
| 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
 | |
| 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT));
 | |
| 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Checks the GLOBAL_RESET bit.
 | |
|  *
 | |
|  * should be run under rtnl lock
 | |
|  */
 | |
| static bool bnx2x_reset_is_global(struct bnx2x *bp)
 | |
| {
 | |
| 	u32 val	= REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
 | |
| 
 | |
| 	DP(NETIF_MSG_HW, "GEN_REG_VAL=0x%08x\n", val);
 | |
| 	return (val & BNX2X_GLOBAL_RESET_BIT) ? true : false;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Clear RESET_IN_PROGRESS bit for the current engine.
 | |
|  *
 | |
|  * Should be run under rtnl lock
 | |
|  */
 | |
| static void bnx2x_set_reset_done(struct bnx2x *bp)
 | |
| {
 | |
| 	u32 val;
 | |
| 	u32 bit = BP_PATH(bp) ?
 | |
| 		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
 | |
| 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
 | |
| 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
 | |
| 
 | |
| 	/* Clear the bit */
 | |
| 	val &= ~bit;
 | |
| 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
 | |
| 
 | |
| 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Set RESET_IN_PROGRESS for the current engine.
 | |
|  *
 | |
|  * should be run under rtnl lock
 | |
|  */
 | |
| void bnx2x_set_reset_in_progress(struct bnx2x *bp)
 | |
| {
 | |
| 	u32 val;
 | |
| 	u32 bit = BP_PATH(bp) ?
 | |
| 		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
 | |
| 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
 | |
| 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
 | |
| 
 | |
| 	/* Set the bit */
 | |
| 	val |= bit;
 | |
| 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
 | |
| 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Checks the RESET_IN_PROGRESS bit for the given engine.
 | |
|  * should be run under rtnl lock
 | |
|  */
 | |
| bool bnx2x_reset_is_done(struct bnx2x *bp, int engine)
 | |
| {
 | |
| 	u32 val	= REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
 | |
| 	u32 bit = engine ?
 | |
| 		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
 | |
| 
 | |
| 	/* return false if bit is set */
 | |
| 	return (val & bit) ? false : true;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * set pf load for the current pf.
 | |
|  *
 | |
|  * should be run under rtnl lock
 | |
|  */
 | |
| void bnx2x_set_pf_load(struct bnx2x *bp)
 | |
| {
 | |
| 	u32 val1, val;
 | |
| 	u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
 | |
| 			     BNX2X_PATH0_LOAD_CNT_MASK;
 | |
| 	u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
 | |
| 			     BNX2X_PATH0_LOAD_CNT_SHIFT;
 | |
| 
 | |
| 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
 | |
| 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
 | |
| 
 | |
| 	DP(NETIF_MSG_IFUP, "Old GEN_REG_VAL=0x%08x\n", val);
 | |
| 
 | |
| 	/* get the current counter value */
 | |
| 	val1 = (val & mask) >> shift;
 | |
| 
 | |
| 	/* set bit of that PF */
 | |
| 	val1 |= (1 << bp->pf_num);
 | |
| 
 | |
| 	/* clear the old value */
 | |
| 	val &= ~mask;
 | |
| 
 | |
| 	/* set the new one */
 | |
| 	val |= ((val1 << shift) & mask);
 | |
| 
 | |
| 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
 | |
| 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * bnx2x_clear_pf_load - clear pf load mark
 | |
|  *
 | |
|  * @bp:		driver handle
 | |
|  *
 | |
|  * Should be run under rtnl lock.
 | |
|  * Decrements the load counter for the current engine. Returns
 | |
|  * whether other functions are still loaded
 | |
|  */
 | |
| bool bnx2x_clear_pf_load(struct bnx2x *bp)
 | |
| {
 | |
| 	u32 val1, val;
 | |
| 	u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
 | |
| 			     BNX2X_PATH0_LOAD_CNT_MASK;
 | |
| 	u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
 | |
| 			     BNX2X_PATH0_LOAD_CNT_SHIFT;
 | |
| 
 | |
| 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
 | |
| 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
 | |
| 	DP(NETIF_MSG_IFDOWN, "Old GEN_REG_VAL=0x%08x\n", val);
 | |
| 
 | |
| 	/* get the current counter value */
 | |
| 	val1 = (val & mask) >> shift;
 | |
| 
 | |
| 	/* clear bit of that PF */
 | |
| 	val1 &= ~(1 << bp->pf_num);
 | |
| 
 | |
| 	/* clear the old value */
 | |
| 	val &= ~mask;
 | |
| 
 | |
| 	/* set the new one */
 | |
| 	val |= ((val1 << shift) & mask);
 | |
| 
 | |
| 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
 | |
| 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
 | |
| 	return val1 != 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Read the load status for the current engine.
 | |
|  *
 | |
|  * should be run under rtnl lock
 | |
|  */
 | |
| static bool bnx2x_get_load_status(struct bnx2x *bp, int engine)
 | |
| {
 | |
| 	u32 mask = (engine ? BNX2X_PATH1_LOAD_CNT_MASK :
 | |
| 			     BNX2X_PATH0_LOAD_CNT_MASK);
 | |
| 	u32 shift = (engine ? BNX2X_PATH1_LOAD_CNT_SHIFT :
 | |
| 			     BNX2X_PATH0_LOAD_CNT_SHIFT);
 | |
| 	u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
 | |
| 
 | |
| 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "GLOB_REG=0x%08x\n", val);
 | |
| 
 | |
| 	val = (val & mask) >> shift;
 | |
| 
 | |
| 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "load mask for engine %d = 0x%x\n",
 | |
| 	   engine, val);
 | |
| 
 | |
| 	return val != 0;
 | |
| }
 | |
| 
 | |
| static void _print_next_block(int idx, const char *blk)
 | |
| {
 | |
| 	pr_cont("%s%s", idx ? ", " : "", blk);
 | |
| }
 | |
| 
 | |
| static int bnx2x_check_blocks_with_parity0(u32 sig, int par_num,
 | |
| 					   bool print)
 | |
| {
 | |
| 	int i = 0;
 | |
| 	u32 cur_bit = 0;
 | |
| 	for (i = 0; sig; i++) {
 | |
| 		cur_bit = ((u32)0x1 << i);
 | |
| 		if (sig & cur_bit) {
 | |
| 			switch (cur_bit) {
 | |
| 			case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
 | |
| 				if (print)
 | |
| 					_print_next_block(par_num++, "BRB");
 | |
| 				break;
 | |
| 			case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
 | |
| 				if (print)
 | |
| 					_print_next_block(par_num++, "PARSER");
 | |
| 				break;
 | |
| 			case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
 | |
| 				if (print)
 | |
| 					_print_next_block(par_num++, "TSDM");
 | |
| 				break;
 | |
| 			case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
 | |
| 				if (print)
 | |
| 					_print_next_block(par_num++,
 | |
| 							  "SEARCHER");
 | |
| 				break;
 | |
| 			case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
 | |
| 				if (print)
 | |
| 					_print_next_block(par_num++, "TCM");
 | |
| 				break;
 | |
| 			case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
 | |
| 				if (print)
 | |
| 					_print_next_block(par_num++, "TSEMI");
 | |
| 				break;
 | |
| 			case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
 | |
| 				if (print)
 | |
| 					_print_next_block(par_num++, "XPB");
 | |
| 				break;
 | |
| 			}
 | |
| 
 | |
| 			/* Clear the bit */
 | |
| 			sig &= ~cur_bit;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return par_num;
 | |
| }
 | |
| 
 | |
| static int bnx2x_check_blocks_with_parity1(u32 sig, int par_num,
 | |
| 					   bool *global, bool print)
 | |
| {
 | |
| 	int i = 0;
 | |
| 	u32 cur_bit = 0;
 | |
| 	for (i = 0; sig; i++) {
 | |
| 		cur_bit = ((u32)0x1 << i);
 | |
| 		if (sig & cur_bit) {
 | |
| 			switch (cur_bit) {
 | |
| 			case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
 | |
| 				if (print)
 | |
| 					_print_next_block(par_num++, "PBF");
 | |
| 				break;
 | |
| 			case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
 | |
| 				if (print)
 | |
| 					_print_next_block(par_num++, "QM");
 | |
| 				break;
 | |
| 			case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
 | |
| 				if (print)
 | |
| 					_print_next_block(par_num++, "TM");
 | |
| 				break;
 | |
| 			case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
 | |
| 				if (print)
 | |
| 					_print_next_block(par_num++, "XSDM");
 | |
| 				break;
 | |
| 			case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
 | |
| 				if (print)
 | |
| 					_print_next_block(par_num++, "XCM");
 | |
| 				break;
 | |
| 			case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
 | |
| 				if (print)
 | |
| 					_print_next_block(par_num++, "XSEMI");
 | |
| 				break;
 | |
| 			case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
 | |
| 				if (print)
 | |
| 					_print_next_block(par_num++,
 | |
| 							  "DOORBELLQ");
 | |
| 				break;
 | |
| 			case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
 | |
| 				if (print)
 | |
| 					_print_next_block(par_num++, "NIG");
 | |
| 				break;
 | |
| 			case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
 | |
| 				if (print)
 | |
| 					_print_next_block(par_num++,
 | |
| 							  "VAUX PCI CORE");
 | |
| 				*global = true;
 | |
| 				break;
 | |
| 			case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
 | |
| 				if (print)
 | |
| 					_print_next_block(par_num++, "DEBUG");
 | |
| 				break;
 | |
| 			case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
 | |
| 				if (print)
 | |
| 					_print_next_block(par_num++, "USDM");
 | |
| 				break;
 | |
| 			case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
 | |
| 				if (print)
 | |
| 					_print_next_block(par_num++, "UCM");
 | |
| 				break;
 | |
| 			case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
 | |
| 				if (print)
 | |
| 					_print_next_block(par_num++, "USEMI");
 | |
| 				break;
 | |
| 			case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
 | |
| 				if (print)
 | |
| 					_print_next_block(par_num++, "UPB");
 | |
| 				break;
 | |
| 			case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
 | |
| 				if (print)
 | |
| 					_print_next_block(par_num++, "CSDM");
 | |
| 				break;
 | |
| 			case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
 | |
| 				if (print)
 | |
| 					_print_next_block(par_num++, "CCM");
 | |
| 				break;
 | |
| 			}
 | |
| 
 | |
| 			/* Clear the bit */
 | |
| 			sig &= ~cur_bit;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return par_num;
 | |
| }
 | |
| 
 | |
| static int bnx2x_check_blocks_with_parity2(u32 sig, int par_num,
 | |
| 					   bool print)
 | |
| {
 | |
| 	int i = 0;
 | |
| 	u32 cur_bit = 0;
 | |
| 	for (i = 0; sig; i++) {
 | |
| 		cur_bit = ((u32)0x1 << i);
 | |
| 		if (sig & cur_bit) {
 | |
| 			switch (cur_bit) {
 | |
| 			case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
 | |
| 				if (print)
 | |
| 					_print_next_block(par_num++, "CSEMI");
 | |
| 				break;
 | |
| 			case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
 | |
| 				if (print)
 | |
| 					_print_next_block(par_num++, "PXP");
 | |
| 				break;
 | |
| 			case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
 | |
| 				if (print)
 | |
| 					_print_next_block(par_num++,
 | |
| 					"PXPPCICLOCKCLIENT");
 | |
| 				break;
 | |
| 			case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
 | |
| 				if (print)
 | |
| 					_print_next_block(par_num++, "CFC");
 | |
| 				break;
 | |
| 			case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
 | |
| 				if (print)
 | |
| 					_print_next_block(par_num++, "CDU");
 | |
| 				break;
 | |
| 			case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
 | |
| 				if (print)
 | |
| 					_print_next_block(par_num++, "DMAE");
 | |
| 				break;
 | |
| 			case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
 | |
| 				if (print)
 | |
| 					_print_next_block(par_num++, "IGU");
 | |
| 				break;
 | |
| 			case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
 | |
| 				if (print)
 | |
| 					_print_next_block(par_num++, "MISC");
 | |
| 				break;
 | |
| 			}
 | |
| 
 | |
| 			/* Clear the bit */
 | |
| 			sig &= ~cur_bit;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return par_num;
 | |
| }
 | |
| 
 | |
| static int bnx2x_check_blocks_with_parity3(u32 sig, int par_num,
 | |
| 					   bool *global, bool print)
 | |
| {
 | |
| 	int i = 0;
 | |
| 	u32 cur_bit = 0;
 | |
| 	for (i = 0; sig; i++) {
 | |
| 		cur_bit = ((u32)0x1 << i);
 | |
| 		if (sig & cur_bit) {
 | |
| 			switch (cur_bit) {
 | |
| 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
 | |
| 				if (print)
 | |
| 					_print_next_block(par_num++, "MCP ROM");
 | |
| 				*global = true;
 | |
| 				break;
 | |
| 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
 | |
| 				if (print)
 | |
| 					_print_next_block(par_num++,
 | |
| 							  "MCP UMP RX");
 | |
| 				*global = true;
 | |
| 				break;
 | |
| 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
 | |
| 				if (print)
 | |
| 					_print_next_block(par_num++,
 | |
| 							  "MCP UMP TX");
 | |
| 				*global = true;
 | |
| 				break;
 | |
| 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
 | |
| 				if (print)
 | |
| 					_print_next_block(par_num++,
 | |
| 							  "MCP SCPAD");
 | |
| 				*global = true;
 | |
| 				break;
 | |
| 			}
 | |
| 
 | |
| 			/* Clear the bit */
 | |
| 			sig &= ~cur_bit;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return par_num;
 | |
| }
 | |
| 
 | |
| static int bnx2x_check_blocks_with_parity4(u32 sig, int par_num,
 | |
| 					   bool print)
 | |
| {
 | |
| 	int i = 0;
 | |
| 	u32 cur_bit = 0;
 | |
| 	for (i = 0; sig; i++) {
 | |
| 		cur_bit = ((u32)0x1 << i);
 | |
| 		if (sig & cur_bit) {
 | |
| 			switch (cur_bit) {
 | |
| 			case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
 | |
| 				if (print)
 | |
| 					_print_next_block(par_num++, "PGLUE_B");
 | |
| 				break;
 | |
| 			case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
 | |
| 				if (print)
 | |
| 					_print_next_block(par_num++, "ATC");
 | |
| 				break;
 | |
| 			}
 | |
| 
 | |
| 			/* Clear the bit */
 | |
| 			sig &= ~cur_bit;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return par_num;
 | |
| }
 | |
| 
 | |
| static bool bnx2x_parity_attn(struct bnx2x *bp, bool *global, bool print,
 | |
| 			      u32 *sig)
 | |
| {
 | |
| 	if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
 | |
| 	    (sig[1] & HW_PRTY_ASSERT_SET_1) ||
 | |
| 	    (sig[2] & HW_PRTY_ASSERT_SET_2) ||
 | |
| 	    (sig[3] & HW_PRTY_ASSERT_SET_3) ||
 | |
| 	    (sig[4] & HW_PRTY_ASSERT_SET_4)) {
 | |
| 		int par_num = 0;
 | |
| 		DP(NETIF_MSG_HW, "Was parity error: HW block parity attention:\n"
 | |
| 				 "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n",
 | |
| 			  sig[0] & HW_PRTY_ASSERT_SET_0,
 | |
| 			  sig[1] & HW_PRTY_ASSERT_SET_1,
 | |
| 			  sig[2] & HW_PRTY_ASSERT_SET_2,
 | |
| 			  sig[3] & HW_PRTY_ASSERT_SET_3,
 | |
| 			  sig[4] & HW_PRTY_ASSERT_SET_4);
 | |
| 		if (print)
 | |
| 			netdev_err(bp->dev,
 | |
| 				   "Parity errors detected in blocks: ");
 | |
| 		par_num = bnx2x_check_blocks_with_parity0(
 | |
| 			sig[0] & HW_PRTY_ASSERT_SET_0, par_num, print);
 | |
| 		par_num = bnx2x_check_blocks_with_parity1(
 | |
| 			sig[1] & HW_PRTY_ASSERT_SET_1, par_num, global, print);
 | |
| 		par_num = bnx2x_check_blocks_with_parity2(
 | |
| 			sig[2] & HW_PRTY_ASSERT_SET_2, par_num, print);
 | |
| 		par_num = bnx2x_check_blocks_with_parity3(
 | |
| 			sig[3] & HW_PRTY_ASSERT_SET_3, par_num, global, print);
 | |
| 		par_num = bnx2x_check_blocks_with_parity4(
 | |
| 			sig[4] & HW_PRTY_ASSERT_SET_4, par_num, print);
 | |
| 
 | |
| 		if (print)
 | |
| 			pr_cont("\n");
 | |
| 
 | |
| 		return true;
 | |
| 	} else
 | |
| 		return false;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * bnx2x_chk_parity_attn - checks for parity attentions.
 | |
|  *
 | |
|  * @bp:		driver handle
 | |
|  * @global:	true if there was a global attention
 | |
|  * @print:	show parity attention in syslog
 | |
|  */
 | |
| bool bnx2x_chk_parity_attn(struct bnx2x *bp, bool *global, bool print)
 | |
| {
 | |
| 	struct attn_route attn = { {0} };
 | |
| 	int port = BP_PORT(bp);
 | |
| 
 | |
| 	attn.sig[0] = REG_RD(bp,
 | |
| 		MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
 | |
| 			     port*4);
 | |
| 	attn.sig[1] = REG_RD(bp,
 | |
| 		MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 +
 | |
| 			     port*4);
 | |
| 	attn.sig[2] = REG_RD(bp,
 | |
| 		MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 +
 | |
| 			     port*4);
 | |
| 	attn.sig[3] = REG_RD(bp,
 | |
| 		MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 +
 | |
| 			     port*4);
 | |
| 
 | |
| 	if (!CHIP_IS_E1x(bp))
 | |
| 		attn.sig[4] = REG_RD(bp,
 | |
| 			MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 +
 | |
| 				     port*4);
 | |
| 
 | |
| 	return bnx2x_parity_attn(bp, global, print, attn.sig);
 | |
| }
 | |
| 
 | |
| 
 | |
| static void bnx2x_attn_int_deasserted4(struct bnx2x *bp, u32 attn)
 | |
| {
 | |
| 	u32 val;
 | |
| 	if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
 | |
| 
 | |
| 		val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
 | |
| 		BNX2X_ERR("PGLUE hw attention 0x%x\n", val);
 | |
| 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
 | |
| 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n");
 | |
| 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
 | |
| 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n");
 | |
| 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
 | |
| 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n");
 | |
| 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
 | |
| 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n");
 | |
| 		if (val &
 | |
| 		    PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
 | |
| 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n");
 | |
| 		if (val &
 | |
| 		    PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
 | |
| 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n");
 | |
| 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
 | |
| 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n");
 | |
| 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
 | |
| 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n");
 | |
| 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
 | |
| 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n");
 | |
| 	}
 | |
| 	if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
 | |
| 		val = REG_RD(bp, ATC_REG_ATC_INT_STS_CLR);
 | |
| 		BNX2X_ERR("ATC hw attention 0x%x\n", val);
 | |
| 		if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
 | |
| 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
 | |
| 		if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
 | |
| 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n");
 | |
| 		if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
 | |
| 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n");
 | |
| 		if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
 | |
| 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n");
 | |
| 		if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
 | |
| 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
 | |
| 		if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
 | |
| 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n");
 | |
| 	}
 | |
| 
 | |
| 	if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
 | |
| 		    AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
 | |
| 		BNX2X_ERR("FATAL parity attention set4 0x%x\n",
 | |
| 		(u32)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
 | |
| 		    AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
 | |
| 	}
 | |
| 
 | |
| }
 | |
| 
 | |
| static void bnx2x_attn_int_deasserted(struct bnx2x *bp, u32 deasserted)
 | |
| {
 | |
| 	struct attn_route attn, *group_mask;
 | |
| 	int port = BP_PORT(bp);
 | |
| 	int index;
 | |
| 	u32 reg_addr;
 | |
| 	u32 val;
 | |
| 	u32 aeu_mask;
 | |
| 	bool global = false;
 | |
| 
 | |
| 	/* need to take HW lock because MCP or other port might also
 | |
| 	   try to handle this event */
 | |
| 	bnx2x_acquire_alr(bp);
 | |
| 
 | |
| 	if (bnx2x_chk_parity_attn(bp, &global, true)) {
 | |
| #ifndef BNX2X_STOP_ON_ERROR
 | |
| 		bp->recovery_state = BNX2X_RECOVERY_INIT;
 | |
| 		schedule_delayed_work(&bp->sp_rtnl_task, 0);
 | |
| 		/* Disable HW interrupts */
 | |
| 		bnx2x_int_disable(bp);
 | |
| 		/* In case of parity errors don't handle attentions so that
 | |
| 		 * other function would "see" parity errors.
 | |
| 		 */
 | |
| #else
 | |
| 		bnx2x_panic();
 | |
| #endif
 | |
| 		bnx2x_release_alr(bp);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	attn.sig[0] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
 | |
| 	attn.sig[1] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
 | |
| 	attn.sig[2] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
 | |
| 	attn.sig[3] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
 | |
| 	if (!CHIP_IS_E1x(bp))
 | |
| 		attn.sig[4] =
 | |
| 		      REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
 | |
| 	else
 | |
| 		attn.sig[4] = 0;
 | |
| 
 | |
| 	DP(NETIF_MSG_HW, "attn: %08x %08x %08x %08x %08x\n",
 | |
| 	   attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
 | |
| 
 | |
| 	for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
 | |
| 		if (deasserted & (1 << index)) {
 | |
| 			group_mask = &bp->attn_group[index];
 | |
| 
 | |
| 			DP(NETIF_MSG_HW, "group[%d]: %08x %08x %08x %08x %08x\n",
 | |
| 			   index,
 | |
| 			   group_mask->sig[0], group_mask->sig[1],
 | |
| 			   group_mask->sig[2], group_mask->sig[3],
 | |
| 			   group_mask->sig[4]);
 | |
| 
 | |
| 			bnx2x_attn_int_deasserted4(bp,
 | |
| 					attn.sig[4] & group_mask->sig[4]);
 | |
| 			bnx2x_attn_int_deasserted3(bp,
 | |
| 					attn.sig[3] & group_mask->sig[3]);
 | |
| 			bnx2x_attn_int_deasserted1(bp,
 | |
| 					attn.sig[1] & group_mask->sig[1]);
 | |
| 			bnx2x_attn_int_deasserted2(bp,
 | |
| 					attn.sig[2] & group_mask->sig[2]);
 | |
| 			bnx2x_attn_int_deasserted0(bp,
 | |
| 					attn.sig[0] & group_mask->sig[0]);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	bnx2x_release_alr(bp);
 | |
| 
 | |
| 	if (bp->common.int_block == INT_BLOCK_HC)
 | |
| 		reg_addr = (HC_REG_COMMAND_REG + port*32 +
 | |
| 			    COMMAND_REG_ATTN_BITS_CLR);
 | |
| 	else
 | |
| 		reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
 | |
| 
 | |
| 	val = ~deasserted;
 | |
| 	DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", val,
 | |
| 	   (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
 | |
| 	REG_WR(bp, reg_addr, val);
 | |
| 
 | |
| 	if (~bp->attn_state & deasserted)
 | |
| 		BNX2X_ERR("IGU ERROR\n");
 | |
| 
 | |
| 	reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
 | |
| 			  MISC_REG_AEU_MASK_ATTN_FUNC_0;
 | |
| 
 | |
| 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
 | |
| 	aeu_mask = REG_RD(bp, reg_addr);
 | |
| 
 | |
| 	DP(NETIF_MSG_HW, "aeu_mask %x  newly deasserted %x\n",
 | |
| 	   aeu_mask, deasserted);
 | |
| 	aeu_mask |= (deasserted & 0x3ff);
 | |
| 	DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
 | |
| 
 | |
| 	REG_WR(bp, reg_addr, aeu_mask);
 | |
| 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
 | |
| 
 | |
| 	DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
 | |
| 	bp->attn_state &= ~deasserted;
 | |
| 	DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
 | |
| }
 | |
| 
 | |
| static void bnx2x_attn_int(struct bnx2x *bp)
 | |
| {
 | |
| 	/* read local copy of bits */
 | |
| 	u32 attn_bits = le32_to_cpu(bp->def_status_blk->atten_status_block.
 | |
| 								attn_bits);
 | |
| 	u32 attn_ack = le32_to_cpu(bp->def_status_blk->atten_status_block.
 | |
| 								attn_bits_ack);
 | |
| 	u32 attn_state = bp->attn_state;
 | |
| 
 | |
| 	/* look for changed bits */
 | |
| 	u32 asserted   =  attn_bits & ~attn_ack & ~attn_state;
 | |
| 	u32 deasserted = ~attn_bits &  attn_ack &  attn_state;
 | |
| 
 | |
| 	DP(NETIF_MSG_HW,
 | |
| 	   "attn_bits %x  attn_ack %x  asserted %x  deasserted %x\n",
 | |
| 	   attn_bits, attn_ack, asserted, deasserted);
 | |
| 
 | |
| 	if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state))
 | |
| 		BNX2X_ERR("BAD attention state\n");
 | |
| 
 | |
| 	/* handle bits that were raised */
 | |
| 	if (asserted)
 | |
| 		bnx2x_attn_int_asserted(bp, asserted);
 | |
| 
 | |
| 	if (deasserted)
 | |
| 		bnx2x_attn_int_deasserted(bp, deasserted);
 | |
| }
 | |
| 
 | |
| void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment,
 | |
| 		      u16 index, u8 op, u8 update)
 | |
| {
 | |
| 	u32 igu_addr = bp->igu_base_addr;
 | |
| 	igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
 | |
| 	bnx2x_igu_ack_sb_gen(bp, igu_sb_id, segment, index, op, update,
 | |
| 			     igu_addr);
 | |
| }
 | |
| 
 | |
| static void bnx2x_update_eq_prod(struct bnx2x *bp, u16 prod)
 | |
| {
 | |
| 	/* No memory barriers */
 | |
| 	storm_memset_eq_prod(bp, prod, BP_FUNC(bp));
 | |
| 	mmiowb(); /* keep prod updates ordered */
 | |
| }
 | |
| 
 | |
| static int  bnx2x_cnic_handle_cfc_del(struct bnx2x *bp, u32 cid,
 | |
| 				      union event_ring_elem *elem)
 | |
| {
 | |
| 	u8 err = elem->message.error;
 | |
| 
 | |
| 	if (!bp->cnic_eth_dev.starting_cid  ||
 | |
| 	    (cid < bp->cnic_eth_dev.starting_cid &&
 | |
| 	    cid != bp->cnic_eth_dev.iscsi_l2_cid))
 | |
| 		return 1;
 | |
| 
 | |
| 	DP(BNX2X_MSG_SP, "got delete ramrod for CNIC CID %d\n", cid);
 | |
| 
 | |
| 	if (unlikely(err)) {
 | |
| 
 | |
| 		BNX2X_ERR("got delete ramrod for CNIC CID %d with error!\n",
 | |
| 			  cid);
 | |
| 		bnx2x_panic_dump(bp, false);
 | |
| 	}
 | |
| 	bnx2x_cnic_cfc_comp(bp, cid, err);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void bnx2x_handle_mcast_eqe(struct bnx2x *bp)
 | |
| {
 | |
| 	struct bnx2x_mcast_ramrod_params rparam;
 | |
| 	int rc;
 | |
| 
 | |
| 	memset(&rparam, 0, sizeof(rparam));
 | |
| 
 | |
| 	rparam.mcast_obj = &bp->mcast_obj;
 | |
| 
 | |
| 	netif_addr_lock_bh(bp->dev);
 | |
| 
 | |
| 	/* Clear pending state for the last command */
 | |
| 	bp->mcast_obj.raw.clear_pending(&bp->mcast_obj.raw);
 | |
| 
 | |
| 	/* If there are pending mcast commands - send them */
 | |
| 	if (bp->mcast_obj.check_pending(&bp->mcast_obj)) {
 | |
| 		rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
 | |
| 		if (rc < 0)
 | |
| 			BNX2X_ERR("Failed to send pending mcast commands: %d\n",
 | |
| 				  rc);
 | |
| 	}
 | |
| 
 | |
| 	netif_addr_unlock_bh(bp->dev);
 | |
| }
 | |
| 
 | |
| static void bnx2x_handle_classification_eqe(struct bnx2x *bp,
 | |
| 					    union event_ring_elem *elem)
 | |
| {
 | |
| 	unsigned long ramrod_flags = 0;
 | |
| 	int rc = 0;
 | |
| 	u32 cid = elem->message.data.eth_event.echo & BNX2X_SWCID_MASK;
 | |
| 	struct bnx2x_vlan_mac_obj *vlan_mac_obj;
 | |
| 
 | |
| 	/* Always push next commands out, don't wait here */
 | |
| 	__set_bit(RAMROD_CONT, &ramrod_flags);
 | |
| 
 | |
| 	switch (le32_to_cpu((__force __le32)elem->message.data.eth_event.echo)
 | |
| 			    >> BNX2X_SWCID_SHIFT) {
 | |
| 	case BNX2X_FILTER_MAC_PENDING:
 | |
| 		DP(BNX2X_MSG_SP, "Got SETUP_MAC completions\n");
 | |
| 		if (CNIC_LOADED(bp) && (cid == BNX2X_ISCSI_ETH_CID(bp)))
 | |
| 			vlan_mac_obj = &bp->iscsi_l2_mac_obj;
 | |
| 		else
 | |
| 			vlan_mac_obj = &bp->sp_objs[cid].mac_obj;
 | |
| 
 | |
| 		break;
 | |
| 	case BNX2X_FILTER_MCAST_PENDING:
 | |
| 		DP(BNX2X_MSG_SP, "Got SETUP_MCAST completions\n");
 | |
| 		/* This is only relevant for 57710 where multicast MACs are
 | |
| 		 * configured as unicast MACs using the same ramrod.
 | |
| 		 */
 | |
| 		bnx2x_handle_mcast_eqe(bp);
 | |
| 		return;
 | |
| 	default:
 | |
| 		BNX2X_ERR("Unsupported classification command: %d\n",
 | |
| 			  elem->message.data.eth_event.echo);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	rc = vlan_mac_obj->complete(bp, vlan_mac_obj, elem, &ramrod_flags);
 | |
| 
 | |
| 	if (rc < 0)
 | |
| 		BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
 | |
| 	else if (rc > 0)
 | |
| 		DP(BNX2X_MSG_SP, "Scheduled next pending commands...\n");
 | |
| 
 | |
| }
 | |
| 
 | |
| static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start);
 | |
| 
 | |
| static void bnx2x_handle_rx_mode_eqe(struct bnx2x *bp)
 | |
| {
 | |
| 	netif_addr_lock_bh(bp->dev);
 | |
| 
 | |
| 	clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
 | |
| 
 | |
| 	/* Send rx_mode command again if was requested */
 | |
| 	if (test_and_clear_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state))
 | |
| 		bnx2x_set_storm_rx_mode(bp);
 | |
| 	else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED,
 | |
| 				    &bp->sp_state))
 | |
| 		bnx2x_set_iscsi_eth_rx_mode(bp, true);
 | |
| 	else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED,
 | |
| 				    &bp->sp_state))
 | |
| 		bnx2x_set_iscsi_eth_rx_mode(bp, false);
 | |
| 
 | |
| 	netif_addr_unlock_bh(bp->dev);
 | |
| }
 | |
| 
 | |
| static void bnx2x_after_afex_vif_lists(struct bnx2x *bp,
 | |
| 					      union event_ring_elem *elem)
 | |
| {
 | |
| 	if (elem->message.data.vif_list_event.echo == VIF_LIST_RULE_GET) {
 | |
| 		DP(BNX2X_MSG_SP,
 | |
| 		   "afex: ramrod completed VIF LIST_GET, addrs 0x%x\n",
 | |
| 		   elem->message.data.vif_list_event.func_bit_map);
 | |
| 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTGET_ACK,
 | |
| 			elem->message.data.vif_list_event.func_bit_map);
 | |
| 	} else if (elem->message.data.vif_list_event.echo ==
 | |
| 		   VIF_LIST_RULE_SET) {
 | |
| 		DP(BNX2X_MSG_SP, "afex: ramrod completed VIF LIST_SET\n");
 | |
| 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTSET_ACK, 0);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* called with rtnl_lock */
 | |
| static void bnx2x_after_function_update(struct bnx2x *bp)
 | |
| {
 | |
| 	int q, rc;
 | |
| 	struct bnx2x_fastpath *fp;
 | |
| 	struct bnx2x_queue_state_params queue_params = {NULL};
 | |
| 	struct bnx2x_queue_update_params *q_update_params =
 | |
| 		&queue_params.params.update;
 | |
| 
 | |
| 	/* Send Q update command with afex vlan removal values for all Qs */
 | |
| 	queue_params.cmd = BNX2X_Q_CMD_UPDATE;
 | |
| 
 | |
| 	/* set silent vlan removal values according to vlan mode */
 | |
| 	__set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG,
 | |
| 		  &q_update_params->update_flags);
 | |
| 	__set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
 | |
| 		  &q_update_params->update_flags);
 | |
| 	__set_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
 | |
| 
 | |
| 	/* in access mode mark mask and value are 0 to strip all vlans */
 | |
| 	if (bp->afex_vlan_mode == FUNC_MF_CFG_AFEX_VLAN_ACCESS_MODE) {
 | |
| 		q_update_params->silent_removal_value = 0;
 | |
| 		q_update_params->silent_removal_mask = 0;
 | |
| 	} else {
 | |
| 		q_update_params->silent_removal_value =
 | |
| 			(bp->afex_def_vlan_tag & VLAN_VID_MASK);
 | |
| 		q_update_params->silent_removal_mask = VLAN_VID_MASK;
 | |
| 	}
 | |
| 
 | |
| 	for_each_eth_queue(bp, q) {
 | |
| 		/* Set the appropriate Queue object */
 | |
| 		fp = &bp->fp[q];
 | |
| 		queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
 | |
| 
 | |
| 		/* send the ramrod */
 | |
| 		rc = bnx2x_queue_state_change(bp, &queue_params);
 | |
| 		if (rc < 0)
 | |
| 			BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
 | |
| 				  q);
 | |
| 	}
 | |
| 
 | |
| 	if (!NO_FCOE(bp)) {
 | |
| 		fp = &bp->fp[FCOE_IDX(bp)];
 | |
| 		queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
 | |
| 
 | |
| 		/* clear pending completion bit */
 | |
| 		__clear_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
 | |
| 
 | |
| 		/* mark latest Q bit */
 | |
| 		smp_mb__before_clear_bit();
 | |
| 		set_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
 | |
| 		smp_mb__after_clear_bit();
 | |
| 
 | |
| 		/* send Q update ramrod for FCoE Q */
 | |
| 		rc = bnx2x_queue_state_change(bp, &queue_params);
 | |
| 		if (rc < 0)
 | |
| 			BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
 | |
| 				  q);
 | |
| 	} else {
 | |
| 		/* If no FCoE ring - ACK MCP now */
 | |
| 		bnx2x_link_report(bp);
 | |
| 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static struct bnx2x_queue_sp_obj *bnx2x_cid_to_q_obj(
 | |
| 	struct bnx2x *bp, u32 cid)
 | |
| {
 | |
| 	DP(BNX2X_MSG_SP, "retrieving fp from cid %d\n", cid);
 | |
| 
 | |
| 	if (CNIC_LOADED(bp) && (cid == BNX2X_FCOE_ETH_CID(bp)))
 | |
| 		return &bnx2x_fcoe_sp_obj(bp, q_obj);
 | |
| 	else
 | |
| 		return &bp->sp_objs[CID_TO_FP(cid, bp)].q_obj;
 | |
| }
 | |
| 
 | |
| static void bnx2x_eq_int(struct bnx2x *bp)
 | |
| {
 | |
| 	u16 hw_cons, sw_cons, sw_prod;
 | |
| 	union event_ring_elem *elem;
 | |
| 	u8 echo;
 | |
| 	u32 cid;
 | |
| 	u8 opcode;
 | |
| 	int rc, spqe_cnt = 0;
 | |
| 	struct bnx2x_queue_sp_obj *q_obj;
 | |
| 	struct bnx2x_func_sp_obj *f_obj = &bp->func_obj;
 | |
| 	struct bnx2x_raw_obj *rss_raw = &bp->rss_conf_obj.raw;
 | |
| 
 | |
| 	hw_cons = le16_to_cpu(*bp->eq_cons_sb);
 | |
| 
 | |
| 	/* The hw_cos range is 1-255, 257 - the sw_cons range is 0-254, 256.
 | |
| 	 * when we get the the next-page we nned to adjust so the loop
 | |
| 	 * condition below will be met. The next element is the size of a
 | |
| 	 * regular element and hence incrementing by 1
 | |
| 	 */
 | |
| 	if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE)
 | |
| 		hw_cons++;
 | |
| 
 | |
| 	/* This function may never run in parallel with itself for a
 | |
| 	 * specific bp, thus there is no need in "paired" read memory
 | |
| 	 * barrier here.
 | |
| 	 */
 | |
| 	sw_cons = bp->eq_cons;
 | |
| 	sw_prod = bp->eq_prod;
 | |
| 
 | |
| 	DP(BNX2X_MSG_SP, "EQ:  hw_cons %u  sw_cons %u bp->eq_spq_left %x\n",
 | |
| 			hw_cons, sw_cons, atomic_read(&bp->eq_spq_left));
 | |
| 
 | |
| 	for (; sw_cons != hw_cons;
 | |
| 	      sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
 | |
| 
 | |
| 		elem = &bp->eq_ring[EQ_DESC(sw_cons)];
 | |
| 
 | |
| 		rc = bnx2x_iov_eq_sp_event(bp, elem);
 | |
| 		if (!rc) {
 | |
| 			DP(BNX2X_MSG_IOV, "bnx2x_iov_eq_sp_event returned %d\n",
 | |
| 			   rc);
 | |
| 			goto next_spqe;
 | |
| 		}
 | |
| 
 | |
| 		/* elem CID originates from FW; actually LE */
 | |
| 		cid = SW_CID((__force __le32)
 | |
| 			     elem->message.data.cfc_del_event.cid);
 | |
| 		opcode = elem->message.opcode;
 | |
| 
 | |
| 		/* handle eq element */
 | |
| 		switch (opcode) {
 | |
| 		case EVENT_RING_OPCODE_VF_PF_CHANNEL:
 | |
| 			DP(BNX2X_MSG_IOV, "vf pf channel element on eq\n");
 | |
| 			bnx2x_vf_mbx(bp, &elem->message.data.vf_pf_event);
 | |
| 			continue;
 | |
| 
 | |
| 		case EVENT_RING_OPCODE_STAT_QUERY:
 | |
| 			DP(BNX2X_MSG_SP | BNX2X_MSG_STATS,
 | |
| 			   "got statistics comp event %d\n",
 | |
| 			   bp->stats_comp++);
 | |
| 			/* nothing to do with stats comp */
 | |
| 			goto next_spqe;
 | |
| 
 | |
| 		case EVENT_RING_OPCODE_CFC_DEL:
 | |
| 			/* handle according to cid range */
 | |
| 			/*
 | |
| 			 * we may want to verify here that the bp state is
 | |
| 			 * HALTING
 | |
| 			 */
 | |
| 			DP(BNX2X_MSG_SP,
 | |
| 			   "got delete ramrod for MULTI[%d]\n", cid);
 | |
| 
 | |
| 			if (CNIC_LOADED(bp) &&
 | |
| 			    !bnx2x_cnic_handle_cfc_del(bp, cid, elem))
 | |
| 				goto next_spqe;
 | |
| 
 | |
| 			q_obj = bnx2x_cid_to_q_obj(bp, cid);
 | |
| 
 | |
| 			if (q_obj->complete_cmd(bp, q_obj, BNX2X_Q_CMD_CFC_DEL))
 | |
| 				break;
 | |
| 
 | |
| 
 | |
| 
 | |
| 			goto next_spqe;
 | |
| 
 | |
| 		case EVENT_RING_OPCODE_STOP_TRAFFIC:
 | |
| 			DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got STOP TRAFFIC\n");
 | |
| 			if (f_obj->complete_cmd(bp, f_obj,
 | |
| 						BNX2X_F_CMD_TX_STOP))
 | |
| 				break;
 | |
| 			bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_PAUSED);
 | |
| 			goto next_spqe;
 | |
| 
 | |
| 		case EVENT_RING_OPCODE_START_TRAFFIC:
 | |
| 			DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got START TRAFFIC\n");
 | |
| 			if (f_obj->complete_cmd(bp, f_obj,
 | |
| 						BNX2X_F_CMD_TX_START))
 | |
| 				break;
 | |
| 			bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_RELEASED);
 | |
| 			goto next_spqe;
 | |
| 
 | |
| 		case EVENT_RING_OPCODE_FUNCTION_UPDATE:
 | |
| 			echo = elem->message.data.function_update_event.echo;
 | |
| 			if (echo == SWITCH_UPDATE) {
 | |
| 				DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
 | |
| 				   "got FUNC_SWITCH_UPDATE ramrod\n");
 | |
| 				if (f_obj->complete_cmd(
 | |
| 					bp, f_obj, BNX2X_F_CMD_SWITCH_UPDATE))
 | |
| 					break;
 | |
| 
 | |
| 			} else {
 | |
| 				DP(BNX2X_MSG_SP | BNX2X_MSG_MCP,
 | |
| 				   "AFEX: ramrod completed FUNCTION_UPDATE\n");
 | |
| 				f_obj->complete_cmd(bp, f_obj,
 | |
| 						    BNX2X_F_CMD_AFEX_UPDATE);
 | |
| 
 | |
| 				/* We will perform the Queues update from
 | |
| 				 * sp_rtnl task as all Queue SP operations
 | |
| 				 * should run under rtnl_lock.
 | |
| 				 */
 | |
| 				smp_mb__before_clear_bit();
 | |
| 				set_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE,
 | |
| 					&bp->sp_rtnl_state);
 | |
| 				smp_mb__after_clear_bit();
 | |
| 
 | |
| 				schedule_delayed_work(&bp->sp_rtnl_task, 0);
 | |
| 			}
 | |
| 
 | |
| 			goto next_spqe;
 | |
| 
 | |
| 		case EVENT_RING_OPCODE_AFEX_VIF_LISTS:
 | |
| 			f_obj->complete_cmd(bp, f_obj,
 | |
| 					    BNX2X_F_CMD_AFEX_VIFLISTS);
 | |
| 			bnx2x_after_afex_vif_lists(bp, elem);
 | |
| 			goto next_spqe;
 | |
| 		case EVENT_RING_OPCODE_FUNCTION_START:
 | |
| 			DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
 | |
| 			   "got FUNC_START ramrod\n");
 | |
| 			if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_START))
 | |
| 				break;
 | |
| 
 | |
| 			goto next_spqe;
 | |
| 
 | |
| 		case EVENT_RING_OPCODE_FUNCTION_STOP:
 | |
| 			DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
 | |
| 			   "got FUNC_STOP ramrod\n");
 | |
| 			if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_STOP))
 | |
| 				break;
 | |
| 
 | |
| 			goto next_spqe;
 | |
| 		}
 | |
| 
 | |
| 		switch (opcode | bp->state) {
 | |
| 		case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
 | |
| 		      BNX2X_STATE_OPEN):
 | |
| 		case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
 | |
| 		      BNX2X_STATE_OPENING_WAIT4_PORT):
 | |
| 			cid = elem->message.data.eth_event.echo &
 | |
| 				BNX2X_SWCID_MASK;
 | |
| 			DP(BNX2X_MSG_SP, "got RSS_UPDATE ramrod. CID %d\n",
 | |
| 			   cid);
 | |
| 			rss_raw->clear_pending(rss_raw);
 | |
| 			break;
 | |
| 
 | |
| 		case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN):
 | |
| 		case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG):
 | |
| 		case (EVENT_RING_OPCODE_SET_MAC |
 | |
| 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
 | |
| 		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
 | |
| 		      BNX2X_STATE_OPEN):
 | |
| 		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
 | |
| 		      BNX2X_STATE_DIAG):
 | |
| 		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
 | |
| 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
 | |
| 			DP(BNX2X_MSG_SP, "got (un)set mac ramrod\n");
 | |
| 			bnx2x_handle_classification_eqe(bp, elem);
 | |
| 			break;
 | |
| 
 | |
| 		case (EVENT_RING_OPCODE_MULTICAST_RULES |
 | |
| 		      BNX2X_STATE_OPEN):
 | |
| 		case (EVENT_RING_OPCODE_MULTICAST_RULES |
 | |
| 		      BNX2X_STATE_DIAG):
 | |
| 		case (EVENT_RING_OPCODE_MULTICAST_RULES |
 | |
| 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
 | |
| 			DP(BNX2X_MSG_SP, "got mcast ramrod\n");
 | |
| 			bnx2x_handle_mcast_eqe(bp);
 | |
| 			break;
 | |
| 
 | |
| 		case (EVENT_RING_OPCODE_FILTERS_RULES |
 | |
| 		      BNX2X_STATE_OPEN):
 | |
| 		case (EVENT_RING_OPCODE_FILTERS_RULES |
 | |
| 		      BNX2X_STATE_DIAG):
 | |
| 		case (EVENT_RING_OPCODE_FILTERS_RULES |
 | |
| 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
 | |
| 			DP(BNX2X_MSG_SP, "got rx_mode ramrod\n");
 | |
| 			bnx2x_handle_rx_mode_eqe(bp);
 | |
| 			break;
 | |
| 		default:
 | |
| 			/* unknown event log error and continue */
 | |
| 			BNX2X_ERR("Unknown EQ event %d, bp->state 0x%x\n",
 | |
| 				  elem->message.opcode, bp->state);
 | |
| 		}
 | |
| next_spqe:
 | |
| 		spqe_cnt++;
 | |
| 	} /* for */
 | |
| 
 | |
| 	smp_mb__before_atomic_inc();
 | |
| 	atomic_add(spqe_cnt, &bp->eq_spq_left);
 | |
| 
 | |
| 	bp->eq_cons = sw_cons;
 | |
| 	bp->eq_prod = sw_prod;
 | |
| 	/* Make sure that above mem writes were issued towards the memory */
 | |
| 	smp_wmb();
 | |
| 
 | |
| 	/* update producer */
 | |
| 	bnx2x_update_eq_prod(bp, bp->eq_prod);
 | |
| }
 | |
| 
 | |
| static void bnx2x_sp_task(struct work_struct *work)
 | |
| {
 | |
| 	struct bnx2x *bp = container_of(work, struct bnx2x, sp_task.work);
 | |
| 
 | |
| 	DP(BNX2X_MSG_SP, "sp task invoked\n");
 | |
| 
 | |
| 	/* make sure the atomic interupt_occurred has been written */
 | |
| 	smp_rmb();
 | |
| 	if (atomic_read(&bp->interrupt_occurred)) {
 | |
| 
 | |
| 		/* what work needs to be performed? */
 | |
| 		u16 status = bnx2x_update_dsb_idx(bp);
 | |
| 
 | |
| 		DP(BNX2X_MSG_SP, "status %x\n", status);
 | |
| 		DP(BNX2X_MSG_SP, "setting interrupt_occurred to 0\n");
 | |
| 		atomic_set(&bp->interrupt_occurred, 0);
 | |
| 
 | |
| 		/* HW attentions */
 | |
| 		if (status & BNX2X_DEF_SB_ATT_IDX) {
 | |
| 			bnx2x_attn_int(bp);
 | |
| 			status &= ~BNX2X_DEF_SB_ATT_IDX;
 | |
| 		}
 | |
| 
 | |
| 		/* SP events: STAT_QUERY and others */
 | |
| 		if (status & BNX2X_DEF_SB_IDX) {
 | |
| 			struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
 | |
| 
 | |
| 		if (FCOE_INIT(bp) &&
 | |
| 			    (bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
 | |
| 				/* Prevent local bottom-halves from running as
 | |
| 				 * we are going to change the local NAPI list.
 | |
| 				 */
 | |
| 				local_bh_disable();
 | |
| 				napi_schedule(&bnx2x_fcoe(bp, napi));
 | |
| 				local_bh_enable();
 | |
| 			}
 | |
| 
 | |
| 			/* Handle EQ completions */
 | |
| 			bnx2x_eq_int(bp);
 | |
| 			bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID,
 | |
| 				     le16_to_cpu(bp->def_idx), IGU_INT_NOP, 1);
 | |
| 
 | |
| 			status &= ~BNX2X_DEF_SB_IDX;
 | |
| 		}
 | |
| 
 | |
| 		/* if status is non zero then perhaps something went wrong */
 | |
| 		if (unlikely(status))
 | |
| 			DP(BNX2X_MSG_SP,
 | |
| 			   "got an unknown interrupt! (status 0x%x)\n", status);
 | |
| 
 | |
| 		/* ack status block only if something was actually handled */
 | |
| 		bnx2x_ack_sb(bp, bp->igu_dsb_id, ATTENTION_ID,
 | |
| 			     le16_to_cpu(bp->def_att_idx), IGU_INT_ENABLE, 1);
 | |
| 
 | |
| 	}
 | |
| 
 | |
| 	/* must be called after the EQ processing (since eq leads to sriov
 | |
| 	 * ramrod completion flows).
 | |
| 	 * This flow may have been scheduled by the arrival of a ramrod
 | |
| 	 * completion, or by the sriov code rescheduling itself.
 | |
| 	 */
 | |
| 	bnx2x_iov_sp_task(bp);
 | |
| 
 | |
| 	/* afex - poll to check if VIFSET_ACK should be sent to MFW */
 | |
| 	if (test_and_clear_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK,
 | |
| 			       &bp->sp_state)) {
 | |
| 		bnx2x_link_report(bp);
 | |
| 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance)
 | |
| {
 | |
| 	struct net_device *dev = dev_instance;
 | |
| 	struct bnx2x *bp = netdev_priv(dev);
 | |
| 
 | |
| 	bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0,
 | |
| 		     IGU_INT_DISABLE, 0);
 | |
| 
 | |
| #ifdef BNX2X_STOP_ON_ERROR
 | |
| 	if (unlikely(bp->panic))
 | |
| 		return IRQ_HANDLED;
 | |
| #endif
 | |
| 
 | |
| 	if (CNIC_LOADED(bp)) {
 | |
| 		struct cnic_ops *c_ops;
 | |
| 
 | |
| 		rcu_read_lock();
 | |
| 		c_ops = rcu_dereference(bp->cnic_ops);
 | |
| 		if (c_ops)
 | |
| 			c_ops->cnic_handler(bp->cnic_data, NULL);
 | |
| 		rcu_read_unlock();
 | |
| 	}
 | |
| 
 | |
| 	/* schedule sp task to perform default status block work, ack
 | |
| 	 * attentions and enable interrupts.
 | |
| 	 */
 | |
| 	bnx2x_schedule_sp_task(bp);
 | |
| 
 | |
| 	return IRQ_HANDLED;
 | |
| }
 | |
| 
 | |
| /* end of slow path */
 | |
| 
 | |
| 
 | |
| void bnx2x_drv_pulse(struct bnx2x *bp)
 | |
| {
 | |
| 	SHMEM_WR(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb,
 | |
| 		 bp->fw_drv_pulse_wr_seq);
 | |
| }
 | |
| 
 | |
| static void bnx2x_timer(unsigned long data)
 | |
| {
 | |
| 	struct bnx2x *bp = (struct bnx2x *) data;
 | |
| 
 | |
| 	if (!netif_running(bp->dev))
 | |
| 		return;
 | |
| 
 | |
| 	if (IS_PF(bp) &&
 | |
| 	    !BP_NOMCP(bp)) {
 | |
| 		int mb_idx = BP_FW_MB_IDX(bp);
 | |
| 		u32 drv_pulse;
 | |
| 		u32 mcp_pulse;
 | |
| 
 | |
| 		++bp->fw_drv_pulse_wr_seq;
 | |
| 		bp->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
 | |
| 		/* TBD - add SYSTEM_TIME */
 | |
| 		drv_pulse = bp->fw_drv_pulse_wr_seq;
 | |
| 		bnx2x_drv_pulse(bp);
 | |
| 
 | |
| 		mcp_pulse = (SHMEM_RD(bp, func_mb[mb_idx].mcp_pulse_mb) &
 | |
| 			     MCP_PULSE_SEQ_MASK);
 | |
| 		/* The delta between driver pulse and mcp response
 | |
| 		 * should be 1 (before mcp response) or 0 (after mcp response)
 | |
| 		 */
 | |
| 		if ((drv_pulse != mcp_pulse) &&
 | |
| 		    (drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) {
 | |
| 			/* someone lost a heartbeat... */
 | |
| 			BNX2X_ERR("drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
 | |
| 				  drv_pulse, mcp_pulse);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (bp->state == BNX2X_STATE_OPEN)
 | |
| 		bnx2x_stats_handle(bp, STATS_EVENT_UPDATE);
 | |
| 
 | |
| 	/* sample pf vf bulletin board for new posts from pf */
 | |
| 	if (IS_VF(bp))
 | |
| 		bnx2x_sample_bulletin(bp);
 | |
| 
 | |
| 	mod_timer(&bp->timer, jiffies + bp->current_interval);
 | |
| }
 | |
| 
 | |
| /* end of Statistics */
 | |
| 
 | |
| /* nic init */
 | |
| 
 | |
| /*
 | |
|  * nic init service functions
 | |
|  */
 | |
| 
 | |
| static void bnx2x_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
 | |
| {
 | |
| 	u32 i;
 | |
| 	if (!(len%4) && !(addr%4))
 | |
| 		for (i = 0; i < len; i += 4)
 | |
| 			REG_WR(bp, addr + i, fill);
 | |
| 	else
 | |
| 		for (i = 0; i < len; i++)
 | |
| 			REG_WR8(bp, addr + i, fill);
 | |
| 
 | |
| }
 | |
| 
 | |
| /* helper: writes FP SP data to FW - data_size in dwords */
 | |
| static void bnx2x_wr_fp_sb_data(struct bnx2x *bp,
 | |
| 				int fw_sb_id,
 | |
| 				u32 *sb_data_p,
 | |
| 				u32 data_size)
 | |
| {
 | |
| 	int index;
 | |
| 	for (index = 0; index < data_size; index++)
 | |
| 		REG_WR(bp, BAR_CSTRORM_INTMEM +
 | |
| 			CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
 | |
| 			sizeof(u32)*index,
 | |
| 			*(sb_data_p + index));
 | |
| }
 | |
| 
 | |
| static void bnx2x_zero_fp_sb(struct bnx2x *bp, int fw_sb_id)
 | |
| {
 | |
| 	u32 *sb_data_p;
 | |
| 	u32 data_size = 0;
 | |
| 	struct hc_status_block_data_e2 sb_data_e2;
 | |
| 	struct hc_status_block_data_e1x sb_data_e1x;
 | |
| 
 | |
| 	/* disable the function first */
 | |
| 	if (!CHIP_IS_E1x(bp)) {
 | |
| 		memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
 | |
| 		sb_data_e2.common.state = SB_DISABLED;
 | |
| 		sb_data_e2.common.p_func.vf_valid = false;
 | |
| 		sb_data_p = (u32 *)&sb_data_e2;
 | |
| 		data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
 | |
| 	} else {
 | |
| 		memset(&sb_data_e1x, 0,
 | |
| 		       sizeof(struct hc_status_block_data_e1x));
 | |
| 		sb_data_e1x.common.state = SB_DISABLED;
 | |
| 		sb_data_e1x.common.p_func.vf_valid = false;
 | |
| 		sb_data_p = (u32 *)&sb_data_e1x;
 | |
| 		data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
 | |
| 	}
 | |
| 	bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
 | |
| 
 | |
| 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
 | |
| 			CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id), 0,
 | |
| 			CSTORM_STATUS_BLOCK_SIZE);
 | |
| 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
 | |
| 			CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id), 0,
 | |
| 			CSTORM_SYNC_BLOCK_SIZE);
 | |
| }
 | |
| 
 | |
| /* helper:  writes SP SB data to FW */
 | |
| static void bnx2x_wr_sp_sb_data(struct bnx2x *bp,
 | |
| 		struct hc_sp_status_block_data *sp_sb_data)
 | |
| {
 | |
| 	int func = BP_FUNC(bp);
 | |
| 	int i;
 | |
| 	for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
 | |
| 		REG_WR(bp, BAR_CSTRORM_INTMEM +
 | |
| 			CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
 | |
| 			i*sizeof(u32),
 | |
| 			*((u32 *)sp_sb_data + i));
 | |
| }
 | |
| 
 | |
| static void bnx2x_zero_sp_sb(struct bnx2x *bp)
 | |
| {
 | |
| 	int func = BP_FUNC(bp);
 | |
| 	struct hc_sp_status_block_data sp_sb_data;
 | |
| 	memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
 | |
| 
 | |
| 	sp_sb_data.state = SB_DISABLED;
 | |
| 	sp_sb_data.p_func.vf_valid = false;
 | |
| 
 | |
| 	bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
 | |
| 
 | |
| 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
 | |
| 			CSTORM_SP_STATUS_BLOCK_OFFSET(func), 0,
 | |
| 			CSTORM_SP_STATUS_BLOCK_SIZE);
 | |
| 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
 | |
| 			CSTORM_SP_SYNC_BLOCK_OFFSET(func), 0,
 | |
| 			CSTORM_SP_SYNC_BLOCK_SIZE);
 | |
| 
 | |
| }
 | |
| 
 | |
| 
 | |
| static void bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
 | |
| 					   int igu_sb_id, int igu_seg_id)
 | |
| {
 | |
| 	hc_sm->igu_sb_id = igu_sb_id;
 | |
| 	hc_sm->igu_seg_id = igu_seg_id;
 | |
| 	hc_sm->timer_value = 0xFF;
 | |
| 	hc_sm->time_to_expire = 0xFFFFFFFF;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* allocates state machine ids. */
 | |
| static void bnx2x_map_sb_state_machines(struct hc_index_data *index_data)
 | |
| {
 | |
| 	/* zero out state machine indices */
 | |
| 	/* rx indices */
 | |
| 	index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
 | |
| 
 | |
| 	/* tx indices */
 | |
| 	index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
 | |
| 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
 | |
| 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
 | |
| 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
 | |
| 
 | |
| 	/* map indices */
 | |
| 	/* rx indices */
 | |
| 	index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
 | |
| 		SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
 | |
| 
 | |
| 	/* tx indices */
 | |
| 	index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
 | |
| 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
 | |
| 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
 | |
| 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
 | |
| 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
 | |
| 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
 | |
| 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
 | |
| 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
 | |
| }
 | |
| 
 | |
| void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid,
 | |
| 			  u8 vf_valid, int fw_sb_id, int igu_sb_id)
 | |
| {
 | |
| 	int igu_seg_id;
 | |
| 
 | |
| 	struct hc_status_block_data_e2 sb_data_e2;
 | |
| 	struct hc_status_block_data_e1x sb_data_e1x;
 | |
| 	struct hc_status_block_sm  *hc_sm_p;
 | |
| 	int data_size;
 | |
| 	u32 *sb_data_p;
 | |
| 
 | |
| 	if (CHIP_INT_MODE_IS_BC(bp))
 | |
| 		igu_seg_id = HC_SEG_ACCESS_NORM;
 | |
| 	else
 | |
| 		igu_seg_id = IGU_SEG_ACCESS_NORM;
 | |
| 
 | |
| 	bnx2x_zero_fp_sb(bp, fw_sb_id);
 | |
| 
 | |
| 	if (!CHIP_IS_E1x(bp)) {
 | |
| 		memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
 | |
| 		sb_data_e2.common.state = SB_ENABLED;
 | |
| 		sb_data_e2.common.p_func.pf_id = BP_FUNC(bp);
 | |
| 		sb_data_e2.common.p_func.vf_id = vfid;
 | |
| 		sb_data_e2.common.p_func.vf_valid = vf_valid;
 | |
| 		sb_data_e2.common.p_func.vnic_id = BP_VN(bp);
 | |
| 		sb_data_e2.common.same_igu_sb_1b = true;
 | |
| 		sb_data_e2.common.host_sb_addr.hi = U64_HI(mapping);
 | |
| 		sb_data_e2.common.host_sb_addr.lo = U64_LO(mapping);
 | |
| 		hc_sm_p = sb_data_e2.common.state_machine;
 | |
| 		sb_data_p = (u32 *)&sb_data_e2;
 | |
| 		data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
 | |
| 		bnx2x_map_sb_state_machines(sb_data_e2.index_data);
 | |
| 	} else {
 | |
| 		memset(&sb_data_e1x, 0,
 | |
| 		       sizeof(struct hc_status_block_data_e1x));
 | |
| 		sb_data_e1x.common.state = SB_ENABLED;
 | |
| 		sb_data_e1x.common.p_func.pf_id = BP_FUNC(bp);
 | |
| 		sb_data_e1x.common.p_func.vf_id = 0xff;
 | |
| 		sb_data_e1x.common.p_func.vf_valid = false;
 | |
| 		sb_data_e1x.common.p_func.vnic_id = BP_VN(bp);
 | |
| 		sb_data_e1x.common.same_igu_sb_1b = true;
 | |
| 		sb_data_e1x.common.host_sb_addr.hi = U64_HI(mapping);
 | |
| 		sb_data_e1x.common.host_sb_addr.lo = U64_LO(mapping);
 | |
| 		hc_sm_p = sb_data_e1x.common.state_machine;
 | |
| 		sb_data_p = (u32 *)&sb_data_e1x;
 | |
| 		data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
 | |
| 		bnx2x_map_sb_state_machines(sb_data_e1x.index_data);
 | |
| 	}
 | |
| 
 | |
| 	bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID],
 | |
| 				       igu_sb_id, igu_seg_id);
 | |
| 	bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID],
 | |
| 				       igu_sb_id, igu_seg_id);
 | |
| 
 | |
| 	DP(NETIF_MSG_IFUP, "Init FW SB %d\n", fw_sb_id);
 | |
| 
 | |
| 	/* write indices to HW - PCI guarantees endianity of regpairs */
 | |
| 	bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
 | |
| }
 | |
| 
 | |
| static void bnx2x_update_coalesce_sb(struct bnx2x *bp, u8 fw_sb_id,
 | |
| 				     u16 tx_usec, u16 rx_usec)
 | |
| {
 | |
| 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id, HC_INDEX_ETH_RX_CQ_CONS,
 | |
| 				    false, rx_usec);
 | |
| 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
 | |
| 				       HC_INDEX_ETH_TX_CQ_CONS_COS0, false,
 | |
| 				       tx_usec);
 | |
| 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
 | |
| 				       HC_INDEX_ETH_TX_CQ_CONS_COS1, false,
 | |
| 				       tx_usec);
 | |
| 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
 | |
| 				       HC_INDEX_ETH_TX_CQ_CONS_COS2, false,
 | |
| 				       tx_usec);
 | |
| }
 | |
| 
 | |
| static void bnx2x_init_def_sb(struct bnx2x *bp)
 | |
| {
 | |
| 	struct host_sp_status_block *def_sb = bp->def_status_blk;
 | |
| 	dma_addr_t mapping = bp->def_status_blk_mapping;
 | |
| 	int igu_sp_sb_index;
 | |
| 	int igu_seg_id;
 | |
| 	int port = BP_PORT(bp);
 | |
| 	int func = BP_FUNC(bp);
 | |
| 	int reg_offset, reg_offset_en5;
 | |
| 	u64 section;
 | |
| 	int index;
 | |
| 	struct hc_sp_status_block_data sp_sb_data;
 | |
| 	memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
 | |
| 
 | |
| 	if (CHIP_INT_MODE_IS_BC(bp)) {
 | |
| 		igu_sp_sb_index = DEF_SB_IGU_ID;
 | |
| 		igu_seg_id = HC_SEG_ACCESS_DEF;
 | |
| 	} else {
 | |
| 		igu_sp_sb_index = bp->igu_dsb_id;
 | |
| 		igu_seg_id = IGU_SEG_ACCESS_DEF;
 | |
| 	}
 | |
| 
 | |
| 	/* ATTN */
 | |
| 	section = ((u64)mapping) + offsetof(struct host_sp_status_block,
 | |
| 					    atten_status_block);
 | |
| 	def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
 | |
| 
 | |
| 	bp->attn_state = 0;
 | |
| 
 | |
| 	reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
 | |
| 			     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
 | |
| 	reg_offset_en5 = (port ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
 | |
| 				 MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0);
 | |
| 	for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
 | |
| 		int sindex;
 | |
| 		/* take care of sig[0]..sig[4] */
 | |
| 		for (sindex = 0; sindex < 4; sindex++)
 | |
| 			bp->attn_group[index].sig[sindex] =
 | |
| 			   REG_RD(bp, reg_offset + sindex*0x4 + 0x10*index);
 | |
| 
 | |
| 		if (!CHIP_IS_E1x(bp))
 | |
| 			/*
 | |
| 			 * enable5 is separate from the rest of the registers,
 | |
| 			 * and therefore the address skip is 4
 | |
| 			 * and not 16 between the different groups
 | |
| 			 */
 | |
| 			bp->attn_group[index].sig[4] = REG_RD(bp,
 | |
| 					reg_offset_en5 + 0x4*index);
 | |
| 		else
 | |
| 			bp->attn_group[index].sig[4] = 0;
 | |
| 	}
 | |
| 
 | |
| 	if (bp->common.int_block == INT_BLOCK_HC) {
 | |
| 		reg_offset = (port ? HC_REG_ATTN_MSG1_ADDR_L :
 | |
| 				     HC_REG_ATTN_MSG0_ADDR_L);
 | |
| 
 | |
| 		REG_WR(bp, reg_offset, U64_LO(section));
 | |
| 		REG_WR(bp, reg_offset + 4, U64_HI(section));
 | |
| 	} else if (!CHIP_IS_E1x(bp)) {
 | |
| 		REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
 | |
| 		REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
 | |
| 	}
 | |
| 
 | |
| 	section = ((u64)mapping) + offsetof(struct host_sp_status_block,
 | |
| 					    sp_sb);
 | |
| 
 | |
| 	bnx2x_zero_sp_sb(bp);
 | |
| 
 | |
| 	/* PCI guarantees endianity of regpairs */
 | |
| 	sp_sb_data.state		= SB_ENABLED;
 | |
| 	sp_sb_data.host_sb_addr.lo	= U64_LO(section);
 | |
| 	sp_sb_data.host_sb_addr.hi	= U64_HI(section);
 | |
| 	sp_sb_data.igu_sb_id		= igu_sp_sb_index;
 | |
| 	sp_sb_data.igu_seg_id		= igu_seg_id;
 | |
| 	sp_sb_data.p_func.pf_id		= func;
 | |
| 	sp_sb_data.p_func.vnic_id	= BP_VN(bp);
 | |
| 	sp_sb_data.p_func.vf_id		= 0xff;
 | |
| 
 | |
| 	bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
 | |
| 
 | |
| 	bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
 | |
| }
 | |
| 
 | |
| void bnx2x_update_coalesce(struct bnx2x *bp)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for_each_eth_queue(bp, i)
 | |
| 		bnx2x_update_coalesce_sb(bp, bp->fp[i].fw_sb_id,
 | |
| 					 bp->tx_ticks, bp->rx_ticks);
 | |
| }
 | |
| 
 | |
| static void bnx2x_init_sp_ring(struct bnx2x *bp)
 | |
| {
 | |
| 	spin_lock_init(&bp->spq_lock);
 | |
| 	atomic_set(&bp->cq_spq_left, MAX_SPQ_PENDING);
 | |
| 
 | |
| 	bp->spq_prod_idx = 0;
 | |
| 	bp->dsb_sp_prod = BNX2X_SP_DSB_INDEX;
 | |
| 	bp->spq_prod_bd = bp->spq;
 | |
| 	bp->spq_last_bd = bp->spq_prod_bd + MAX_SP_DESC_CNT;
 | |
| }
 | |
| 
 | |
| static void bnx2x_init_eq_ring(struct bnx2x *bp)
 | |
| {
 | |
| 	int i;
 | |
| 	for (i = 1; i <= NUM_EQ_PAGES; i++) {
 | |
| 		union event_ring_elem *elem =
 | |
| 			&bp->eq_ring[EQ_DESC_CNT_PAGE * i - 1];
 | |
| 
 | |
| 		elem->next_page.addr.hi =
 | |
| 			cpu_to_le32(U64_HI(bp->eq_mapping +
 | |
| 				   BCM_PAGE_SIZE * (i % NUM_EQ_PAGES)));
 | |
| 		elem->next_page.addr.lo =
 | |
| 			cpu_to_le32(U64_LO(bp->eq_mapping +
 | |
| 				   BCM_PAGE_SIZE*(i % NUM_EQ_PAGES)));
 | |
| 	}
 | |
| 	bp->eq_cons = 0;
 | |
| 	bp->eq_prod = NUM_EQ_DESC;
 | |
| 	bp->eq_cons_sb = BNX2X_EQ_INDEX;
 | |
| 	/* we want a warning message before it gets rought... */
 | |
| 	atomic_set(&bp->eq_spq_left,
 | |
| 		min_t(int, MAX_SP_DESC_CNT - MAX_SPQ_PENDING, NUM_EQ_DESC) - 1);
 | |
| }
 | |
| 
 | |
| /* called with netif_addr_lock_bh() */
 | |
| int bnx2x_set_q_rx_mode(struct bnx2x *bp, u8 cl_id,
 | |
| 			unsigned long rx_mode_flags,
 | |
| 			unsigned long rx_accept_flags,
 | |
| 			unsigned long tx_accept_flags,
 | |
| 			unsigned long ramrod_flags)
 | |
| {
 | |
| 	struct bnx2x_rx_mode_ramrod_params ramrod_param;
 | |
| 	int rc;
 | |
| 
 | |
| 	memset(&ramrod_param, 0, sizeof(ramrod_param));
 | |
| 
 | |
| 	/* Prepare ramrod parameters */
 | |
| 	ramrod_param.cid = 0;
 | |
| 	ramrod_param.cl_id = cl_id;
 | |
| 	ramrod_param.rx_mode_obj = &bp->rx_mode_obj;
 | |
| 	ramrod_param.func_id = BP_FUNC(bp);
 | |
| 
 | |
| 	ramrod_param.pstate = &bp->sp_state;
 | |
| 	ramrod_param.state = BNX2X_FILTER_RX_MODE_PENDING;
 | |
| 
 | |
| 	ramrod_param.rdata = bnx2x_sp(bp, rx_mode_rdata);
 | |
| 	ramrod_param.rdata_mapping = bnx2x_sp_mapping(bp, rx_mode_rdata);
 | |
| 
 | |
| 	set_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
 | |
| 
 | |
| 	ramrod_param.ramrod_flags = ramrod_flags;
 | |
| 	ramrod_param.rx_mode_flags = rx_mode_flags;
 | |
| 
 | |
| 	ramrod_param.rx_accept_flags = rx_accept_flags;
 | |
| 	ramrod_param.tx_accept_flags = tx_accept_flags;
 | |
| 
 | |
| 	rc = bnx2x_config_rx_mode(bp, &ramrod_param);
 | |
| 	if (rc < 0) {
 | |
| 		BNX2X_ERR("Set rx_mode %d failed\n", bp->rx_mode);
 | |
| 		return rc;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int bnx2x_fill_accept_flags(struct bnx2x *bp, u32 rx_mode,
 | |
| 				   unsigned long *rx_accept_flags,
 | |
| 				   unsigned long *tx_accept_flags)
 | |
| {
 | |
| 	/* Clear the flags first */
 | |
| 	*rx_accept_flags = 0;
 | |
| 	*tx_accept_flags = 0;
 | |
| 
 | |
| 	switch (rx_mode) {
 | |
| 	case BNX2X_RX_MODE_NONE:
 | |
| 		/*
 | |
| 		 * 'drop all' supersedes any accept flags that may have been
 | |
| 		 * passed to the function.
 | |
| 		 */
 | |
| 		break;
 | |
| 	case BNX2X_RX_MODE_NORMAL:
 | |
| 		__set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
 | |
| 		__set_bit(BNX2X_ACCEPT_MULTICAST, rx_accept_flags);
 | |
| 		__set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
 | |
| 
 | |
| 		/* internal switching mode */
 | |
| 		__set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
 | |
| 		__set_bit(BNX2X_ACCEPT_MULTICAST, tx_accept_flags);
 | |
| 		__set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
 | |
| 
 | |
| 		break;
 | |
| 	case BNX2X_RX_MODE_ALLMULTI:
 | |
| 		__set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
 | |
| 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
 | |
| 		__set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
 | |
| 
 | |
| 		/* internal switching mode */
 | |
| 		__set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
 | |
| 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
 | |
| 		__set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
 | |
| 
 | |
| 		break;
 | |
| 	case BNX2X_RX_MODE_PROMISC:
 | |
| 		/* According to deffinition of SI mode, iface in promisc mode
 | |
| 		 * should receive matched and unmatched (in resolution of port)
 | |
| 		 * unicast packets.
 | |
| 		 */
 | |
| 		__set_bit(BNX2X_ACCEPT_UNMATCHED, rx_accept_flags);
 | |
| 		__set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
 | |
| 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
 | |
| 		__set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
 | |
| 
 | |
| 		/* internal switching mode */
 | |
| 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
 | |
| 		__set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
 | |
| 
 | |
| 		if (IS_MF_SI(bp))
 | |
| 			__set_bit(BNX2X_ACCEPT_ALL_UNICAST, tx_accept_flags);
 | |
| 		else
 | |
| 			__set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
 | |
| 
 | |
| 		break;
 | |
| 	default:
 | |
| 		BNX2X_ERR("Unknown rx_mode: %d\n", rx_mode);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/* Set ACCEPT_ANY_VLAN as we do not enable filtering by VLAN */
 | |
| 	if (bp->rx_mode != BNX2X_RX_MODE_NONE) {
 | |
| 		__set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
 | |
| 		__set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* called with netif_addr_lock_bh() */
 | |
| int bnx2x_set_storm_rx_mode(struct bnx2x *bp)
 | |
| {
 | |
| 	unsigned long rx_mode_flags = 0, ramrod_flags = 0;
 | |
| 	unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
 | |
| 	int rc;
 | |
| 
 | |
| 	if (!NO_FCOE(bp))
 | |
| 		/* Configure rx_mode of FCoE Queue */
 | |
| 		__set_bit(BNX2X_RX_MODE_FCOE_ETH, &rx_mode_flags);
 | |
| 
 | |
| 	rc = bnx2x_fill_accept_flags(bp, bp->rx_mode, &rx_accept_flags,
 | |
| 				     &tx_accept_flags);
 | |
| 	if (rc)
 | |
| 		return rc;
 | |
| 
 | |
| 	__set_bit(RAMROD_RX, &ramrod_flags);
 | |
| 	__set_bit(RAMROD_TX, &ramrod_flags);
 | |
| 
 | |
| 	return bnx2x_set_q_rx_mode(bp, bp->fp->cl_id, rx_mode_flags,
 | |
| 				   rx_accept_flags, tx_accept_flags,
 | |
| 				   ramrod_flags);
 | |
| }
 | |
| 
 | |
| static void bnx2x_init_internal_common(struct bnx2x *bp)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	if (IS_MF_SI(bp))
 | |
| 		/*
 | |
| 		 * In switch independent mode, the TSTORM needs to accept
 | |
| 		 * packets that failed classification, since approximate match
 | |
| 		 * mac addresses aren't written to NIG LLH
 | |
| 		 */
 | |
| 		REG_WR8(bp, BAR_TSTRORM_INTMEM +
 | |
| 			    TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET, 2);
 | |
| 	else if (!CHIP_IS_E1(bp)) /* 57710 doesn't support MF */
 | |
| 		REG_WR8(bp, BAR_TSTRORM_INTMEM +
 | |
| 			    TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET, 0);
 | |
| 
 | |
| 	/* Zero this manually as its initialization is
 | |
| 	   currently missing in the initTool */
 | |
| 	for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++)
 | |
| 		REG_WR(bp, BAR_USTRORM_INTMEM +
 | |
| 		       USTORM_AGG_DATA_OFFSET + i * 4, 0);
 | |
| 	if (!CHIP_IS_E1x(bp)) {
 | |
| 		REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET,
 | |
| 			CHIP_INT_MODE_IS_BC(bp) ?
 | |
| 			HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void bnx2x_init_internal(struct bnx2x *bp, u32 load_code)
 | |
| {
 | |
| 	switch (load_code) {
 | |
| 	case FW_MSG_CODE_DRV_LOAD_COMMON:
 | |
| 	case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
 | |
| 		bnx2x_init_internal_common(bp);
 | |
| 		/* no break */
 | |
| 
 | |
| 	case FW_MSG_CODE_DRV_LOAD_PORT:
 | |
| 		/* nothing to do */
 | |
| 		/* no break */
 | |
| 
 | |
| 	case FW_MSG_CODE_DRV_LOAD_FUNCTION:
 | |
| 		/* internal memory per function is
 | |
| 		   initialized inside bnx2x_pf_init */
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code);
 | |
| 		break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static inline u8 bnx2x_fp_igu_sb_id(struct bnx2x_fastpath *fp)
 | |
| {
 | |
| 	return fp->bp->igu_base_sb + fp->index + CNIC_SUPPORT(fp->bp);
 | |
| }
 | |
| 
 | |
| static inline u8 bnx2x_fp_fw_sb_id(struct bnx2x_fastpath *fp)
 | |
| {
 | |
| 	return fp->bp->base_fw_ndsb + fp->index + CNIC_SUPPORT(fp->bp);
 | |
| }
 | |
| 
 | |
| static u8 bnx2x_fp_cl_id(struct bnx2x_fastpath *fp)
 | |
| {
 | |
| 	if (CHIP_IS_E1x(fp->bp))
 | |
| 		return BP_L_ID(fp->bp) + fp->index;
 | |
| 	else	/* We want Client ID to be the same as IGU SB ID for 57712 */
 | |
| 		return bnx2x_fp_igu_sb_id(fp);
 | |
| }
 | |
| 
 | |
| static void bnx2x_init_eth_fp(struct bnx2x *bp, int fp_idx)
 | |
| {
 | |
| 	struct bnx2x_fastpath *fp = &bp->fp[fp_idx];
 | |
| 	u8 cos;
 | |
| 	unsigned long q_type = 0;
 | |
| 	u32 cids[BNX2X_MULTI_TX_COS] = { 0 };
 | |
| 	fp->rx_queue = fp_idx;
 | |
| 	fp->cid = fp_idx;
 | |
| 	fp->cl_id = bnx2x_fp_cl_id(fp);
 | |
| 	fp->fw_sb_id = bnx2x_fp_fw_sb_id(fp);
 | |
| 	fp->igu_sb_id = bnx2x_fp_igu_sb_id(fp);
 | |
| 	/* qZone id equals to FW (per path) client id */
 | |
| 	fp->cl_qzone_id  = bnx2x_fp_qzone_id(fp);
 | |
| 
 | |
| 	/* init shortcut */
 | |
| 	fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(fp);
 | |
| 
 | |
| 	/* Setup SB indicies */
 | |
| 	fp->rx_cons_sb = BNX2X_RX_SB_INDEX;
 | |
| 
 | |
| 	/* Configure Queue State object */
 | |
| 	__set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
 | |
| 	__set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
 | |
| 
 | |
| 	BUG_ON(fp->max_cos > BNX2X_MULTI_TX_COS);
 | |
| 
 | |
| 	/* init tx data */
 | |
| 	for_each_cos_in_tx_queue(fp, cos) {
 | |
| 		bnx2x_init_txdata(bp, fp->txdata_ptr[cos],
 | |
| 				  CID_COS_TO_TX_ONLY_CID(fp->cid, cos, bp),
 | |
| 				  FP_COS_TO_TXQ(fp, cos, bp),
 | |
| 				  BNX2X_TX_SB_INDEX_BASE + cos, fp);
 | |
| 		cids[cos] = fp->txdata_ptr[cos]->cid;
 | |
| 	}
 | |
| 
 | |
| 	/* nothing more for vf to do here */
 | |
| 	if (IS_VF(bp))
 | |
| 		return;
 | |
| 
 | |
| 	bnx2x_init_sb(bp, fp->status_blk_mapping, BNX2X_VF_ID_INVALID, false,
 | |
| 		      fp->fw_sb_id, fp->igu_sb_id);
 | |
| 	bnx2x_update_fpsb_idx(fp);
 | |
| 	bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id, cids,
 | |
| 			     fp->max_cos, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
 | |
| 			     bnx2x_sp_mapping(bp, q_rdata), q_type);
 | |
| 
 | |
| 	/**
 | |
| 	 * Configure classification DBs: Always enable Tx switching
 | |
| 	 */
 | |
| 	bnx2x_init_vlan_mac_fp_objs(fp, BNX2X_OBJ_TYPE_RX_TX);
 | |
| 
 | |
| 	DP(NETIF_MSG_IFUP,
 | |
| 	   "queue[%d]:  bnx2x_init_sb(%p,%p)  cl_id %d  fw_sb %d  igu_sb %d\n",
 | |
| 	   fp_idx, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
 | |
| 	   fp->igu_sb_id);
 | |
| }
 | |
| 
 | |
| static void bnx2x_init_tx_ring_one(struct bnx2x_fp_txdata *txdata)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 1; i <= NUM_TX_RINGS; i++) {
 | |
| 		struct eth_tx_next_bd *tx_next_bd =
 | |
| 			&txdata->tx_desc_ring[TX_DESC_CNT * i - 1].next_bd;
 | |
| 
 | |
| 		tx_next_bd->addr_hi =
 | |
| 			cpu_to_le32(U64_HI(txdata->tx_desc_mapping +
 | |
| 				    BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
 | |
| 		tx_next_bd->addr_lo =
 | |
| 			cpu_to_le32(U64_LO(txdata->tx_desc_mapping +
 | |
| 				    BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
 | |
| 	}
 | |
| 
 | |
| 	SET_FLAG(txdata->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1);
 | |
| 	txdata->tx_db.data.zero_fill1 = 0;
 | |
| 	txdata->tx_db.data.prod = 0;
 | |
| 
 | |
| 	txdata->tx_pkt_prod = 0;
 | |
| 	txdata->tx_pkt_cons = 0;
 | |
| 	txdata->tx_bd_prod = 0;
 | |
| 	txdata->tx_bd_cons = 0;
 | |
| 	txdata->tx_pkt = 0;
 | |
| }
 | |
| 
 | |
| static void bnx2x_init_tx_rings_cnic(struct bnx2x *bp)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for_each_tx_queue_cnic(bp, i)
 | |
| 		bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[0]);
 | |
| }
 | |
| static void bnx2x_init_tx_rings(struct bnx2x *bp)
 | |
| {
 | |
| 	int i;
 | |
| 	u8 cos;
 | |
| 
 | |
| 	for_each_eth_queue(bp, i)
 | |
| 		for_each_cos_in_tx_queue(&bp->fp[i], cos)
 | |
| 			bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[cos]);
 | |
| }
 | |
| 
 | |
| void bnx2x_nic_init_cnic(struct bnx2x *bp)
 | |
| {
 | |
| 	if (!NO_FCOE(bp))
 | |
| 		bnx2x_init_fcoe_fp(bp);
 | |
| 
 | |
| 	bnx2x_init_sb(bp, bp->cnic_sb_mapping,
 | |
| 		      BNX2X_VF_ID_INVALID, false,
 | |
| 		      bnx2x_cnic_fw_sb_id(bp), bnx2x_cnic_igu_sb_id(bp));
 | |
| 
 | |
| 	/* ensure status block indices were read */
 | |
| 	rmb();
 | |
| 	bnx2x_init_rx_rings_cnic(bp);
 | |
| 	bnx2x_init_tx_rings_cnic(bp);
 | |
| 
 | |
| 	/* flush all */
 | |
| 	mb();
 | |
| 	mmiowb();
 | |
| }
 | |
| 
 | |
| void bnx2x_nic_init(struct bnx2x *bp, u32 load_code)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for_each_eth_queue(bp, i)
 | |
| 		bnx2x_init_eth_fp(bp, i);
 | |
| 
 | |
| 	/* ensure status block indices were read */
 | |
| 	rmb();
 | |
| 	bnx2x_init_rx_rings(bp);
 | |
| 	bnx2x_init_tx_rings(bp);
 | |
| 
 | |
| 	if (IS_VF(bp))
 | |
| 		return;
 | |
| 
 | |
| 	/* Initialize MOD_ABS interrupts */
 | |
| 	bnx2x_init_mod_abs_int(bp, &bp->link_vars, bp->common.chip_id,
 | |
| 			       bp->common.shmem_base, bp->common.shmem2_base,
 | |
| 			       BP_PORT(bp));
 | |
| 
 | |
| 	bnx2x_init_def_sb(bp);
 | |
| 	bnx2x_update_dsb_idx(bp);
 | |
| 	bnx2x_init_sp_ring(bp);
 | |
| 	bnx2x_init_eq_ring(bp);
 | |
| 	bnx2x_init_internal(bp, load_code);
 | |
| 	bnx2x_pf_init(bp);
 | |
| 	bnx2x_stats_init(bp);
 | |
| 
 | |
| 	/* flush all before enabling interrupts */
 | |
| 	mb();
 | |
| 	mmiowb();
 | |
| 
 | |
| 	bnx2x_int_enable(bp);
 | |
| 
 | |
| 	/* Check for SPIO5 */
 | |
| 	bnx2x_attn_int_deasserted0(bp,
 | |
| 		REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + BP_PORT(bp)*4) &
 | |
| 				   AEU_INPUTS_ATTN_BITS_SPIO5);
 | |
| }
 | |
| 
 | |
| /* end of nic init */
 | |
| 
 | |
| /*
 | |
|  * gzip service functions
 | |
|  */
 | |
| 
 | |
| static int bnx2x_gunzip_init(struct bnx2x *bp)
 | |
| {
 | |
| 	bp->gunzip_buf = dma_alloc_coherent(&bp->pdev->dev, FW_BUF_SIZE,
 | |
| 					    &bp->gunzip_mapping, GFP_KERNEL);
 | |
| 	if (bp->gunzip_buf  == NULL)
 | |
| 		goto gunzip_nomem1;
 | |
| 
 | |
| 	bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL);
 | |
| 	if (bp->strm  == NULL)
 | |
| 		goto gunzip_nomem2;
 | |
| 
 | |
| 	bp->strm->workspace = vmalloc(zlib_inflate_workspacesize());
 | |
| 	if (bp->strm->workspace == NULL)
 | |
| 		goto gunzip_nomem3;
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| gunzip_nomem3:
 | |
| 	kfree(bp->strm);
 | |
| 	bp->strm = NULL;
 | |
| 
 | |
| gunzip_nomem2:
 | |
| 	dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
 | |
| 			  bp->gunzip_mapping);
 | |
| 	bp->gunzip_buf = NULL;
 | |
| 
 | |
| gunzip_nomem1:
 | |
| 	BNX2X_ERR("Cannot allocate firmware buffer for un-compression\n");
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| static void bnx2x_gunzip_end(struct bnx2x *bp)
 | |
| {
 | |
| 	if (bp->strm) {
 | |
| 		vfree(bp->strm->workspace);
 | |
| 		kfree(bp->strm);
 | |
| 		bp->strm = NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (bp->gunzip_buf) {
 | |
| 		dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
 | |
| 				  bp->gunzip_mapping);
 | |
| 		bp->gunzip_buf = NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len)
 | |
| {
 | |
| 	int n, rc;
 | |
| 
 | |
| 	/* check gzip header */
 | |
| 	if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED)) {
 | |
| 		BNX2X_ERR("Bad gzip header\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	n = 10;
 | |
| 
 | |
| #define FNAME				0x8
 | |
| 
 | |
| 	if (zbuf[3] & FNAME)
 | |
| 		while ((zbuf[n++] != 0) && (n < len));
 | |
| 
 | |
| 	bp->strm->next_in = (typeof(bp->strm->next_in))zbuf + n;
 | |
| 	bp->strm->avail_in = len - n;
 | |
| 	bp->strm->next_out = bp->gunzip_buf;
 | |
| 	bp->strm->avail_out = FW_BUF_SIZE;
 | |
| 
 | |
| 	rc = zlib_inflateInit2(bp->strm, -MAX_WBITS);
 | |
| 	if (rc != Z_OK)
 | |
| 		return rc;
 | |
| 
 | |
| 	rc = zlib_inflate(bp->strm, Z_FINISH);
 | |
| 	if ((rc != Z_OK) && (rc != Z_STREAM_END))
 | |
| 		netdev_err(bp->dev, "Firmware decompression error: %s\n",
 | |
| 			   bp->strm->msg);
 | |
| 
 | |
| 	bp->gunzip_outlen = (FW_BUF_SIZE - bp->strm->avail_out);
 | |
| 	if (bp->gunzip_outlen & 0x3)
 | |
| 		netdev_err(bp->dev,
 | |
| 			   "Firmware decompression error: gunzip_outlen (%d) not aligned\n",
 | |
| 				bp->gunzip_outlen);
 | |
| 	bp->gunzip_outlen >>= 2;
 | |
| 
 | |
| 	zlib_inflateEnd(bp->strm);
 | |
| 
 | |
| 	if (rc == Z_STREAM_END)
 | |
| 		return 0;
 | |
| 
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| /* nic load/unload */
 | |
| 
 | |
| /*
 | |
|  * General service functions
 | |
|  */
 | |
| 
 | |
| /* send a NIG loopback debug packet */
 | |
| static void bnx2x_lb_pckt(struct bnx2x *bp)
 | |
| {
 | |
| 	u32 wb_write[3];
 | |
| 
 | |
| 	/* Ethernet source and destination addresses */
 | |
| 	wb_write[0] = 0x55555555;
 | |
| 	wb_write[1] = 0x55555555;
 | |
| 	wb_write[2] = 0x20;		/* SOP */
 | |
| 	REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
 | |
| 
 | |
| 	/* NON-IP protocol */
 | |
| 	wb_write[0] = 0x09000000;
 | |
| 	wb_write[1] = 0x55555555;
 | |
| 	wb_write[2] = 0x10;		/* EOP, eop_bvalid = 0 */
 | |
| 	REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
 | |
| }
 | |
| 
 | |
| /* some of the internal memories
 | |
|  * are not directly readable from the driver
 | |
|  * to test them we send debug packets
 | |
|  */
 | |
| static int bnx2x_int_mem_test(struct bnx2x *bp)
 | |
| {
 | |
| 	int factor;
 | |
| 	int count, i;
 | |
| 	u32 val = 0;
 | |
| 
 | |
| 	if (CHIP_REV_IS_FPGA(bp))
 | |
| 		factor = 120;
 | |
| 	else if (CHIP_REV_IS_EMUL(bp))
 | |
| 		factor = 200;
 | |
| 	else
 | |
| 		factor = 1;
 | |
| 
 | |
| 	/* Disable inputs of parser neighbor blocks */
 | |
| 	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
 | |
| 	REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
 | |
| 	REG_WR(bp, CFC_REG_DEBUG0, 0x1);
 | |
| 	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
 | |
| 
 | |
| 	/*  Write 0 to parser credits for CFC search request */
 | |
| 	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
 | |
| 
 | |
| 	/* send Ethernet packet */
 | |
| 	bnx2x_lb_pckt(bp);
 | |
| 
 | |
| 	/* TODO do i reset NIG statistic? */
 | |
| 	/* Wait until NIG register shows 1 packet of size 0x10 */
 | |
| 	count = 1000 * factor;
 | |
| 	while (count) {
 | |
| 
 | |
| 		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
 | |
| 		val = *bnx2x_sp(bp, wb_data[0]);
 | |
| 		if (val == 0x10)
 | |
| 			break;
 | |
| 
 | |
| 		msleep(10);
 | |
| 		count--;
 | |
| 	}
 | |
| 	if (val != 0x10) {
 | |
| 		BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	/* Wait until PRS register shows 1 packet */
 | |
| 	count = 1000 * factor;
 | |
| 	while (count) {
 | |
| 		val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
 | |
| 		if (val == 1)
 | |
| 			break;
 | |
| 
 | |
| 		msleep(10);
 | |
| 		count--;
 | |
| 	}
 | |
| 	if (val != 0x1) {
 | |
| 		BNX2X_ERR("PRS timeout val = 0x%x\n", val);
 | |
| 		return -2;
 | |
| 	}
 | |
| 
 | |
| 	/* Reset and init BRB, PRS */
 | |
| 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
 | |
| 	msleep(50);
 | |
| 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
 | |
| 	msleep(50);
 | |
| 	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
 | |
| 	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
 | |
| 
 | |
| 	DP(NETIF_MSG_HW, "part2\n");
 | |
| 
 | |
| 	/* Disable inputs of parser neighbor blocks */
 | |
| 	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
 | |
| 	REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
 | |
| 	REG_WR(bp, CFC_REG_DEBUG0, 0x1);
 | |
| 	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
 | |
| 
 | |
| 	/* Write 0 to parser credits for CFC search request */
 | |
| 	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
 | |
| 
 | |
| 	/* send 10 Ethernet packets */
 | |
| 	for (i = 0; i < 10; i++)
 | |
| 		bnx2x_lb_pckt(bp);
 | |
| 
 | |
| 	/* Wait until NIG register shows 10 + 1
 | |
| 	   packets of size 11*0x10 = 0xb0 */
 | |
| 	count = 1000 * factor;
 | |
| 	while (count) {
 | |
| 
 | |
| 		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
 | |
| 		val = *bnx2x_sp(bp, wb_data[0]);
 | |
| 		if (val == 0xb0)
 | |
| 			break;
 | |
| 
 | |
| 		msleep(10);
 | |
| 		count--;
 | |
| 	}
 | |
| 	if (val != 0xb0) {
 | |
| 		BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
 | |
| 		return -3;
 | |
| 	}
 | |
| 
 | |
| 	/* Wait until PRS register shows 2 packets */
 | |
| 	val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
 | |
| 	if (val != 2)
 | |
| 		BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
 | |
| 
 | |
| 	/* Write 1 to parser credits for CFC search request */
 | |
| 	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
 | |
| 
 | |
| 	/* Wait until PRS register shows 3 packets */
 | |
| 	msleep(10 * factor);
 | |
| 	/* Wait until NIG register shows 1 packet of size 0x10 */
 | |
| 	val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
 | |
| 	if (val != 3)
 | |
| 		BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
 | |
| 
 | |
| 	/* clear NIG EOP FIFO */
 | |
| 	for (i = 0; i < 11; i++)
 | |
| 		REG_RD(bp, NIG_REG_INGRESS_EOP_LB_FIFO);
 | |
| 	val = REG_RD(bp, NIG_REG_INGRESS_EOP_LB_EMPTY);
 | |
| 	if (val != 1) {
 | |
| 		BNX2X_ERR("clear of NIG failed\n");
 | |
| 		return -4;
 | |
| 	}
 | |
| 
 | |
| 	/* Reset and init BRB, PRS, NIG */
 | |
| 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
 | |
| 	msleep(50);
 | |
| 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
 | |
| 	msleep(50);
 | |
| 	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
 | |
| 	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
 | |
| 	if (!CNIC_SUPPORT(bp))
 | |
| 		/* set NIC mode */
 | |
| 		REG_WR(bp, PRS_REG_NIC_MODE, 1);
 | |
| 
 | |
| 	/* Enable inputs of parser neighbor blocks */
 | |
| 	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x7fffffff);
 | |
| 	REG_WR(bp, TCM_REG_PRS_IFEN, 0x1);
 | |
| 	REG_WR(bp, CFC_REG_DEBUG0, 0x0);
 | |
| 	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x1);
 | |
| 
 | |
| 	DP(NETIF_MSG_HW, "done\n");
 | |
| 
 | |
| 	return 0; /* OK */
 | |
| }
 | |
| 
 | |
| static void bnx2x_enable_blocks_attention(struct bnx2x *bp)
 | |
| {
 | |
| 	u32 val;
 | |
| 
 | |
| 	REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
 | |
| 	if (!CHIP_IS_E1x(bp))
 | |
| 		REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0x40);
 | |
| 	else
 | |
| 		REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0);
 | |
| 	REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
 | |
| 	REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
 | |
| 	/*
 | |
| 	 * mask read length error interrupts in brb for parser
 | |
| 	 * (parsing unit and 'checksum and crc' unit)
 | |
| 	 * these errors are legal (PU reads fixed length and CAC can cause
 | |
| 	 * read length error on truncated packets)
 | |
| 	 */
 | |
| 	REG_WR(bp, BRB1_REG_BRB1_INT_MASK, 0xFC00);
 | |
| 	REG_WR(bp, QM_REG_QM_INT_MASK, 0);
 | |
| 	REG_WR(bp, TM_REG_TM_INT_MASK, 0);
 | |
| 	REG_WR(bp, XSDM_REG_XSDM_INT_MASK_0, 0);
 | |
| 	REG_WR(bp, XSDM_REG_XSDM_INT_MASK_1, 0);
 | |
| 	REG_WR(bp, XCM_REG_XCM_INT_MASK, 0);
 | |
| /*	REG_WR(bp, XSEM_REG_XSEM_INT_MASK_0, 0); */
 | |
| /*	REG_WR(bp, XSEM_REG_XSEM_INT_MASK_1, 0); */
 | |
| 	REG_WR(bp, USDM_REG_USDM_INT_MASK_0, 0);
 | |
| 	REG_WR(bp, USDM_REG_USDM_INT_MASK_1, 0);
 | |
| 	REG_WR(bp, UCM_REG_UCM_INT_MASK, 0);
 | |
| /*	REG_WR(bp, USEM_REG_USEM_INT_MASK_0, 0); */
 | |
| /*	REG_WR(bp, USEM_REG_USEM_INT_MASK_1, 0); */
 | |
| 	REG_WR(bp, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
 | |
| 	REG_WR(bp, CSDM_REG_CSDM_INT_MASK_0, 0);
 | |
| 	REG_WR(bp, CSDM_REG_CSDM_INT_MASK_1, 0);
 | |
| 	REG_WR(bp, CCM_REG_CCM_INT_MASK, 0);
 | |
| /*	REG_WR(bp, CSEM_REG_CSEM_INT_MASK_0, 0); */
 | |
| /*	REG_WR(bp, CSEM_REG_CSEM_INT_MASK_1, 0); */
 | |
| 
 | |
| 	val = PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT  |
 | |
| 		PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF |
 | |
| 		PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN;
 | |
| 	if (!CHIP_IS_E1x(bp))
 | |
| 		val |= PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED |
 | |
| 			PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED;
 | |
| 	REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, val);
 | |
| 
 | |
| 	REG_WR(bp, TSDM_REG_TSDM_INT_MASK_0, 0);
 | |
| 	REG_WR(bp, TSDM_REG_TSDM_INT_MASK_1, 0);
 | |
| 	REG_WR(bp, TCM_REG_TCM_INT_MASK, 0);
 | |
| /*	REG_WR(bp, TSEM_REG_TSEM_INT_MASK_0, 0); */
 | |
| 
 | |
| 	if (!CHIP_IS_E1x(bp))
 | |
| 		/* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
 | |
| 		REG_WR(bp, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
 | |
| 
 | |
| 	REG_WR(bp, CDU_REG_CDU_INT_MASK, 0);
 | |
| 	REG_WR(bp, DMAE_REG_DMAE_INT_MASK, 0);
 | |
| /*	REG_WR(bp, MISC_REG_MISC_INT_MASK, 0); */
 | |
| 	REG_WR(bp, PBF_REG_PBF_INT_MASK, 0x18);		/* bit 3,4 masked */
 | |
| }
 | |
| 
 | |
| static void bnx2x_reset_common(struct bnx2x *bp)
 | |
| {
 | |
| 	u32 val = 0x1400;
 | |
| 
 | |
| 	/* reset_common */
 | |
| 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
 | |
| 	       0xd3ffff7f);
 | |
| 
 | |
| 	if (CHIP_IS_E3(bp)) {
 | |
| 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
 | |
| 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
 | |
| 	}
 | |
| 
 | |
| 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, val);
 | |
| }
 | |
| 
 | |
| static void bnx2x_setup_dmae(struct bnx2x *bp)
 | |
| {
 | |
| 	bp->dmae_ready = 0;
 | |
| 	spin_lock_init(&bp->dmae_lock);
 | |
| }
 | |
| 
 | |
| static void bnx2x_init_pxp(struct bnx2x *bp)
 | |
| {
 | |
| 	u16 devctl;
 | |
| 	int r_order, w_order;
 | |
| 
 | |
| 	pcie_capability_read_word(bp->pdev, PCI_EXP_DEVCTL, &devctl);
 | |
| 	DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl);
 | |
| 	w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
 | |
| 	if (bp->mrrs == -1)
 | |
| 		r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12);
 | |
| 	else {
 | |
| 		DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs);
 | |
| 		r_order = bp->mrrs;
 | |
| 	}
 | |
| 
 | |
| 	bnx2x_init_pxp_arb(bp, r_order, w_order);
 | |
| }
 | |
| 
 | |
| static void bnx2x_setup_fan_failure_detection(struct bnx2x *bp)
 | |
| {
 | |
| 	int is_required;
 | |
| 	u32 val;
 | |
| 	int port;
 | |
| 
 | |
| 	if (BP_NOMCP(bp))
 | |
| 		return;
 | |
| 
 | |
| 	is_required = 0;
 | |
| 	val = SHMEM_RD(bp, dev_info.shared_hw_config.config2) &
 | |
| 	      SHARED_HW_CFG_FAN_FAILURE_MASK;
 | |
| 
 | |
| 	if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED)
 | |
| 		is_required = 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * The fan failure mechanism is usually related to the PHY type since
 | |
| 	 * the power consumption of the board is affected by the PHY. Currently,
 | |
| 	 * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
 | |
| 	 */
 | |
| 	else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE)
 | |
| 		for (port = PORT_0; port < PORT_MAX; port++) {
 | |
| 			is_required |=
 | |
| 				bnx2x_fan_failure_det_req(
 | |
| 					bp,
 | |
| 					bp->common.shmem_base,
 | |
| 					bp->common.shmem2_base,
 | |
| 					port);
 | |
| 		}
 | |
| 
 | |
| 	DP(NETIF_MSG_HW, "fan detection setting: %d\n", is_required);
 | |
| 
 | |
| 	if (is_required == 0)
 | |
| 		return;
 | |
| 
 | |
| 	/* Fan failure is indicated by SPIO 5 */
 | |
| 	bnx2x_set_spio(bp, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z);
 | |
| 
 | |
| 	/* set to active low mode */
 | |
| 	val = REG_RD(bp, MISC_REG_SPIO_INT);
 | |
| 	val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS);
 | |
| 	REG_WR(bp, MISC_REG_SPIO_INT, val);
 | |
| 
 | |
| 	/* enable interrupt to signal the IGU */
 | |
| 	val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
 | |
| 	val |= MISC_SPIO_SPIO5;
 | |
| 	REG_WR(bp, MISC_REG_SPIO_EVENT_EN, val);
 | |
| }
 | |
| 
 | |
| void bnx2x_pf_disable(struct bnx2x *bp)
 | |
| {
 | |
| 	u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
 | |
| 	val &= ~IGU_PF_CONF_FUNC_EN;
 | |
| 
 | |
| 	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
 | |
| 	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
 | |
| 	REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 0);
 | |
| }
 | |
| 
 | |
| static void bnx2x__common_init_phy(struct bnx2x *bp)
 | |
| {
 | |
| 	u32 shmem_base[2], shmem2_base[2];
 | |
| 	/* Avoid common init in case MFW supports LFA */
 | |
| 	if (SHMEM2_RD(bp, size) >
 | |
| 	    (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
 | |
| 		return;
 | |
| 	shmem_base[0] =  bp->common.shmem_base;
 | |
| 	shmem2_base[0] = bp->common.shmem2_base;
 | |
| 	if (!CHIP_IS_E1x(bp)) {
 | |
| 		shmem_base[1] =
 | |
| 			SHMEM2_RD(bp, other_shmem_base_addr);
 | |
| 		shmem2_base[1] =
 | |
| 			SHMEM2_RD(bp, other_shmem2_base_addr);
 | |
| 	}
 | |
| 	bnx2x_acquire_phy_lock(bp);
 | |
| 	bnx2x_common_init_phy(bp, shmem_base, shmem2_base,
 | |
| 			      bp->common.chip_id);
 | |
| 	bnx2x_release_phy_lock(bp);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * bnx2x_init_hw_common - initialize the HW at the COMMON phase.
 | |
|  *
 | |
|  * @bp:		driver handle
 | |
|  */
 | |
| static int bnx2x_init_hw_common(struct bnx2x *bp)
 | |
| {
 | |
| 	u32 val;
 | |
| 
 | |
| 	DP(NETIF_MSG_HW, "starting common init  func %d\n", BP_ABS_FUNC(bp));
 | |
| 
 | |
| 	/*
 | |
| 	 * take the RESET lock to protect undi_unload flow from accessing
 | |
| 	 * registers while we're resetting the chip
 | |
| 	 */
 | |
| 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
 | |
| 
 | |
| 	bnx2x_reset_common(bp);
 | |
| 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0xffffffff);
 | |
| 
 | |
| 	val = 0xfffc;
 | |
| 	if (CHIP_IS_E3(bp)) {
 | |
| 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
 | |
| 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
 | |
| 	}
 | |
| 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, val);
 | |
| 
 | |
| 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
 | |
| 
 | |
| 	bnx2x_init_block(bp, BLOCK_MISC, PHASE_COMMON);
 | |
| 
 | |
| 	if (!CHIP_IS_E1x(bp)) {
 | |
| 		u8 abs_func_id;
 | |
| 
 | |
| 		/**
 | |
| 		 * 4-port mode or 2-port mode we need to turn of master-enable
 | |
| 		 * for everyone, after that, turn it back on for self.
 | |
| 		 * so, we disregard multi-function or not, and always disable
 | |
| 		 * for all functions on the given path, this means 0,2,4,6 for
 | |
| 		 * path 0 and 1,3,5,7 for path 1
 | |
| 		 */
 | |
| 		for (abs_func_id = BP_PATH(bp);
 | |
| 		     abs_func_id < E2_FUNC_MAX*2; abs_func_id += 2) {
 | |
| 			if (abs_func_id == BP_ABS_FUNC(bp)) {
 | |
| 				REG_WR(bp,
 | |
| 				    PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER,
 | |
| 				    1);
 | |
| 				continue;
 | |
| 			}
 | |
| 
 | |
| 			bnx2x_pretend_func(bp, abs_func_id);
 | |
| 			/* clear pf enable */
 | |
| 			bnx2x_pf_disable(bp);
 | |
| 			bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	bnx2x_init_block(bp, BLOCK_PXP, PHASE_COMMON);
 | |
| 	if (CHIP_IS_E1(bp)) {
 | |
| 		/* enable HW interrupt from PXP on USDM overflow
 | |
| 		   bit 16 on INT_MASK_0 */
 | |
| 		REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
 | |
| 	}
 | |
| 
 | |
| 	bnx2x_init_block(bp, BLOCK_PXP2, PHASE_COMMON);
 | |
| 	bnx2x_init_pxp(bp);
 | |
| 
 | |
| #ifdef __BIG_ENDIAN
 | |
| 	REG_WR(bp, PXP2_REG_RQ_QM_ENDIAN_M, 1);
 | |
| 	REG_WR(bp, PXP2_REG_RQ_TM_ENDIAN_M, 1);
 | |
| 	REG_WR(bp, PXP2_REG_RQ_SRC_ENDIAN_M, 1);
 | |
| 	REG_WR(bp, PXP2_REG_RQ_CDU_ENDIAN_M, 1);
 | |
| 	REG_WR(bp, PXP2_REG_RQ_DBG_ENDIAN_M, 1);
 | |
| 	/* make sure this value is 0 */
 | |
| 	REG_WR(bp, PXP2_REG_RQ_HC_ENDIAN_M, 0);
 | |
| 
 | |
| /*	REG_WR(bp, PXP2_REG_RD_PBF_SWAP_MODE, 1); */
 | |
| 	REG_WR(bp, PXP2_REG_RD_QM_SWAP_MODE, 1);
 | |
| 	REG_WR(bp, PXP2_REG_RD_TM_SWAP_MODE, 1);
 | |
| 	REG_WR(bp, PXP2_REG_RD_SRC_SWAP_MODE, 1);
 | |
| 	REG_WR(bp, PXP2_REG_RD_CDURD_SWAP_MODE, 1);
 | |
| #endif
 | |
| 
 | |
| 	bnx2x_ilt_init_page_size(bp, INITOP_SET);
 | |
| 
 | |
| 	if (CHIP_REV_IS_FPGA(bp) && CHIP_IS_E1H(bp))
 | |
| 		REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
 | |
| 
 | |
| 	/* let the HW do it's magic ... */
 | |
| 	msleep(100);
 | |
| 	/* finish PXP init */
 | |
| 	val = REG_RD(bp, PXP2_REG_RQ_CFG_DONE);
 | |
| 	if (val != 1) {
 | |
| 		BNX2X_ERR("PXP2 CFG failed\n");
 | |
| 		return -EBUSY;
 | |
| 	}
 | |
| 	val = REG_RD(bp, PXP2_REG_RD_INIT_DONE);
 | |
| 	if (val != 1) {
 | |
| 		BNX2X_ERR("PXP2 RD_INIT failed\n");
 | |
| 		return -EBUSY;
 | |
| 	}
 | |
| 
 | |
| 	/* Timers bug workaround E2 only. We need to set the entire ILT to
 | |
| 	 * have entries with value "0" and valid bit on.
 | |
| 	 * This needs to be done by the first PF that is loaded in a path
 | |
| 	 * (i.e. common phase)
 | |
| 	 */
 | |
| 	if (!CHIP_IS_E1x(bp)) {
 | |
| /* In E2 there is a bug in the timers block that can cause function 6 / 7
 | |
|  * (i.e. vnic3) to start even if it is marked as "scan-off".
 | |
|  * This occurs when a different function (func2,3) is being marked
 | |
|  * as "scan-off". Real-life scenario for example: if a driver is being
 | |
|  * load-unloaded while func6,7 are down. This will cause the timer to access
 | |
|  * the ilt, translate to a logical address and send a request to read/write.
 | |
|  * Since the ilt for the function that is down is not valid, this will cause
 | |
|  * a translation error which is unrecoverable.
 | |
|  * The Workaround is intended to make sure that when this happens nothing fatal
 | |
|  * will occur. The workaround:
 | |
|  *	1.  First PF driver which loads on a path will:
 | |
|  *		a.  After taking the chip out of reset, by using pretend,
 | |
|  *		    it will write "0" to the following registers of
 | |
|  *		    the other vnics.
 | |
|  *		    REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
 | |
|  *		    REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
 | |
|  *		    REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
 | |
|  *		    And for itself it will write '1' to
 | |
|  *		    PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
 | |
|  *		    dmae-operations (writing to pram for example.)
 | |
|  *		    note: can be done for only function 6,7 but cleaner this
 | |
|  *			  way.
 | |
|  *		b.  Write zero+valid to the entire ILT.
 | |
|  *		c.  Init the first_timers_ilt_entry, last_timers_ilt_entry of
 | |
|  *		    VNIC3 (of that port). The range allocated will be the
 | |
|  *		    entire ILT. This is needed to prevent  ILT range error.
 | |
|  *	2.  Any PF driver load flow:
 | |
|  *		a.  ILT update with the physical addresses of the allocated
 | |
|  *		    logical pages.
 | |
|  *		b.  Wait 20msec. - note that this timeout is needed to make
 | |
|  *		    sure there are no requests in one of the PXP internal
 | |
|  *		    queues with "old" ILT addresses.
 | |
|  *		c.  PF enable in the PGLC.
 | |
|  *		d.  Clear the was_error of the PF in the PGLC. (could have
 | |
|  *		    occurred while driver was down)
 | |
|  *		e.  PF enable in the CFC (WEAK + STRONG)
 | |
|  *		f.  Timers scan enable
 | |
|  *	3.  PF driver unload flow:
 | |
|  *		a.  Clear the Timers scan_en.
 | |
|  *		b.  Polling for scan_on=0 for that PF.
 | |
|  *		c.  Clear the PF enable bit in the PXP.
 | |
|  *		d.  Clear the PF enable in the CFC (WEAK + STRONG)
 | |
|  *		e.  Write zero+valid to all ILT entries (The valid bit must
 | |
|  *		    stay set)
 | |
|  *		f.  If this is VNIC 3 of a port then also init
 | |
|  *		    first_timers_ilt_entry to zero and last_timers_ilt_entry
 | |
|  *		    to the last enrty in the ILT.
 | |
|  *
 | |
|  *	Notes:
 | |
|  *	Currently the PF error in the PGLC is non recoverable.
 | |
|  *	In the future the there will be a recovery routine for this error.
 | |
|  *	Currently attention is masked.
 | |
|  *	Having an MCP lock on the load/unload process does not guarantee that
 | |
|  *	there is no Timer disable during Func6/7 enable. This is because the
 | |
|  *	Timers scan is currently being cleared by the MCP on FLR.
 | |
|  *	Step 2.d can be done only for PF6/7 and the driver can also check if
 | |
|  *	there is error before clearing it. But the flow above is simpler and
 | |
|  *	more general.
 | |
|  *	All ILT entries are written by zero+valid and not just PF6/7
 | |
|  *	ILT entries since in the future the ILT entries allocation for
 | |
|  *	PF-s might be dynamic.
 | |
|  */
 | |
| 		struct ilt_client_info ilt_cli;
 | |
| 		struct bnx2x_ilt ilt;
 | |
| 		memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
 | |
| 		memset(&ilt, 0, sizeof(struct bnx2x_ilt));
 | |
| 
 | |
| 		/* initialize dummy TM client */
 | |
| 		ilt_cli.start = 0;
 | |
| 		ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
 | |
| 		ilt_cli.client_num = ILT_CLIENT_TM;
 | |
| 
 | |
| 		/* Step 1: set zeroes to all ilt page entries with valid bit on
 | |
| 		 * Step 2: set the timers first/last ilt entry to point
 | |
| 		 * to the entire range to prevent ILT range error for 3rd/4th
 | |
| 		 * vnic	(this code assumes existence of the vnic)
 | |
| 		 *
 | |
| 		 * both steps performed by call to bnx2x_ilt_client_init_op()
 | |
| 		 * with dummy TM client
 | |
| 		 *
 | |
| 		 * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
 | |
| 		 * and his brother are split registers
 | |
| 		 */
 | |
| 		bnx2x_pretend_func(bp, (BP_PATH(bp) + 6));
 | |
| 		bnx2x_ilt_client_init_op_ilt(bp, &ilt, &ilt_cli, INITOP_CLEAR);
 | |
| 		bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
 | |
| 
 | |
| 		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN);
 | |
| 		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN);
 | |
| 		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
 | |
| 	}
 | |
| 
 | |
| 	REG_WR(bp, PXP2_REG_RQ_DISABLE_INPUTS, 0);
 | |
| 	REG_WR(bp, PXP2_REG_RD_DISABLE_INPUTS, 0);
 | |
| 
 | |
| 	if (!CHIP_IS_E1x(bp)) {
 | |
| 		int factor = CHIP_REV_IS_EMUL(bp) ? 1000 :
 | |
| 				(CHIP_REV_IS_FPGA(bp) ? 400 : 0);
 | |
| 		bnx2x_init_block(bp, BLOCK_PGLUE_B, PHASE_COMMON);
 | |
| 
 | |
| 		bnx2x_init_block(bp, BLOCK_ATC, PHASE_COMMON);
 | |
| 
 | |
| 		/* let the HW do it's magic ... */
 | |
| 		do {
 | |
| 			msleep(200);
 | |
| 			val = REG_RD(bp, ATC_REG_ATC_INIT_DONE);
 | |
| 		} while (factor-- && (val != 1));
 | |
| 
 | |
| 		if (val != 1) {
 | |
| 			BNX2X_ERR("ATC_INIT failed\n");
 | |
| 			return -EBUSY;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	bnx2x_init_block(bp, BLOCK_DMAE, PHASE_COMMON);
 | |
| 
 | |
| 	bnx2x_iov_init_dmae(bp);
 | |
| 
 | |
| 	/* clean the DMAE memory */
 | |
| 	bp->dmae_ready = 1;
 | |
| 	bnx2x_init_fill(bp, TSEM_REG_PRAM, 0, 8, 1);
 | |
| 
 | |
| 	bnx2x_init_block(bp, BLOCK_TCM, PHASE_COMMON);
 | |
| 
 | |
| 	bnx2x_init_block(bp, BLOCK_UCM, PHASE_COMMON);
 | |
| 
 | |
| 	bnx2x_init_block(bp, BLOCK_CCM, PHASE_COMMON);
 | |
| 
 | |
| 	bnx2x_init_block(bp, BLOCK_XCM, PHASE_COMMON);
 | |
| 
 | |
| 	bnx2x_read_dmae(bp, XSEM_REG_PASSIVE_BUFFER, 3);
 | |
| 	bnx2x_read_dmae(bp, CSEM_REG_PASSIVE_BUFFER, 3);
 | |
| 	bnx2x_read_dmae(bp, TSEM_REG_PASSIVE_BUFFER, 3);
 | |
| 	bnx2x_read_dmae(bp, USEM_REG_PASSIVE_BUFFER, 3);
 | |
| 
 | |
| 	bnx2x_init_block(bp, BLOCK_QM, PHASE_COMMON);
 | |
| 
 | |
| 
 | |
| 	/* QM queues pointers table */
 | |
| 	bnx2x_qm_init_ptr_table(bp, bp->qm_cid_count, INITOP_SET);
 | |
| 
 | |
| 	/* soft reset pulse */
 | |
| 	REG_WR(bp, QM_REG_SOFT_RESET, 1);
 | |
| 	REG_WR(bp, QM_REG_SOFT_RESET, 0);
 | |
| 
 | |
| 	if (CNIC_SUPPORT(bp))
 | |
| 		bnx2x_init_block(bp, BLOCK_TM, PHASE_COMMON);
 | |
| 
 | |
| 	bnx2x_init_block(bp, BLOCK_DORQ, PHASE_COMMON);
 | |
| 	REG_WR(bp, DORQ_REG_DPM_CID_OFST, BNX2X_DB_SHIFT);
 | |
| 	if (!CHIP_REV_IS_SLOW(bp))
 | |
| 		/* enable hw interrupt from doorbell Q */
 | |
| 		REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
 | |
| 
 | |
| 	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
 | |
| 
 | |
| 	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
 | |
| 	REG_WR(bp, PRS_REG_A_PRSU_20, 0xf);
 | |
| 
 | |
| 	if (!CHIP_IS_E1(bp))
 | |
| 		REG_WR(bp, PRS_REG_E1HOV_MODE, bp->path_has_ovlan);
 | |
| 
 | |
| 	if (!CHIP_IS_E1x(bp) && !CHIP_IS_E3B0(bp)) {
 | |
| 		if (IS_MF_AFEX(bp)) {
 | |
| 			/* configure that VNTag and VLAN headers must be
 | |
| 			 * received in afex mode
 | |
| 			 */
 | |
| 			REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC, 0xE);
 | |
| 			REG_WR(bp, PRS_REG_MUST_HAVE_HDRS, 0xA);
 | |
| 			REG_WR(bp, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
 | |
| 			REG_WR(bp, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
 | |
| 			REG_WR(bp, PRS_REG_TAG_LEN_0, 0x4);
 | |
| 		} else {
 | |
| 			/* Bit-map indicating which L2 hdrs may appear
 | |
| 			 * after the basic Ethernet header
 | |
| 			 */
 | |
| 			REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC,
 | |
| 			       bp->path_has_ovlan ? 7 : 6);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	bnx2x_init_block(bp, BLOCK_TSDM, PHASE_COMMON);
 | |
| 	bnx2x_init_block(bp, BLOCK_CSDM, PHASE_COMMON);
 | |
| 	bnx2x_init_block(bp, BLOCK_USDM, PHASE_COMMON);
 | |
| 	bnx2x_init_block(bp, BLOCK_XSDM, PHASE_COMMON);
 | |
| 
 | |
| 	if (!CHIP_IS_E1x(bp)) {
 | |
| 		/* reset VFC memories */
 | |
| 		REG_WR(bp, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
 | |
| 			   VFC_MEMORIES_RST_REG_CAM_RST |
 | |
| 			   VFC_MEMORIES_RST_REG_RAM_RST);
 | |
| 		REG_WR(bp, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
 | |
| 			   VFC_MEMORIES_RST_REG_CAM_RST |
 | |
| 			   VFC_MEMORIES_RST_REG_RAM_RST);
 | |
| 
 | |
| 		msleep(20);
 | |
| 	}
 | |
| 
 | |
| 	bnx2x_init_block(bp, BLOCK_TSEM, PHASE_COMMON);
 | |
| 	bnx2x_init_block(bp, BLOCK_USEM, PHASE_COMMON);
 | |
| 	bnx2x_init_block(bp, BLOCK_CSEM, PHASE_COMMON);
 | |
| 	bnx2x_init_block(bp, BLOCK_XSEM, PHASE_COMMON);
 | |
| 
 | |
| 	/* sync semi rtc */
 | |
| 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
 | |
| 	       0x80000000);
 | |
| 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
 | |
| 	       0x80000000);
 | |
| 
 | |
| 	bnx2x_init_block(bp, BLOCK_UPB, PHASE_COMMON);
 | |
| 	bnx2x_init_block(bp, BLOCK_XPB, PHASE_COMMON);
 | |
| 	bnx2x_init_block(bp, BLOCK_PBF, PHASE_COMMON);
 | |
| 
 | |
| 	if (!CHIP_IS_E1x(bp)) {
 | |
| 		if (IS_MF_AFEX(bp)) {
 | |
| 			/* configure that VNTag and VLAN headers must be
 | |
| 			 * sent in afex mode
 | |
| 			 */
 | |
| 			REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC, 0xE);
 | |
| 			REG_WR(bp, PBF_REG_MUST_HAVE_HDRS, 0xA);
 | |
| 			REG_WR(bp, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
 | |
| 			REG_WR(bp, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
 | |
| 			REG_WR(bp, PBF_REG_TAG_LEN_0, 0x4);
 | |
| 		} else {
 | |
| 			REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC,
 | |
| 			       bp->path_has_ovlan ? 7 : 6);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	REG_WR(bp, SRC_REG_SOFT_RST, 1);
 | |
| 
 | |
| 	bnx2x_init_block(bp, BLOCK_SRC, PHASE_COMMON);
 | |
| 
 | |
| 	if (CNIC_SUPPORT(bp)) {
 | |
| 		REG_WR(bp, SRC_REG_KEYSEARCH_0, 0x63285672);
 | |
| 		REG_WR(bp, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
 | |
| 		REG_WR(bp, SRC_REG_KEYSEARCH_2, 0x223aef9b);
 | |
| 		REG_WR(bp, SRC_REG_KEYSEARCH_3, 0x26001e3a);
 | |
| 		REG_WR(bp, SRC_REG_KEYSEARCH_4, 0x7ae91116);
 | |
| 		REG_WR(bp, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
 | |
| 		REG_WR(bp, SRC_REG_KEYSEARCH_6, 0x298d8adf);
 | |
| 		REG_WR(bp, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
 | |
| 		REG_WR(bp, SRC_REG_KEYSEARCH_8, 0x1830f82f);
 | |
| 		REG_WR(bp, SRC_REG_KEYSEARCH_9, 0x01e46be7);
 | |
| 	}
 | |
| 	REG_WR(bp, SRC_REG_SOFT_RST, 0);
 | |
| 
 | |
| 	if (sizeof(union cdu_context) != 1024)
 | |
| 		/* we currently assume that a context is 1024 bytes */
 | |
| 		dev_alert(&bp->pdev->dev,
 | |
| 			  "please adjust the size of cdu_context(%ld)\n",
 | |
| 			  (long)sizeof(union cdu_context));
 | |
| 
 | |
| 	bnx2x_init_block(bp, BLOCK_CDU, PHASE_COMMON);
 | |
| 	val = (4 << 24) + (0 << 12) + 1024;
 | |
| 	REG_WR(bp, CDU_REG_CDU_GLOBAL_PARAMS, val);
 | |
| 
 | |
| 	bnx2x_init_block(bp, BLOCK_CFC, PHASE_COMMON);
 | |
| 	REG_WR(bp, CFC_REG_INIT_REG, 0x7FF);
 | |
| 	/* enable context validation interrupt from CFC */
 | |
| 	REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
 | |
| 
 | |
| 	/* set the thresholds to prevent CFC/CDU race */
 | |
| 	REG_WR(bp, CFC_REG_DEBUG0, 0x20020000);
 | |
| 
 | |
| 	bnx2x_init_block(bp, BLOCK_HC, PHASE_COMMON);
 | |
| 
 | |
| 	if (!CHIP_IS_E1x(bp) && BP_NOMCP(bp))
 | |
| 		REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x36);
 | |
| 
 | |
| 	bnx2x_init_block(bp, BLOCK_IGU, PHASE_COMMON);
 | |
| 	bnx2x_init_block(bp, BLOCK_MISC_AEU, PHASE_COMMON);
 | |
| 
 | |
| 	/* Reset PCIE errors for debug */
 | |
| 	REG_WR(bp, 0x2814, 0xffffffff);
 | |
| 	REG_WR(bp, 0x3820, 0xffffffff);
 | |
| 
 | |
| 	if (!CHIP_IS_E1x(bp)) {
 | |
| 		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
 | |
| 			   (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
 | |
| 				PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
 | |
| 		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
 | |
| 			   (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
 | |
| 				PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
 | |
| 				PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
 | |
| 		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
 | |
| 			   (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
 | |
| 				PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
 | |
| 				PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
 | |
| 	}
 | |
| 
 | |
| 	bnx2x_init_block(bp, BLOCK_NIG, PHASE_COMMON);
 | |
| 	if (!CHIP_IS_E1(bp)) {
 | |
| 		/* in E3 this done in per-port section */
 | |
| 		if (!CHIP_IS_E3(bp))
 | |
| 			REG_WR(bp, NIG_REG_LLH_MF_MODE, IS_MF(bp));
 | |
| 	}
 | |
| 	if (CHIP_IS_E1H(bp))
 | |
| 		/* not applicable for E2 (and above ...) */
 | |
| 		REG_WR(bp, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(bp));
 | |
| 
 | |
| 	if (CHIP_REV_IS_SLOW(bp))
 | |
| 		msleep(200);
 | |
| 
 | |
| 	/* finish CFC init */
 | |
| 	val = reg_poll(bp, CFC_REG_LL_INIT_DONE, 1, 100, 10);
 | |
| 	if (val != 1) {
 | |
| 		BNX2X_ERR("CFC LL_INIT failed\n");
 | |
| 		return -EBUSY;
 | |
| 	}
 | |
| 	val = reg_poll(bp, CFC_REG_AC_INIT_DONE, 1, 100, 10);
 | |
| 	if (val != 1) {
 | |
| 		BNX2X_ERR("CFC AC_INIT failed\n");
 | |
| 		return -EBUSY;
 | |
| 	}
 | |
| 	val = reg_poll(bp, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
 | |
| 	if (val != 1) {
 | |
| 		BNX2X_ERR("CFC CAM_INIT failed\n");
 | |
| 		return -EBUSY;
 | |
| 	}
 | |
| 	REG_WR(bp, CFC_REG_DEBUG0, 0);
 | |
| 
 | |
| 	if (CHIP_IS_E1(bp)) {
 | |
| 		/* read NIG statistic
 | |
| 		   to see if this is our first up since powerup */
 | |
| 		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
 | |
| 		val = *bnx2x_sp(bp, wb_data[0]);
 | |
| 
 | |
| 		/* do internal memory self test */
 | |
| 		if ((val == 0) && bnx2x_int_mem_test(bp)) {
 | |
| 			BNX2X_ERR("internal mem self test failed\n");
 | |
| 			return -EBUSY;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	bnx2x_setup_fan_failure_detection(bp);
 | |
| 
 | |
| 	/* clear PXP2 attentions */
 | |
| 	REG_RD(bp, PXP2_REG_PXP2_INT_STS_CLR_0);
 | |
| 
 | |
| 	bnx2x_enable_blocks_attention(bp);
 | |
| 	bnx2x_enable_blocks_parity(bp);
 | |
| 
 | |
| 	if (!BP_NOMCP(bp)) {
 | |
| 		if (CHIP_IS_E1x(bp))
 | |
| 			bnx2x__common_init_phy(bp);
 | |
| 	} else
 | |
| 		BNX2X_ERR("Bootcode is missing - can not initialize link\n");
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase.
 | |
|  *
 | |
|  * @bp:		driver handle
 | |
|  */
 | |
| static int bnx2x_init_hw_common_chip(struct bnx2x *bp)
 | |
| {
 | |
| 	int rc = bnx2x_init_hw_common(bp);
 | |
| 
 | |
| 	if (rc)
 | |
| 		return rc;
 | |
| 
 | |
| 	/* In E2 2-PORT mode, same ext phy is used for the two paths */
 | |
| 	if (!BP_NOMCP(bp))
 | |
| 		bnx2x__common_init_phy(bp);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int bnx2x_init_hw_port(struct bnx2x *bp)
 | |
| {
 | |
| 	int port = BP_PORT(bp);
 | |
| 	int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
 | |
| 	u32 low, high;
 | |
| 	u32 val;
 | |
| 
 | |
| 
 | |
| 	DP(NETIF_MSG_HW, "starting port init  port %d\n", port);
 | |
| 
 | |
| 	REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
 | |
| 
 | |
| 	bnx2x_init_block(bp, BLOCK_MISC, init_phase);
 | |
| 	bnx2x_init_block(bp, BLOCK_PXP, init_phase);
 | |
| 	bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
 | |
| 
 | |
| 	/* Timers bug workaround: disables the pf_master bit in pglue at
 | |
| 	 * common phase, we need to enable it here before any dmae access are
 | |
| 	 * attempted. Therefore we manually added the enable-master to the
 | |
| 	 * port phase (it also happens in the function phase)
 | |
| 	 */
 | |
| 	if (!CHIP_IS_E1x(bp))
 | |
| 		REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
 | |
| 
 | |
| 	bnx2x_init_block(bp, BLOCK_ATC, init_phase);
 | |
| 	bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
 | |
| 	bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
 | |
| 	bnx2x_init_block(bp, BLOCK_QM, init_phase);
 | |
| 
 | |
| 	bnx2x_init_block(bp, BLOCK_TCM, init_phase);
 | |
| 	bnx2x_init_block(bp, BLOCK_UCM, init_phase);
 | |
| 	bnx2x_init_block(bp, BLOCK_CCM, init_phase);
 | |
| 	bnx2x_init_block(bp, BLOCK_XCM, init_phase);
 | |
| 
 | |
| 	/* QM cid (connection) count */
 | |
| 	bnx2x_qm_init_cid_count(bp, bp->qm_cid_count, INITOP_SET);
 | |
| 
 | |
| 	if (CNIC_SUPPORT(bp)) {
 | |
| 		bnx2x_init_block(bp, BLOCK_TM, init_phase);
 | |
| 		REG_WR(bp, TM_REG_LIN0_SCAN_TIME + port*4, 20);
 | |
| 		REG_WR(bp, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
 | |
| 	}
 | |
| 
 | |
| 	bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
 | |
| 
 | |
| 	bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
 | |
| 
 | |
| 	if (CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) {
 | |
| 
 | |
| 		if (IS_MF(bp))
 | |
| 			low = ((bp->flags & ONE_PORT_FLAG) ? 160 : 246);
 | |
| 		else if (bp->dev->mtu > 4096) {
 | |
| 			if (bp->flags & ONE_PORT_FLAG)
 | |
| 				low = 160;
 | |
| 			else {
 | |
| 				val = bp->dev->mtu;
 | |
| 				/* (24*1024 + val*4)/256 */
 | |
| 				low = 96 + (val/64) +
 | |
| 						((val % 64) ? 1 : 0);
 | |
| 			}
 | |
| 		} else
 | |
| 			low = ((bp->flags & ONE_PORT_FLAG) ? 80 : 160);
 | |
| 		high = low + 56;	/* 14*1024/256 */
 | |
| 		REG_WR(bp, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
 | |
| 		REG_WR(bp, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
 | |
| 	}
 | |
| 
 | |
| 	if (CHIP_MODE_IS_4_PORT(bp))
 | |
| 		REG_WR(bp, (BP_PORT(bp) ?
 | |
| 			    BRB1_REG_MAC_GUARANTIED_1 :
 | |
| 			    BRB1_REG_MAC_GUARANTIED_0), 40);
 | |
| 
 | |
| 
 | |
| 	bnx2x_init_block(bp, BLOCK_PRS, init_phase);
 | |
| 	if (CHIP_IS_E3B0(bp)) {
 | |
| 		if (IS_MF_AFEX(bp)) {
 | |
| 			/* configure headers for AFEX mode */
 | |
| 			REG_WR(bp, BP_PORT(bp) ?
 | |
| 			       PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
 | |
| 			       PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE);
 | |
| 			REG_WR(bp, BP_PORT(bp) ?
 | |
| 			       PRS_REG_HDRS_AFTER_TAG_0_PORT_1 :
 | |
| 			       PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6);
 | |
| 			REG_WR(bp, BP_PORT(bp) ?
 | |
| 			       PRS_REG_MUST_HAVE_HDRS_PORT_1 :
 | |
| 			       PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
 | |
| 		} else {
 | |
| 			/* Ovlan exists only if we are in multi-function +
 | |
| 			 * switch-dependent mode, in switch-independent there
 | |
| 			 * is no ovlan headers
 | |
| 			 */
 | |
| 			REG_WR(bp, BP_PORT(bp) ?
 | |
| 			       PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
 | |
| 			       PRS_REG_HDRS_AFTER_BASIC_PORT_0,
 | |
| 			       (bp->path_has_ovlan ? 7 : 6));
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
 | |
| 	bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
 | |
| 	bnx2x_init_block(bp, BLOCK_USDM, init_phase);
 | |
| 	bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
 | |
| 
 | |
| 	bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
 | |
| 	bnx2x_init_block(bp, BLOCK_USEM, init_phase);
 | |
| 	bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
 | |
| 	bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
 | |
| 
 | |
| 	bnx2x_init_block(bp, BLOCK_UPB, init_phase);
 | |
| 	bnx2x_init_block(bp, BLOCK_XPB, init_phase);
 | |
| 
 | |
| 	bnx2x_init_block(bp, BLOCK_PBF, init_phase);
 | |
| 
 | |
| 	if (CHIP_IS_E1x(bp)) {
 | |
| 		/* configure PBF to work without PAUSE mtu 9000 */
 | |
| 		REG_WR(bp, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
 | |
| 
 | |
| 		/* update threshold */
 | |
| 		REG_WR(bp, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
 | |
| 		/* update init credit */
 | |
| 		REG_WR(bp, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
 | |
| 
 | |
| 		/* probe changes */
 | |
| 		REG_WR(bp, PBF_REG_INIT_P0 + port*4, 1);
 | |
| 		udelay(50);
 | |
| 		REG_WR(bp, PBF_REG_INIT_P0 + port*4, 0);
 | |
| 	}
 | |
| 
 | |
| 	if (CNIC_SUPPORT(bp))
 | |
| 		bnx2x_init_block(bp, BLOCK_SRC, init_phase);
 | |
| 
 | |
| 	bnx2x_init_block(bp, BLOCK_CDU, init_phase);
 | |
| 	bnx2x_init_block(bp, BLOCK_CFC, init_phase);
 | |
| 
 | |
| 	if (CHIP_IS_E1(bp)) {
 | |
| 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
 | |
| 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
 | |
| 	}
 | |
| 	bnx2x_init_block(bp, BLOCK_HC, init_phase);
 | |
| 
 | |
| 	bnx2x_init_block(bp, BLOCK_IGU, init_phase);
 | |
| 
 | |
| 	bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
 | |
| 	/* init aeu_mask_attn_func_0/1:
 | |
| 	 *  - SF mode: bits 3-7 are masked. only bits 0-2 are in use
 | |
| 	 *  - MF mode: bit 3 is masked. bits 0-2 are in use as in SF
 | |
| 	 *             bits 4-7 are used for "per vn group attention" */
 | |
| 	val = IS_MF(bp) ? 0xF7 : 0x7;
 | |
| 	/* Enable DCBX attention for all but E1 */
 | |
| 	val |= CHIP_IS_E1(bp) ? 0 : 0x10;
 | |
| 	REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
 | |
| 
 | |
| 	bnx2x_init_block(bp, BLOCK_NIG, init_phase);
 | |
| 
 | |
| 	if (!CHIP_IS_E1x(bp)) {
 | |
| 		/* Bit-map indicating which L2 hdrs may appear after the
 | |
| 		 * basic Ethernet header
 | |
| 		 */
 | |
| 		if (IS_MF_AFEX(bp))
 | |
| 			REG_WR(bp, BP_PORT(bp) ?
 | |
| 			       NIG_REG_P1_HDRS_AFTER_BASIC :
 | |
| 			       NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
 | |
| 		else
 | |
| 			REG_WR(bp, BP_PORT(bp) ?
 | |
| 			       NIG_REG_P1_HDRS_AFTER_BASIC :
 | |
| 			       NIG_REG_P0_HDRS_AFTER_BASIC,
 | |
| 			       IS_MF_SD(bp) ? 7 : 6);
 | |
| 
 | |
| 		if (CHIP_IS_E3(bp))
 | |
| 			REG_WR(bp, BP_PORT(bp) ?
 | |
| 				   NIG_REG_LLH1_MF_MODE :
 | |
| 				   NIG_REG_LLH_MF_MODE, IS_MF(bp));
 | |
| 	}
 | |
| 	if (!CHIP_IS_E3(bp))
 | |
| 		REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
 | |
| 
 | |
| 	if (!CHIP_IS_E1(bp)) {
 | |
| 		/* 0x2 disable mf_ov, 0x1 enable */
 | |
| 		REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
 | |
| 		       (IS_MF_SD(bp) ? 0x1 : 0x2));
 | |
| 
 | |
| 		if (!CHIP_IS_E1x(bp)) {
 | |
| 			val = 0;
 | |
| 			switch (bp->mf_mode) {
 | |
| 			case MULTI_FUNCTION_SD:
 | |
| 				val = 1;
 | |
| 				break;
 | |
| 			case MULTI_FUNCTION_SI:
 | |
| 			case MULTI_FUNCTION_AFEX:
 | |
| 				val = 2;
 | |
| 				break;
 | |
| 			}
 | |
| 
 | |
| 			REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_CLS_TYPE :
 | |
| 						  NIG_REG_LLH0_CLS_TYPE), val);
 | |
| 		}
 | |
| 		{
 | |
| 			REG_WR(bp, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
 | |
| 			REG_WR(bp, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
 | |
| 			REG_WR(bp, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* If SPIO5 is set to generate interrupts, enable it for this port */
 | |
| 	val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
 | |
| 	if (val & MISC_SPIO_SPIO5) {
 | |
| 		u32 reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
 | |
| 				       MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
 | |
| 		val = REG_RD(bp, reg_addr);
 | |
| 		val |= AEU_INPUTS_ATTN_BITS_SPIO5;
 | |
| 		REG_WR(bp, reg_addr, val);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void bnx2x_ilt_wr(struct bnx2x *bp, u32 index, dma_addr_t addr)
 | |
| {
 | |
| 	int reg;
 | |
| 	u32 wb_write[2];
 | |
| 
 | |
| 	if (CHIP_IS_E1(bp))
 | |
| 		reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
 | |
| 	else
 | |
| 		reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
 | |
| 
 | |
| 	wb_write[0] = ONCHIP_ADDR1(addr);
 | |
| 	wb_write[1] = ONCHIP_ADDR2(addr);
 | |
| 	REG_WR_DMAE(bp, reg, wb_write, 2);
 | |
| }
 | |
| 
 | |
| void bnx2x_igu_clear_sb_gen(struct bnx2x *bp, u8 func, u8 idu_sb_id, bool is_pf)
 | |
| {
 | |
| 	u32 data, ctl, cnt = 100;
 | |
| 	u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
 | |
| 	u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
 | |
| 	u32 igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4;
 | |
| 	u32 sb_bit =  1 << (idu_sb_id%32);
 | |
| 	u32 func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
 | |
| 	u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
 | |
| 
 | |
| 	/* Not supported in BC mode */
 | |
| 	if (CHIP_INT_MODE_IS_BC(bp))
 | |
| 		return;
 | |
| 
 | |
| 	data = (IGU_USE_REGISTER_cstorm_type_0_sb_cleanup
 | |
| 			<< IGU_REGULAR_CLEANUP_TYPE_SHIFT)	|
 | |
| 		IGU_REGULAR_CLEANUP_SET				|
 | |
| 		IGU_REGULAR_BCLEANUP;
 | |
| 
 | |
| 	ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT		|
 | |
| 	      func_encode << IGU_CTRL_REG_FID_SHIFT		|
 | |
| 	      IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT;
 | |
| 
 | |
| 	DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
 | |
| 			 data, igu_addr_data);
 | |
| 	REG_WR(bp, igu_addr_data, data);
 | |
| 	mmiowb();
 | |
| 	barrier();
 | |
| 	DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
 | |
| 			  ctl, igu_addr_ctl);
 | |
| 	REG_WR(bp, igu_addr_ctl, ctl);
 | |
| 	mmiowb();
 | |
| 	barrier();
 | |
| 
 | |
| 	/* wait for clean up to finish */
 | |
| 	while (!(REG_RD(bp, igu_addr_ack) & sb_bit) && --cnt)
 | |
| 		msleep(20);
 | |
| 
 | |
| 
 | |
| 	if (!(REG_RD(bp, igu_addr_ack) & sb_bit)) {
 | |
| 		DP(NETIF_MSG_HW,
 | |
| 		   "Unable to finish IGU cleanup: idu_sb_id %d offset %d bit %d (cnt %d)\n",
 | |
| 			  idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void bnx2x_igu_clear_sb(struct bnx2x *bp, u8 idu_sb_id)
 | |
| {
 | |
| 	bnx2x_igu_clear_sb_gen(bp, BP_FUNC(bp), idu_sb_id, true /*PF*/);
 | |
| }
 | |
| 
 | |
| static void bnx2x_clear_func_ilt(struct bnx2x *bp, u32 func)
 | |
| {
 | |
| 	u32 i, base = FUNC_ILT_BASE(func);
 | |
| 	for (i = base; i < base + ILT_PER_FUNC; i++)
 | |
| 		bnx2x_ilt_wr(bp, i, 0);
 | |
| }
 | |
| 
 | |
| 
 | |
| static void bnx2x_init_searcher(struct bnx2x *bp)
 | |
| {
 | |
| 	int port = BP_PORT(bp);
 | |
| 	bnx2x_src_init_t2(bp, bp->t2, bp->t2_mapping, SRC_CONN_NUM);
 | |
| 	/* T1 hash bits value determines the T1 number of entries */
 | |
| 	REG_WR(bp, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS);
 | |
| }
 | |
| 
 | |
| static inline int bnx2x_func_switch_update(struct bnx2x *bp, int suspend)
 | |
| {
 | |
| 	int rc;
 | |
| 	struct bnx2x_func_state_params func_params = {NULL};
 | |
| 	struct bnx2x_func_switch_update_params *switch_update_params =
 | |
| 		&func_params.params.switch_update;
 | |
| 
 | |
| 	/* Prepare parameters for function state transitions */
 | |
| 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
 | |
| 	__set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
 | |
| 
 | |
| 	func_params.f_obj = &bp->func_obj;
 | |
| 	func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
 | |
| 
 | |
| 	/* Function parameters */
 | |
| 	switch_update_params->suspend = suspend;
 | |
| 
 | |
| 	rc = bnx2x_func_state_change(bp, &func_params);
 | |
| 
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| static int bnx2x_reset_nic_mode(struct bnx2x *bp)
 | |
| {
 | |
| 	int rc, i, port = BP_PORT(bp);
 | |
| 	int vlan_en = 0, mac_en[NUM_MACS];
 | |
| 
 | |
| 
 | |
| 	/* Close input from network */
 | |
| 	if (bp->mf_mode == SINGLE_FUNCTION) {
 | |
| 		bnx2x_set_rx_filter(&bp->link_params, 0);
 | |
| 	} else {
 | |
| 		vlan_en = REG_RD(bp, port ? NIG_REG_LLH1_FUNC_EN :
 | |
| 				   NIG_REG_LLH0_FUNC_EN);
 | |
| 		REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
 | |
| 			  NIG_REG_LLH0_FUNC_EN, 0);
 | |
| 		for (i = 0; i < NUM_MACS; i++) {
 | |
| 			mac_en[i] = REG_RD(bp, port ?
 | |
| 					     (NIG_REG_LLH1_FUNC_MEM_ENABLE +
 | |
| 					      4 * i) :
 | |
| 					     (NIG_REG_LLH0_FUNC_MEM_ENABLE +
 | |
| 					      4 * i));
 | |
| 			REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
 | |
| 					      4 * i) :
 | |
| 				  (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i), 0);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Close BMC to host */
 | |
| 	REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
 | |
| 	       NIG_REG_P1_TX_MNG_HOST_ENABLE, 0);
 | |
| 
 | |
| 	/* Suspend Tx switching to the PF. Completion of this ramrod
 | |
| 	 * further guarantees that all the packets of that PF / child
 | |
| 	 * VFs in BRB were processed by the Parser, so it is safe to
 | |
| 	 * change the NIC_MODE register.
 | |
| 	 */
 | |
| 	rc = bnx2x_func_switch_update(bp, 1);
 | |
| 	if (rc) {
 | |
| 		BNX2X_ERR("Can't suspend tx-switching!\n");
 | |
| 		return rc;
 | |
| 	}
 | |
| 
 | |
| 	/* Change NIC_MODE register */
 | |
| 	REG_WR(bp, PRS_REG_NIC_MODE, 0);
 | |
| 
 | |
| 	/* Open input from network */
 | |
| 	if (bp->mf_mode == SINGLE_FUNCTION) {
 | |
| 		bnx2x_set_rx_filter(&bp->link_params, 1);
 | |
| 	} else {
 | |
| 		REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
 | |
| 			  NIG_REG_LLH0_FUNC_EN, vlan_en);
 | |
| 		for (i = 0; i < NUM_MACS; i++) {
 | |
| 			REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
 | |
| 					      4 * i) :
 | |
| 				  (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i),
 | |
| 				  mac_en[i]);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Enable BMC to host */
 | |
| 	REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
 | |
| 	       NIG_REG_P1_TX_MNG_HOST_ENABLE, 1);
 | |
| 
 | |
| 	/* Resume Tx switching to the PF */
 | |
| 	rc = bnx2x_func_switch_update(bp, 0);
 | |
| 	if (rc) {
 | |
| 		BNX2X_ERR("Can't resume tx-switching!\n");
 | |
| 		return rc;
 | |
| 	}
 | |
| 
 | |
| 	DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int bnx2x_init_hw_func_cnic(struct bnx2x *bp)
 | |
| {
 | |
| 	int rc;
 | |
| 
 | |
| 	bnx2x_ilt_init_op_cnic(bp, INITOP_SET);
 | |
| 
 | |
| 	if (CONFIGURE_NIC_MODE(bp)) {
 | |
| 		/* Configrue searcher as part of function hw init */
 | |
| 		bnx2x_init_searcher(bp);
 | |
| 
 | |
| 		/* Reset NIC mode */
 | |
| 		rc = bnx2x_reset_nic_mode(bp);
 | |
| 		if (rc)
 | |
| 			BNX2X_ERR("Can't change NIC mode!\n");
 | |
| 		return rc;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int bnx2x_init_hw_func(struct bnx2x *bp)
 | |
| {
 | |
| 	int port = BP_PORT(bp);
 | |
| 	int func = BP_FUNC(bp);
 | |
| 	int init_phase = PHASE_PF0 + func;
 | |
| 	struct bnx2x_ilt *ilt = BP_ILT(bp);
 | |
| 	u16 cdu_ilt_start;
 | |
| 	u32 addr, val;
 | |
| 	u32 main_mem_base, main_mem_size, main_mem_prty_clr;
 | |
| 	int i, main_mem_width, rc;
 | |
| 
 | |
| 	DP(NETIF_MSG_HW, "starting func init  func %d\n", func);
 | |
| 
 | |
| 	/* FLR cleanup - hmmm */
 | |
| 	if (!CHIP_IS_E1x(bp)) {
 | |
| 		rc = bnx2x_pf_flr_clnup(bp);
 | |
| 		if (rc) {
 | |
| 			bnx2x_fw_dump(bp);
 | |
| 			return rc;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* set MSI reconfigure capability */
 | |
| 	if (bp->common.int_block == INT_BLOCK_HC) {
 | |
| 		addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
 | |
| 		val = REG_RD(bp, addr);
 | |
| 		val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
 | |
| 		REG_WR(bp, addr, val);
 | |
| 	}
 | |
| 
 | |
| 	bnx2x_init_block(bp, BLOCK_PXP, init_phase);
 | |
| 	bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
 | |
| 
 | |
| 	ilt = BP_ILT(bp);
 | |
| 	cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
 | |
| 
 | |
| 	if (IS_SRIOV(bp))
 | |
| 		cdu_ilt_start += BNX2X_FIRST_VF_CID/ILT_PAGE_CIDS;
 | |
| 	cdu_ilt_start = bnx2x_iov_init_ilt(bp, cdu_ilt_start);
 | |
| 
 | |
| 	/* since BNX2X_FIRST_VF_CID > 0 the PF L2 cids precedes
 | |
| 	 * those of the VFs, so start line should be reset
 | |
| 	 */
 | |
| 	cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
 | |
| 	for (i = 0; i < L2_ILT_LINES(bp); i++) {
 | |
| 		ilt->lines[cdu_ilt_start + i].page = bp->context[i].vcxt;
 | |
| 		ilt->lines[cdu_ilt_start + i].page_mapping =
 | |
| 			bp->context[i].cxt_mapping;
 | |
| 		ilt->lines[cdu_ilt_start + i].size = bp->context[i].size;
 | |
| 	}
 | |
| 
 | |
| 	bnx2x_ilt_init_op(bp, INITOP_SET);
 | |
| 
 | |
| 	if (!CONFIGURE_NIC_MODE(bp)) {
 | |
| 		bnx2x_init_searcher(bp);
 | |
| 		REG_WR(bp, PRS_REG_NIC_MODE, 0);
 | |
| 		DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
 | |
| 	} else {
 | |
| 		/* Set NIC mode */
 | |
| 		REG_WR(bp, PRS_REG_NIC_MODE, 1);
 | |
| 		DP(NETIF_MSG_IFUP, "NIC MODE configrued\n");
 | |
| 
 | |
| 	}
 | |
| 
 | |
| 	if (!CHIP_IS_E1x(bp)) {
 | |
| 		u32 pf_conf = IGU_PF_CONF_FUNC_EN;
 | |
| 
 | |
| 		/* Turn on a single ISR mode in IGU if driver is going to use
 | |
| 		 * INT#x or MSI
 | |
| 		 */
 | |
| 		if (!(bp->flags & USING_MSIX_FLAG))
 | |
| 			pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
 | |
| 		/*
 | |
| 		 * Timers workaround bug: function init part.
 | |
| 		 * Need to wait 20msec after initializing ILT,
 | |
| 		 * needed to make sure there are no requests in
 | |
| 		 * one of the PXP internal queues with "old" ILT addresses
 | |
| 		 */
 | |
| 		msleep(20);
 | |
| 		/*
 | |
| 		 * Master enable - Due to WB DMAE writes performed before this
 | |
| 		 * register is re-initialized as part of the regular function
 | |
| 		 * init
 | |
| 		 */
 | |
| 		REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
 | |
| 		/* Enable the function in IGU */
 | |
| 		REG_WR(bp, IGU_REG_PF_CONFIGURATION, pf_conf);
 | |
| 	}
 | |
| 
 | |
| 	bp->dmae_ready = 1;
 | |
| 
 | |
| 	bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
 | |
| 
 | |
| 	if (!CHIP_IS_E1x(bp))
 | |
| 		REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func);
 | |
| 
 | |
| 	bnx2x_init_block(bp, BLOCK_ATC, init_phase);
 | |
| 	bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
 | |
| 	bnx2x_init_block(bp, BLOCK_NIG, init_phase);
 | |
| 	bnx2x_init_block(bp, BLOCK_SRC, init_phase);
 | |
| 	bnx2x_init_block(bp, BLOCK_MISC, init_phase);
 | |
| 	bnx2x_init_block(bp, BLOCK_TCM, init_phase);
 | |
| 	bnx2x_init_block(bp, BLOCK_UCM, init_phase);
 | |
| 	bnx2x_init_block(bp, BLOCK_CCM, init_phase);
 | |
| 	bnx2x_init_block(bp, BLOCK_XCM, init_phase);
 | |
| 	bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
 | |
| 	bnx2x_init_block(bp, BLOCK_USEM, init_phase);
 | |
| 	bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
 | |
| 	bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
 | |
| 
 | |
| 	if (!CHIP_IS_E1x(bp))
 | |
| 		REG_WR(bp, QM_REG_PF_EN, 1);
 | |
| 
 | |
| 	if (!CHIP_IS_E1x(bp)) {
 | |
| 		REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
 | |
| 		REG_WR(bp, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
 | |
| 		REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
 | |
| 		REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
 | |
| 	}
 | |
| 	bnx2x_init_block(bp, BLOCK_QM, init_phase);
 | |
| 
 | |
| 	bnx2x_init_block(bp, BLOCK_TM, init_phase);
 | |
| 	bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
 | |
| 
 | |
| 	bnx2x_iov_init_dq(bp);
 | |
| 
 | |
| 	bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
 | |
| 	bnx2x_init_block(bp, BLOCK_PRS, init_phase);
 | |
| 	bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
 | |
| 	bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
 | |
| 	bnx2x_init_block(bp, BLOCK_USDM, init_phase);
 | |
| 	bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
 | |
| 	bnx2x_init_block(bp, BLOCK_UPB, init_phase);
 | |
| 	bnx2x_init_block(bp, BLOCK_XPB, init_phase);
 | |
| 	bnx2x_init_block(bp, BLOCK_PBF, init_phase);
 | |
| 	if (!CHIP_IS_E1x(bp))
 | |
| 		REG_WR(bp, PBF_REG_DISABLE_PF, 0);
 | |
| 
 | |
| 	bnx2x_init_block(bp, BLOCK_CDU, init_phase);
 | |
| 
 | |
| 	bnx2x_init_block(bp, BLOCK_CFC, init_phase);
 | |
| 
 | |
| 	if (!CHIP_IS_E1x(bp))
 | |
| 		REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 1);
 | |
| 
 | |
| 	if (IS_MF(bp)) {
 | |
| 		REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
 | |
| 		REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, bp->mf_ov);
 | |
| 	}
 | |
| 
 | |
| 	bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
 | |
| 
 | |
| 	/* HC init per function */
 | |
| 	if (bp->common.int_block == INT_BLOCK_HC) {
 | |
| 		if (CHIP_IS_E1H(bp)) {
 | |
| 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
 | |
| 
 | |
| 			REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
 | |
| 			REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
 | |
| 		}
 | |
| 		bnx2x_init_block(bp, BLOCK_HC, init_phase);
 | |
| 
 | |
| 	} else {
 | |
| 		int num_segs, sb_idx, prod_offset;
 | |
| 
 | |
| 		REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
 | |
| 
 | |
| 		if (!CHIP_IS_E1x(bp)) {
 | |
| 			REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
 | |
| 			REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
 | |
| 		}
 | |
| 
 | |
| 		bnx2x_init_block(bp, BLOCK_IGU, init_phase);
 | |
| 
 | |
| 		if (!CHIP_IS_E1x(bp)) {
 | |
| 			int dsb_idx = 0;
 | |
| 			/**
 | |
| 			 * Producer memory:
 | |
| 			 * E2 mode: address 0-135 match to the mapping memory;
 | |
| 			 * 136 - PF0 default prod; 137 - PF1 default prod;
 | |
| 			 * 138 - PF2 default prod; 139 - PF3 default prod;
 | |
| 			 * 140 - PF0 attn prod;    141 - PF1 attn prod;
 | |
| 			 * 142 - PF2 attn prod;    143 - PF3 attn prod;
 | |
| 			 * 144-147 reserved.
 | |
| 			 *
 | |
| 			 * E1.5 mode - In backward compatible mode;
 | |
| 			 * for non default SB; each even line in the memory
 | |
| 			 * holds the U producer and each odd line hold
 | |
| 			 * the C producer. The first 128 producers are for
 | |
| 			 * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
 | |
| 			 * producers are for the DSB for each PF.
 | |
| 			 * Each PF has five segments: (the order inside each
 | |
| 			 * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
 | |
| 			 * 132-135 C prods; 136-139 X prods; 140-143 T prods;
 | |
| 			 * 144-147 attn prods;
 | |
| 			 */
 | |
| 			/* non-default-status-blocks */
 | |
| 			num_segs = CHIP_INT_MODE_IS_BC(bp) ?
 | |
| 				IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
 | |
| 			for (sb_idx = 0; sb_idx < bp->igu_sb_cnt; sb_idx++) {
 | |
| 				prod_offset = (bp->igu_base_sb + sb_idx) *
 | |
| 					num_segs;
 | |
| 
 | |
| 				for (i = 0; i < num_segs; i++) {
 | |
| 					addr = IGU_REG_PROD_CONS_MEMORY +
 | |
| 							(prod_offset + i) * 4;
 | |
| 					REG_WR(bp, addr, 0);
 | |
| 				}
 | |
| 				/* send consumer update with value 0 */
 | |
| 				bnx2x_ack_sb(bp, bp->igu_base_sb + sb_idx,
 | |
| 					     USTORM_ID, 0, IGU_INT_NOP, 1);
 | |
| 				bnx2x_igu_clear_sb(bp,
 | |
| 						   bp->igu_base_sb + sb_idx);
 | |
| 			}
 | |
| 
 | |
| 			/* default-status-blocks */
 | |
| 			num_segs = CHIP_INT_MODE_IS_BC(bp) ?
 | |
| 				IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
 | |
| 
 | |
| 			if (CHIP_MODE_IS_4_PORT(bp))
 | |
| 				dsb_idx = BP_FUNC(bp);
 | |
| 			else
 | |
| 				dsb_idx = BP_VN(bp);
 | |
| 
 | |
| 			prod_offset = (CHIP_INT_MODE_IS_BC(bp) ?
 | |
| 				       IGU_BC_BASE_DSB_PROD + dsb_idx :
 | |
| 				       IGU_NORM_BASE_DSB_PROD + dsb_idx);
 | |
| 
 | |
| 			/*
 | |
| 			 * igu prods come in chunks of E1HVN_MAX (4) -
 | |
| 			 * does not matters what is the current chip mode
 | |
| 			 */
 | |
| 			for (i = 0; i < (num_segs * E1HVN_MAX);
 | |
| 			     i += E1HVN_MAX) {
 | |
| 				addr = IGU_REG_PROD_CONS_MEMORY +
 | |
| 							(prod_offset + i)*4;
 | |
| 				REG_WR(bp, addr, 0);
 | |
| 			}
 | |
| 			/* send consumer update with 0 */
 | |
| 			if (CHIP_INT_MODE_IS_BC(bp)) {
 | |
| 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
 | |
| 					     USTORM_ID, 0, IGU_INT_NOP, 1);
 | |
| 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
 | |
| 					     CSTORM_ID, 0, IGU_INT_NOP, 1);
 | |
| 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
 | |
| 					     XSTORM_ID, 0, IGU_INT_NOP, 1);
 | |
| 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
 | |
| 					     TSTORM_ID, 0, IGU_INT_NOP, 1);
 | |
| 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
 | |
| 					     ATTENTION_ID, 0, IGU_INT_NOP, 1);
 | |
| 			} else {
 | |
| 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
 | |
| 					     USTORM_ID, 0, IGU_INT_NOP, 1);
 | |
| 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
 | |
| 					     ATTENTION_ID, 0, IGU_INT_NOP, 1);
 | |
| 			}
 | |
| 			bnx2x_igu_clear_sb(bp, bp->igu_dsb_id);
 | |
| 
 | |
| 			/* !!! these should become driver const once
 | |
| 			   rf-tool supports split-68 const */
 | |
| 			REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
 | |
| 			REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
 | |
| 			REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
 | |
| 			REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
 | |
| 			REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
 | |
| 			REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Reset PCIE errors for debug */
 | |
| 	REG_WR(bp, 0x2114, 0xffffffff);
 | |
| 	REG_WR(bp, 0x2120, 0xffffffff);
 | |
| 
 | |
| 	if (CHIP_IS_E1x(bp)) {
 | |
| 		main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
 | |
| 		main_mem_base = HC_REG_MAIN_MEMORY +
 | |
| 				BP_PORT(bp) * (main_mem_size * 4);
 | |
| 		main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
 | |
| 		main_mem_width = 8;
 | |
| 
 | |
| 		val = REG_RD(bp, main_mem_prty_clr);
 | |
| 		if (val)
 | |
| 			DP(NETIF_MSG_HW,
 | |
| 			   "Hmmm... Parity errors in HC block during function init (0x%x)!\n",
 | |
| 			   val);
 | |
| 
 | |
| 		/* Clear "false" parity errors in MSI-X table */
 | |
| 		for (i = main_mem_base;
 | |
| 		     i < main_mem_base + main_mem_size * 4;
 | |
| 		     i += main_mem_width) {
 | |
| 			bnx2x_read_dmae(bp, i, main_mem_width / 4);
 | |
| 			bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data),
 | |
| 					 i, main_mem_width / 4);
 | |
| 		}
 | |
| 		/* Clear HC parity attention */
 | |
| 		REG_RD(bp, main_mem_prty_clr);
 | |
| 	}
 | |
| 
 | |
| #ifdef BNX2X_STOP_ON_ERROR
 | |
| 	/* Enable STORMs SP logging */
 | |
| 	REG_WR8(bp, BAR_USTRORM_INTMEM +
 | |
| 	       USTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
 | |
| 	REG_WR8(bp, BAR_TSTRORM_INTMEM +
 | |
| 	       TSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
 | |
| 	REG_WR8(bp, BAR_CSTRORM_INTMEM +
 | |
| 	       CSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
 | |
| 	REG_WR8(bp, BAR_XSTRORM_INTMEM +
 | |
| 	       XSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
 | |
| #endif
 | |
| 
 | |
| 	bnx2x_phy_probe(&bp->link_params);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| void bnx2x_free_mem_cnic(struct bnx2x *bp)
 | |
| {
 | |
| 	bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_FREE);
 | |
| 
 | |
| 	if (!CHIP_IS_E1x(bp))
 | |
| 		BNX2X_PCI_FREE(bp->cnic_sb.e2_sb, bp->cnic_sb_mapping,
 | |
| 			       sizeof(struct host_hc_status_block_e2));
 | |
| 	else
 | |
| 		BNX2X_PCI_FREE(bp->cnic_sb.e1x_sb, bp->cnic_sb_mapping,
 | |
| 			       sizeof(struct host_hc_status_block_e1x));
 | |
| 
 | |
| 	BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
 | |
| }
 | |
| 
 | |
| void bnx2x_free_mem(struct bnx2x *bp)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	BNX2X_PCI_FREE(bp->def_status_blk, bp->def_status_blk_mapping,
 | |
| 		       sizeof(struct host_sp_status_block));
 | |
| 
 | |
| 	BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
 | |
| 		       bp->fw_stats_data_sz + bp->fw_stats_req_sz);
 | |
| 
 | |
| 	BNX2X_PCI_FREE(bp->slowpath, bp->slowpath_mapping,
 | |
| 		       sizeof(struct bnx2x_slowpath));
 | |
| 
 | |
| 	for (i = 0; i < L2_ILT_LINES(bp); i++)
 | |
| 		BNX2X_PCI_FREE(bp->context[i].vcxt, bp->context[i].cxt_mapping,
 | |
| 			       bp->context[i].size);
 | |
| 	bnx2x_ilt_mem_op(bp, ILT_MEMOP_FREE);
 | |
| 
 | |
| 	BNX2X_FREE(bp->ilt->lines);
 | |
| 
 | |
| 	BNX2X_PCI_FREE(bp->spq, bp->spq_mapping, BCM_PAGE_SIZE);
 | |
| 
 | |
| 	BNX2X_PCI_FREE(bp->eq_ring, bp->eq_mapping,
 | |
| 		       BCM_PAGE_SIZE * NUM_EQ_PAGES);
 | |
| 
 | |
| 	bnx2x_iov_free_mem(bp);
 | |
| }
 | |
| 
 | |
| 
 | |
| int bnx2x_alloc_mem_cnic(struct bnx2x *bp)
 | |
| {
 | |
| 	if (!CHIP_IS_E1x(bp))
 | |
| 		/* size = the status block + ramrod buffers */
 | |
| 		BNX2X_PCI_ALLOC(bp->cnic_sb.e2_sb, &bp->cnic_sb_mapping,
 | |
| 				sizeof(struct host_hc_status_block_e2));
 | |
| 	else
 | |
| 		BNX2X_PCI_ALLOC(bp->cnic_sb.e1x_sb,
 | |
| 				&bp->cnic_sb_mapping,
 | |
| 				sizeof(struct
 | |
| 				       host_hc_status_block_e1x));
 | |
| 
 | |
| 	if (CONFIGURE_NIC_MODE(bp))
 | |
| 		/* allocate searcher T2 table, as it wan't allocated before */
 | |
| 		BNX2X_PCI_ALLOC(bp->t2, &bp->t2_mapping, SRC_T2_SZ);
 | |
| 
 | |
| 	/* write address to which L5 should insert its values */
 | |
| 	bp->cnic_eth_dev.addr_drv_info_to_mcp =
 | |
| 		&bp->slowpath->drv_info_to_mcp;
 | |
| 
 | |
| 	if (bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_ALLOC))
 | |
| 		goto alloc_mem_err;
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| alloc_mem_err:
 | |
| 	bnx2x_free_mem_cnic(bp);
 | |
| 	BNX2X_ERR("Can't allocate memory\n");
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| int bnx2x_alloc_mem(struct bnx2x *bp)
 | |
| {
 | |
| 	int i, allocated, context_size;
 | |
| 
 | |
| 	if (!CONFIGURE_NIC_MODE(bp))
 | |
| 		/* allocate searcher T2 table */
 | |
| 		BNX2X_PCI_ALLOC(bp->t2, &bp->t2_mapping, SRC_T2_SZ);
 | |
| 
 | |
| 	BNX2X_PCI_ALLOC(bp->def_status_blk, &bp->def_status_blk_mapping,
 | |
| 			sizeof(struct host_sp_status_block));
 | |
| 
 | |
| 	BNX2X_PCI_ALLOC(bp->slowpath, &bp->slowpath_mapping,
 | |
| 			sizeof(struct bnx2x_slowpath));
 | |
| 
 | |
| 	/* Allocate memory for CDU context:
 | |
| 	 * This memory is allocated separately and not in the generic ILT
 | |
| 	 * functions because CDU differs in few aspects:
 | |
| 	 * 1. There are multiple entities allocating memory for context -
 | |
| 	 * 'regular' driver, CNIC and SRIOV driver. Each separately controls
 | |
| 	 * its own ILT lines.
 | |
| 	 * 2. Since CDU page-size is not a single 4KB page (which is the case
 | |
| 	 * for the other ILT clients), to be efficient we want to support
 | |
| 	 * allocation of sub-page-size in the last entry.
 | |
| 	 * 3. Context pointers are used by the driver to pass to FW / update
 | |
| 	 * the context (for the other ILT clients the pointers are used just to
 | |
| 	 * free the memory during unload).
 | |
| 	 */
 | |
| 	context_size = sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(bp);
 | |
| 
 | |
| 	for (i = 0, allocated = 0; allocated < context_size; i++) {
 | |
| 		bp->context[i].size = min(CDU_ILT_PAGE_SZ,
 | |
| 					  (context_size - allocated));
 | |
| 		BNX2X_PCI_ALLOC(bp->context[i].vcxt,
 | |
| 				&bp->context[i].cxt_mapping,
 | |
| 				bp->context[i].size);
 | |
| 		allocated += bp->context[i].size;
 | |
| 	}
 | |
| 	BNX2X_ALLOC(bp->ilt->lines, sizeof(struct ilt_line) * ILT_MAX_LINES);
 | |
| 
 | |
| 	if (bnx2x_ilt_mem_op(bp, ILT_MEMOP_ALLOC))
 | |
| 		goto alloc_mem_err;
 | |
| 
 | |
| 	if (bnx2x_iov_alloc_mem(bp))
 | |
| 		goto alloc_mem_err;
 | |
| 
 | |
| 	/* Slow path ring */
 | |
| 	BNX2X_PCI_ALLOC(bp->spq, &bp->spq_mapping, BCM_PAGE_SIZE);
 | |
| 
 | |
| 	/* EQ */
 | |
| 	BNX2X_PCI_ALLOC(bp->eq_ring, &bp->eq_mapping,
 | |
| 			BCM_PAGE_SIZE * NUM_EQ_PAGES);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| alloc_mem_err:
 | |
| 	bnx2x_free_mem(bp);
 | |
| 	BNX2X_ERR("Can't allocate memory\n");
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Init service functions
 | |
|  */
 | |
| 
 | |
| int bnx2x_set_mac_one(struct bnx2x *bp, u8 *mac,
 | |
| 		      struct bnx2x_vlan_mac_obj *obj, bool set,
 | |
| 		      int mac_type, unsigned long *ramrod_flags)
 | |
| {
 | |
| 	int rc;
 | |
| 	struct bnx2x_vlan_mac_ramrod_params ramrod_param;
 | |
| 
 | |
| 	memset(&ramrod_param, 0, sizeof(ramrod_param));
 | |
| 
 | |
| 	/* Fill general parameters */
 | |
| 	ramrod_param.vlan_mac_obj = obj;
 | |
| 	ramrod_param.ramrod_flags = *ramrod_flags;
 | |
| 
 | |
| 	/* Fill a user request section if needed */
 | |
| 	if (!test_bit(RAMROD_CONT, ramrod_flags)) {
 | |
| 		memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
 | |
| 
 | |
| 		__set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
 | |
| 
 | |
| 		/* Set the command: ADD or DEL */
 | |
| 		if (set)
 | |
| 			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
 | |
| 		else
 | |
| 			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
 | |
| 	}
 | |
| 
 | |
| 	rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
 | |
| 
 | |
| 	if (rc == -EEXIST) {
 | |
| 		DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc);
 | |
| 		/* do not treat adding same MAC as error */
 | |
| 		rc = 0;
 | |
| 	} else if (rc < 0)
 | |
| 		BNX2X_ERR("%s MAC failed\n", (set ? "Set" : "Del"));
 | |
| 
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| int bnx2x_del_all_macs(struct bnx2x *bp,
 | |
| 		       struct bnx2x_vlan_mac_obj *mac_obj,
 | |
| 		       int mac_type, bool wait_for_comp)
 | |
| {
 | |
| 	int rc;
 | |
| 	unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
 | |
| 
 | |
| 	/* Wait for completion of requested */
 | |
| 	if (wait_for_comp)
 | |
| 		__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
 | |
| 
 | |
| 	/* Set the mac type of addresses we want to clear */
 | |
| 	__set_bit(mac_type, &vlan_mac_flags);
 | |
| 
 | |
| 	rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, &ramrod_flags);
 | |
| 	if (rc < 0)
 | |
| 		BNX2X_ERR("Failed to delete MACs: %d\n", rc);
 | |
| 
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| int bnx2x_set_eth_mac(struct bnx2x *bp, bool set)
 | |
| {
 | |
| 	unsigned long ramrod_flags = 0;
 | |
| 
 | |
| 	if (is_zero_ether_addr(bp->dev->dev_addr) &&
 | |
| 	    (IS_MF_STORAGE_SD(bp) || IS_MF_FCOE_AFEX(bp))) {
 | |
| 		DP(NETIF_MSG_IFUP | NETIF_MSG_IFDOWN,
 | |
| 		   "Ignoring Zero MAC for STORAGE SD mode\n");
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	DP(NETIF_MSG_IFUP, "Adding Eth MAC\n");
 | |
| 
 | |
| 	__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
 | |
| 	/* Eth MAC is set on RSS leading client (fp[0]) */
 | |
| 	return bnx2x_set_mac_one(bp, bp->dev->dev_addr, &bp->sp_objs->mac_obj,
 | |
| 				 set, BNX2X_ETH_MAC, &ramrod_flags);
 | |
| }
 | |
| 
 | |
| int bnx2x_setup_leading(struct bnx2x *bp)
 | |
| {
 | |
| 	return bnx2x_setup_queue(bp, &bp->fp[0], 1);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * bnx2x_set_int_mode - configure interrupt mode
 | |
|  *
 | |
|  * @bp:		driver handle
 | |
|  *
 | |
|  * In case of MSI-X it will also try to enable MSI-X.
 | |
|  */
 | |
| int bnx2x_set_int_mode(struct bnx2x *bp)
 | |
| {
 | |
| 	int rc = 0;
 | |
| 
 | |
| 	if (IS_VF(bp) && int_mode != BNX2X_INT_MODE_MSIX)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	switch (int_mode) {
 | |
| 	case BNX2X_INT_MODE_MSIX:
 | |
| 		/* attempt to enable msix */
 | |
| 		rc = bnx2x_enable_msix(bp);
 | |
| 
 | |
| 		/* msix attained */
 | |
| 		if (!rc)
 | |
| 			return 0;
 | |
| 
 | |
| 		/* vfs use only msix */
 | |
| 		if (rc && IS_VF(bp))
 | |
| 			return rc;
 | |
| 
 | |
| 		/* failed to enable multiple MSI-X */
 | |
| 		BNX2X_DEV_INFO("Failed to enable multiple MSI-X (%d), set number of queues to %d\n",
 | |
| 			       bp->num_queues,
 | |
| 			       1 + bp->num_cnic_queues);
 | |
| 
 | |
| 		/* falling through... */
 | |
| 	case BNX2X_INT_MODE_MSI:
 | |
| 		bnx2x_enable_msi(bp);
 | |
| 
 | |
| 		/* falling through... */
 | |
| 	case BNX2X_INT_MODE_INTX:
 | |
| 		bp->num_ethernet_queues = 1;
 | |
| 		bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
 | |
| 		BNX2X_DEV_INFO("set number of queues to 1\n");
 | |
| 		break;
 | |
| 	default:
 | |
| 		BNX2X_DEV_INFO("unknown value in int_mode module parameter\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* must be called prior to any HW initializations */
 | |
| static inline u16 bnx2x_cid_ilt_lines(struct bnx2x *bp)
 | |
| {
 | |
| 	if (IS_SRIOV(bp))
 | |
| 		return (BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)/ILT_PAGE_CIDS;
 | |
| 	return L2_ILT_LINES(bp);
 | |
| }
 | |
| 
 | |
| void bnx2x_ilt_set_info(struct bnx2x *bp)
 | |
| {
 | |
| 	struct ilt_client_info *ilt_client;
 | |
| 	struct bnx2x_ilt *ilt = BP_ILT(bp);
 | |
| 	u16 line = 0;
 | |
| 
 | |
| 	ilt->start_line = FUNC_ILT_BASE(BP_FUNC(bp));
 | |
| 	DP(BNX2X_MSG_SP, "ilt starts at line %d\n", ilt->start_line);
 | |
| 
 | |
| 	/* CDU */
 | |
| 	ilt_client = &ilt->clients[ILT_CLIENT_CDU];
 | |
| 	ilt_client->client_num = ILT_CLIENT_CDU;
 | |
| 	ilt_client->page_size = CDU_ILT_PAGE_SZ;
 | |
| 	ilt_client->flags = ILT_CLIENT_SKIP_MEM;
 | |
| 	ilt_client->start = line;
 | |
| 	line += bnx2x_cid_ilt_lines(bp);
 | |
| 
 | |
| 	if (CNIC_SUPPORT(bp))
 | |
| 		line += CNIC_ILT_LINES;
 | |
| 	ilt_client->end = line - 1;
 | |
| 
 | |
| 	DP(NETIF_MSG_IFUP, "ilt client[CDU]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
 | |
| 	   ilt_client->start,
 | |
| 	   ilt_client->end,
 | |
| 	   ilt_client->page_size,
 | |
| 	   ilt_client->flags,
 | |
| 	   ilog2(ilt_client->page_size >> 12));
 | |
| 
 | |
| 	/* QM */
 | |
| 	if (QM_INIT(bp->qm_cid_count)) {
 | |
| 		ilt_client = &ilt->clients[ILT_CLIENT_QM];
 | |
| 		ilt_client->client_num = ILT_CLIENT_QM;
 | |
| 		ilt_client->page_size = QM_ILT_PAGE_SZ;
 | |
| 		ilt_client->flags = 0;
 | |
| 		ilt_client->start = line;
 | |
| 
 | |
| 		/* 4 bytes for each cid */
 | |
| 		line += DIV_ROUND_UP(bp->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
 | |
| 							 QM_ILT_PAGE_SZ);
 | |
| 
 | |
| 		ilt_client->end = line - 1;
 | |
| 
 | |
| 		DP(NETIF_MSG_IFUP,
 | |
| 		   "ilt client[QM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
 | |
| 		   ilt_client->start,
 | |
| 		   ilt_client->end,
 | |
| 		   ilt_client->page_size,
 | |
| 		   ilt_client->flags,
 | |
| 		   ilog2(ilt_client->page_size >> 12));
 | |
| 
 | |
| 	}
 | |
| 
 | |
| 	if (CNIC_SUPPORT(bp)) {
 | |
| 		/* SRC */
 | |
| 		ilt_client = &ilt->clients[ILT_CLIENT_SRC];
 | |
| 		ilt_client->client_num = ILT_CLIENT_SRC;
 | |
| 		ilt_client->page_size = SRC_ILT_PAGE_SZ;
 | |
| 		ilt_client->flags = 0;
 | |
| 		ilt_client->start = line;
 | |
| 		line += SRC_ILT_LINES;
 | |
| 		ilt_client->end = line - 1;
 | |
| 
 | |
| 		DP(NETIF_MSG_IFUP,
 | |
| 		   "ilt client[SRC]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
 | |
| 		   ilt_client->start,
 | |
| 		   ilt_client->end,
 | |
| 		   ilt_client->page_size,
 | |
| 		   ilt_client->flags,
 | |
| 		   ilog2(ilt_client->page_size >> 12));
 | |
| 
 | |
| 		/* TM */
 | |
| 		ilt_client = &ilt->clients[ILT_CLIENT_TM];
 | |
| 		ilt_client->client_num = ILT_CLIENT_TM;
 | |
| 		ilt_client->page_size = TM_ILT_PAGE_SZ;
 | |
| 		ilt_client->flags = 0;
 | |
| 		ilt_client->start = line;
 | |
| 		line += TM_ILT_LINES;
 | |
| 		ilt_client->end = line - 1;
 | |
| 
 | |
| 		DP(NETIF_MSG_IFUP,
 | |
| 		   "ilt client[TM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
 | |
| 		   ilt_client->start,
 | |
| 		   ilt_client->end,
 | |
| 		   ilt_client->page_size,
 | |
| 		   ilt_client->flags,
 | |
| 		   ilog2(ilt_client->page_size >> 12));
 | |
| 	}
 | |
| 
 | |
| 	BUG_ON(line > ILT_MAX_LINES);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * bnx2x_pf_q_prep_init - prepare INIT transition parameters
 | |
|  *
 | |
|  * @bp:			driver handle
 | |
|  * @fp:			pointer to fastpath
 | |
|  * @init_params:	pointer to parameters structure
 | |
|  *
 | |
|  * parameters configured:
 | |
|  *      - HC configuration
 | |
|  *      - Queue's CDU context
 | |
|  */
 | |
| static void bnx2x_pf_q_prep_init(struct bnx2x *bp,
 | |
| 	struct bnx2x_fastpath *fp, struct bnx2x_queue_init_params *init_params)
 | |
| {
 | |
| 
 | |
| 	u8 cos;
 | |
| 	int cxt_index, cxt_offset;
 | |
| 
 | |
| 	/* FCoE Queue uses Default SB, thus has no HC capabilities */
 | |
| 	if (!IS_FCOE_FP(fp)) {
 | |
| 		__set_bit(BNX2X_Q_FLG_HC, &init_params->rx.flags);
 | |
| 		__set_bit(BNX2X_Q_FLG_HC, &init_params->tx.flags);
 | |
| 
 | |
| 		/* If HC is supporterd, enable host coalescing in the transition
 | |
| 		 * to INIT state.
 | |
| 		 */
 | |
| 		__set_bit(BNX2X_Q_FLG_HC_EN, &init_params->rx.flags);
 | |
| 		__set_bit(BNX2X_Q_FLG_HC_EN, &init_params->tx.flags);
 | |
| 
 | |
| 		/* HC rate */
 | |
| 		init_params->rx.hc_rate = bp->rx_ticks ?
 | |
| 			(1000000 / bp->rx_ticks) : 0;
 | |
| 		init_params->tx.hc_rate = bp->tx_ticks ?
 | |
| 			(1000000 / bp->tx_ticks) : 0;
 | |
| 
 | |
| 		/* FW SB ID */
 | |
| 		init_params->rx.fw_sb_id = init_params->tx.fw_sb_id =
 | |
| 			fp->fw_sb_id;
 | |
| 
 | |
| 		/*
 | |
| 		 * CQ index among the SB indices: FCoE clients uses the default
 | |
| 		 * SB, therefore it's different.
 | |
| 		 */
 | |
| 		init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
 | |
| 		init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
 | |
| 	}
 | |
| 
 | |
| 	/* set maximum number of COSs supported by this queue */
 | |
| 	init_params->max_cos = fp->max_cos;
 | |
| 
 | |
| 	DP(NETIF_MSG_IFUP, "fp: %d setting queue params max cos to: %d\n",
 | |
| 	    fp->index, init_params->max_cos);
 | |
| 
 | |
| 	/* set the context pointers queue object */
 | |
| 	for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
 | |
| 		cxt_index = fp->txdata_ptr[cos]->cid / ILT_PAGE_CIDS;
 | |
| 		cxt_offset = fp->txdata_ptr[cos]->cid - (cxt_index *
 | |
| 				ILT_PAGE_CIDS);
 | |
| 		init_params->cxts[cos] =
 | |
| 			&bp->context[cxt_index].vcxt[cxt_offset].eth;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int bnx2x_setup_tx_only(struct bnx2x *bp, struct bnx2x_fastpath *fp,
 | |
| 			struct bnx2x_queue_state_params *q_params,
 | |
| 			struct bnx2x_queue_setup_tx_only_params *tx_only_params,
 | |
| 			int tx_index, bool leading)
 | |
| {
 | |
| 	memset(tx_only_params, 0, sizeof(*tx_only_params));
 | |
| 
 | |
| 	/* Set the command */
 | |
| 	q_params->cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
 | |
| 
 | |
| 	/* Set tx-only QUEUE flags: don't zero statistics */
 | |
| 	tx_only_params->flags = bnx2x_get_common_flags(bp, fp, false);
 | |
| 
 | |
| 	/* choose the index of the cid to send the slow path on */
 | |
| 	tx_only_params->cid_index = tx_index;
 | |
| 
 | |
| 	/* Set general TX_ONLY_SETUP parameters */
 | |
| 	bnx2x_pf_q_prep_general(bp, fp, &tx_only_params->gen_params, tx_index);
 | |
| 
 | |
| 	/* Set Tx TX_ONLY_SETUP parameters */
 | |
| 	bnx2x_pf_tx_q_prep(bp, fp, &tx_only_params->txq_params, tx_index);
 | |
| 
 | |
| 	DP(NETIF_MSG_IFUP,
 | |
| 	   "preparing to send tx-only ramrod for connection: cos %d, primary cid %d, cid %d, client id %d, sp-client id %d, flags %lx\n",
 | |
| 	   tx_index, q_params->q_obj->cids[FIRST_TX_COS_INDEX],
 | |
| 	   q_params->q_obj->cids[tx_index], q_params->q_obj->cl_id,
 | |
| 	   tx_only_params->gen_params.spcl_id, tx_only_params->flags);
 | |
| 
 | |
| 	/* send the ramrod */
 | |
| 	return bnx2x_queue_state_change(bp, q_params);
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * bnx2x_setup_queue - setup queue
 | |
|  *
 | |
|  * @bp:		driver handle
 | |
|  * @fp:		pointer to fastpath
 | |
|  * @leading:	is leading
 | |
|  *
 | |
|  * This function performs 2 steps in a Queue state machine
 | |
|  *      actually: 1) RESET->INIT 2) INIT->SETUP
 | |
|  */
 | |
| 
 | |
| int bnx2x_setup_queue(struct bnx2x *bp, struct bnx2x_fastpath *fp,
 | |
| 		       bool leading)
 | |
| {
 | |
| 	struct bnx2x_queue_state_params q_params = {NULL};
 | |
| 	struct bnx2x_queue_setup_params *setup_params =
 | |
| 						&q_params.params.setup;
 | |
| 	struct bnx2x_queue_setup_tx_only_params *tx_only_params =
 | |
| 						&q_params.params.tx_only;
 | |
| 	int rc;
 | |
| 	u8 tx_index;
 | |
| 
 | |
| 	DP(NETIF_MSG_IFUP, "setting up queue %d\n", fp->index);
 | |
| 
 | |
| 	/* reset IGU state skip FCoE L2 queue */
 | |
| 	if (!IS_FCOE_FP(fp))
 | |
| 		bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0,
 | |
| 			     IGU_INT_ENABLE, 0);
 | |
| 
 | |
| 	q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
 | |
| 	/* We want to wait for completion in this context */
 | |
| 	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
 | |
| 
 | |
| 	/* Prepare the INIT parameters */
 | |
| 	bnx2x_pf_q_prep_init(bp, fp, &q_params.params.init);
 | |
| 
 | |
| 	/* Set the command */
 | |
| 	q_params.cmd = BNX2X_Q_CMD_INIT;
 | |
| 
 | |
| 	/* Change the state to INIT */
 | |
| 	rc = bnx2x_queue_state_change(bp, &q_params);
 | |
| 	if (rc) {
 | |
| 		BNX2X_ERR("Queue(%d) INIT failed\n", fp->index);
 | |
| 		return rc;
 | |
| 	}
 | |
| 
 | |
| 	DP(NETIF_MSG_IFUP, "init complete\n");
 | |
| 
 | |
| 
 | |
| 	/* Now move the Queue to the SETUP state... */
 | |
| 	memset(setup_params, 0, sizeof(*setup_params));
 | |
| 
 | |
| 	/* Set QUEUE flags */
 | |
| 	setup_params->flags = bnx2x_get_q_flags(bp, fp, leading);
 | |
| 
 | |
| 	/* Set general SETUP parameters */
 | |
| 	bnx2x_pf_q_prep_general(bp, fp, &setup_params->gen_params,
 | |
| 				FIRST_TX_COS_INDEX);
 | |
| 
 | |
| 	bnx2x_pf_rx_q_prep(bp, fp, &setup_params->pause_params,
 | |
| 			    &setup_params->rxq_params);
 | |
| 
 | |
| 	bnx2x_pf_tx_q_prep(bp, fp, &setup_params->txq_params,
 | |
| 			   FIRST_TX_COS_INDEX);
 | |
| 
 | |
| 	/* Set the command */
 | |
| 	q_params.cmd = BNX2X_Q_CMD_SETUP;
 | |
| 
 | |
| 	if (IS_FCOE_FP(fp))
 | |
| 		bp->fcoe_init = true;
 | |
| 
 | |
| 	/* Change the state to SETUP */
 | |
| 	rc = bnx2x_queue_state_change(bp, &q_params);
 | |
| 	if (rc) {
 | |
| 		BNX2X_ERR("Queue(%d) SETUP failed\n", fp->index);
 | |
| 		return rc;
 | |
| 	}
 | |
| 
 | |
| 	/* loop through the relevant tx-only indices */
 | |
| 	for (tx_index = FIRST_TX_ONLY_COS_INDEX;
 | |
| 	      tx_index < fp->max_cos;
 | |
| 	      tx_index++) {
 | |
| 
 | |
| 		/* prepare and send tx-only ramrod*/
 | |
| 		rc = bnx2x_setup_tx_only(bp, fp, &q_params,
 | |
| 					  tx_only_params, tx_index, leading);
 | |
| 		if (rc) {
 | |
| 			BNX2X_ERR("Queue(%d.%d) TX_ONLY_SETUP failed\n",
 | |
| 				  fp->index, tx_index);
 | |
| 			return rc;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| static int bnx2x_stop_queue(struct bnx2x *bp, int index)
 | |
| {
 | |
| 	struct bnx2x_fastpath *fp = &bp->fp[index];
 | |
| 	struct bnx2x_fp_txdata *txdata;
 | |
| 	struct bnx2x_queue_state_params q_params = {NULL};
 | |
| 	int rc, tx_index;
 | |
| 
 | |
| 	DP(NETIF_MSG_IFDOWN, "stopping queue %d cid %d\n", index, fp->cid);
 | |
| 
 | |
| 	q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
 | |
| 	/* We want to wait for completion in this context */
 | |
| 	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
 | |
| 
 | |
| 
 | |
| 	/* close tx-only connections */
 | |
| 	for (tx_index = FIRST_TX_ONLY_COS_INDEX;
 | |
| 	     tx_index < fp->max_cos;
 | |
| 	     tx_index++){
 | |
| 
 | |
| 		/* ascertain this is a normal queue*/
 | |
| 		txdata = fp->txdata_ptr[tx_index];
 | |
| 
 | |
| 		DP(NETIF_MSG_IFDOWN, "stopping tx-only queue %d\n",
 | |
| 							txdata->txq_index);
 | |
| 
 | |
| 		/* send halt terminate on tx-only connection */
 | |
| 		q_params.cmd = BNX2X_Q_CMD_TERMINATE;
 | |
| 		memset(&q_params.params.terminate, 0,
 | |
| 		       sizeof(q_params.params.terminate));
 | |
| 		q_params.params.terminate.cid_index = tx_index;
 | |
| 
 | |
| 		rc = bnx2x_queue_state_change(bp, &q_params);
 | |
| 		if (rc)
 | |
| 			return rc;
 | |
| 
 | |
| 		/* send halt terminate on tx-only connection */
 | |
| 		q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
 | |
| 		memset(&q_params.params.cfc_del, 0,
 | |
| 		       sizeof(q_params.params.cfc_del));
 | |
| 		q_params.params.cfc_del.cid_index = tx_index;
 | |
| 		rc = bnx2x_queue_state_change(bp, &q_params);
 | |
| 		if (rc)
 | |
| 			return rc;
 | |
| 	}
 | |
| 	/* Stop the primary connection: */
 | |
| 	/* ...halt the connection */
 | |
| 	q_params.cmd = BNX2X_Q_CMD_HALT;
 | |
| 	rc = bnx2x_queue_state_change(bp, &q_params);
 | |
| 	if (rc)
 | |
| 		return rc;
 | |
| 
 | |
| 	/* ...terminate the connection */
 | |
| 	q_params.cmd = BNX2X_Q_CMD_TERMINATE;
 | |
| 	memset(&q_params.params.terminate, 0,
 | |
| 	       sizeof(q_params.params.terminate));
 | |
| 	q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
 | |
| 	rc = bnx2x_queue_state_change(bp, &q_params);
 | |
| 	if (rc)
 | |
| 		return rc;
 | |
| 	/* ...delete cfc entry */
 | |
| 	q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
 | |
| 	memset(&q_params.params.cfc_del, 0,
 | |
| 	       sizeof(q_params.params.cfc_del));
 | |
| 	q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
 | |
| 	return bnx2x_queue_state_change(bp, &q_params);
 | |
| }
 | |
| 
 | |
| 
 | |
| static void bnx2x_reset_func(struct bnx2x *bp)
 | |
| {
 | |
| 	int port = BP_PORT(bp);
 | |
| 	int func = BP_FUNC(bp);
 | |
| 	int i;
 | |
| 
 | |
| 	/* Disable the function in the FW */
 | |
| 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
 | |
| 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
 | |
| 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
 | |
| 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
 | |
| 
 | |
| 	/* FP SBs */
 | |
| 	for_each_eth_queue(bp, i) {
 | |
| 		struct bnx2x_fastpath *fp = &bp->fp[i];
 | |
| 		REG_WR8(bp, BAR_CSTRORM_INTMEM +
 | |
| 			   CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
 | |
| 			   SB_DISABLED);
 | |
| 	}
 | |
| 
 | |
| 	if (CNIC_LOADED(bp))
 | |
| 		/* CNIC SB */
 | |
| 		REG_WR8(bp, BAR_CSTRORM_INTMEM +
 | |
| 			CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET
 | |
| 			(bnx2x_cnic_fw_sb_id(bp)), SB_DISABLED);
 | |
| 
 | |
| 	/* SP SB */
 | |
| 	REG_WR8(bp, BAR_CSTRORM_INTMEM +
 | |
| 		CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
 | |
| 		SB_DISABLED);
 | |
| 
 | |
| 	for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++)
 | |
| 		REG_WR(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func),
 | |
| 		       0);
 | |
| 
 | |
| 	/* Configure IGU */
 | |
| 	if (bp->common.int_block == INT_BLOCK_HC) {
 | |
| 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
 | |
| 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
 | |
| 	} else {
 | |
| 		REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
 | |
| 		REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
 | |
| 	}
 | |
| 
 | |
| 	if (CNIC_LOADED(bp)) {
 | |
| 		/* Disable Timer scan */
 | |
| 		REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
 | |
| 		/*
 | |
| 		 * Wait for at least 10ms and up to 2 second for the timers
 | |
| 		 * scan to complete
 | |
| 		 */
 | |
| 		for (i = 0; i < 200; i++) {
 | |
| 			msleep(10);
 | |
| 			if (!REG_RD(bp, TM_REG_LIN0_SCAN_ON + port*4))
 | |
| 				break;
 | |
| 		}
 | |
| 	}
 | |
| 	/* Clear ILT */
 | |
| 	bnx2x_clear_func_ilt(bp, func);
 | |
| 
 | |
| 	/* Timers workaround bug for E2: if this is vnic-3,
 | |
| 	 * we need to set the entire ilt range for this timers.
 | |
| 	 */
 | |
| 	if (!CHIP_IS_E1x(bp) && BP_VN(bp) == 3) {
 | |
| 		struct ilt_client_info ilt_cli;
 | |
| 		/* use dummy TM client */
 | |
| 		memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
 | |
| 		ilt_cli.start = 0;
 | |
| 		ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
 | |
| 		ilt_cli.client_num = ILT_CLIENT_TM;
 | |
| 
 | |
| 		bnx2x_ilt_boundry_init_op(bp, &ilt_cli, 0, INITOP_CLEAR);
 | |
| 	}
 | |
| 
 | |
| 	/* this assumes that reset_port() called before reset_func()*/
 | |
| 	if (!CHIP_IS_E1x(bp))
 | |
| 		bnx2x_pf_disable(bp);
 | |
| 
 | |
| 	bp->dmae_ready = 0;
 | |
| }
 | |
| 
 | |
| static void bnx2x_reset_port(struct bnx2x *bp)
 | |
| {
 | |
| 	int port = BP_PORT(bp);
 | |
| 	u32 val;
 | |
| 
 | |
| 	/* Reset physical Link */
 | |
| 	bnx2x__link_reset(bp);
 | |
| 
 | |
| 	REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
 | |
| 
 | |
| 	/* Do not rcv packets to BRB */
 | |
| 	REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
 | |
| 	/* Do not direct rcv packets that are not for MCP to the BRB */
 | |
| 	REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
 | |
| 			   NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
 | |
| 
 | |
| 	/* Configure AEU */
 | |
| 	REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
 | |
| 
 | |
| 	msleep(100);
 | |
| 	/* Check for BRB port occupancy */
 | |
| 	val = REG_RD(bp, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
 | |
| 	if (val)
 | |
| 		DP(NETIF_MSG_IFDOWN,
 | |
| 		   "BRB1 is not empty  %d blocks are occupied\n", val);
 | |
| 
 | |
| 	/* TODO: Close Doorbell port? */
 | |
| }
 | |
| 
 | |
| static int bnx2x_reset_hw(struct bnx2x *bp, u32 load_code)
 | |
| {
 | |
| 	struct bnx2x_func_state_params func_params = {NULL};
 | |
| 
 | |
| 	/* Prepare parameters for function state transitions */
 | |
| 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
 | |
| 
 | |
| 	func_params.f_obj = &bp->func_obj;
 | |
| 	func_params.cmd = BNX2X_F_CMD_HW_RESET;
 | |
| 
 | |
| 	func_params.params.hw_init.load_phase = load_code;
 | |
| 
 | |
| 	return bnx2x_func_state_change(bp, &func_params);
 | |
| }
 | |
| 
 | |
| static int bnx2x_func_stop(struct bnx2x *bp)
 | |
| {
 | |
| 	struct bnx2x_func_state_params func_params = {NULL};
 | |
| 	int rc;
 | |
| 
 | |
| 	/* Prepare parameters for function state transitions */
 | |
| 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
 | |
| 	func_params.f_obj = &bp->func_obj;
 | |
| 	func_params.cmd = BNX2X_F_CMD_STOP;
 | |
| 
 | |
| 	/*
 | |
| 	 * Try to stop the function the 'good way'. If fails (in case
 | |
| 	 * of a parity error during bnx2x_chip_cleanup()) and we are
 | |
| 	 * not in a debug mode, perform a state transaction in order to
 | |
| 	 * enable further HW_RESET transaction.
 | |
| 	 */
 | |
| 	rc = bnx2x_func_state_change(bp, &func_params);
 | |
| 	if (rc) {
 | |
| #ifdef BNX2X_STOP_ON_ERROR
 | |
| 		return rc;
 | |
| #else
 | |
| 		BNX2X_ERR("FUNC_STOP ramrod failed. Running a dry transaction\n");
 | |
| 		__set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
 | |
| 		return bnx2x_func_state_change(bp, &func_params);
 | |
| #endif
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * bnx2x_send_unload_req - request unload mode from the MCP.
 | |
|  *
 | |
|  * @bp:			driver handle
 | |
|  * @unload_mode:	requested function's unload mode
 | |
|  *
 | |
|  * Return unload mode returned by the MCP: COMMON, PORT or FUNC.
 | |
|  */
 | |
| u32 bnx2x_send_unload_req(struct bnx2x *bp, int unload_mode)
 | |
| {
 | |
| 	u32 reset_code = 0;
 | |
| 	int port = BP_PORT(bp);
 | |
| 
 | |
| 	/* Select the UNLOAD request mode */
 | |
| 	if (unload_mode == UNLOAD_NORMAL)
 | |
| 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
 | |
| 
 | |
| 	else if (bp->flags & NO_WOL_FLAG)
 | |
| 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP;
 | |
| 
 | |
| 	else if (bp->wol) {
 | |
| 		u32 emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
 | |
| 		u8 *mac_addr = bp->dev->dev_addr;
 | |
| 		u32 val;
 | |
| 		u16 pmc;
 | |
| 
 | |
| 		/* The mac address is written to entries 1-4 to
 | |
| 		 * preserve entry 0 which is used by the PMF
 | |
| 		 */
 | |
| 		u8 entry = (BP_VN(bp) + 1)*8;
 | |
| 
 | |
| 		val = (mac_addr[0] << 8) | mac_addr[1];
 | |
| 		EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry, val);
 | |
| 
 | |
| 		val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
 | |
| 		      (mac_addr[4] << 8) | mac_addr[5];
 | |
| 		EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val);
 | |
| 
 | |
| 		/* Enable the PME and clear the status */
 | |
| 		pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &pmc);
 | |
| 		pmc |= PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS;
 | |
| 		pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, pmc);
 | |
| 
 | |
| 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN;
 | |
| 
 | |
| 	} else
 | |
| 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
 | |
| 
 | |
| 	/* Send the request to the MCP */
 | |
| 	if (!BP_NOMCP(bp))
 | |
| 		reset_code = bnx2x_fw_command(bp, reset_code, 0);
 | |
| 	else {
 | |
| 		int path = BP_PATH(bp);
 | |
| 
 | |
| 		DP(NETIF_MSG_IFDOWN, "NO MCP - load counts[%d]      %d, %d, %d\n",
 | |
| 		   path, load_count[path][0], load_count[path][1],
 | |
| 		   load_count[path][2]);
 | |
| 		load_count[path][0]--;
 | |
| 		load_count[path][1 + port]--;
 | |
| 		DP(NETIF_MSG_IFDOWN, "NO MCP - new load counts[%d]  %d, %d, %d\n",
 | |
| 		   path, load_count[path][0], load_count[path][1],
 | |
| 		   load_count[path][2]);
 | |
| 		if (load_count[path][0] == 0)
 | |
| 			reset_code = FW_MSG_CODE_DRV_UNLOAD_COMMON;
 | |
| 		else if (load_count[path][1 + port] == 0)
 | |
| 			reset_code = FW_MSG_CODE_DRV_UNLOAD_PORT;
 | |
| 		else
 | |
| 			reset_code = FW_MSG_CODE_DRV_UNLOAD_FUNCTION;
 | |
| 	}
 | |
| 
 | |
| 	return reset_code;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP.
 | |
|  *
 | |
|  * @bp:		driver handle
 | |
|  * @keep_link:		true iff link should be kept up
 | |
|  */
 | |
| void bnx2x_send_unload_done(struct bnx2x *bp, bool keep_link)
 | |
| {
 | |
| 	u32 reset_param = keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
 | |
| 
 | |
| 	/* Report UNLOAD_DONE to MCP */
 | |
| 	if (!BP_NOMCP(bp))
 | |
| 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
 | |
| }
 | |
| 
 | |
| static int bnx2x_func_wait_started(struct bnx2x *bp)
 | |
| {
 | |
| 	int tout = 50;
 | |
| 	int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
 | |
| 
 | |
| 	if (!bp->port.pmf)
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * (assumption: No Attention from MCP at this stage)
 | |
| 	 * PMF probably in the middle of TXdisable/enable transaction
 | |
| 	 * 1. Sync IRS for default SB
 | |
| 	 * 2. Sync SP queue - this guarantes us that attention handling started
 | |
| 	 * 3. Wait, that TXdisable/enable transaction completes
 | |
| 	 *
 | |
| 	 * 1+2 guranty that if DCBx attention was scheduled it already changed
 | |
| 	 * pending bit of transaction from STARTED-->TX_STOPPED, if we alredy
 | |
| 	 * received complettion for the transaction the state is TX_STOPPED.
 | |
| 	 * State will return to STARTED after completion of TX_STOPPED-->STARTED
 | |
| 	 * transaction.
 | |
| 	 */
 | |
| 
 | |
| 	/* make sure default SB ISR is done */
 | |
| 	if (msix)
 | |
| 		synchronize_irq(bp->msix_table[0].vector);
 | |
| 	else
 | |
| 		synchronize_irq(bp->pdev->irq);
 | |
| 
 | |
| 	flush_workqueue(bnx2x_wq);
 | |
| 
 | |
| 	while (bnx2x_func_get_state(bp, &bp->func_obj) !=
 | |
| 				BNX2X_F_STATE_STARTED && tout--)
 | |
| 		msleep(20);
 | |
| 
 | |
| 	if (bnx2x_func_get_state(bp, &bp->func_obj) !=
 | |
| 						BNX2X_F_STATE_STARTED) {
 | |
| #ifdef BNX2X_STOP_ON_ERROR
 | |
| 		BNX2X_ERR("Wrong function state\n");
 | |
| 		return -EBUSY;
 | |
| #else
 | |
| 		/*
 | |
| 		 * Failed to complete the transaction in a "good way"
 | |
| 		 * Force both transactions with CLR bit
 | |
| 		 */
 | |
| 		struct bnx2x_func_state_params func_params = {NULL};
 | |
| 
 | |
| 		DP(NETIF_MSG_IFDOWN,
 | |
| 		   "Hmmm... unexpected function state! Forcing STARTED-->TX_ST0PPED-->STARTED\n");
 | |
| 
 | |
| 		func_params.f_obj = &bp->func_obj;
 | |
| 		__set_bit(RAMROD_DRV_CLR_ONLY,
 | |
| 					&func_params.ramrod_flags);
 | |
| 
 | |
| 		/* STARTED-->TX_ST0PPED */
 | |
| 		func_params.cmd = BNX2X_F_CMD_TX_STOP;
 | |
| 		bnx2x_func_state_change(bp, &func_params);
 | |
| 
 | |
| 		/* TX_ST0PPED-->STARTED */
 | |
| 		func_params.cmd = BNX2X_F_CMD_TX_START;
 | |
| 		return bnx2x_func_state_change(bp, &func_params);
 | |
| #endif
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode, bool keep_link)
 | |
| {
 | |
| 	int port = BP_PORT(bp);
 | |
| 	int i, rc = 0;
 | |
| 	u8 cos;
 | |
| 	struct bnx2x_mcast_ramrod_params rparam = {NULL};
 | |
| 	u32 reset_code;
 | |
| 
 | |
| 	/* Wait until tx fastpath tasks complete */
 | |
| 	for_each_tx_queue(bp, i) {
 | |
| 		struct bnx2x_fastpath *fp = &bp->fp[i];
 | |
| 
 | |
| 		for_each_cos_in_tx_queue(fp, cos)
 | |
| 			rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]);
 | |
| #ifdef BNX2X_STOP_ON_ERROR
 | |
| 		if (rc)
 | |
| 			return;
 | |
| #endif
 | |
| 	}
 | |
| 
 | |
| 	/* Give HW time to discard old tx messages */
 | |
| 	usleep_range(1000, 2000);
 | |
| 
 | |
| 	/* Clean all ETH MACs */
 | |
| 	rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_ETH_MAC,
 | |
| 				false);
 | |
| 	if (rc < 0)
 | |
| 		BNX2X_ERR("Failed to delete all ETH macs: %d\n", rc);
 | |
| 
 | |
| 	/* Clean up UC list  */
 | |
| 	rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_UC_LIST_MAC,
 | |
| 				true);
 | |
| 	if (rc < 0)
 | |
| 		BNX2X_ERR("Failed to schedule DEL commands for UC MACs list: %d\n",
 | |
| 			  rc);
 | |
| 
 | |
| 	/* Disable LLH */
 | |
| 	if (!CHIP_IS_E1(bp))
 | |
| 		REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
 | |
| 
 | |
| 	/* Set "drop all" (stop Rx).
 | |
| 	 * We need to take a netif_addr_lock() here in order to prevent
 | |
| 	 * a race between the completion code and this code.
 | |
| 	 */
 | |
| 	netif_addr_lock_bh(bp->dev);
 | |
| 	/* Schedule the rx_mode command */
 | |
| 	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
 | |
| 		set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
 | |
| 	else
 | |
| 		bnx2x_set_storm_rx_mode(bp);
 | |
| 
 | |
| 	/* Cleanup multicast configuration */
 | |
| 	rparam.mcast_obj = &bp->mcast_obj;
 | |
| 	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
 | |
| 	if (rc < 0)
 | |
| 		BNX2X_ERR("Failed to send DEL multicast command: %d\n", rc);
 | |
| 
 | |
| 	netif_addr_unlock_bh(bp->dev);
 | |
| 
 | |
| 	bnx2x_iov_chip_cleanup(bp);
 | |
| 
 | |
| 
 | |
| 	/*
 | |
| 	 * Send the UNLOAD_REQUEST to the MCP. This will return if
 | |
| 	 * this function should perform FUNC, PORT or COMMON HW
 | |
| 	 * reset.
 | |
| 	 */
 | |
| 	reset_code = bnx2x_send_unload_req(bp, unload_mode);
 | |
| 
 | |
| 	/*
 | |
| 	 * (assumption: No Attention from MCP at this stage)
 | |
| 	 * PMF probably in the middle of TXdisable/enable transaction
 | |
| 	 */
 | |
| 	rc = bnx2x_func_wait_started(bp);
 | |
| 	if (rc) {
 | |
| 		BNX2X_ERR("bnx2x_func_wait_started failed\n");
 | |
| #ifdef BNX2X_STOP_ON_ERROR
 | |
| 		return;
 | |
| #endif
 | |
| 	}
 | |
| 
 | |
| 	/* Close multi and leading connections
 | |
| 	 * Completions for ramrods are collected in a synchronous way
 | |
| 	 */
 | |
| 	for_each_eth_queue(bp, i)
 | |
| 		if (bnx2x_stop_queue(bp, i))
 | |
| #ifdef BNX2X_STOP_ON_ERROR
 | |
| 			return;
 | |
| #else
 | |
| 			goto unload_error;
 | |
| #endif
 | |
| 
 | |
| 	if (CNIC_LOADED(bp)) {
 | |
| 		for_each_cnic_queue(bp, i)
 | |
| 			if (bnx2x_stop_queue(bp, i))
 | |
| #ifdef BNX2X_STOP_ON_ERROR
 | |
| 				return;
 | |
| #else
 | |
| 				goto unload_error;
 | |
| #endif
 | |
| 	}
 | |
| 
 | |
| 	/* If SP settings didn't get completed so far - something
 | |
| 	 * very wrong has happen.
 | |
| 	 */
 | |
| 	if (!bnx2x_wait_sp_comp(bp, ~0x0UL))
 | |
| 		BNX2X_ERR("Hmmm... Common slow path ramrods got stuck!\n");
 | |
| 
 | |
| #ifndef BNX2X_STOP_ON_ERROR
 | |
| unload_error:
 | |
| #endif
 | |
| 	rc = bnx2x_func_stop(bp);
 | |
| 	if (rc) {
 | |
| 		BNX2X_ERR("Function stop failed!\n");
 | |
| #ifdef BNX2X_STOP_ON_ERROR
 | |
| 		return;
 | |
| #endif
 | |
| 	}
 | |
| 
 | |
| 	/* Disable HW interrupts, NAPI */
 | |
| 	bnx2x_netif_stop(bp, 1);
 | |
| 	/* Delete all NAPI objects */
 | |
| 	bnx2x_del_all_napi(bp);
 | |
| 	if (CNIC_LOADED(bp))
 | |
| 		bnx2x_del_all_napi_cnic(bp);
 | |
| 
 | |
| 	/* Release IRQs */
 | |
| 	bnx2x_free_irq(bp);
 | |
| 
 | |
| 	/* Reset the chip */
 | |
| 	rc = bnx2x_reset_hw(bp, reset_code);
 | |
| 	if (rc)
 | |
| 		BNX2X_ERR("HW_RESET failed\n");
 | |
| 
 | |
| 
 | |
| 	/* Report UNLOAD_DONE to MCP */
 | |
| 	bnx2x_send_unload_done(bp, keep_link);
 | |
| }
 | |
| 
 | |
| void bnx2x_disable_close_the_gate(struct bnx2x *bp)
 | |
| {
 | |
| 	u32 val;
 | |
| 
 | |
| 	DP(NETIF_MSG_IFDOWN, "Disabling \"close the gates\"\n");
 | |
| 
 | |
| 	if (CHIP_IS_E1(bp)) {
 | |
| 		int port = BP_PORT(bp);
 | |
| 		u32 addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
 | |
| 			MISC_REG_AEU_MASK_ATTN_FUNC_0;
 | |
| 
 | |
| 		val = REG_RD(bp, addr);
 | |
| 		val &= ~(0x300);
 | |
| 		REG_WR(bp, addr, val);
 | |
| 	} else {
 | |
| 		val = REG_RD(bp, MISC_REG_AEU_GENERAL_MASK);
 | |
| 		val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
 | |
| 			 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
 | |
| 		REG_WR(bp, MISC_REG_AEU_GENERAL_MASK, val);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Close gates #2, #3 and #4: */
 | |
| static void bnx2x_set_234_gates(struct bnx2x *bp, bool close)
 | |
| {
 | |
| 	u32 val;
 | |
| 
 | |
| 	/* Gates #2 and #4a are closed/opened for "not E1" only */
 | |
| 	if (!CHIP_IS_E1(bp)) {
 | |
| 		/* #4 */
 | |
| 		REG_WR(bp, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
 | |
| 		/* #2 */
 | |
| 		REG_WR(bp, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
 | |
| 	}
 | |
| 
 | |
| 	/* #3 */
 | |
| 	if (CHIP_IS_E1x(bp)) {
 | |
| 		/* Prevent interrupts from HC on both ports */
 | |
| 		val = REG_RD(bp, HC_REG_CONFIG_1);
 | |
| 		REG_WR(bp, HC_REG_CONFIG_1,
 | |
| 		       (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
 | |
| 		       (val & ~(u32)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
 | |
| 
 | |
| 		val = REG_RD(bp, HC_REG_CONFIG_0);
 | |
| 		REG_WR(bp, HC_REG_CONFIG_0,
 | |
| 		       (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
 | |
| 		       (val & ~(u32)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
 | |
| 	} else {
 | |
| 		/* Prevent incoming interrupts in IGU */
 | |
| 		val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
 | |
| 
 | |
| 		REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION,
 | |
| 		       (!close) ?
 | |
| 		       (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
 | |
| 		       (val & ~(u32)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
 | |
| 	}
 | |
| 
 | |
| 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "%s gates #2, #3 and #4\n",
 | |
| 		close ? "closing" : "opening");
 | |
| 	mmiowb();
 | |
| }
 | |
| 
 | |
| #define SHARED_MF_CLP_MAGIC  0x80000000 /* `magic' bit */
 | |
| 
 | |
| static void bnx2x_clp_reset_prep(struct bnx2x *bp, u32 *magic_val)
 | |
| {
 | |
| 	/* Do some magic... */
 | |
| 	u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
 | |
| 	*magic_val = val & SHARED_MF_CLP_MAGIC;
 | |
| 	MF_CFG_WR(bp, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * bnx2x_clp_reset_done - restore the value of the `magic' bit.
 | |
|  *
 | |
|  * @bp:		driver handle
 | |
|  * @magic_val:	old value of the `magic' bit.
 | |
|  */
 | |
| static void bnx2x_clp_reset_done(struct bnx2x *bp, u32 magic_val)
 | |
| {
 | |
| 	/* Restore the `magic' bit value... */
 | |
| 	u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
 | |
| 	MF_CFG_WR(bp, shared_mf_config.clp_mb,
 | |
| 		(val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * bnx2x_reset_mcp_prep - prepare for MCP reset.
 | |
|  *
 | |
|  * @bp:		driver handle
 | |
|  * @magic_val:	old value of 'magic' bit.
 | |
|  *
 | |
|  * Takes care of CLP configurations.
 | |
|  */
 | |
| static void bnx2x_reset_mcp_prep(struct bnx2x *bp, u32 *magic_val)
 | |
| {
 | |
| 	u32 shmem;
 | |
| 	u32 validity_offset;
 | |
| 
 | |
| 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "Starting\n");
 | |
| 
 | |
| 	/* Set `magic' bit in order to save MF config */
 | |
| 	if (!CHIP_IS_E1(bp))
 | |
| 		bnx2x_clp_reset_prep(bp, magic_val);
 | |
| 
 | |
| 	/* Get shmem offset */
 | |
| 	shmem = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
 | |
| 	validity_offset =
 | |
| 		offsetof(struct shmem_region, validity_map[BP_PORT(bp)]);
 | |
| 
 | |
| 	/* Clear validity map flags */
 | |
| 	if (shmem > 0)
 | |
| 		REG_WR(bp, shmem + validity_offset, 0);
 | |
| }
 | |
| 
 | |
| #define MCP_TIMEOUT      5000   /* 5 seconds (in ms) */
 | |
| #define MCP_ONE_TIMEOUT  100    /* 100 ms */
 | |
| 
 | |
| /**
 | |
|  * bnx2x_mcp_wait_one - wait for MCP_ONE_TIMEOUT
 | |
|  *
 | |
|  * @bp:	driver handle
 | |
|  */
 | |
| static void bnx2x_mcp_wait_one(struct bnx2x *bp)
 | |
| {
 | |
| 	/* special handling for emulation and FPGA,
 | |
| 	   wait 10 times longer */
 | |
| 	if (CHIP_REV_IS_SLOW(bp))
 | |
| 		msleep(MCP_ONE_TIMEOUT*10);
 | |
| 	else
 | |
| 		msleep(MCP_ONE_TIMEOUT);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * initializes bp->common.shmem_base and waits for validity signature to appear
 | |
|  */
 | |
| static int bnx2x_init_shmem(struct bnx2x *bp)
 | |
| {
 | |
| 	int cnt = 0;
 | |
| 	u32 val = 0;
 | |
| 
 | |
| 	do {
 | |
| 		bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
 | |
| 		if (bp->common.shmem_base) {
 | |
| 			val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
 | |
| 			if (val & SHR_MEM_VALIDITY_MB)
 | |
| 				return 0;
 | |
| 		}
 | |
| 
 | |
| 		bnx2x_mcp_wait_one(bp);
 | |
| 
 | |
| 	} while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
 | |
| 
 | |
| 	BNX2X_ERR("BAD MCP validity signature\n");
 | |
| 
 | |
| 	return -ENODEV;
 | |
| }
 | |
| 
 | |
| static int bnx2x_reset_mcp_comp(struct bnx2x *bp, u32 magic_val)
 | |
| {
 | |
| 	int rc = bnx2x_init_shmem(bp);
 | |
| 
 | |
| 	/* Restore the `magic' bit value */
 | |
| 	if (!CHIP_IS_E1(bp))
 | |
| 		bnx2x_clp_reset_done(bp, magic_val);
 | |
| 
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| static void bnx2x_pxp_prep(struct bnx2x *bp)
 | |
| {
 | |
| 	if (!CHIP_IS_E1(bp)) {
 | |
| 		REG_WR(bp, PXP2_REG_RD_START_INIT, 0);
 | |
| 		REG_WR(bp, PXP2_REG_RQ_RBC_DONE, 0);
 | |
| 		mmiowb();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Reset the whole chip except for:
 | |
|  *      - PCIE core
 | |
|  *      - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by
 | |
|  *              one reset bit)
 | |
|  *      - IGU
 | |
|  *      - MISC (including AEU)
 | |
|  *      - GRC
 | |
|  *      - RBCN, RBCP
 | |
|  */
 | |
| static void bnx2x_process_kill_chip_reset(struct bnx2x *bp, bool global)
 | |
| {
 | |
| 	u32 not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
 | |
| 	u32 global_bits2, stay_reset2;
 | |
| 
 | |
| 	/*
 | |
| 	 * Bits that have to be set in reset_mask2 if we want to reset 'global'
 | |
| 	 * (per chip) blocks.
 | |
| 	 */
 | |
| 	global_bits2 =
 | |
| 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
 | |
| 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
 | |
| 
 | |
| 	/* Don't reset the following blocks.
 | |
| 	 * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
 | |
| 	 *            reset, as in 4 port device they might still be owned
 | |
| 	 *            by the MCP (there is only one leader per path).
 | |
| 	 */
 | |
| 	not_reset_mask1 =
 | |
| 		MISC_REGISTERS_RESET_REG_1_RST_HC |
 | |
| 		MISC_REGISTERS_RESET_REG_1_RST_PXPV |
 | |
| 		MISC_REGISTERS_RESET_REG_1_RST_PXP;
 | |
| 
 | |
| 	not_reset_mask2 =
 | |
| 		MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
 | |
| 		MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
 | |
| 		MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
 | |
| 		MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
 | |
| 		MISC_REGISTERS_RESET_REG_2_RST_RBCN |
 | |
| 		MISC_REGISTERS_RESET_REG_2_RST_GRC  |
 | |
| 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
 | |
| 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
 | |
| 		MISC_REGISTERS_RESET_REG_2_RST_ATC |
 | |
| 		MISC_REGISTERS_RESET_REG_2_PGLC |
 | |
| 		MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
 | |
| 		MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
 | |
| 		MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
 | |
| 		MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
 | |
| 		MISC_REGISTERS_RESET_REG_2_UMAC0 |
 | |
| 		MISC_REGISTERS_RESET_REG_2_UMAC1;
 | |
| 
 | |
| 	/*
 | |
| 	 * Keep the following blocks in reset:
 | |
| 	 *  - all xxMACs are handled by the bnx2x_link code.
 | |
| 	 */
 | |
| 	stay_reset2 =
 | |
| 		MISC_REGISTERS_RESET_REG_2_XMAC |
 | |
| 		MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
 | |
| 
 | |
| 	/* Full reset masks according to the chip */
 | |
| 	reset_mask1 = 0xffffffff;
 | |
| 
 | |
| 	if (CHIP_IS_E1(bp))
 | |
| 		reset_mask2 = 0xffff;
 | |
| 	else if (CHIP_IS_E1H(bp))
 | |
| 		reset_mask2 = 0x1ffff;
 | |
| 	else if (CHIP_IS_E2(bp))
 | |
| 		reset_mask2 = 0xfffff;
 | |
| 	else /* CHIP_IS_E3 */
 | |
| 		reset_mask2 = 0x3ffffff;
 | |
| 
 | |
| 	/* Don't reset global blocks unless we need to */
 | |
| 	if (!global)
 | |
| 		reset_mask2 &= ~global_bits2;
 | |
| 
 | |
| 	/*
 | |
| 	 * In case of attention in the QM, we need to reset PXP
 | |
| 	 * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
 | |
| 	 * because otherwise QM reset would release 'close the gates' shortly
 | |
| 	 * before resetting the PXP, then the PSWRQ would send a write
 | |
| 	 * request to PGLUE. Then when PXP is reset, PGLUE would try to
 | |
| 	 * read the payload data from PSWWR, but PSWWR would not
 | |
| 	 * respond. The write queue in PGLUE would stuck, dmae commands
 | |
| 	 * would not return. Therefore it's important to reset the second
 | |
| 	 * reset register (containing the
 | |
| 	 * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
 | |
| 	 * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
 | |
| 	 * bit).
 | |
| 	 */
 | |
| 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
 | |
| 	       reset_mask2 & (~not_reset_mask2));
 | |
| 
 | |
| 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
 | |
| 	       reset_mask1 & (~not_reset_mask1));
 | |
| 
 | |
| 	barrier();
 | |
| 	mmiowb();
 | |
| 
 | |
| 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
 | |
| 	       reset_mask2 & (~stay_reset2));
 | |
| 
 | |
| 	barrier();
 | |
| 	mmiowb();
 | |
| 
 | |
| 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
 | |
| 	mmiowb();
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * bnx2x_er_poll_igu_vq - poll for pending writes bit.
 | |
|  * It should get cleared in no more than 1s.
 | |
|  *
 | |
|  * @bp:	driver handle
 | |
|  *
 | |
|  * It should get cleared in no more than 1s. Returns 0 if
 | |
|  * pending writes bit gets cleared.
 | |
|  */
 | |
| static int bnx2x_er_poll_igu_vq(struct bnx2x *bp)
 | |
| {
 | |
| 	u32 cnt = 1000;
 | |
| 	u32 pend_bits = 0;
 | |
| 
 | |
| 	do {
 | |
| 		pend_bits  = REG_RD(bp, IGU_REG_PENDING_BITS_STATUS);
 | |
| 
 | |
| 		if (pend_bits == 0)
 | |
| 			break;
 | |
| 
 | |
| 		usleep_range(1000, 2000);
 | |
| 	} while (cnt-- > 0);
 | |
| 
 | |
| 	if (cnt <= 0) {
 | |
| 		BNX2X_ERR("Still pending IGU requests pend_bits=%x!\n",
 | |
| 			  pend_bits);
 | |
| 		return -EBUSY;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int bnx2x_process_kill(struct bnx2x *bp, bool global)
 | |
| {
 | |
| 	int cnt = 1000;
 | |
| 	u32 val = 0;
 | |
| 	u32 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
 | |
| 	u32 tags_63_32 = 0;
 | |
| 
 | |
| 	/* Empty the Tetris buffer, wait for 1s */
 | |
| 	do {
 | |
| 		sr_cnt  = REG_RD(bp, PXP2_REG_RD_SR_CNT);
 | |
| 		blk_cnt = REG_RD(bp, PXP2_REG_RD_BLK_CNT);
 | |
| 		port_is_idle_0 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_0);
 | |
| 		port_is_idle_1 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_1);
 | |
| 		pgl_exp_rom2 = REG_RD(bp, PXP2_REG_PGL_EXP_ROM2);
 | |
| 		if (CHIP_IS_E3(bp))
 | |
| 			tags_63_32 = REG_RD(bp, PGLUE_B_REG_TAGS_63_32);
 | |
| 
 | |
| 		if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
 | |
| 		    ((port_is_idle_0 & 0x1) == 0x1) &&
 | |
| 		    ((port_is_idle_1 & 0x1) == 0x1) &&
 | |
| 		    (pgl_exp_rom2 == 0xffffffff) &&
 | |
| 		    (!CHIP_IS_E3(bp) || (tags_63_32 == 0xffffffff)))
 | |
| 			break;
 | |
| 		usleep_range(1000, 2000);
 | |
| 	} while (cnt-- > 0);
 | |
| 
 | |
| 	if (cnt <= 0) {
 | |
| 		BNX2X_ERR("Tetris buffer didn't get empty or there are still outstanding read requests after 1s!\n");
 | |
| 		BNX2X_ERR("sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
 | |
| 			  sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1,
 | |
| 			  pgl_exp_rom2);
 | |
| 		return -EAGAIN;
 | |
| 	}
 | |
| 
 | |
| 	barrier();
 | |
| 
 | |
| 	/* Close gates #2, #3 and #4 */
 | |
| 	bnx2x_set_234_gates(bp, true);
 | |
| 
 | |
| 	/* Poll for IGU VQs for 57712 and newer chips */
 | |
| 	if (!CHIP_IS_E1x(bp) && bnx2x_er_poll_igu_vq(bp))
 | |
| 		return -EAGAIN;
 | |
| 
 | |
| 
 | |
| 	/* TBD: Indicate that "process kill" is in progress to MCP */
 | |
| 
 | |
| 	/* Clear "unprepared" bit */
 | |
| 	REG_WR(bp, MISC_REG_UNPREPARED, 0);
 | |
| 	barrier();
 | |
| 
 | |
| 	/* Make sure all is written to the chip before the reset */
 | |
| 	mmiowb();
 | |
| 
 | |
| 	/* Wait for 1ms to empty GLUE and PCI-E core queues,
 | |
| 	 * PSWHST, GRC and PSWRD Tetris buffer.
 | |
| 	 */
 | |
| 	usleep_range(1000, 2000);
 | |
| 
 | |
| 	/* Prepare to chip reset: */
 | |
| 	/* MCP */
 | |
| 	if (global)
 | |
| 		bnx2x_reset_mcp_prep(bp, &val);
 | |
| 
 | |
| 	/* PXP */
 | |
| 	bnx2x_pxp_prep(bp);
 | |
| 	barrier();
 | |
| 
 | |
| 	/* reset the chip */
 | |
| 	bnx2x_process_kill_chip_reset(bp, global);
 | |
| 	barrier();
 | |
| 
 | |
| 	/* Recover after reset: */
 | |
| 	/* MCP */
 | |
| 	if (global && bnx2x_reset_mcp_comp(bp, val))
 | |
| 		return -EAGAIN;
 | |
| 
 | |
| 	/* TBD: Add resetting the NO_MCP mode DB here */
 | |
| 
 | |
| 	/* Open the gates #2, #3 and #4 */
 | |
| 	bnx2x_set_234_gates(bp, false);
 | |
| 
 | |
| 	/* TBD: IGU/AEU preparation bring back the AEU/IGU to a
 | |
| 	 * reset state, re-enable attentions. */
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int bnx2x_leader_reset(struct bnx2x *bp)
 | |
| {
 | |
| 	int rc = 0;
 | |
| 	bool global = bnx2x_reset_is_global(bp);
 | |
| 	u32 load_code;
 | |
| 
 | |
| 	/* if not going to reset MCP - load "fake" driver to reset HW while
 | |
| 	 * driver is owner of the HW
 | |
| 	 */
 | |
| 	if (!global && !BP_NOMCP(bp)) {
 | |
| 		load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ,
 | |
| 					     DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
 | |
| 		if (!load_code) {
 | |
| 			BNX2X_ERR("MCP response failure, aborting\n");
 | |
| 			rc = -EAGAIN;
 | |
| 			goto exit_leader_reset;
 | |
| 		}
 | |
| 		if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
 | |
| 		    (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
 | |
| 			BNX2X_ERR("MCP unexpected resp, aborting\n");
 | |
| 			rc = -EAGAIN;
 | |
| 			goto exit_leader_reset2;
 | |
| 		}
 | |
| 		load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
 | |
| 		if (!load_code) {
 | |
| 			BNX2X_ERR("MCP response failure, aborting\n");
 | |
| 			rc = -EAGAIN;
 | |
| 			goto exit_leader_reset2;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Try to recover after the failure */
 | |
| 	if (bnx2x_process_kill(bp, global)) {
 | |
| 		BNX2X_ERR("Something bad had happen on engine %d! Aii!\n",
 | |
| 			  BP_PATH(bp));
 | |
| 		rc = -EAGAIN;
 | |
| 		goto exit_leader_reset2;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Clear RESET_IN_PROGRES and RESET_GLOBAL bits and update the driver
 | |
| 	 * state.
 | |
| 	 */
 | |
| 	bnx2x_set_reset_done(bp);
 | |
| 	if (global)
 | |
| 		bnx2x_clear_reset_global(bp);
 | |
| 
 | |
| exit_leader_reset2:
 | |
| 	/* unload "fake driver" if it was loaded */
 | |
| 	if (!global && !BP_NOMCP(bp)) {
 | |
| 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
 | |
| 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
 | |
| 	}
 | |
| exit_leader_reset:
 | |
| 	bp->is_leader = 0;
 | |
| 	bnx2x_release_leader_lock(bp);
 | |
| 	smp_mb();
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| static void bnx2x_recovery_failed(struct bnx2x *bp)
 | |
| {
 | |
| 	netdev_err(bp->dev, "Recovery has failed. Power cycle is needed.\n");
 | |
| 
 | |
| 	/* Disconnect this device */
 | |
| 	netif_device_detach(bp->dev);
 | |
| 
 | |
| 	/*
 | |
| 	 * Block ifup for all function on this engine until "process kill"
 | |
| 	 * or power cycle.
 | |
| 	 */
 | |
| 	bnx2x_set_reset_in_progress(bp);
 | |
| 
 | |
| 	/* Shut down the power */
 | |
| 	bnx2x_set_power_state(bp, PCI_D3hot);
 | |
| 
 | |
| 	bp->recovery_state = BNX2X_RECOVERY_FAILED;
 | |
| 
 | |
| 	smp_mb();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Assumption: runs under rtnl lock. This together with the fact
 | |
|  * that it's called only from bnx2x_sp_rtnl() ensure that it
 | |
|  * will never be called when netif_running(bp->dev) is false.
 | |
|  */
 | |
| static void bnx2x_parity_recover(struct bnx2x *bp)
 | |
| {
 | |
| 	bool global = false;
 | |
| 	u32 error_recovered, error_unrecovered;
 | |
| 	bool is_parity;
 | |
| 
 | |
| 	DP(NETIF_MSG_HW, "Handling parity\n");
 | |
| 	while (1) {
 | |
| 		switch (bp->recovery_state) {
 | |
| 		case BNX2X_RECOVERY_INIT:
 | |
| 			DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_INIT\n");
 | |
| 			is_parity = bnx2x_chk_parity_attn(bp, &global, false);
 | |
| 			WARN_ON(!is_parity);
 | |
| 
 | |
| 			/* Try to get a LEADER_LOCK HW lock */
 | |
| 			if (bnx2x_trylock_leader_lock(bp)) {
 | |
| 				bnx2x_set_reset_in_progress(bp);
 | |
| 				/*
 | |
| 				 * Check if there is a global attention and if
 | |
| 				 * there was a global attention, set the global
 | |
| 				 * reset bit.
 | |
| 				 */
 | |
| 
 | |
| 				if (global)
 | |
| 					bnx2x_set_reset_global(bp);
 | |
| 
 | |
| 				bp->is_leader = 1;
 | |
| 			}
 | |
| 
 | |
| 			/* Stop the driver */
 | |
| 			/* If interface has been removed - break */
 | |
| 			if (bnx2x_nic_unload(bp, UNLOAD_RECOVERY, false))
 | |
| 				return;
 | |
| 
 | |
| 			bp->recovery_state = BNX2X_RECOVERY_WAIT;
 | |
| 
 | |
| 			/* Ensure "is_leader", MCP command sequence and
 | |
| 			 * "recovery_state" update values are seen on other
 | |
| 			 * CPUs.
 | |
| 			 */
 | |
| 			smp_mb();
 | |
| 			break;
 | |
| 
 | |
| 		case BNX2X_RECOVERY_WAIT:
 | |
| 			DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_WAIT\n");
 | |
| 			if (bp->is_leader) {
 | |
| 				int other_engine = BP_PATH(bp) ? 0 : 1;
 | |
| 				bool other_load_status =
 | |
| 					bnx2x_get_load_status(bp, other_engine);
 | |
| 				bool load_status =
 | |
| 					bnx2x_get_load_status(bp, BP_PATH(bp));
 | |
| 				global = bnx2x_reset_is_global(bp);
 | |
| 
 | |
| 				/*
 | |
| 				 * In case of a parity in a global block, let
 | |
| 				 * the first leader that performs a
 | |
| 				 * leader_reset() reset the global blocks in
 | |
| 				 * order to clear global attentions. Otherwise
 | |
| 				 * the the gates will remain closed for that
 | |
| 				 * engine.
 | |
| 				 */
 | |
| 				if (load_status ||
 | |
| 				    (global && other_load_status)) {
 | |
| 					/* Wait until all other functions get
 | |
| 					 * down.
 | |
| 					 */
 | |
| 					schedule_delayed_work(&bp->sp_rtnl_task,
 | |
| 								HZ/10);
 | |
| 					return;
 | |
| 				} else {
 | |
| 					/* If all other functions got down -
 | |
| 					 * try to bring the chip back to
 | |
| 					 * normal. In any case it's an exit
 | |
| 					 * point for a leader.
 | |
| 					 */
 | |
| 					if (bnx2x_leader_reset(bp)) {
 | |
| 						bnx2x_recovery_failed(bp);
 | |
| 						return;
 | |
| 					}
 | |
| 
 | |
| 					/* If we are here, means that the
 | |
| 					 * leader has succeeded and doesn't
 | |
| 					 * want to be a leader any more. Try
 | |
| 					 * to continue as a none-leader.
 | |
| 					 */
 | |
| 					break;
 | |
| 				}
 | |
| 			} else { /* non-leader */
 | |
| 				if (!bnx2x_reset_is_done(bp, BP_PATH(bp))) {
 | |
| 					/* Try to get a LEADER_LOCK HW lock as
 | |
| 					 * long as a former leader may have
 | |
| 					 * been unloaded by the user or
 | |
| 					 * released a leadership by another
 | |
| 					 * reason.
 | |
| 					 */
 | |
| 					if (bnx2x_trylock_leader_lock(bp)) {
 | |
| 						/* I'm a leader now! Restart a
 | |
| 						 * switch case.
 | |
| 						 */
 | |
| 						bp->is_leader = 1;
 | |
| 						break;
 | |
| 					}
 | |
| 
 | |
| 					schedule_delayed_work(&bp->sp_rtnl_task,
 | |
| 								HZ/10);
 | |
| 					return;
 | |
| 
 | |
| 				} else {
 | |
| 					/*
 | |
| 					 * If there was a global attention, wait
 | |
| 					 * for it to be cleared.
 | |
| 					 */
 | |
| 					if (bnx2x_reset_is_global(bp)) {
 | |
| 						schedule_delayed_work(
 | |
| 							&bp->sp_rtnl_task,
 | |
| 							HZ/10);
 | |
| 						return;
 | |
| 					}
 | |
| 
 | |
| 					error_recovered =
 | |
| 					  bp->eth_stats.recoverable_error;
 | |
| 					error_unrecovered =
 | |
| 					  bp->eth_stats.unrecoverable_error;
 | |
| 					bp->recovery_state =
 | |
| 						BNX2X_RECOVERY_NIC_LOADING;
 | |
| 					if (bnx2x_nic_load(bp, LOAD_NORMAL)) {
 | |
| 						error_unrecovered++;
 | |
| 						netdev_err(bp->dev,
 | |
| 							   "Recovery failed. Power cycle needed\n");
 | |
| 						/* Disconnect this device */
 | |
| 						netif_device_detach(bp->dev);
 | |
| 						/* Shut down the power */
 | |
| 						bnx2x_set_power_state(
 | |
| 							bp, PCI_D3hot);
 | |
| 						smp_mb();
 | |
| 					} else {
 | |
| 						bp->recovery_state =
 | |
| 							BNX2X_RECOVERY_DONE;
 | |
| 						error_recovered++;
 | |
| 						smp_mb();
 | |
| 					}
 | |
| 					bp->eth_stats.recoverable_error =
 | |
| 						error_recovered;
 | |
| 					bp->eth_stats.unrecoverable_error =
 | |
| 						error_unrecovered;
 | |
| 
 | |
| 					return;
 | |
| 				}
 | |
| 			}
 | |
| 		default:
 | |
| 			return;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int bnx2x_close(struct net_device *dev);
 | |
| 
 | |
| /* bnx2x_nic_unload() flushes the bnx2x_wq, thus reset task is
 | |
|  * scheduled on a general queue in order to prevent a dead lock.
 | |
|  */
 | |
| static void bnx2x_sp_rtnl_task(struct work_struct *work)
 | |
| {
 | |
| 	struct bnx2x *bp = container_of(work, struct bnx2x, sp_rtnl_task.work);
 | |
| 
 | |
| 	rtnl_lock();
 | |
| 
 | |
| 	if (!netif_running(bp->dev)) {
 | |
| 		rtnl_unlock();
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* if stop on error is defined no recovery flows should be executed */
 | |
| #ifdef BNX2X_STOP_ON_ERROR
 | |
| 	BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
 | |
| 		  "you will need to reboot when done\n");
 | |
| 	goto sp_rtnl_not_reset;
 | |
| #endif
 | |
| 
 | |
| 	if (unlikely(bp->recovery_state != BNX2X_RECOVERY_DONE)) {
 | |
| 		/*
 | |
| 		 * Clear all pending SP commands as we are going to reset the
 | |
| 		 * function anyway.
 | |
| 		 */
 | |
| 		bp->sp_rtnl_state = 0;
 | |
| 		smp_mb();
 | |
| 
 | |
| 		bnx2x_parity_recover(bp);
 | |
| 
 | |
| 		rtnl_unlock();
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (test_and_clear_bit(BNX2X_SP_RTNL_TX_TIMEOUT, &bp->sp_rtnl_state)) {
 | |
| 		/*
 | |
| 		 * Clear all pending SP commands as we are going to reset the
 | |
| 		 * function anyway.
 | |
| 		 */
 | |
| 		bp->sp_rtnl_state = 0;
 | |
| 		smp_mb();
 | |
| 
 | |
| 		bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
 | |
| 		bnx2x_nic_load(bp, LOAD_NORMAL);
 | |
| 
 | |
| 		rtnl_unlock();
 | |
| 		return;
 | |
| 	}
 | |
| #ifdef BNX2X_STOP_ON_ERROR
 | |
| sp_rtnl_not_reset:
 | |
| #endif
 | |
| 	if (test_and_clear_bit(BNX2X_SP_RTNL_SETUP_TC, &bp->sp_rtnl_state))
 | |
| 		bnx2x_setup_tc(bp->dev, bp->dcbx_port_params.ets.num_of_cos);
 | |
| 	if (test_and_clear_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE, &bp->sp_rtnl_state))
 | |
| 		bnx2x_after_function_update(bp);
 | |
| 	/*
 | |
| 	 * in case of fan failure we need to reset id if the "stop on error"
 | |
| 	 * debug flag is set, since we trying to prevent permanent overheating
 | |
| 	 * damage
 | |
| 	 */
 | |
| 	if (test_and_clear_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state)) {
 | |
| 		DP(NETIF_MSG_HW, "fan failure detected. Unloading driver\n");
 | |
| 		netif_device_detach(bp->dev);
 | |
| 		bnx2x_close(bp->dev);
 | |
| 		rtnl_unlock();
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_MCAST, &bp->sp_rtnl_state)) {
 | |
| 		DP(BNX2X_MSG_SP,
 | |
| 		   "sending set mcast vf pf channel message from rtnl sp-task\n");
 | |
| 		bnx2x_vfpf_set_mcast(bp->dev);
 | |
| 	}
 | |
| 
 | |
| 	if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_STORM_RX_MODE,
 | |
| 			       &bp->sp_rtnl_state)) {
 | |
| 		DP(BNX2X_MSG_SP,
 | |
| 		   "sending set storm rx mode vf pf channel message from rtnl sp-task\n");
 | |
| 		bnx2x_vfpf_storm_rx_mode(bp);
 | |
| 	}
 | |
| 
 | |
| 	/* work which needs rtnl lock not-taken (as it takes the lock itself and
 | |
| 	 * can be called from other contexts as well)
 | |
| 	 */
 | |
| 	rtnl_unlock();
 | |
| 
 | |
| 	/* enable SR-IOV if applicable */
 | |
| 	if (IS_SRIOV(bp) && test_and_clear_bit(BNX2X_SP_RTNL_ENABLE_SRIOV,
 | |
| 					       &bp->sp_rtnl_state))
 | |
| 		bnx2x_enable_sriov(bp);
 | |
| }
 | |
| 
 | |
| static void bnx2x_period_task(struct work_struct *work)
 | |
| {
 | |
| 	struct bnx2x *bp = container_of(work, struct bnx2x, period_task.work);
 | |
| 
 | |
| 	if (!netif_running(bp->dev))
 | |
| 		goto period_task_exit;
 | |
| 
 | |
| 	if (CHIP_REV_IS_SLOW(bp)) {
 | |
| 		BNX2X_ERR("period task called on emulation, ignoring\n");
 | |
| 		goto period_task_exit;
 | |
| 	}
 | |
| 
 | |
| 	bnx2x_acquire_phy_lock(bp);
 | |
| 	/*
 | |
| 	 * The barrier is needed to ensure the ordering between the writing to
 | |
| 	 * the bp->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and
 | |
| 	 * the reading here.
 | |
| 	 */
 | |
| 	smp_mb();
 | |
| 	if (bp->port.pmf) {
 | |
| 		bnx2x_period_func(&bp->link_params, &bp->link_vars);
 | |
| 
 | |
| 		/* Re-queue task in 1 sec */
 | |
| 		queue_delayed_work(bnx2x_wq, &bp->period_task, 1*HZ);
 | |
| 	}
 | |
| 
 | |
| 	bnx2x_release_phy_lock(bp);
 | |
| period_task_exit:
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Init service functions
 | |
|  */
 | |
| 
 | |
| u32 bnx2x_get_pretend_reg(struct bnx2x *bp)
 | |
| {
 | |
| 	u32 base = PXP2_REG_PGL_PRETEND_FUNC_F0;
 | |
| 	u32 stride = PXP2_REG_PGL_PRETEND_FUNC_F1 - base;
 | |
| 	return base + (BP_ABS_FUNC(bp)) * stride;
 | |
| }
 | |
| 
 | |
| static void bnx2x_prev_unload_close_mac(struct bnx2x *bp,
 | |
| 					struct bnx2x_mac_vals *vals)
 | |
| {
 | |
| 	u32 val, base_addr, offset, mask, reset_reg;
 | |
| 	bool mac_stopped = false;
 | |
| 	u8 port = BP_PORT(bp);
 | |
| 
 | |
| 	/* reset addresses as they also mark which values were changed */
 | |
| 	vals->bmac_addr = 0;
 | |
| 	vals->umac_addr = 0;
 | |
| 	vals->xmac_addr = 0;
 | |
| 	vals->emac_addr = 0;
 | |
| 
 | |
| 	reset_reg = REG_RD(bp, MISC_REG_RESET_REG_2);
 | |
| 
 | |
| 	if (!CHIP_IS_E3(bp)) {
 | |
| 		val = REG_RD(bp, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
 | |
| 		mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
 | |
| 		if ((mask & reset_reg) && val) {
 | |
| 			u32 wb_data[2];
 | |
| 			BNX2X_DEV_INFO("Disable bmac Rx\n");
 | |
| 			base_addr = BP_PORT(bp) ? NIG_REG_INGRESS_BMAC1_MEM
 | |
| 						: NIG_REG_INGRESS_BMAC0_MEM;
 | |
| 			offset = CHIP_IS_E2(bp) ? BIGMAC2_REGISTER_BMAC_CONTROL
 | |
| 						: BIGMAC_REGISTER_BMAC_CONTROL;
 | |
| 
 | |
| 			/*
 | |
| 			 * use rd/wr since we cannot use dmae. This is safe
 | |
| 			 * since MCP won't access the bus due to the request
 | |
| 			 * to unload, and no function on the path can be
 | |
| 			 * loaded at this time.
 | |
| 			 */
 | |
| 			wb_data[0] = REG_RD(bp, base_addr + offset);
 | |
| 			wb_data[1] = REG_RD(bp, base_addr + offset + 0x4);
 | |
| 			vals->bmac_addr = base_addr + offset;
 | |
| 			vals->bmac_val[0] = wb_data[0];
 | |
| 			vals->bmac_val[1] = wb_data[1];
 | |
| 			wb_data[0] &= ~BMAC_CONTROL_RX_ENABLE;
 | |
| 			REG_WR(bp, vals->bmac_addr, wb_data[0]);
 | |
| 			REG_WR(bp, vals->bmac_addr + 0x4, wb_data[1]);
 | |
| 
 | |
| 		}
 | |
| 		BNX2X_DEV_INFO("Disable emac Rx\n");
 | |
| 		vals->emac_addr = NIG_REG_NIG_EMAC0_EN + BP_PORT(bp)*4;
 | |
| 		vals->emac_val = REG_RD(bp, vals->emac_addr);
 | |
| 		REG_WR(bp, vals->emac_addr, 0);
 | |
| 		mac_stopped = true;
 | |
| 	} else {
 | |
| 		if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
 | |
| 			BNX2X_DEV_INFO("Disable xmac Rx\n");
 | |
| 			base_addr = BP_PORT(bp) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
 | |
| 			val = REG_RD(bp, base_addr + XMAC_REG_PFC_CTRL_HI);
 | |
| 			REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
 | |
| 			       val & ~(1 << 1));
 | |
| 			REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
 | |
| 			       val | (1 << 1));
 | |
| 			vals->xmac_addr = base_addr + XMAC_REG_CTRL;
 | |
| 			vals->xmac_val = REG_RD(bp, vals->xmac_addr);
 | |
| 			REG_WR(bp, vals->xmac_addr, 0);
 | |
| 			mac_stopped = true;
 | |
| 		}
 | |
| 		mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
 | |
| 		if (mask & reset_reg) {
 | |
| 			BNX2X_DEV_INFO("Disable umac Rx\n");
 | |
| 			base_addr = BP_PORT(bp) ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
 | |
| 			vals->umac_addr = base_addr + UMAC_REG_COMMAND_CONFIG;
 | |
| 			vals->umac_val = REG_RD(bp, vals->umac_addr);
 | |
| 			REG_WR(bp, vals->umac_addr, 0);
 | |
| 			mac_stopped = true;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (mac_stopped)
 | |
| 		msleep(20);
 | |
| 
 | |
| }
 | |
| 
 | |
| #define BNX2X_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
 | |
| #define BNX2X_PREV_UNDI_RCQ(val)	((val) & 0xffff)
 | |
| #define BNX2X_PREV_UNDI_BD(val)		((val) >> 16 & 0xffff)
 | |
| #define BNX2X_PREV_UNDI_PROD(rcq, bd)	((bd) << 16 | (rcq))
 | |
| 
 | |
| static void bnx2x_prev_unload_undi_inc(struct bnx2x *bp, u8 port, u8 inc)
 | |
| {
 | |
| 	u16 rcq, bd;
 | |
| 	u32 tmp_reg = REG_RD(bp, BNX2X_PREV_UNDI_PROD_ADDR(port));
 | |
| 
 | |
| 	rcq = BNX2X_PREV_UNDI_RCQ(tmp_reg) + inc;
 | |
| 	bd = BNX2X_PREV_UNDI_BD(tmp_reg) + inc;
 | |
| 
 | |
| 	tmp_reg = BNX2X_PREV_UNDI_PROD(rcq, bd);
 | |
| 	REG_WR(bp, BNX2X_PREV_UNDI_PROD_ADDR(port), tmp_reg);
 | |
| 
 | |
| 	BNX2X_DEV_INFO("UNDI producer [%d] rings bd -> 0x%04x, rcq -> 0x%04x\n",
 | |
| 		       port, bd, rcq);
 | |
| }
 | |
| 
 | |
| static int bnx2x_prev_mcp_done(struct bnx2x *bp)
 | |
| {
 | |
| 	u32 rc = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE,
 | |
| 				  DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
 | |
| 	if (!rc) {
 | |
| 		BNX2X_ERR("MCP response failure, aborting\n");
 | |
| 		return -EBUSY;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static struct bnx2x_prev_path_list *
 | |
| 		bnx2x_prev_path_get_entry(struct bnx2x *bp)
 | |
| {
 | |
| 	struct bnx2x_prev_path_list *tmp_list;
 | |
| 
 | |
| 	list_for_each_entry(tmp_list, &bnx2x_prev_list, list)
 | |
| 		if (PCI_SLOT(bp->pdev->devfn) == tmp_list->slot &&
 | |
| 		    bp->pdev->bus->number == tmp_list->bus &&
 | |
| 		    BP_PATH(bp) == tmp_list->path)
 | |
| 			return tmp_list;
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static bool bnx2x_prev_is_path_marked(struct bnx2x *bp)
 | |
| {
 | |
| 	struct bnx2x_prev_path_list *tmp_list;
 | |
| 	int rc = false;
 | |
| 
 | |
| 	if (down_trylock(&bnx2x_prev_sem))
 | |
| 		return false;
 | |
| 
 | |
| 	list_for_each_entry(tmp_list, &bnx2x_prev_list, list) {
 | |
| 		if (PCI_SLOT(bp->pdev->devfn) == tmp_list->slot &&
 | |
| 		    bp->pdev->bus->number == tmp_list->bus &&
 | |
| 		    BP_PATH(bp) == tmp_list->path) {
 | |
| 			rc = true;
 | |
| 			BNX2X_DEV_INFO("Path %d was already cleaned from previous drivers\n",
 | |
| 				       BP_PATH(bp));
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	up(&bnx2x_prev_sem);
 | |
| 
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| static int bnx2x_prev_mark_path(struct bnx2x *bp, bool after_undi)
 | |
| {
 | |
| 	struct bnx2x_prev_path_list *tmp_list;
 | |
| 	int rc;
 | |
| 
 | |
| 	tmp_list = kmalloc(sizeof(struct bnx2x_prev_path_list), GFP_KERNEL);
 | |
| 	if (!tmp_list) {
 | |
| 		BNX2X_ERR("Failed to allocate 'bnx2x_prev_path_list'\n");
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	tmp_list->bus = bp->pdev->bus->number;
 | |
| 	tmp_list->slot = PCI_SLOT(bp->pdev->devfn);
 | |
| 	tmp_list->path = BP_PATH(bp);
 | |
| 	tmp_list->undi = after_undi ? (1 << BP_PORT(bp)) : 0;
 | |
| 
 | |
| 	rc = down_interruptible(&bnx2x_prev_sem);
 | |
| 	if (rc) {
 | |
| 		BNX2X_ERR("Received %d when tried to take lock\n", rc);
 | |
| 		kfree(tmp_list);
 | |
| 	} else {
 | |
| 		BNX2X_DEV_INFO("Marked path [%d] - finished previous unload\n",
 | |
| 				BP_PATH(bp));
 | |
| 		list_add(&tmp_list->list, &bnx2x_prev_list);
 | |
| 		up(&bnx2x_prev_sem);
 | |
| 	}
 | |
| 
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| static int bnx2x_do_flr(struct bnx2x *bp)
 | |
| {
 | |
| 	int i;
 | |
| 	u16 status;
 | |
| 	struct pci_dev *dev = bp->pdev;
 | |
| 
 | |
| 
 | |
| 	if (CHIP_IS_E1x(bp)) {
 | |
| 		BNX2X_DEV_INFO("FLR not supported in E1/E1H\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
 | |
| 	if (bp->common.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
 | |
| 		BNX2X_ERR("FLR not supported by BC_VER: 0x%x\n",
 | |
| 			  bp->common.bc_ver);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/* Wait for Transaction Pending bit clean */
 | |
| 	for (i = 0; i < 4; i++) {
 | |
| 		if (i)
 | |
| 			msleep((1 << (i - 1)) * 100);
 | |
| 
 | |
| 		pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status);
 | |
| 		if (!(status & PCI_EXP_DEVSTA_TRPND))
 | |
| 			goto clear;
 | |
| 	}
 | |
| 
 | |
| 	dev_err(&dev->dev,
 | |
| 		"transaction is not cleared; proceeding with reset anyway\n");
 | |
| 
 | |
| clear:
 | |
| 
 | |
| 	BNX2X_DEV_INFO("Initiating FLR\n");
 | |
| 	bnx2x_fw_command(bp, DRV_MSG_CODE_INITIATE_FLR, 0);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int bnx2x_prev_unload_uncommon(struct bnx2x *bp)
 | |
| {
 | |
| 	int rc;
 | |
| 
 | |
| 	BNX2X_DEV_INFO("Uncommon unload Flow\n");
 | |
| 
 | |
| 	/* Test if previous unload process was already finished for this path */
 | |
| 	if (bnx2x_prev_is_path_marked(bp))
 | |
| 		return bnx2x_prev_mcp_done(bp);
 | |
| 
 | |
| 	BNX2X_DEV_INFO("Path is unmarked\n");
 | |
| 
 | |
| 	/* If function has FLR capabilities, and existing FW version matches
 | |
| 	 * the one required, then FLR will be sufficient to clean any residue
 | |
| 	 * left by previous driver
 | |
| 	 */
 | |
| 	rc = bnx2x_nic_load_analyze_req(bp, FW_MSG_CODE_DRV_LOAD_FUNCTION);
 | |
| 
 | |
| 	if (!rc) {
 | |
| 		/* fw version is good */
 | |
| 		BNX2X_DEV_INFO("FW version matches our own. Attempting FLR\n");
 | |
| 		rc = bnx2x_do_flr(bp);
 | |
| 	}
 | |
| 
 | |
| 	if (!rc) {
 | |
| 		/* FLR was performed */
 | |
| 		BNX2X_DEV_INFO("FLR successful\n");
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	BNX2X_DEV_INFO("Could not FLR\n");
 | |
| 
 | |
| 	/* Close the MCP request, return failure*/
 | |
| 	rc = bnx2x_prev_mcp_done(bp);
 | |
| 	if (!rc)
 | |
| 		rc = BNX2X_PREV_WAIT_NEEDED;
 | |
| 
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| static int bnx2x_prev_unload_common(struct bnx2x *bp)
 | |
| {
 | |
| 	u32 reset_reg, tmp_reg = 0, rc;
 | |
| 	bool prev_undi = false;
 | |
| 	struct bnx2x_mac_vals mac_vals;
 | |
| 
 | |
| 	/* It is possible a previous function received 'common' answer,
 | |
| 	 * but hasn't loaded yet, therefore creating a scenario of
 | |
| 	 * multiple functions receiving 'common' on the same path.
 | |
| 	 */
 | |
| 	BNX2X_DEV_INFO("Common unload Flow\n");
 | |
| 
 | |
| 	memset(&mac_vals, 0, sizeof(mac_vals));
 | |
| 
 | |
| 	if (bnx2x_prev_is_path_marked(bp))
 | |
| 		return bnx2x_prev_mcp_done(bp);
 | |
| 
 | |
| 	reset_reg = REG_RD(bp, MISC_REG_RESET_REG_1);
 | |
| 
 | |
| 	/* Reset should be performed after BRB is emptied */
 | |
| 	if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
 | |
| 		u32 timer_count = 1000;
 | |
| 
 | |
| 		/* Close the MAC Rx to prevent BRB from filling up */
 | |
| 		bnx2x_prev_unload_close_mac(bp, &mac_vals);
 | |
| 
 | |
| 		/* close LLH filters towards the BRB */
 | |
| 		bnx2x_set_rx_filter(&bp->link_params, 0);
 | |
| 
 | |
| 		/* Check if the UNDI driver was previously loaded
 | |
| 		 * UNDI driver initializes CID offset for normal bell to 0x7
 | |
| 		 */
 | |
| 		if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_DORQ) {
 | |
| 			tmp_reg = REG_RD(bp, DORQ_REG_NORM_CID_OFST);
 | |
| 			if (tmp_reg == 0x7) {
 | |
| 				BNX2X_DEV_INFO("UNDI previously loaded\n");
 | |
| 				prev_undi = true;
 | |
| 				/* clear the UNDI indication */
 | |
| 				REG_WR(bp, DORQ_REG_NORM_CID_OFST, 0);
 | |
| 				/* clear possible idle check errors */
 | |
| 				REG_RD(bp, NIG_REG_NIG_INT_STS_CLR_0);
 | |
| 			}
 | |
| 		}
 | |
| 		/* wait until BRB is empty */
 | |
| 		tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
 | |
| 		while (timer_count) {
 | |
| 			u32 prev_brb = tmp_reg;
 | |
| 
 | |
| 			tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
 | |
| 			if (!tmp_reg)
 | |
| 				break;
 | |
| 
 | |
| 			BNX2X_DEV_INFO("BRB still has 0x%08x\n", tmp_reg);
 | |
| 
 | |
| 			/* reset timer as long as BRB actually gets emptied */
 | |
| 			if (prev_brb > tmp_reg)
 | |
| 				timer_count = 1000;
 | |
| 			else
 | |
| 				timer_count--;
 | |
| 
 | |
| 			/* If UNDI resides in memory, manually increment it */
 | |
| 			if (prev_undi)
 | |
| 				bnx2x_prev_unload_undi_inc(bp, BP_PORT(bp), 1);
 | |
| 
 | |
| 			udelay(10);
 | |
| 		}
 | |
| 
 | |
| 		if (!timer_count)
 | |
| 			BNX2X_ERR("Failed to empty BRB, hope for the best\n");
 | |
| 
 | |
| 	}
 | |
| 
 | |
| 	/* No packets are in the pipeline, path is ready for reset */
 | |
| 	bnx2x_reset_common(bp);
 | |
| 
 | |
| 	if (mac_vals.xmac_addr)
 | |
| 		REG_WR(bp, mac_vals.xmac_addr, mac_vals.xmac_val);
 | |
| 	if (mac_vals.umac_addr)
 | |
| 		REG_WR(bp, mac_vals.umac_addr, mac_vals.umac_val);
 | |
| 	if (mac_vals.emac_addr)
 | |
| 		REG_WR(bp, mac_vals.emac_addr, mac_vals.emac_val);
 | |
| 	if (mac_vals.bmac_addr) {
 | |
| 		REG_WR(bp, mac_vals.bmac_addr, mac_vals.bmac_val[0]);
 | |
| 		REG_WR(bp, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]);
 | |
| 	}
 | |
| 
 | |
| 	rc = bnx2x_prev_mark_path(bp, prev_undi);
 | |
| 	if (rc) {
 | |
| 		bnx2x_prev_mcp_done(bp);
 | |
| 		return rc;
 | |
| 	}
 | |
| 
 | |
| 	return bnx2x_prev_mcp_done(bp);
 | |
| }
 | |
| 
 | |
| /* previous driver DMAE transaction may have occurred when pre-boot stage ended
 | |
|  * and boot began, or when kdump kernel was loaded. Either case would invalidate
 | |
|  * the addresses of the transaction, resulting in was-error bit set in the pci
 | |
|  * causing all hw-to-host pcie transactions to timeout. If this happened we want
 | |
|  * to clear the interrupt which detected this from the pglueb and the was done
 | |
|  * bit
 | |
|  */
 | |
| static void bnx2x_prev_interrupted_dmae(struct bnx2x *bp)
 | |
| {
 | |
| 	if (!CHIP_IS_E1x(bp)) {
 | |
| 		u32 val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS);
 | |
| 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) {
 | |
| 			DP(BNX2X_MSG_SP,
 | |
| 			   "'was error' bit was found to be set in pglueb upon startup. Clearing\n");
 | |
| 			REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR,
 | |
| 			       1 << BP_FUNC(bp));
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int bnx2x_prev_unload(struct bnx2x *bp)
 | |
| {
 | |
| 	int time_counter = 10;
 | |
| 	u32 rc, fw, hw_lock_reg, hw_lock_val;
 | |
| 	struct bnx2x_prev_path_list *prev_list;
 | |
| 	BNX2X_DEV_INFO("Entering Previous Unload Flow\n");
 | |
| 
 | |
| 	/* clear hw from errors which may have resulted from an interrupted
 | |
| 	 * dmae transaction.
 | |
| 	 */
 | |
| 	bnx2x_prev_interrupted_dmae(bp);
 | |
| 
 | |
| 	/* Release previously held locks */
 | |
| 	hw_lock_reg = (BP_FUNC(bp) <= 5) ?
 | |
| 		      (MISC_REG_DRIVER_CONTROL_1 + BP_FUNC(bp) * 8) :
 | |
| 		      (MISC_REG_DRIVER_CONTROL_7 + (BP_FUNC(bp) - 6) * 8);
 | |
| 
 | |
| 	hw_lock_val = (REG_RD(bp, hw_lock_reg));
 | |
| 	if (hw_lock_val) {
 | |
| 		if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
 | |
| 			BNX2X_DEV_INFO("Release Previously held NVRAM lock\n");
 | |
| 			REG_WR(bp, MCP_REG_MCPR_NVM_SW_ARB,
 | |
| 			       (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << BP_PORT(bp)));
 | |
| 		}
 | |
| 
 | |
| 		BNX2X_DEV_INFO("Release Previously held hw lock\n");
 | |
| 		REG_WR(bp, hw_lock_reg, 0xffffffff);
 | |
| 	} else
 | |
| 		BNX2X_DEV_INFO("No need to release hw/nvram locks\n");
 | |
| 
 | |
| 	if (MCPR_ACCESS_LOCK_LOCK & REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK)) {
 | |
| 		BNX2X_DEV_INFO("Release previously held alr\n");
 | |
| 		REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, 0);
 | |
| 	}
 | |
| 
 | |
| 	do {
 | |
| 		/* Lock MCP using an unload request */
 | |
| 		fw = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
 | |
| 		if (!fw) {
 | |
| 			BNX2X_ERR("MCP response failure, aborting\n");
 | |
| 			rc = -EBUSY;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON) {
 | |
| 			rc = bnx2x_prev_unload_common(bp);
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		/* non-common reply from MCP night require looping */
 | |
| 		rc = bnx2x_prev_unload_uncommon(bp);
 | |
| 		if (rc != BNX2X_PREV_WAIT_NEEDED)
 | |
| 			break;
 | |
| 
 | |
| 		msleep(20);
 | |
| 	} while (--time_counter);
 | |
| 
 | |
| 	if (!time_counter || rc) {
 | |
| 		BNX2X_ERR("Failed unloading previous driver, aborting\n");
 | |
| 		rc = -EBUSY;
 | |
| 	}
 | |
| 
 | |
| 	/* Mark function if its port was used to boot from SAN */
 | |
| 	prev_list = bnx2x_prev_path_get_entry(bp);
 | |
| 	if (prev_list && (prev_list->undi & (1 << BP_PORT(bp))))
 | |
| 		bp->link_params.feature_config_flags |=
 | |
| 			FEATURE_CONFIG_BOOT_FROM_SAN;
 | |
| 
 | |
| 	BNX2X_DEV_INFO("Finished Previous Unload Flow [%d]\n", rc);
 | |
| 
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| static void bnx2x_get_common_hwinfo(struct bnx2x *bp)
 | |
| {
 | |
| 	u32 val, val2, val3, val4, id, boot_mode;
 | |
| 	u16 pmc;
 | |
| 
 | |
| 	/* Get the chip revision id and number. */
 | |
| 	/* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */
 | |
| 	val = REG_RD(bp, MISC_REG_CHIP_NUM);
 | |
| 	id = ((val & 0xffff) << 16);
 | |
| 	val = REG_RD(bp, MISC_REG_CHIP_REV);
 | |
| 	id |= ((val & 0xf) << 12);
 | |
| 	val = REG_RD(bp, MISC_REG_CHIP_METAL);
 | |
| 	id |= ((val & 0xff) << 4);
 | |
| 	val = REG_RD(bp, MISC_REG_BOND_ID);
 | |
| 	id |= (val & 0xf);
 | |
| 	bp->common.chip_id = id;
 | |
| 
 | |
| 	/* force 57811 according to MISC register */
 | |
| 	if (REG_RD(bp, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
 | |
| 		if (CHIP_IS_57810(bp))
 | |
| 			bp->common.chip_id = (CHIP_NUM_57811 << 16) |
 | |
| 				(bp->common.chip_id & 0x0000FFFF);
 | |
| 		else if (CHIP_IS_57810_MF(bp))
 | |
| 			bp->common.chip_id = (CHIP_NUM_57811_MF << 16) |
 | |
| 				(bp->common.chip_id & 0x0000FFFF);
 | |
| 		bp->common.chip_id |= 0x1;
 | |
| 	}
 | |
| 
 | |
| 	/* Set doorbell size */
 | |
| 	bp->db_size = (1 << BNX2X_DB_SHIFT);
 | |
| 
 | |
| 	if (!CHIP_IS_E1x(bp)) {
 | |
| 		val = REG_RD(bp, MISC_REG_PORT4MODE_EN_OVWR);
 | |
| 		if ((val & 1) == 0)
 | |
| 			val = REG_RD(bp, MISC_REG_PORT4MODE_EN);
 | |
| 		else
 | |
| 			val = (val >> 1) & 1;
 | |
| 		BNX2X_DEV_INFO("chip is in %s\n", val ? "4_PORT_MODE" :
 | |
| 						       "2_PORT_MODE");
 | |
| 		bp->common.chip_port_mode = val ? CHIP_4_PORT_MODE :
 | |
| 						 CHIP_2_PORT_MODE;
 | |
| 
 | |
| 		if (CHIP_MODE_IS_4_PORT(bp))
 | |
| 			bp->pfid = (bp->pf_num >> 1);	/* 0..3 */
 | |
| 		else
 | |
| 			bp->pfid = (bp->pf_num & 0x6);	/* 0, 2, 4, 6 */
 | |
| 	} else {
 | |
| 		bp->common.chip_port_mode = CHIP_PORT_MODE_NONE; /* N/A */
 | |
| 		bp->pfid = bp->pf_num;			/* 0..7 */
 | |
| 	}
 | |
| 
 | |
| 	BNX2X_DEV_INFO("pf_id: %x", bp->pfid);
 | |
| 
 | |
| 	bp->link_params.chip_id = bp->common.chip_id;
 | |
| 	BNX2X_DEV_INFO("chip ID is 0x%x\n", id);
 | |
| 
 | |
| 	val = (REG_RD(bp, 0x2874) & 0x55);
 | |
| 	if ((bp->common.chip_id & 0x1) ||
 | |
| 	    (CHIP_IS_E1(bp) && val) || (CHIP_IS_E1H(bp) && (val == 0x55))) {
 | |
| 		bp->flags |= ONE_PORT_FLAG;
 | |
| 		BNX2X_DEV_INFO("single port device\n");
 | |
| 	}
 | |
| 
 | |
| 	val = REG_RD(bp, MCP_REG_MCPR_NVM_CFG4);
 | |
| 	bp->common.flash_size = (BNX2X_NVRAM_1MB_SIZE <<
 | |
| 				 (val & MCPR_NVM_CFG4_FLASH_SIZE));
 | |
| 	BNX2X_DEV_INFO("flash_size 0x%x (%d)\n",
 | |
| 		       bp->common.flash_size, bp->common.flash_size);
 | |
| 
 | |
| 	bnx2x_init_shmem(bp);
 | |
| 
 | |
| 
 | |
| 
 | |
| 	bp->common.shmem2_base = REG_RD(bp, (BP_PATH(bp) ?
 | |
| 					MISC_REG_GENERIC_CR_1 :
 | |
| 					MISC_REG_GENERIC_CR_0));
 | |
| 
 | |
| 	bp->link_params.shmem_base = bp->common.shmem_base;
 | |
| 	bp->link_params.shmem2_base = bp->common.shmem2_base;
 | |
| 	if (SHMEM2_RD(bp, size) >
 | |
| 	    (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
 | |
| 		bp->link_params.lfa_base =
 | |
| 		REG_RD(bp, bp->common.shmem2_base +
 | |
| 		       (u32)offsetof(struct shmem2_region,
 | |
| 				     lfa_host_addr[BP_PORT(bp)]));
 | |
| 	else
 | |
| 		bp->link_params.lfa_base = 0;
 | |
| 	BNX2X_DEV_INFO("shmem offset 0x%x  shmem2 offset 0x%x\n",
 | |
| 		       bp->common.shmem_base, bp->common.shmem2_base);
 | |
| 
 | |
| 	if (!bp->common.shmem_base) {
 | |
| 		BNX2X_DEV_INFO("MCP not active\n");
 | |
| 		bp->flags |= NO_MCP_FLAG;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	bp->common.hw_config = SHMEM_RD(bp, dev_info.shared_hw_config.config);
 | |
| 	BNX2X_DEV_INFO("hw_config 0x%08x\n", bp->common.hw_config);
 | |
| 
 | |
| 	bp->link_params.hw_led_mode = ((bp->common.hw_config &
 | |
| 					SHARED_HW_CFG_LED_MODE_MASK) >>
 | |
| 				       SHARED_HW_CFG_LED_MODE_SHIFT);
 | |
| 
 | |
| 	bp->link_params.feature_config_flags = 0;
 | |
| 	val = SHMEM_RD(bp, dev_info.shared_feature_config.config);
 | |
| 	if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED)
 | |
| 		bp->link_params.feature_config_flags |=
 | |
| 				FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
 | |
| 	else
 | |
| 		bp->link_params.feature_config_flags &=
 | |
| 				~FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
 | |
| 
 | |
| 	val = SHMEM_RD(bp, dev_info.bc_rev) >> 8;
 | |
| 	bp->common.bc_ver = val;
 | |
| 	BNX2X_DEV_INFO("bc_ver %X\n", val);
 | |
| 	if (val < BNX2X_BC_VER) {
 | |
| 		/* for now only warn
 | |
| 		 * later we might need to enforce this */
 | |
| 		BNX2X_ERR("This driver needs bc_ver %X but found %X, please upgrade BC\n",
 | |
| 			  BNX2X_BC_VER, val);
 | |
| 	}
 | |
| 	bp->link_params.feature_config_flags |=
 | |
| 				(val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ?
 | |
| 				FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY : 0;
 | |
| 
 | |
| 	bp->link_params.feature_config_flags |=
 | |
| 		(val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ?
 | |
| 		FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0;
 | |
| 	bp->link_params.feature_config_flags |=
 | |
| 		(val >= REQ_BC_VER_4_VRFY_AFEX_SUPPORTED) ?
 | |
| 		FEATURE_CONFIG_BC_SUPPORTS_AFEX : 0;
 | |
| 	bp->link_params.feature_config_flags |=
 | |
| 		(val >= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED) ?
 | |
| 		FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED : 0;
 | |
| 
 | |
| 	bp->link_params.feature_config_flags |=
 | |
| 		(val >= REQ_BC_VER_4_MT_SUPPORTED) ?
 | |
| 		FEATURE_CONFIG_MT_SUPPORT : 0;
 | |
| 
 | |
| 	bp->flags |= (val >= REQ_BC_VER_4_PFC_STATS_SUPPORTED) ?
 | |
| 			BC_SUPPORTS_PFC_STATS : 0;
 | |
| 
 | |
| 	bp->flags |= (val >= REQ_BC_VER_4_FCOE_FEATURES) ?
 | |
| 			BC_SUPPORTS_FCOE_FEATURES : 0;
 | |
| 
 | |
| 	bp->flags |= (val >= REQ_BC_VER_4_DCBX_ADMIN_MSG_NON_PMF) ?
 | |
| 			BC_SUPPORTS_DCBX_MSG_NON_PMF : 0;
 | |
| 	boot_mode = SHMEM_RD(bp,
 | |
| 			dev_info.port_feature_config[BP_PORT(bp)].mba_config) &
 | |
| 			PORT_FEATURE_MBA_BOOT_AGENT_TYPE_MASK;
 | |
| 	switch (boot_mode) {
 | |
| 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_PXE:
 | |
| 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_PXE;
 | |
| 		break;
 | |
| 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_ISCSIB:
 | |
| 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_ISCSI;
 | |
| 		break;
 | |
| 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_FCOE_BOOT:
 | |
| 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_FCOE;
 | |
| 		break;
 | |
| 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_NONE:
 | |
| 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_NONE;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_PMC, &pmc);
 | |
| 	bp->flags |= (pmc & PCI_PM_CAP_PME_D3cold) ? 0 : NO_WOL_FLAG;
 | |
| 
 | |
| 	BNX2X_DEV_INFO("%sWoL capable\n",
 | |
| 		       (bp->flags & NO_WOL_FLAG) ? "not " : "");
 | |
| 
 | |
| 	val = SHMEM_RD(bp, dev_info.shared_hw_config.part_num);
 | |
| 	val2 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[4]);
 | |
| 	val3 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[8]);
 | |
| 	val4 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[12]);
 | |
| 
 | |
| 	dev_info(&bp->pdev->dev, "part number %X-%X-%X-%X\n",
 | |
| 		 val, val2, val3, val4);
 | |
| }
 | |
| 
 | |
| #define IGU_FID(val)	GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
 | |
| #define IGU_VEC(val)	GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
 | |
| 
 | |
| static int bnx2x_get_igu_cam_info(struct bnx2x *bp)
 | |
| {
 | |
| 	int pfid = BP_FUNC(bp);
 | |
| 	int igu_sb_id;
 | |
| 	u32 val;
 | |
| 	u8 fid, igu_sb_cnt = 0;
 | |
| 
 | |
| 	bp->igu_base_sb = 0xff;
 | |
| 	if (CHIP_INT_MODE_IS_BC(bp)) {
 | |
| 		int vn = BP_VN(bp);
 | |
| 		igu_sb_cnt = bp->igu_sb_cnt;
 | |
| 		bp->igu_base_sb = (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn) *
 | |
| 			FP_SB_MAX_E1x;
 | |
| 
 | |
| 		bp->igu_dsb_id =  E1HVN_MAX * FP_SB_MAX_E1x +
 | |
| 			(CHIP_MODE_IS_4_PORT(bp) ? pfid : vn);
 | |
| 
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* IGU in normal mode - read CAM */
 | |
| 	for (igu_sb_id = 0; igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
 | |
| 	     igu_sb_id++) {
 | |
| 		val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
 | |
| 		if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
 | |
| 			continue;
 | |
| 		fid = IGU_FID(val);
 | |
| 		if ((fid & IGU_FID_ENCODE_IS_PF)) {
 | |
| 			if ((fid & IGU_FID_PF_NUM_MASK) != pfid)
 | |
| 				continue;
 | |
| 			if (IGU_VEC(val) == 0)
 | |
| 				/* default status block */
 | |
| 				bp->igu_dsb_id = igu_sb_id;
 | |
| 			else {
 | |
| 				if (bp->igu_base_sb == 0xff)
 | |
| 					bp->igu_base_sb = igu_sb_id;
 | |
| 				igu_sb_cnt++;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| #ifdef CONFIG_PCI_MSI
 | |
| 	/* Due to new PF resource allocation by MFW T7.4 and above, it's
 | |
| 	 * optional that number of CAM entries will not be equal to the value
 | |
| 	 * advertised in PCI.
 | |
| 	 * Driver should use the minimal value of both as the actual status
 | |
| 	 * block count
 | |
| 	 */
 | |
| 	bp->igu_sb_cnt = min_t(int, bp->igu_sb_cnt, igu_sb_cnt);
 | |
| #endif
 | |
| 
 | |
| 	if (igu_sb_cnt == 0) {
 | |
| 		BNX2X_ERR("CAM configuration error\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void bnx2x_link_settings_supported(struct bnx2x *bp, u32 switch_cfg)
 | |
| {
 | |
| 	int cfg_size = 0, idx, port = BP_PORT(bp);
 | |
| 
 | |
| 	/* Aggregation of supported attributes of all external phys */
 | |
| 	bp->port.supported[0] = 0;
 | |
| 	bp->port.supported[1] = 0;
 | |
| 	switch (bp->link_params.num_phys) {
 | |
| 	case 1:
 | |
| 		bp->port.supported[0] = bp->link_params.phy[INT_PHY].supported;
 | |
| 		cfg_size = 1;
 | |
| 		break;
 | |
| 	case 2:
 | |
| 		bp->port.supported[0] = bp->link_params.phy[EXT_PHY1].supported;
 | |
| 		cfg_size = 1;
 | |
| 		break;
 | |
| 	case 3:
 | |
| 		if (bp->link_params.multi_phy_config &
 | |
| 		    PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
 | |
| 			bp->port.supported[1] =
 | |
| 				bp->link_params.phy[EXT_PHY1].supported;
 | |
| 			bp->port.supported[0] =
 | |
| 				bp->link_params.phy[EXT_PHY2].supported;
 | |
| 		} else {
 | |
| 			bp->port.supported[0] =
 | |
| 				bp->link_params.phy[EXT_PHY1].supported;
 | |
| 			bp->port.supported[1] =
 | |
| 				bp->link_params.phy[EXT_PHY2].supported;
 | |
| 		}
 | |
| 		cfg_size = 2;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	if (!(bp->port.supported[0] || bp->port.supported[1])) {
 | |
| 		BNX2X_ERR("NVRAM config error. BAD phy config. PHY1 config 0x%x, PHY2 config 0x%x\n",
 | |
| 			   SHMEM_RD(bp,
 | |
| 			   dev_info.port_hw_config[port].external_phy_config),
 | |
| 			   SHMEM_RD(bp,
 | |
| 			   dev_info.port_hw_config[port].external_phy_config2));
 | |
| 			return;
 | |
| 	}
 | |
| 
 | |
| 	if (CHIP_IS_E3(bp))
 | |
| 		bp->port.phy_addr = REG_RD(bp, MISC_REG_WC0_CTRL_PHY_ADDR);
 | |
| 	else {
 | |
| 		switch (switch_cfg) {
 | |
| 		case SWITCH_CFG_1G:
 | |
| 			bp->port.phy_addr = REG_RD(
 | |
| 				bp, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
 | |
| 			break;
 | |
| 		case SWITCH_CFG_10G:
 | |
| 			bp->port.phy_addr = REG_RD(
 | |
| 				bp, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
 | |
| 			break;
 | |
| 		default:
 | |
| 			BNX2X_ERR("BAD switch_cfg link_config 0x%x\n",
 | |
| 				  bp->port.link_config[0]);
 | |
| 			return;
 | |
| 		}
 | |
| 	}
 | |
| 	BNX2X_DEV_INFO("phy_addr 0x%x\n", bp->port.phy_addr);
 | |
| 	/* mask what we support according to speed_cap_mask per configuration */
 | |
| 	for (idx = 0; idx < cfg_size; idx++) {
 | |
| 		if (!(bp->link_params.speed_cap_mask[idx] &
 | |
| 				PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF))
 | |
| 			bp->port.supported[idx] &= ~SUPPORTED_10baseT_Half;
 | |
| 
 | |
| 		if (!(bp->link_params.speed_cap_mask[idx] &
 | |
| 				PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL))
 | |
| 			bp->port.supported[idx] &= ~SUPPORTED_10baseT_Full;
 | |
| 
 | |
| 		if (!(bp->link_params.speed_cap_mask[idx] &
 | |
| 				PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF))
 | |
| 			bp->port.supported[idx] &= ~SUPPORTED_100baseT_Half;
 | |
| 
 | |
| 		if (!(bp->link_params.speed_cap_mask[idx] &
 | |
| 				PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL))
 | |
| 			bp->port.supported[idx] &= ~SUPPORTED_100baseT_Full;
 | |
| 
 | |
| 		if (!(bp->link_params.speed_cap_mask[idx] &
 | |
| 					PORT_HW_CFG_SPEED_CAPABILITY_D0_1G))
 | |
| 			bp->port.supported[idx] &= ~(SUPPORTED_1000baseT_Half |
 | |
| 						     SUPPORTED_1000baseT_Full);
 | |
| 
 | |
| 		if (!(bp->link_params.speed_cap_mask[idx] &
 | |
| 					PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G))
 | |
| 			bp->port.supported[idx] &= ~SUPPORTED_2500baseX_Full;
 | |
| 
 | |
| 		if (!(bp->link_params.speed_cap_mask[idx] &
 | |
| 					PORT_HW_CFG_SPEED_CAPABILITY_D0_10G))
 | |
| 			bp->port.supported[idx] &= ~SUPPORTED_10000baseT_Full;
 | |
| 
 | |
| 	}
 | |
| 
 | |
| 	BNX2X_DEV_INFO("supported 0x%x 0x%x\n", bp->port.supported[0],
 | |
| 		       bp->port.supported[1]);
 | |
| }
 | |
| 
 | |
| static void bnx2x_link_settings_requested(struct bnx2x *bp)
 | |
| {
 | |
| 	u32 link_config, idx, cfg_size = 0;
 | |
| 	bp->port.advertising[0] = 0;
 | |
| 	bp->port.advertising[1] = 0;
 | |
| 	switch (bp->link_params.num_phys) {
 | |
| 	case 1:
 | |
| 	case 2:
 | |
| 		cfg_size = 1;
 | |
| 		break;
 | |
| 	case 3:
 | |
| 		cfg_size = 2;
 | |
| 		break;
 | |
| 	}
 | |
| 	for (idx = 0; idx < cfg_size; idx++) {
 | |
| 		bp->link_params.req_duplex[idx] = DUPLEX_FULL;
 | |
| 		link_config = bp->port.link_config[idx];
 | |
| 		switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
 | |
| 		case PORT_FEATURE_LINK_SPEED_AUTO:
 | |
| 			if (bp->port.supported[idx] & SUPPORTED_Autoneg) {
 | |
| 				bp->link_params.req_line_speed[idx] =
 | |
| 					SPEED_AUTO_NEG;
 | |
| 				bp->port.advertising[idx] |=
 | |
| 					bp->port.supported[idx];
 | |
| 				if (bp->link_params.phy[EXT_PHY1].type ==
 | |
| 				    PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833)
 | |
| 					bp->port.advertising[idx] |=
 | |
| 					(SUPPORTED_100baseT_Half |
 | |
| 					 SUPPORTED_100baseT_Full);
 | |
| 			} else {
 | |
| 				/* force 10G, no AN */
 | |
| 				bp->link_params.req_line_speed[idx] =
 | |
| 					SPEED_10000;
 | |
| 				bp->port.advertising[idx] |=
 | |
| 					(ADVERTISED_10000baseT_Full |
 | |
| 					 ADVERTISED_FIBRE);
 | |
| 				continue;
 | |
| 			}
 | |
| 			break;
 | |
| 
 | |
| 		case PORT_FEATURE_LINK_SPEED_10M_FULL:
 | |
| 			if (bp->port.supported[idx] & SUPPORTED_10baseT_Full) {
 | |
| 				bp->link_params.req_line_speed[idx] =
 | |
| 					SPEED_10;
 | |
| 				bp->port.advertising[idx] |=
 | |
| 					(ADVERTISED_10baseT_Full |
 | |
| 					 ADVERTISED_TP);
 | |
| 			} else {
 | |
| 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
 | |
| 					    link_config,
 | |
| 				    bp->link_params.speed_cap_mask[idx]);
 | |
| 				return;
 | |
| 			}
 | |
| 			break;
 | |
| 
 | |
| 		case PORT_FEATURE_LINK_SPEED_10M_HALF:
 | |
| 			if (bp->port.supported[idx] & SUPPORTED_10baseT_Half) {
 | |
| 				bp->link_params.req_line_speed[idx] =
 | |
| 					SPEED_10;
 | |
| 				bp->link_params.req_duplex[idx] =
 | |
| 					DUPLEX_HALF;
 | |
| 				bp->port.advertising[idx] |=
 | |
| 					(ADVERTISED_10baseT_Half |
 | |
| 					 ADVERTISED_TP);
 | |
| 			} else {
 | |
| 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
 | |
| 					    link_config,
 | |
| 					  bp->link_params.speed_cap_mask[idx]);
 | |
| 				return;
 | |
| 			}
 | |
| 			break;
 | |
| 
 | |
| 		case PORT_FEATURE_LINK_SPEED_100M_FULL:
 | |
| 			if (bp->port.supported[idx] &
 | |
| 			    SUPPORTED_100baseT_Full) {
 | |
| 				bp->link_params.req_line_speed[idx] =
 | |
| 					SPEED_100;
 | |
| 				bp->port.advertising[idx] |=
 | |
| 					(ADVERTISED_100baseT_Full |
 | |
| 					 ADVERTISED_TP);
 | |
| 			} else {
 | |
| 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
 | |
| 					    link_config,
 | |
| 					  bp->link_params.speed_cap_mask[idx]);
 | |
| 				return;
 | |
| 			}
 | |
| 			break;
 | |
| 
 | |
| 		case PORT_FEATURE_LINK_SPEED_100M_HALF:
 | |
| 			if (bp->port.supported[idx] &
 | |
| 			    SUPPORTED_100baseT_Half) {
 | |
| 				bp->link_params.req_line_speed[idx] =
 | |
| 								SPEED_100;
 | |
| 				bp->link_params.req_duplex[idx] =
 | |
| 								DUPLEX_HALF;
 | |
| 				bp->port.advertising[idx] |=
 | |
| 					(ADVERTISED_100baseT_Half |
 | |
| 					 ADVERTISED_TP);
 | |
| 			} else {
 | |
| 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
 | |
| 				    link_config,
 | |
| 				    bp->link_params.speed_cap_mask[idx]);
 | |
| 				return;
 | |
| 			}
 | |
| 			break;
 | |
| 
 | |
| 		case PORT_FEATURE_LINK_SPEED_1G:
 | |
| 			if (bp->port.supported[idx] &
 | |
| 			    SUPPORTED_1000baseT_Full) {
 | |
| 				bp->link_params.req_line_speed[idx] =
 | |
| 					SPEED_1000;
 | |
| 				bp->port.advertising[idx] |=
 | |
| 					(ADVERTISED_1000baseT_Full |
 | |
| 					 ADVERTISED_TP);
 | |
| 			} else {
 | |
| 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
 | |
| 				    link_config,
 | |
| 				    bp->link_params.speed_cap_mask[idx]);
 | |
| 				return;
 | |
| 			}
 | |
| 			break;
 | |
| 
 | |
| 		case PORT_FEATURE_LINK_SPEED_2_5G:
 | |
| 			if (bp->port.supported[idx] &
 | |
| 			    SUPPORTED_2500baseX_Full) {
 | |
| 				bp->link_params.req_line_speed[idx] =
 | |
| 					SPEED_2500;
 | |
| 				bp->port.advertising[idx] |=
 | |
| 					(ADVERTISED_2500baseX_Full |
 | |
| 						ADVERTISED_TP);
 | |
| 			} else {
 | |
| 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
 | |
| 				    link_config,
 | |
| 				    bp->link_params.speed_cap_mask[idx]);
 | |
| 				return;
 | |
| 			}
 | |
| 			break;
 | |
| 
 | |
| 		case PORT_FEATURE_LINK_SPEED_10G_CX4:
 | |
| 			if (bp->port.supported[idx] &
 | |
| 			    SUPPORTED_10000baseT_Full) {
 | |
| 				bp->link_params.req_line_speed[idx] =
 | |
| 					SPEED_10000;
 | |
| 				bp->port.advertising[idx] |=
 | |
| 					(ADVERTISED_10000baseT_Full |
 | |
| 						ADVERTISED_FIBRE);
 | |
| 			} else {
 | |
| 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
 | |
| 				    link_config,
 | |
| 				    bp->link_params.speed_cap_mask[idx]);
 | |
| 				return;
 | |
| 			}
 | |
| 			break;
 | |
| 		case PORT_FEATURE_LINK_SPEED_20G:
 | |
| 			bp->link_params.req_line_speed[idx] = SPEED_20000;
 | |
| 
 | |
| 			break;
 | |
| 		default:
 | |
| 			BNX2X_ERR("NVRAM config error. BAD link speed link_config 0x%x\n",
 | |
| 				  link_config);
 | |
| 				bp->link_params.req_line_speed[idx] =
 | |
| 							SPEED_AUTO_NEG;
 | |
| 				bp->port.advertising[idx] =
 | |
| 						bp->port.supported[idx];
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		bp->link_params.req_flow_ctrl[idx] = (link_config &
 | |
| 					 PORT_FEATURE_FLOW_CONTROL_MASK);
 | |
| 		if (bp->link_params.req_flow_ctrl[idx] ==
 | |
| 		    BNX2X_FLOW_CTRL_AUTO) {
 | |
| 			if (!(bp->port.supported[idx] & SUPPORTED_Autoneg))
 | |
| 				bp->link_params.req_flow_ctrl[idx] =
 | |
| 							BNX2X_FLOW_CTRL_NONE;
 | |
| 			else
 | |
| 				bnx2x_set_requested_fc(bp);
 | |
| 		}
 | |
| 
 | |
| 		BNX2X_DEV_INFO("req_line_speed %d  req_duplex %d req_flow_ctrl 0x%x advertising 0x%x\n",
 | |
| 			       bp->link_params.req_line_speed[idx],
 | |
| 			       bp->link_params.req_duplex[idx],
 | |
| 			       bp->link_params.req_flow_ctrl[idx],
 | |
| 			       bp->port.advertising[idx]);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void bnx2x_set_mac_buf(u8 *mac_buf, u32 mac_lo, u16 mac_hi)
 | |
| {
 | |
| 	__be16 mac_hi_be = cpu_to_be16(mac_hi);
 | |
| 	__be32 mac_lo_be = cpu_to_be32(mac_lo);
 | |
| 	memcpy(mac_buf, &mac_hi_be, sizeof(mac_hi_be));
 | |
| 	memcpy(mac_buf + sizeof(mac_hi_be), &mac_lo_be, sizeof(mac_lo_be));
 | |
| }
 | |
| 
 | |
| static void bnx2x_get_port_hwinfo(struct bnx2x *bp)
 | |
| {
 | |
| 	int port = BP_PORT(bp);
 | |
| 	u32 config;
 | |
| 	u32 ext_phy_type, ext_phy_config, eee_mode;
 | |
| 
 | |
| 	bp->link_params.bp = bp;
 | |
| 	bp->link_params.port = port;
 | |
| 
 | |
| 	bp->link_params.lane_config =
 | |
| 		SHMEM_RD(bp, dev_info.port_hw_config[port].lane_config);
 | |
| 
 | |
| 	bp->link_params.speed_cap_mask[0] =
 | |
| 		SHMEM_RD(bp,
 | |
| 			 dev_info.port_hw_config[port].speed_capability_mask);
 | |
| 	bp->link_params.speed_cap_mask[1] =
 | |
| 		SHMEM_RD(bp,
 | |
| 			 dev_info.port_hw_config[port].speed_capability_mask2);
 | |
| 	bp->port.link_config[0] =
 | |
| 		SHMEM_RD(bp, dev_info.port_feature_config[port].link_config);
 | |
| 
 | |
| 	bp->port.link_config[1] =
 | |
| 		SHMEM_RD(bp, dev_info.port_feature_config[port].link_config2);
 | |
| 
 | |
| 	bp->link_params.multi_phy_config =
 | |
| 		SHMEM_RD(bp, dev_info.port_hw_config[port].multi_phy_config);
 | |
| 	/* If the device is capable of WoL, set the default state according
 | |
| 	 * to the HW
 | |
| 	 */
 | |
| 	config = SHMEM_RD(bp, dev_info.port_feature_config[port].config);
 | |
| 	bp->wol = (!(bp->flags & NO_WOL_FLAG) &&
 | |
| 		   (config & PORT_FEATURE_WOL_ENABLED));
 | |
| 
 | |
| 	if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
 | |
| 	    PORT_FEAT_CFG_STORAGE_PERSONALITY_FCOE && !IS_MF(bp))
 | |
| 		bp->flags |= NO_ISCSI_FLAG;
 | |
| 	if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
 | |
| 	    PORT_FEAT_CFG_STORAGE_PERSONALITY_ISCSI && !(IS_MF(bp)))
 | |
| 		bp->flags |= NO_FCOE_FLAG;
 | |
| 
 | |
| 	BNX2X_DEV_INFO("lane_config 0x%08x  speed_cap_mask0 0x%08x  link_config0 0x%08x\n",
 | |
| 		       bp->link_params.lane_config,
 | |
| 		       bp->link_params.speed_cap_mask[0],
 | |
| 		       bp->port.link_config[0]);
 | |
| 
 | |
| 	bp->link_params.switch_cfg = (bp->port.link_config[0] &
 | |
| 				      PORT_FEATURE_CONNECTED_SWITCH_MASK);
 | |
| 	bnx2x_phy_probe(&bp->link_params);
 | |
| 	bnx2x_link_settings_supported(bp, bp->link_params.switch_cfg);
 | |
| 
 | |
| 	bnx2x_link_settings_requested(bp);
 | |
| 
 | |
| 	/*
 | |
| 	 * If connected directly, work with the internal PHY, otherwise, work
 | |
| 	 * with the external PHY
 | |
| 	 */
 | |
| 	ext_phy_config =
 | |
| 		SHMEM_RD(bp,
 | |
| 			 dev_info.port_hw_config[port].external_phy_config);
 | |
| 	ext_phy_type = XGXS_EXT_PHY_TYPE(ext_phy_config);
 | |
| 	if (ext_phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT)
 | |
| 		bp->mdio.prtad = bp->port.phy_addr;
 | |
| 
 | |
| 	else if ((ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) &&
 | |
| 		 (ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN))
 | |
| 		bp->mdio.prtad =
 | |
| 			XGXS_EXT_PHY_ADDR(ext_phy_config);
 | |
| 
 | |
| 	/* Configure link feature according to nvram value */
 | |
| 	eee_mode = (((SHMEM_RD(bp, dev_info.
 | |
| 		      port_feature_config[port].eee_power_mode)) &
 | |
| 		     PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
 | |
| 		    PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
 | |
| 	if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
 | |
| 		bp->link_params.eee_mode = EEE_MODE_ADV_LPI |
 | |
| 					   EEE_MODE_ENABLE_LPI |
 | |
| 					   EEE_MODE_OUTPUT_TIME;
 | |
| 	} else {
 | |
| 		bp->link_params.eee_mode = 0;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void bnx2x_get_iscsi_info(struct bnx2x *bp)
 | |
| {
 | |
| 	u32 no_flags = NO_ISCSI_FLAG;
 | |
| 	int port = BP_PORT(bp);
 | |
| 	u32 max_iscsi_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
 | |
| 				drv_lic_key[port].max_iscsi_conn);
 | |
| 
 | |
| 	if (!CNIC_SUPPORT(bp)) {
 | |
| 		bp->flags |= no_flags;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* Get the number of maximum allowed iSCSI connections */
 | |
| 	bp->cnic_eth_dev.max_iscsi_conn =
 | |
| 		(max_iscsi_conn & BNX2X_MAX_ISCSI_INIT_CONN_MASK) >>
 | |
| 		BNX2X_MAX_ISCSI_INIT_CONN_SHIFT;
 | |
| 
 | |
| 	BNX2X_DEV_INFO("max_iscsi_conn 0x%x\n",
 | |
| 		       bp->cnic_eth_dev.max_iscsi_conn);
 | |
| 
 | |
| 	/*
 | |
| 	 * If maximum allowed number of connections is zero -
 | |
| 	 * disable the feature.
 | |
| 	 */
 | |
| 	if (!bp->cnic_eth_dev.max_iscsi_conn)
 | |
| 		bp->flags |= no_flags;
 | |
| 
 | |
| }
 | |
| 
 | |
| static void bnx2x_get_ext_wwn_info(struct bnx2x *bp, int func)
 | |
| {
 | |
| 	/* Port info */
 | |
| 	bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
 | |
| 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_upper);
 | |
| 	bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
 | |
| 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_lower);
 | |
| 
 | |
| 	/* Node info */
 | |
| 	bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
 | |
| 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_upper);
 | |
| 	bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
 | |
| 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_lower);
 | |
| }
 | |
| static void bnx2x_get_fcoe_info(struct bnx2x *bp)
 | |
| {
 | |
| 	int port = BP_PORT(bp);
 | |
| 	int func = BP_ABS_FUNC(bp);
 | |
| 	u32 max_fcoe_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
 | |
| 				drv_lic_key[port].max_fcoe_conn);
 | |
| 
 | |
| 	if (!CNIC_SUPPORT(bp)) {
 | |
| 		bp->flags |= NO_FCOE_FLAG;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* Get the number of maximum allowed FCoE connections */
 | |
| 	bp->cnic_eth_dev.max_fcoe_conn =
 | |
| 		(max_fcoe_conn & BNX2X_MAX_FCOE_INIT_CONN_MASK) >>
 | |
| 		BNX2X_MAX_FCOE_INIT_CONN_SHIFT;
 | |
| 
 | |
| 	/* Read the WWN: */
 | |
| 	if (!IS_MF(bp)) {
 | |
| 		/* Port info */
 | |
| 		bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
 | |
| 			SHMEM_RD(bp,
 | |
| 				 dev_info.port_hw_config[port].
 | |
| 				 fcoe_wwn_port_name_upper);
 | |
| 		bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
 | |
| 			SHMEM_RD(bp,
 | |
| 				 dev_info.port_hw_config[port].
 | |
| 				 fcoe_wwn_port_name_lower);
 | |
| 
 | |
| 		/* Node info */
 | |
| 		bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
 | |
| 			SHMEM_RD(bp,
 | |
| 				 dev_info.port_hw_config[port].
 | |
| 				 fcoe_wwn_node_name_upper);
 | |
| 		bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
 | |
| 			SHMEM_RD(bp,
 | |
| 				 dev_info.port_hw_config[port].
 | |
| 				 fcoe_wwn_node_name_lower);
 | |
| 	} else if (!IS_MF_SD(bp)) {
 | |
| 		/*
 | |
| 		 * Read the WWN info only if the FCoE feature is enabled for
 | |
| 		 * this function.
 | |
| 		 */
 | |
| 		if (BNX2X_MF_EXT_PROTOCOL_FCOE(bp) && !CHIP_IS_E1x(bp))
 | |
| 			bnx2x_get_ext_wwn_info(bp, func);
 | |
| 
 | |
| 	} else if (IS_MF_FCOE_SD(bp) && !CHIP_IS_E1x(bp)) {
 | |
| 		bnx2x_get_ext_wwn_info(bp, func);
 | |
| 	}
 | |
| 
 | |
| 	BNX2X_DEV_INFO("max_fcoe_conn 0x%x\n", bp->cnic_eth_dev.max_fcoe_conn);
 | |
| 
 | |
| 	/*
 | |
| 	 * If maximum allowed number of connections is zero -
 | |
| 	 * disable the feature.
 | |
| 	 */
 | |
| 	if (!bp->cnic_eth_dev.max_fcoe_conn)
 | |
| 		bp->flags |= NO_FCOE_FLAG;
 | |
| }
 | |
| 
 | |
| static void bnx2x_get_cnic_info(struct bnx2x *bp)
 | |
| {
 | |
| 	/*
 | |
| 	 * iSCSI may be dynamically disabled but reading
 | |
| 	 * info here we will decrease memory usage by driver
 | |
| 	 * if the feature is disabled for good
 | |
| 	 */
 | |
| 	bnx2x_get_iscsi_info(bp);
 | |
| 	bnx2x_get_fcoe_info(bp);
 | |
| }
 | |
| 
 | |
| static void bnx2x_get_cnic_mac_hwinfo(struct bnx2x *bp)
 | |
| {
 | |
| 	u32 val, val2;
 | |
| 	int func = BP_ABS_FUNC(bp);
 | |
| 	int port = BP_PORT(bp);
 | |
| 	u8 *iscsi_mac = bp->cnic_eth_dev.iscsi_mac;
 | |
| 	u8 *fip_mac = bp->fip_mac;
 | |
| 
 | |
| 	if (IS_MF(bp)) {
 | |
| 		/* iSCSI and FCoE NPAR MACs: if there is no either iSCSI or
 | |
| 		 * FCoE MAC then the appropriate feature should be disabled.
 | |
| 		 * In non SD mode features configuration comes from struct
 | |
| 		 * func_ext_config.
 | |
| 		 */
 | |
| 		if (!IS_MF_SD(bp) && !CHIP_IS_E1x(bp)) {
 | |
| 			u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
 | |
| 			if (cfg & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
 | |
| 				val2 = MF_CFG_RD(bp, func_ext_config[func].
 | |
| 						 iscsi_mac_addr_upper);
 | |
| 				val = MF_CFG_RD(bp, func_ext_config[func].
 | |
| 						iscsi_mac_addr_lower);
 | |
| 				bnx2x_set_mac_buf(iscsi_mac, val, val2);
 | |
| 				BNX2X_DEV_INFO
 | |
| 					("Read iSCSI MAC: %pM\n", iscsi_mac);
 | |
| 			} else {
 | |
| 				bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
 | |
| 			}
 | |
| 
 | |
| 			if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
 | |
| 				val2 = MF_CFG_RD(bp, func_ext_config[func].
 | |
| 						 fcoe_mac_addr_upper);
 | |
| 				val = MF_CFG_RD(bp, func_ext_config[func].
 | |
| 						fcoe_mac_addr_lower);
 | |
| 				bnx2x_set_mac_buf(fip_mac, val, val2);
 | |
| 				BNX2X_DEV_INFO
 | |
| 					("Read FCoE L2 MAC: %pM\n", fip_mac);
 | |
| 			} else {
 | |
| 				bp->flags |= NO_FCOE_FLAG;
 | |
| 			}
 | |
| 
 | |
| 			bp->mf_ext_config = cfg;
 | |
| 
 | |
| 		} else { /* SD MODE */
 | |
| 			if (BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp)) {
 | |
| 				/* use primary mac as iscsi mac */
 | |
| 				memcpy(iscsi_mac, bp->dev->dev_addr, ETH_ALEN);
 | |
| 
 | |
| 				BNX2X_DEV_INFO("SD ISCSI MODE\n");
 | |
| 				BNX2X_DEV_INFO
 | |
| 					("Read iSCSI MAC: %pM\n", iscsi_mac);
 | |
| 			} else if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)) {
 | |
| 				/* use primary mac as fip mac */
 | |
| 				memcpy(fip_mac, bp->dev->dev_addr, ETH_ALEN);
 | |
| 				BNX2X_DEV_INFO("SD FCoE MODE\n");
 | |
| 				BNX2X_DEV_INFO
 | |
| 					("Read FIP MAC: %pM\n", fip_mac);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (IS_MF_STORAGE_SD(bp))
 | |
| 			/* Zero primary MAC configuration */
 | |
| 			memset(bp->dev->dev_addr, 0, ETH_ALEN);
 | |
| 
 | |
| 		if (IS_MF_FCOE_AFEX(bp) || IS_MF_FCOE_SD(bp))
 | |
| 			/* use FIP MAC as primary MAC */
 | |
| 			memcpy(bp->dev->dev_addr, fip_mac, ETH_ALEN);
 | |
| 
 | |
| 	} else {
 | |
| 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
 | |
| 				iscsi_mac_upper);
 | |
| 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].
 | |
| 			       iscsi_mac_lower);
 | |
| 		bnx2x_set_mac_buf(iscsi_mac, val, val2);
 | |
| 
 | |
| 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
 | |
| 				fcoe_fip_mac_upper);
 | |
| 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].
 | |
| 			       fcoe_fip_mac_lower);
 | |
| 		bnx2x_set_mac_buf(fip_mac, val, val2);
 | |
| 	}
 | |
| 
 | |
| 	/* Disable iSCSI OOO if MAC configuration is invalid. */
 | |
| 	if (!is_valid_ether_addr(iscsi_mac)) {
 | |
| 		bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
 | |
| 		memset(iscsi_mac, 0, ETH_ALEN);
 | |
| 	}
 | |
| 
 | |
| 	/* Disable FCoE if MAC configuration is invalid. */
 | |
| 	if (!is_valid_ether_addr(fip_mac)) {
 | |
| 		bp->flags |= NO_FCOE_FLAG;
 | |
| 		memset(bp->fip_mac, 0, ETH_ALEN);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void bnx2x_get_mac_hwinfo(struct bnx2x *bp)
 | |
| {
 | |
| 	u32 val, val2;
 | |
| 	int func = BP_ABS_FUNC(bp);
 | |
| 	int port = BP_PORT(bp);
 | |
| 
 | |
| 	/* Zero primary MAC configuration */
 | |
| 	memset(bp->dev->dev_addr, 0, ETH_ALEN);
 | |
| 
 | |
| 	if (BP_NOMCP(bp)) {
 | |
| 		BNX2X_ERROR("warning: random MAC workaround active\n");
 | |
| 		eth_hw_addr_random(bp->dev);
 | |
| 	} else if (IS_MF(bp)) {
 | |
| 		val2 = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
 | |
| 		val = MF_CFG_RD(bp, func_mf_config[func].mac_lower);
 | |
| 		if ((val2 != FUNC_MF_CFG_UPPERMAC_DEFAULT) &&
 | |
| 		    (val != FUNC_MF_CFG_LOWERMAC_DEFAULT))
 | |
| 			bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
 | |
| 
 | |
| 		if (CNIC_SUPPORT(bp))
 | |
| 			bnx2x_get_cnic_mac_hwinfo(bp);
 | |
| 	} else {
 | |
| 		/* in SF read MACs from port configuration */
 | |
| 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
 | |
| 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
 | |
| 		bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
 | |
| 
 | |
| 		if (CNIC_SUPPORT(bp))
 | |
| 			bnx2x_get_cnic_mac_hwinfo(bp);
 | |
| 	}
 | |
| 
 | |
| 	memcpy(bp->link_params.mac_addr, bp->dev->dev_addr, ETH_ALEN);
 | |
| 
 | |
| 	if (!bnx2x_is_valid_ether_addr(bp, bp->dev->dev_addr))
 | |
| 		dev_err(&bp->pdev->dev,
 | |
| 			"bad Ethernet MAC address configuration: %pM\n"
 | |
| 			"change it manually before bringing up the appropriate network interface\n",
 | |
| 			bp->dev->dev_addr);
 | |
| }
 | |
| 
 | |
| static bool bnx2x_get_dropless_info(struct bnx2x *bp)
 | |
| {
 | |
| 	int tmp;
 | |
| 	u32 cfg;
 | |
| 
 | |
| 	if (IS_MF(bp) && !CHIP_IS_E1x(bp)) {
 | |
| 		/* Take function: tmp = func */
 | |
| 		tmp = BP_ABS_FUNC(bp);
 | |
| 		cfg = MF_CFG_RD(bp, func_ext_config[tmp].func_cfg);
 | |
| 		cfg = !!(cfg & MACP_FUNC_CFG_PAUSE_ON_HOST_RING);
 | |
| 	} else {
 | |
| 		/* Take port: tmp = port */
 | |
| 		tmp = BP_PORT(bp);
 | |
| 		cfg = SHMEM_RD(bp,
 | |
| 			       dev_info.port_hw_config[tmp].generic_features);
 | |
| 		cfg = !!(cfg & PORT_HW_CFG_PAUSE_ON_HOST_RING_ENABLED);
 | |
| 	}
 | |
| 	return cfg;
 | |
| }
 | |
| 
 | |
| static int bnx2x_get_hwinfo(struct bnx2x *bp)
 | |
| {
 | |
| 	int /*abs*/func = BP_ABS_FUNC(bp);
 | |
| 	int vn;
 | |
| 	u32 val = 0;
 | |
| 	int rc = 0;
 | |
| 
 | |
| 	bnx2x_get_common_hwinfo(bp);
 | |
| 
 | |
| 	/*
 | |
| 	 * initialize IGU parameters
 | |
| 	 */
 | |
| 	if (CHIP_IS_E1x(bp)) {
 | |
| 		bp->common.int_block = INT_BLOCK_HC;
 | |
| 
 | |
| 		bp->igu_dsb_id = DEF_SB_IGU_ID;
 | |
| 		bp->igu_base_sb = 0;
 | |
| 	} else {
 | |
| 		bp->common.int_block = INT_BLOCK_IGU;
 | |
| 
 | |
| 		/* do not allow device reset during IGU info preocessing */
 | |
| 		bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
 | |
| 
 | |
| 		val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
 | |
| 
 | |
| 		if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
 | |
| 			int tout = 5000;
 | |
| 
 | |
| 			BNX2X_DEV_INFO("FORCING Normal Mode\n");
 | |
| 
 | |
| 			val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
 | |
| 			REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, val);
 | |
| 			REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x7f);
 | |
| 
 | |
| 			while (tout && REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
 | |
| 				tout--;
 | |
| 				usleep_range(1000, 2000);
 | |
| 			}
 | |
| 
 | |
| 			if (REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
 | |
| 				dev_err(&bp->pdev->dev,
 | |
| 					"FORCING Normal Mode failed!!!\n");
 | |
| 				bnx2x_release_hw_lock(bp,
 | |
| 						      HW_LOCK_RESOURCE_RESET);
 | |
| 				return -EPERM;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
 | |
| 			BNX2X_DEV_INFO("IGU Backward Compatible Mode\n");
 | |
| 			bp->common.int_block |= INT_BLOCK_MODE_BW_COMP;
 | |
| 		} else
 | |
| 			BNX2X_DEV_INFO("IGU Normal Mode\n");
 | |
| 
 | |
| 		rc = bnx2x_get_igu_cam_info(bp);
 | |
| 		bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
 | |
| 		if (rc)
 | |
| 			return rc;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * set base FW non-default (fast path) status block id, this value is
 | |
| 	 * used to initialize the fw_sb_id saved on the fp/queue structure to
 | |
| 	 * determine the id used by the FW.
 | |
| 	 */
 | |
| 	if (CHIP_IS_E1x(bp))
 | |
| 		bp->base_fw_ndsb = BP_PORT(bp) * FP_SB_MAX_E1x + BP_L_ID(bp);
 | |
| 	else /*
 | |
| 	      * 57712 - we currently use one FW SB per IGU SB (Rx and Tx of
 | |
| 	      * the same queue are indicated on the same IGU SB). So we prefer
 | |
| 	      * FW and IGU SBs to be the same value.
 | |
| 	      */
 | |
| 		bp->base_fw_ndsb = bp->igu_base_sb;
 | |
| 
 | |
| 	BNX2X_DEV_INFO("igu_dsb_id %d  igu_base_sb %d  igu_sb_cnt %d\n"
 | |
| 		       "base_fw_ndsb %d\n", bp->igu_dsb_id, bp->igu_base_sb,
 | |
| 		       bp->igu_sb_cnt, bp->base_fw_ndsb);
 | |
| 
 | |
| 	/*
 | |
| 	 * Initialize MF configuration
 | |
| 	 */
 | |
| 
 | |
| 	bp->mf_ov = 0;
 | |
| 	bp->mf_mode = 0;
 | |
| 	vn = BP_VN(bp);
 | |
| 
 | |
| 	if (!CHIP_IS_E1(bp) && !BP_NOMCP(bp)) {
 | |
| 		BNX2X_DEV_INFO("shmem2base 0x%x, size %d, mfcfg offset %d\n",
 | |
| 			       bp->common.shmem2_base, SHMEM2_RD(bp, size),
 | |
| 			      (u32)offsetof(struct shmem2_region, mf_cfg_addr));
 | |
| 
 | |
| 		if (SHMEM2_HAS(bp, mf_cfg_addr))
 | |
| 			bp->common.mf_cfg_base = SHMEM2_RD(bp, mf_cfg_addr);
 | |
| 		else
 | |
| 			bp->common.mf_cfg_base = bp->common.shmem_base +
 | |
| 				offsetof(struct shmem_region, func_mb) +
 | |
| 				E1H_FUNC_MAX * sizeof(struct drv_func_mb);
 | |
| 		/*
 | |
| 		 * get mf configuration:
 | |
| 		 * 1. existence of MF configuration
 | |
| 		 * 2. MAC address must be legal (check only upper bytes)
 | |
| 		 *    for  Switch-Independent mode;
 | |
| 		 *    OVLAN must be legal for Switch-Dependent mode
 | |
| 		 * 3. SF_MODE configures specific MF mode
 | |
| 		 */
 | |
| 		if (bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
 | |
| 			/* get mf configuration */
 | |
| 			val = SHMEM_RD(bp,
 | |
| 				       dev_info.shared_feature_config.config);
 | |
| 			val &= SHARED_FEAT_CFG_FORCE_SF_MODE_MASK;
 | |
| 
 | |
| 			switch (val) {
 | |
| 			case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
 | |
| 				val = MF_CFG_RD(bp, func_mf_config[func].
 | |
| 						mac_upper);
 | |
| 				/* check for legal mac (upper bytes)*/
 | |
| 				if (val != 0xffff) {
 | |
| 					bp->mf_mode = MULTI_FUNCTION_SI;
 | |
| 					bp->mf_config[vn] = MF_CFG_RD(bp,
 | |
| 						   func_mf_config[func].config);
 | |
| 				} else
 | |
| 					BNX2X_DEV_INFO("illegal MAC address for SI\n");
 | |
| 				break;
 | |
| 			case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
 | |
| 				if ((!CHIP_IS_E1x(bp)) &&
 | |
| 				    (MF_CFG_RD(bp, func_mf_config[func].
 | |
| 					       mac_upper) != 0xffff) &&
 | |
| 				    (SHMEM2_HAS(bp,
 | |
| 						afex_driver_support))) {
 | |
| 					bp->mf_mode = MULTI_FUNCTION_AFEX;
 | |
| 					bp->mf_config[vn] = MF_CFG_RD(bp,
 | |
| 						func_mf_config[func].config);
 | |
| 				} else {
 | |
| 					BNX2X_DEV_INFO("can not configure afex mode\n");
 | |
| 				}
 | |
| 				break;
 | |
| 			case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
 | |
| 				/* get OV configuration */
 | |
| 				val = MF_CFG_RD(bp,
 | |
| 					func_mf_config[FUNC_0].e1hov_tag);
 | |
| 				val &= FUNC_MF_CFG_E1HOV_TAG_MASK;
 | |
| 
 | |
| 				if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
 | |
| 					bp->mf_mode = MULTI_FUNCTION_SD;
 | |
| 					bp->mf_config[vn] = MF_CFG_RD(bp,
 | |
| 						func_mf_config[func].config);
 | |
| 				} else
 | |
| 					BNX2X_DEV_INFO("illegal OV for SD\n");
 | |
| 				break;
 | |
| 			default:
 | |
| 				/* Unknown configuration: reset mf_config */
 | |
| 				bp->mf_config[vn] = 0;
 | |
| 				BNX2X_DEV_INFO("unknown MF mode 0x%x\n", val);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		BNX2X_DEV_INFO("%s function mode\n",
 | |
| 			       IS_MF(bp) ? "multi" : "single");
 | |
| 
 | |
| 		switch (bp->mf_mode) {
 | |
| 		case MULTI_FUNCTION_SD:
 | |
| 			val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
 | |
| 			      FUNC_MF_CFG_E1HOV_TAG_MASK;
 | |
| 			if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
 | |
| 				bp->mf_ov = val;
 | |
| 				bp->path_has_ovlan = true;
 | |
| 
 | |
| 				BNX2X_DEV_INFO("MF OV for func %d is %d (0x%04x)\n",
 | |
| 					       func, bp->mf_ov, bp->mf_ov);
 | |
| 			} else {
 | |
| 				dev_err(&bp->pdev->dev,
 | |
| 					"No valid MF OV for func %d, aborting\n",
 | |
| 					func);
 | |
| 				return -EPERM;
 | |
| 			}
 | |
| 			break;
 | |
| 		case MULTI_FUNCTION_AFEX:
 | |
| 			BNX2X_DEV_INFO("func %d is in MF afex mode\n", func);
 | |
| 			break;
 | |
| 		case MULTI_FUNCTION_SI:
 | |
| 			BNX2X_DEV_INFO("func %d is in MF switch-independent mode\n",
 | |
| 				       func);
 | |
| 			break;
 | |
| 		default:
 | |
| 			if (vn) {
 | |
| 				dev_err(&bp->pdev->dev,
 | |
| 					"VN %d is in a single function mode, aborting\n",
 | |
| 					vn);
 | |
| 				return -EPERM;
 | |
| 			}
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		/* check if other port on the path needs ovlan:
 | |
| 		 * Since MF configuration is shared between ports
 | |
| 		 * Possible mixed modes are only
 | |
| 		 * {SF, SI} {SF, SD} {SD, SF} {SI, SF}
 | |
| 		 */
 | |
| 		if (CHIP_MODE_IS_4_PORT(bp) &&
 | |
| 		    !bp->path_has_ovlan &&
 | |
| 		    !IS_MF(bp) &&
 | |
| 		    bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
 | |
| 			u8 other_port = !BP_PORT(bp);
 | |
| 			u8 other_func = BP_PATH(bp) + 2*other_port;
 | |
| 			val = MF_CFG_RD(bp,
 | |
| 					func_mf_config[other_func].e1hov_tag);
 | |
| 			if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT)
 | |
| 				bp->path_has_ovlan = true;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* adjust igu_sb_cnt to MF for E1x */
 | |
| 	if (CHIP_IS_E1x(bp) && IS_MF(bp))
 | |
| 		bp->igu_sb_cnt /= E1HVN_MAX;
 | |
| 
 | |
| 	/* port info */
 | |
| 	bnx2x_get_port_hwinfo(bp);
 | |
| 
 | |
| 	/* Get MAC addresses */
 | |
| 	bnx2x_get_mac_hwinfo(bp);
 | |
| 
 | |
| 	bnx2x_get_cnic_info(bp);
 | |
| 
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| static void bnx2x_read_fwinfo(struct bnx2x *bp)
 | |
| {
 | |
| 	int cnt, i, block_end, rodi;
 | |
| 	char vpd_start[BNX2X_VPD_LEN+1];
 | |
| 	char str_id_reg[VENDOR_ID_LEN+1];
 | |
| 	char str_id_cap[VENDOR_ID_LEN+1];
 | |
| 	char *vpd_data;
 | |
| 	char *vpd_extended_data = NULL;
 | |
| 	u8 len;
 | |
| 
 | |
| 	cnt = pci_read_vpd(bp->pdev, 0, BNX2X_VPD_LEN, vpd_start);
 | |
| 	memset(bp->fw_ver, 0, sizeof(bp->fw_ver));
 | |
| 
 | |
| 	if (cnt < BNX2X_VPD_LEN)
 | |
| 		goto out_not_found;
 | |
| 
 | |
| 	/* VPD RO tag should be first tag after identifier string, hence
 | |
| 	 * we should be able to find it in first BNX2X_VPD_LEN chars
 | |
| 	 */
 | |
| 	i = pci_vpd_find_tag(vpd_start, 0, BNX2X_VPD_LEN,
 | |
| 			     PCI_VPD_LRDT_RO_DATA);
 | |
| 	if (i < 0)
 | |
| 		goto out_not_found;
 | |
| 
 | |
| 	block_end = i + PCI_VPD_LRDT_TAG_SIZE +
 | |
| 		    pci_vpd_lrdt_size(&vpd_start[i]);
 | |
| 
 | |
| 	i += PCI_VPD_LRDT_TAG_SIZE;
 | |
| 
 | |
| 	if (block_end > BNX2X_VPD_LEN) {
 | |
| 		vpd_extended_data = kmalloc(block_end, GFP_KERNEL);
 | |
| 		if (vpd_extended_data  == NULL)
 | |
| 			goto out_not_found;
 | |
| 
 | |
| 		/* read rest of vpd image into vpd_extended_data */
 | |
| 		memcpy(vpd_extended_data, vpd_start, BNX2X_VPD_LEN);
 | |
| 		cnt = pci_read_vpd(bp->pdev, BNX2X_VPD_LEN,
 | |
| 				   block_end - BNX2X_VPD_LEN,
 | |
| 				   vpd_extended_data + BNX2X_VPD_LEN);
 | |
| 		if (cnt < (block_end - BNX2X_VPD_LEN))
 | |
| 			goto out_not_found;
 | |
| 		vpd_data = vpd_extended_data;
 | |
| 	} else
 | |
| 		vpd_data = vpd_start;
 | |
| 
 | |
| 	/* now vpd_data holds full vpd content in both cases */
 | |
| 
 | |
| 	rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
 | |
| 				   PCI_VPD_RO_KEYWORD_MFR_ID);
 | |
| 	if (rodi < 0)
 | |
| 		goto out_not_found;
 | |
| 
 | |
| 	len = pci_vpd_info_field_size(&vpd_data[rodi]);
 | |
| 
 | |
| 	if (len != VENDOR_ID_LEN)
 | |
| 		goto out_not_found;
 | |
| 
 | |
| 	rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
 | |
| 
 | |
| 	/* vendor specific info */
 | |
| 	snprintf(str_id_reg, VENDOR_ID_LEN + 1, "%04x", PCI_VENDOR_ID_DELL);
 | |
| 	snprintf(str_id_cap, VENDOR_ID_LEN + 1, "%04X", PCI_VENDOR_ID_DELL);
 | |
| 	if (!strncmp(str_id_reg, &vpd_data[rodi], VENDOR_ID_LEN) ||
 | |
| 	    !strncmp(str_id_cap, &vpd_data[rodi], VENDOR_ID_LEN)) {
 | |
| 
 | |
| 		rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
 | |
| 						PCI_VPD_RO_KEYWORD_VENDOR0);
 | |
| 		if (rodi >= 0) {
 | |
| 			len = pci_vpd_info_field_size(&vpd_data[rodi]);
 | |
| 
 | |
| 			rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
 | |
| 
 | |
| 			if (len < 32 && (len + rodi) <= BNX2X_VPD_LEN) {
 | |
| 				memcpy(bp->fw_ver, &vpd_data[rodi], len);
 | |
| 				bp->fw_ver[len] = ' ';
 | |
| 			}
 | |
| 		}
 | |
| 		kfree(vpd_extended_data);
 | |
| 		return;
 | |
| 	}
 | |
| out_not_found:
 | |
| 	kfree(vpd_extended_data);
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| static void bnx2x_set_modes_bitmap(struct bnx2x *bp)
 | |
| {
 | |
| 	u32 flags = 0;
 | |
| 
 | |
| 	if (CHIP_REV_IS_FPGA(bp))
 | |
| 		SET_FLAGS(flags, MODE_FPGA);
 | |
| 	else if (CHIP_REV_IS_EMUL(bp))
 | |
| 		SET_FLAGS(flags, MODE_EMUL);
 | |
| 	else
 | |
| 		SET_FLAGS(flags, MODE_ASIC);
 | |
| 
 | |
| 	if (CHIP_MODE_IS_4_PORT(bp))
 | |
| 		SET_FLAGS(flags, MODE_PORT4);
 | |
| 	else
 | |
| 		SET_FLAGS(flags, MODE_PORT2);
 | |
| 
 | |
| 	if (CHIP_IS_E2(bp))
 | |
| 		SET_FLAGS(flags, MODE_E2);
 | |
| 	else if (CHIP_IS_E3(bp)) {
 | |
| 		SET_FLAGS(flags, MODE_E3);
 | |
| 		if (CHIP_REV(bp) == CHIP_REV_Ax)
 | |
| 			SET_FLAGS(flags, MODE_E3_A0);
 | |
| 		else /*if (CHIP_REV(bp) == CHIP_REV_Bx)*/
 | |
| 			SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
 | |
| 	}
 | |
| 
 | |
| 	if (IS_MF(bp)) {
 | |
| 		SET_FLAGS(flags, MODE_MF);
 | |
| 		switch (bp->mf_mode) {
 | |
| 		case MULTI_FUNCTION_SD:
 | |
| 			SET_FLAGS(flags, MODE_MF_SD);
 | |
| 			break;
 | |
| 		case MULTI_FUNCTION_SI:
 | |
| 			SET_FLAGS(flags, MODE_MF_SI);
 | |
| 			break;
 | |
| 		case MULTI_FUNCTION_AFEX:
 | |
| 			SET_FLAGS(flags, MODE_MF_AFEX);
 | |
| 			break;
 | |
| 		}
 | |
| 	} else
 | |
| 		SET_FLAGS(flags, MODE_SF);
 | |
| 
 | |
| #if defined(__LITTLE_ENDIAN)
 | |
| 	SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
 | |
| #else /*(__BIG_ENDIAN)*/
 | |
| 	SET_FLAGS(flags, MODE_BIG_ENDIAN);
 | |
| #endif
 | |
| 	INIT_MODE_FLAGS(bp) = flags;
 | |
| }
 | |
| 
 | |
| static int bnx2x_init_bp(struct bnx2x *bp)
 | |
| {
 | |
| 	int func;
 | |
| 	int rc;
 | |
| 
 | |
| 	mutex_init(&bp->port.phy_mutex);
 | |
| 	mutex_init(&bp->fw_mb_mutex);
 | |
| 	spin_lock_init(&bp->stats_lock);
 | |
| 
 | |
| 
 | |
| 	INIT_DELAYED_WORK(&bp->sp_task, bnx2x_sp_task);
 | |
| 	INIT_DELAYED_WORK(&bp->sp_rtnl_task, bnx2x_sp_rtnl_task);
 | |
| 	INIT_DELAYED_WORK(&bp->period_task, bnx2x_period_task);
 | |
| 	if (IS_PF(bp)) {
 | |
| 		rc = bnx2x_get_hwinfo(bp);
 | |
| 		if (rc)
 | |
| 			return rc;
 | |
| 	} else {
 | |
| 		random_ether_addr(bp->dev->dev_addr);
 | |
| 	}
 | |
| 
 | |
| 	bnx2x_set_modes_bitmap(bp);
 | |
| 
 | |
| 	rc = bnx2x_alloc_mem_bp(bp);
 | |
| 	if (rc)
 | |
| 		return rc;
 | |
| 
 | |
| 	bnx2x_read_fwinfo(bp);
 | |
| 
 | |
| 	func = BP_FUNC(bp);
 | |
| 
 | |
| 	/* need to reset chip if undi was active */
 | |
| 	if (IS_PF(bp) && !BP_NOMCP(bp)) {
 | |
| 		/* init fw_seq */
 | |
| 		bp->fw_seq =
 | |
| 			SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
 | |
| 							DRV_MSG_SEQ_NUMBER_MASK;
 | |
| 		BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
 | |
| 
 | |
| 		bnx2x_prev_unload(bp);
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	if (CHIP_REV_IS_FPGA(bp))
 | |
| 		dev_err(&bp->pdev->dev, "FPGA detected\n");
 | |
| 
 | |
| 	if (BP_NOMCP(bp) && (func == 0))
 | |
| 		dev_err(&bp->pdev->dev, "MCP disabled, must load devices in order!\n");
 | |
| 
 | |
| 	bp->disable_tpa = disable_tpa;
 | |
| 	bp->disable_tpa |= IS_MF_STORAGE_SD(bp) || IS_MF_FCOE_AFEX(bp);
 | |
| 
 | |
| 	/* Set TPA flags */
 | |
| 	if (bp->disable_tpa) {
 | |
| 		bp->flags &= ~(TPA_ENABLE_FLAG | GRO_ENABLE_FLAG);
 | |
| 		bp->dev->features &= ~NETIF_F_LRO;
 | |
| 	} else {
 | |
| 		bp->flags |= (TPA_ENABLE_FLAG | GRO_ENABLE_FLAG);
 | |
| 		bp->dev->features |= NETIF_F_LRO;
 | |
| 	}
 | |
| 
 | |
| 	if (CHIP_IS_E1(bp))
 | |
| 		bp->dropless_fc = 0;
 | |
| 	else
 | |
| 		bp->dropless_fc = dropless_fc | bnx2x_get_dropless_info(bp);
 | |
| 
 | |
| 	bp->mrrs = mrrs;
 | |
| 
 | |
| 	bp->tx_ring_size = IS_MF_FCOE_AFEX(bp) ? 0 : MAX_TX_AVAIL;
 | |
| 	if (IS_VF(bp))
 | |
| 		bp->rx_ring_size = MAX_RX_AVAIL;
 | |
| 
 | |
| 	/* make sure that the numbers are in the right granularity */
 | |
| 	bp->tx_ticks = (50 / BNX2X_BTR) * BNX2X_BTR;
 | |
| 	bp->rx_ticks = (25 / BNX2X_BTR) * BNX2X_BTR;
 | |
| 
 | |
| 	bp->current_interval = CHIP_REV_IS_SLOW(bp) ? 5*HZ : HZ;
 | |
| 
 | |
| 	init_timer(&bp->timer);
 | |
| 	bp->timer.expires = jiffies + bp->current_interval;
 | |
| 	bp->timer.data = (unsigned long) bp;
 | |
| 	bp->timer.function = bnx2x_timer;
 | |
| 
 | |
| 	if (SHMEM2_HAS(bp, dcbx_lldp_params_offset) &&
 | |
| 	    SHMEM2_HAS(bp, dcbx_lldp_dcbx_stat_offset) &&
 | |
| 	    SHMEM2_RD(bp, dcbx_lldp_params_offset) &&
 | |
| 	    SHMEM2_RD(bp, dcbx_lldp_dcbx_stat_offset)) {
 | |
| 		bnx2x_dcbx_set_state(bp, true, BNX2X_DCBX_ENABLED_ON_NEG_ON);
 | |
| 		bnx2x_dcbx_init_params(bp);
 | |
| 	} else {
 | |
| 		bnx2x_dcbx_set_state(bp, false, BNX2X_DCBX_ENABLED_OFF);
 | |
| 	}
 | |
| 
 | |
| 	if (CHIP_IS_E1x(bp))
 | |
| 		bp->cnic_base_cl_id = FP_SB_MAX_E1x;
 | |
| 	else
 | |
| 		bp->cnic_base_cl_id = FP_SB_MAX_E2;
 | |
| 
 | |
| 	/* multiple tx priority */
 | |
| 	if (IS_VF(bp))
 | |
| 		bp->max_cos = 1;
 | |
| 	else if (CHIP_IS_E1x(bp))
 | |
| 		bp->max_cos = BNX2X_MULTI_TX_COS_E1X;
 | |
| 	else if (CHIP_IS_E2(bp) || CHIP_IS_E3A0(bp))
 | |
| 		bp->max_cos = BNX2X_MULTI_TX_COS_E2_E3A0;
 | |
| 	else if (CHIP_IS_E3B0(bp))
 | |
| 		bp->max_cos = BNX2X_MULTI_TX_COS_E3B0;
 | |
| 	else
 | |
| 		BNX2X_ERR("unknown chip %x revision %x\n",
 | |
| 			  CHIP_NUM(bp), CHIP_REV(bp));
 | |
| 	BNX2X_DEV_INFO("set bp->max_cos to %d\n", bp->max_cos);
 | |
| 
 | |
| 	/* We need at least one default status block for slow-path events,
 | |
| 	 * second status block for the L2 queue, and a third status block for
 | |
| 	 * CNIC if supproted.
 | |
| 	 */
 | |
| 	if (CNIC_SUPPORT(bp))
 | |
| 		bp->min_msix_vec_cnt = 3;
 | |
| 	else
 | |
| 		bp->min_msix_vec_cnt = 2;
 | |
| 	BNX2X_DEV_INFO("bp->min_msix_vec_cnt %d", bp->min_msix_vec_cnt);
 | |
| 
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| 
 | |
| /****************************************************************************
 | |
| * General service functions
 | |
| ****************************************************************************/
 | |
| 
 | |
| /*
 | |
|  * net_device service functions
 | |
|  */
 | |
| 
 | |
| static int bnx2x_open_epilog(struct bnx2x *bp)
 | |
| {
 | |
| 	/* Enable sriov via delayed work. This must be done via delayed work
 | |
| 	 * because it causes the probe of the vf devices to be run, which invoke
 | |
| 	 * register_netdevice which must have rtnl lock taken. As we are holding
 | |
| 	 * the lock right now, that could only work if the probe would not take
 | |
| 	 * the lock. However, as the probe of the vf may be called from other
 | |
| 	 * contexts as well (such as passthrough to vm failes) it can't assume
 | |
| 	 * the lock is being held for it. Using delayed work here allows the
 | |
| 	 * probe code to simply take the lock (i.e. wait for it to be released
 | |
| 	 * if it is being held).
 | |
| 	 */
 | |
| 	smp_mb__before_clear_bit();
 | |
| 	set_bit(BNX2X_SP_RTNL_ENABLE_SRIOV, &bp->sp_rtnl_state);
 | |
| 	smp_mb__after_clear_bit();
 | |
| 	schedule_delayed_work(&bp->sp_rtnl_task, 0);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* called with rtnl_lock */
 | |
| static int bnx2x_open(struct net_device *dev)
 | |
| {
 | |
| 	struct bnx2x *bp = netdev_priv(dev);
 | |
| 	bool global = false;
 | |
| 	int other_engine = BP_PATH(bp) ? 0 : 1;
 | |
| 	bool other_load_status, load_status;
 | |
| 	int rc;
 | |
| 
 | |
| 	bp->stats_init = true;
 | |
| 
 | |
| 	netif_carrier_off(dev);
 | |
| 
 | |
| 	bnx2x_set_power_state(bp, PCI_D0);
 | |
| 
 | |
| 	/* If parity had happen during the unload, then attentions
 | |
| 	 * and/or RECOVERY_IN_PROGRES may still be set. In this case we
 | |
| 	 * want the first function loaded on the current engine to
 | |
| 	 * complete the recovery.
 | |
| 	 * Parity recovery is only relevant for PF driver.
 | |
| 	 */
 | |
| 	if (IS_PF(bp)) {
 | |
| 		other_load_status = bnx2x_get_load_status(bp, other_engine);
 | |
| 		load_status = bnx2x_get_load_status(bp, BP_PATH(bp));
 | |
| 		if (!bnx2x_reset_is_done(bp, BP_PATH(bp)) ||
 | |
| 		    bnx2x_chk_parity_attn(bp, &global, true)) {
 | |
| 			do {
 | |
| 				/* If there are attentions and they are in a
 | |
| 				 * global blocks, set the GLOBAL_RESET bit
 | |
| 				 * regardless whether it will be this function
 | |
| 				 * that will complete the recovery or not.
 | |
| 				 */
 | |
| 				if (global)
 | |
| 					bnx2x_set_reset_global(bp);
 | |
| 
 | |
| 				/* Only the first function on the current
 | |
| 				 * engine should try to recover in open. In case
 | |
| 				 * of attentions in global blocks only the first
 | |
| 				 * in the chip should try to recover.
 | |
| 				 */
 | |
| 				if ((!load_status &&
 | |
| 				     (!global || !other_load_status)) &&
 | |
| 				      bnx2x_trylock_leader_lock(bp) &&
 | |
| 				      !bnx2x_leader_reset(bp)) {
 | |
| 					netdev_info(bp->dev,
 | |
| 						    "Recovered in open\n");
 | |
| 					break;
 | |
| 				}
 | |
| 
 | |
| 				/* recovery has failed... */
 | |
| 				bnx2x_set_power_state(bp, PCI_D3hot);
 | |
| 				bp->recovery_state = BNX2X_RECOVERY_FAILED;
 | |
| 
 | |
| 				BNX2X_ERR("Recovery flow hasn't been properly completed yet. Try again later.\n"
 | |
| 					  "If you still see this message after a few retries then power cycle is required.\n");
 | |
| 
 | |
| 				return -EAGAIN;
 | |
| 			} while (0);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	bp->recovery_state = BNX2X_RECOVERY_DONE;
 | |
| 	rc = bnx2x_nic_load(bp, LOAD_OPEN);
 | |
| 	if (rc)
 | |
| 		return rc;
 | |
| 	return bnx2x_open_epilog(bp);
 | |
| }
 | |
| 
 | |
| /* called with rtnl_lock */
 | |
| static int bnx2x_close(struct net_device *dev)
 | |
| {
 | |
| 	struct bnx2x *bp = netdev_priv(dev);
 | |
| 
 | |
| 	/* Unload the driver, release IRQs */
 | |
| 	bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
 | |
| 
 | |
| 	/* Power off */
 | |
| 	bnx2x_set_power_state(bp, PCI_D3hot);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int bnx2x_init_mcast_macs_list(struct bnx2x *bp,
 | |
| 				      struct bnx2x_mcast_ramrod_params *p)
 | |
| {
 | |
| 	int mc_count = netdev_mc_count(bp->dev);
 | |
| 	struct bnx2x_mcast_list_elem *mc_mac =
 | |
| 		kzalloc(sizeof(*mc_mac) * mc_count, GFP_ATOMIC);
 | |
| 	struct netdev_hw_addr *ha;
 | |
| 
 | |
| 	if (!mc_mac)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	INIT_LIST_HEAD(&p->mcast_list);
 | |
| 
 | |
| 	netdev_for_each_mc_addr(ha, bp->dev) {
 | |
| 		mc_mac->mac = bnx2x_mc_addr(ha);
 | |
| 		list_add_tail(&mc_mac->link, &p->mcast_list);
 | |
| 		mc_mac++;
 | |
| 	}
 | |
| 
 | |
| 	p->mcast_list_len = mc_count;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void bnx2x_free_mcast_macs_list(
 | |
| 	struct bnx2x_mcast_ramrod_params *p)
 | |
| {
 | |
| 	struct bnx2x_mcast_list_elem *mc_mac =
 | |
| 		list_first_entry(&p->mcast_list, struct bnx2x_mcast_list_elem,
 | |
| 				 link);
 | |
| 
 | |
| 	WARN_ON(!mc_mac);
 | |
| 	kfree(mc_mac);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * bnx2x_set_uc_list - configure a new unicast MACs list.
 | |
|  *
 | |
|  * @bp: driver handle
 | |
|  *
 | |
|  * We will use zero (0) as a MAC type for these MACs.
 | |
|  */
 | |
| static int bnx2x_set_uc_list(struct bnx2x *bp)
 | |
| {
 | |
| 	int rc;
 | |
| 	struct net_device *dev = bp->dev;
 | |
| 	struct netdev_hw_addr *ha;
 | |
| 	struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj;
 | |
| 	unsigned long ramrod_flags = 0;
 | |
| 
 | |
| 	/* First schedule a cleanup up of old configuration */
 | |
| 	rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, false);
 | |
| 	if (rc < 0) {
 | |
| 		BNX2X_ERR("Failed to schedule DELETE operations: %d\n", rc);
 | |
| 		return rc;
 | |
| 	}
 | |
| 
 | |
| 	netdev_for_each_uc_addr(ha, dev) {
 | |
| 		rc = bnx2x_set_mac_one(bp, bnx2x_uc_addr(ha), mac_obj, true,
 | |
| 				       BNX2X_UC_LIST_MAC, &ramrod_flags);
 | |
| 		if (rc == -EEXIST) {
 | |
| 			DP(BNX2X_MSG_SP,
 | |
| 			   "Failed to schedule ADD operations: %d\n", rc);
 | |
| 			/* do not treat adding same MAC as error */
 | |
| 			rc = 0;
 | |
| 
 | |
| 		} else if (rc < 0) {
 | |
| 
 | |
| 			BNX2X_ERR("Failed to schedule ADD operations: %d\n",
 | |
| 				  rc);
 | |
| 			return rc;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Execute the pending commands */
 | |
| 	__set_bit(RAMROD_CONT, &ramrod_flags);
 | |
| 	return bnx2x_set_mac_one(bp, NULL, mac_obj, false /* don't care */,
 | |
| 				 BNX2X_UC_LIST_MAC, &ramrod_flags);
 | |
| }
 | |
| 
 | |
| static int bnx2x_set_mc_list(struct bnx2x *bp)
 | |
| {
 | |
| 	struct net_device *dev = bp->dev;
 | |
| 	struct bnx2x_mcast_ramrod_params rparam = {NULL};
 | |
| 	int rc = 0;
 | |
| 
 | |
| 	rparam.mcast_obj = &bp->mcast_obj;
 | |
| 
 | |
| 	/* first, clear all configured multicast MACs */
 | |
| 	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
 | |
| 	if (rc < 0) {
 | |
| 		BNX2X_ERR("Failed to clear multicast configuration: %d\n", rc);
 | |
| 		return rc;
 | |
| 	}
 | |
| 
 | |
| 	/* then, configure a new MACs list */
 | |
| 	if (netdev_mc_count(dev)) {
 | |
| 		rc = bnx2x_init_mcast_macs_list(bp, &rparam);
 | |
| 		if (rc) {
 | |
| 			BNX2X_ERR("Failed to create multicast MACs list: %d\n",
 | |
| 				  rc);
 | |
| 			return rc;
 | |
| 		}
 | |
| 
 | |
| 		/* Now add the new MACs */
 | |
| 		rc = bnx2x_config_mcast(bp, &rparam,
 | |
| 					BNX2X_MCAST_CMD_ADD);
 | |
| 		if (rc < 0)
 | |
| 			BNX2X_ERR("Failed to set a new multicast configuration: %d\n",
 | |
| 				  rc);
 | |
| 
 | |
| 		bnx2x_free_mcast_macs_list(&rparam);
 | |
| 	}
 | |
| 
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| /* If bp->state is OPEN, should be called with netif_addr_lock_bh() */
 | |
| void bnx2x_set_rx_mode(struct net_device *dev)
 | |
| {
 | |
| 	struct bnx2x *bp = netdev_priv(dev);
 | |
| 	u32 rx_mode = BNX2X_RX_MODE_NORMAL;
 | |
| 
 | |
| 	if (bp->state != BNX2X_STATE_OPEN) {
 | |
| 		DP(NETIF_MSG_IFUP, "state is %x, returning\n", bp->state);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	DP(NETIF_MSG_IFUP, "dev->flags = %x\n", bp->dev->flags);
 | |
| 
 | |
| 	if (dev->flags & IFF_PROMISC)
 | |
| 		rx_mode = BNX2X_RX_MODE_PROMISC;
 | |
| 	else if ((dev->flags & IFF_ALLMULTI) ||
 | |
| 		 ((netdev_mc_count(dev) > BNX2X_MAX_MULTICAST) &&
 | |
| 		  CHIP_IS_E1(bp)))
 | |
| 		rx_mode = BNX2X_RX_MODE_ALLMULTI;
 | |
| 	else {
 | |
| 		if (IS_PF(bp)) {
 | |
| 			/* some multicasts */
 | |
| 			if (bnx2x_set_mc_list(bp) < 0)
 | |
| 				rx_mode = BNX2X_RX_MODE_ALLMULTI;
 | |
| 
 | |
| 			if (bnx2x_set_uc_list(bp) < 0)
 | |
| 				rx_mode = BNX2X_RX_MODE_PROMISC;
 | |
| 		} else {
 | |
| 			/* configuring mcast to a vf involves sleeping (when we
 | |
| 			 * wait for the pf's response). Since this function is
 | |
| 			 * called from non sleepable context we must schedule
 | |
| 			 * a work item for this purpose
 | |
| 			 */
 | |
| 			smp_mb__before_clear_bit();
 | |
| 			set_bit(BNX2X_SP_RTNL_VFPF_MCAST,
 | |
| 				&bp->sp_rtnl_state);
 | |
| 			smp_mb__after_clear_bit();
 | |
| 			schedule_delayed_work(&bp->sp_rtnl_task, 0);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	bp->rx_mode = rx_mode;
 | |
| 	/* handle ISCSI SD mode */
 | |
| 	if (IS_MF_ISCSI_SD(bp))
 | |
| 		bp->rx_mode = BNX2X_RX_MODE_NONE;
 | |
| 
 | |
| 	/* Schedule the rx_mode command */
 | |
| 	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) {
 | |
| 		set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (IS_PF(bp)) {
 | |
| 		bnx2x_set_storm_rx_mode(bp);
 | |
| 	} else {
 | |
| 		/* configuring rx mode to storms in a vf involves sleeping (when
 | |
| 		 * we wait for the pf's response). Since this function is
 | |
| 		 * called from non sleepable context we must schedule
 | |
| 		 * a work item for this purpose
 | |
| 		 */
 | |
| 		smp_mb__before_clear_bit();
 | |
| 		set_bit(BNX2X_SP_RTNL_VFPF_STORM_RX_MODE,
 | |
| 			&bp->sp_rtnl_state);
 | |
| 		smp_mb__after_clear_bit();
 | |
| 		schedule_delayed_work(&bp->sp_rtnl_task, 0);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* called with rtnl_lock */
 | |
| static int bnx2x_mdio_read(struct net_device *netdev, int prtad,
 | |
| 			   int devad, u16 addr)
 | |
| {
 | |
| 	struct bnx2x *bp = netdev_priv(netdev);
 | |
| 	u16 value;
 | |
| 	int rc;
 | |
| 
 | |
| 	DP(NETIF_MSG_LINK, "mdio_read: prtad 0x%x, devad 0x%x, addr 0x%x\n",
 | |
| 	   prtad, devad, addr);
 | |
| 
 | |
| 	/* The HW expects different devad if CL22 is used */
 | |
| 	devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
 | |
| 
 | |
| 	bnx2x_acquire_phy_lock(bp);
 | |
| 	rc = bnx2x_phy_read(&bp->link_params, prtad, devad, addr, &value);
 | |
| 	bnx2x_release_phy_lock(bp);
 | |
| 	DP(NETIF_MSG_LINK, "mdio_read_val 0x%x rc = 0x%x\n", value, rc);
 | |
| 
 | |
| 	if (!rc)
 | |
| 		rc = value;
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| /* called with rtnl_lock */
 | |
| static int bnx2x_mdio_write(struct net_device *netdev, int prtad, int devad,
 | |
| 			    u16 addr, u16 value)
 | |
| {
 | |
| 	struct bnx2x *bp = netdev_priv(netdev);
 | |
| 	int rc;
 | |
| 
 | |
| 	DP(NETIF_MSG_LINK,
 | |
| 	   "mdio_write: prtad 0x%x, devad 0x%x, addr 0x%x, value 0x%x\n",
 | |
| 	   prtad, devad, addr, value);
 | |
| 
 | |
| 	/* The HW expects different devad if CL22 is used */
 | |
| 	devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
 | |
| 
 | |
| 	bnx2x_acquire_phy_lock(bp);
 | |
| 	rc = bnx2x_phy_write(&bp->link_params, prtad, devad, addr, value);
 | |
| 	bnx2x_release_phy_lock(bp);
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| /* called with rtnl_lock */
 | |
| static int bnx2x_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
 | |
| {
 | |
| 	struct bnx2x *bp = netdev_priv(dev);
 | |
| 	struct mii_ioctl_data *mdio = if_mii(ifr);
 | |
| 
 | |
| 	DP(NETIF_MSG_LINK, "ioctl: phy id 0x%x, reg 0x%x, val_in 0x%x\n",
 | |
| 	   mdio->phy_id, mdio->reg_num, mdio->val_in);
 | |
| 
 | |
| 	if (!netif_running(dev))
 | |
| 		return -EAGAIN;
 | |
| 
 | |
| 	return mdio_mii_ioctl(&bp->mdio, mdio, cmd);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_NET_POLL_CONTROLLER
 | |
| static void poll_bnx2x(struct net_device *dev)
 | |
| {
 | |
| 	struct bnx2x *bp = netdev_priv(dev);
 | |
| 	int i;
 | |
| 
 | |
| 	for_each_eth_queue(bp, i) {
 | |
| 		struct bnx2x_fastpath *fp = &bp->fp[i];
 | |
| 		napi_schedule(&bnx2x_fp(bp, fp->index, napi));
 | |
| 	}
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static int bnx2x_validate_addr(struct net_device *dev)
 | |
| {
 | |
| 	struct bnx2x *bp = netdev_priv(dev);
 | |
| 
 | |
| 	if (!bnx2x_is_valid_ether_addr(bp, dev->dev_addr)) {
 | |
| 		BNX2X_ERR("Non-valid Ethernet address\n");
 | |
| 		return -EADDRNOTAVAIL;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static const struct net_device_ops bnx2x_netdev_ops = {
 | |
| 	.ndo_open		= bnx2x_open,
 | |
| 	.ndo_stop		= bnx2x_close,
 | |
| 	.ndo_start_xmit		= bnx2x_start_xmit,
 | |
| 	.ndo_select_queue	= bnx2x_select_queue,
 | |
| 	.ndo_set_rx_mode	= bnx2x_set_rx_mode,
 | |
| 	.ndo_set_mac_address	= bnx2x_change_mac_addr,
 | |
| 	.ndo_validate_addr	= bnx2x_validate_addr,
 | |
| 	.ndo_do_ioctl		= bnx2x_ioctl,
 | |
| 	.ndo_change_mtu		= bnx2x_change_mtu,
 | |
| 	.ndo_fix_features	= bnx2x_fix_features,
 | |
| 	.ndo_set_features	= bnx2x_set_features,
 | |
| 	.ndo_tx_timeout		= bnx2x_tx_timeout,
 | |
| #ifdef CONFIG_NET_POLL_CONTROLLER
 | |
| 	.ndo_poll_controller	= poll_bnx2x,
 | |
| #endif
 | |
| 	.ndo_setup_tc		= bnx2x_setup_tc,
 | |
| #ifdef CONFIG_BNX2X_SRIOV
 | |
| 	.ndo_set_vf_mac		= bnx2x_set_vf_mac,
 | |
| #endif
 | |
| #ifdef NETDEV_FCOE_WWNN
 | |
| 	.ndo_fcoe_get_wwn	= bnx2x_fcoe_get_wwn,
 | |
| #endif
 | |
| };
 | |
| 
 | |
| static int bnx2x_set_coherency_mask(struct bnx2x *bp)
 | |
| {
 | |
| 	struct device *dev = &bp->pdev->dev;
 | |
| 
 | |
| 	if (dma_set_mask(dev, DMA_BIT_MASK(64)) == 0) {
 | |
| 		bp->flags |= USING_DAC_FLAG;
 | |
| 		if (dma_set_coherent_mask(dev, DMA_BIT_MASK(64)) != 0) {
 | |
| 			dev_err(dev, "dma_set_coherent_mask failed, aborting\n");
 | |
| 			return -EIO;
 | |
| 		}
 | |
| 	} else if (dma_set_mask(dev, DMA_BIT_MASK(32)) != 0) {
 | |
| 		dev_err(dev, "System does not support DMA, aborting\n");
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int bnx2x_init_dev(struct bnx2x *bp, struct pci_dev *pdev,
 | |
| 			  struct net_device *dev, unsigned long board_type)
 | |
| {
 | |
| 	int rc;
 | |
| 	u32 pci_cfg_dword;
 | |
| 	bool chip_is_e1x = (board_type == BCM57710 ||
 | |
| 			    board_type == BCM57711 ||
 | |
| 			    board_type == BCM57711E);
 | |
| 
 | |
| 	SET_NETDEV_DEV(dev, &pdev->dev);
 | |
| 
 | |
| 	bp->dev = dev;
 | |
| 	bp->pdev = pdev;
 | |
| 
 | |
| 	rc = pci_enable_device(pdev);
 | |
| 	if (rc) {
 | |
| 		dev_err(&bp->pdev->dev,
 | |
| 			"Cannot enable PCI device, aborting\n");
 | |
| 		goto err_out;
 | |
| 	}
 | |
| 
 | |
| 	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
 | |
| 		dev_err(&bp->pdev->dev,
 | |
| 			"Cannot find PCI device base address, aborting\n");
 | |
| 		rc = -ENODEV;
 | |
| 		goto err_out_disable;
 | |
| 	}
 | |
| 
 | |
| 	if (IS_PF(bp) && !(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
 | |
| 		dev_err(&bp->pdev->dev, "Cannot find second PCI device base address, aborting\n");
 | |
| 		rc = -ENODEV;
 | |
| 		goto err_out_disable;
 | |
| 	}
 | |
| 
 | |
| 	pci_read_config_dword(pdev, PCICFG_REVISION_ID_OFFSET, &pci_cfg_dword);
 | |
| 	if ((pci_cfg_dword & PCICFG_REVESION_ID_MASK) ==
 | |
| 	    PCICFG_REVESION_ID_ERROR_VAL) {
 | |
| 		pr_err("PCI device error, probably due to fan failure, aborting\n");
 | |
| 		rc = -ENODEV;
 | |
| 		goto err_out_disable;
 | |
| 	}
 | |
| 
 | |
| 	if (atomic_read(&pdev->enable_cnt) == 1) {
 | |
| 		rc = pci_request_regions(pdev, DRV_MODULE_NAME);
 | |
| 		if (rc) {
 | |
| 			dev_err(&bp->pdev->dev,
 | |
| 				"Cannot obtain PCI resources, aborting\n");
 | |
| 			goto err_out_disable;
 | |
| 		}
 | |
| 
 | |
| 		pci_set_master(pdev);
 | |
| 		pci_save_state(pdev);
 | |
| 	}
 | |
| 
 | |
| 	if (IS_PF(bp)) {
 | |
| 		bp->pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM);
 | |
| 		if (bp->pm_cap == 0) {
 | |
| 			dev_err(&bp->pdev->dev,
 | |
| 				"Cannot find power management capability, aborting\n");
 | |
| 			rc = -EIO;
 | |
| 			goto err_out_release;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (!pci_is_pcie(pdev)) {
 | |
| 		dev_err(&bp->pdev->dev, "Not PCI Express, aborting\n");
 | |
| 		rc = -EIO;
 | |
| 		goto err_out_release;
 | |
| 	}
 | |
| 
 | |
| 	rc = bnx2x_set_coherency_mask(bp);
 | |
| 	if (rc)
 | |
| 		goto err_out_release;
 | |
| 
 | |
| 	dev->mem_start = pci_resource_start(pdev, 0);
 | |
| 	dev->base_addr = dev->mem_start;
 | |
| 	dev->mem_end = pci_resource_end(pdev, 0);
 | |
| 
 | |
| 	dev->irq = pdev->irq;
 | |
| 
 | |
| 	bp->regview = pci_ioremap_bar(pdev, 0);
 | |
| 	if (!bp->regview) {
 | |
| 		dev_err(&bp->pdev->dev,
 | |
| 			"Cannot map register space, aborting\n");
 | |
| 		rc = -ENOMEM;
 | |
| 		goto err_out_release;
 | |
| 	}
 | |
| 
 | |
| 	/* In E1/E1H use pci device function given by kernel.
 | |
| 	 * In E2/E3 read physical function from ME register since these chips
 | |
| 	 * support Physical Device Assignment where kernel BDF maybe arbitrary
 | |
| 	 * (depending on hypervisor).
 | |
| 	 */
 | |
| 	if (chip_is_e1x) {
 | |
| 		bp->pf_num = PCI_FUNC(pdev->devfn);
 | |
| 	} else {
 | |
| 		/* chip is E2/3*/
 | |
| 		pci_read_config_dword(bp->pdev,
 | |
| 				      PCICFG_ME_REGISTER, &pci_cfg_dword);
 | |
| 		bp->pf_num = (u8)((pci_cfg_dword & ME_REG_ABS_PF_NUM) >>
 | |
| 				  ME_REG_ABS_PF_NUM_SHIFT);
 | |
| 	}
 | |
| 	BNX2X_DEV_INFO("me reg PF num: %d\n", bp->pf_num);
 | |
| 
 | |
| 	bnx2x_set_power_state(bp, PCI_D0);
 | |
| 
 | |
| 	/* clean indirect addresses */
 | |
| 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
 | |
| 			       PCICFG_VENDOR_ID_OFFSET);
 | |
| 	/*
 | |
| 	 * Clean the following indirect addresses for all functions since it
 | |
| 	 * is not used by the driver.
 | |
| 	 */
 | |
| 	if (IS_PF(bp)) {
 | |
| 		REG_WR(bp, PXP2_REG_PGL_ADDR_88_F0, 0);
 | |
| 		REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F0, 0);
 | |
| 		REG_WR(bp, PXP2_REG_PGL_ADDR_90_F0, 0);
 | |
| 		REG_WR(bp, PXP2_REG_PGL_ADDR_94_F0, 0);
 | |
| 
 | |
| 		if (chip_is_e1x) {
 | |
| 			REG_WR(bp, PXP2_REG_PGL_ADDR_88_F1, 0);
 | |
| 			REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F1, 0);
 | |
| 			REG_WR(bp, PXP2_REG_PGL_ADDR_90_F1, 0);
 | |
| 			REG_WR(bp, PXP2_REG_PGL_ADDR_94_F1, 0);
 | |
| 		}
 | |
| 
 | |
| 		/* Enable internal target-read (in case we are probed after PF
 | |
| 		 * FLR). Must be done prior to any BAR read access. Only for
 | |
| 		 * 57712 and up
 | |
| 		 */
 | |
| 		if (!chip_is_e1x)
 | |
| 			REG_WR(bp,
 | |
| 			       PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
 | |
| 	}
 | |
| 
 | |
| 	dev->watchdog_timeo = TX_TIMEOUT;
 | |
| 
 | |
| 	dev->netdev_ops = &bnx2x_netdev_ops;
 | |
| 	bnx2x_set_ethtool_ops(dev);
 | |
| 
 | |
| 	dev->priv_flags |= IFF_UNICAST_FLT;
 | |
| 
 | |
| 	dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
 | |
| 		NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
 | |
| 		NETIF_F_RXCSUM | NETIF_F_LRO | NETIF_F_GRO |
 | |
| 		NETIF_F_RXHASH | NETIF_F_HW_VLAN_TX;
 | |
| 
 | |
| 	dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
 | |
| 		NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_HIGHDMA;
 | |
| 
 | |
| 	dev->features |= dev->hw_features | NETIF_F_HW_VLAN_RX;
 | |
| 	if (bp->flags & USING_DAC_FLAG)
 | |
| 		dev->features |= NETIF_F_HIGHDMA;
 | |
| 
 | |
| 	/* Add Loopback capability to the device */
 | |
| 	dev->hw_features |= NETIF_F_LOOPBACK;
 | |
| 
 | |
| #ifdef BCM_DCBNL
 | |
| 	dev->dcbnl_ops = &bnx2x_dcbnl_ops;
 | |
| #endif
 | |
| 
 | |
| 	/* get_port_hwinfo() will set prtad and mmds properly */
 | |
| 	bp->mdio.prtad = MDIO_PRTAD_NONE;
 | |
| 	bp->mdio.mmds = 0;
 | |
| 	bp->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
 | |
| 	bp->mdio.dev = dev;
 | |
| 	bp->mdio.mdio_read = bnx2x_mdio_read;
 | |
| 	bp->mdio.mdio_write = bnx2x_mdio_write;
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| err_out_release:
 | |
| 	if (atomic_read(&pdev->enable_cnt) == 1)
 | |
| 		pci_release_regions(pdev);
 | |
| 
 | |
| err_out_disable:
 | |
| 	pci_disable_device(pdev);
 | |
| 	pci_set_drvdata(pdev, NULL);
 | |
| 
 | |
| err_out:
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| static void bnx2x_get_pcie_width_speed(struct bnx2x *bp, int *width, int *speed)
 | |
| {
 | |
| 	u32 val = 0;
 | |
| 
 | |
| 	pci_read_config_dword(bp->pdev, PCICFG_LINK_CONTROL, &val);
 | |
| 	*width = (val & PCICFG_LINK_WIDTH) >> PCICFG_LINK_WIDTH_SHIFT;
 | |
| 
 | |
| 	/* return value of 1=2.5GHz 2=5GHz */
 | |
| 	*speed = (val & PCICFG_LINK_SPEED) >> PCICFG_LINK_SPEED_SHIFT;
 | |
| }
 | |
| 
 | |
| static int bnx2x_check_firmware(struct bnx2x *bp)
 | |
| {
 | |
| 	const struct firmware *firmware = bp->firmware;
 | |
| 	struct bnx2x_fw_file_hdr *fw_hdr;
 | |
| 	struct bnx2x_fw_file_section *sections;
 | |
| 	u32 offset, len, num_ops;
 | |
| 	__be16 *ops_offsets;
 | |
| 	int i;
 | |
| 	const u8 *fw_ver;
 | |
| 
 | |
| 	if (firmware->size < sizeof(struct bnx2x_fw_file_hdr)) {
 | |
| 		BNX2X_ERR("Wrong FW size\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	fw_hdr = (struct bnx2x_fw_file_hdr *)firmware->data;
 | |
| 	sections = (struct bnx2x_fw_file_section *)fw_hdr;
 | |
| 
 | |
| 	/* Make sure none of the offsets and sizes make us read beyond
 | |
| 	 * the end of the firmware data */
 | |
| 	for (i = 0; i < sizeof(*fw_hdr) / sizeof(*sections); i++) {
 | |
| 		offset = be32_to_cpu(sections[i].offset);
 | |
| 		len = be32_to_cpu(sections[i].len);
 | |
| 		if (offset + len > firmware->size) {
 | |
| 			BNX2X_ERR("Section %d length is out of bounds\n", i);
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Likewise for the init_ops offsets */
 | |
| 	offset = be32_to_cpu(fw_hdr->init_ops_offsets.offset);
 | |
| 	ops_offsets = (__force __be16 *)(firmware->data + offset);
 | |
| 	num_ops = be32_to_cpu(fw_hdr->init_ops.len) / sizeof(struct raw_op);
 | |
| 
 | |
| 	for (i = 0; i < be32_to_cpu(fw_hdr->init_ops_offsets.len) / 2; i++) {
 | |
| 		if (be16_to_cpu(ops_offsets[i]) > num_ops) {
 | |
| 			BNX2X_ERR("Section offset %d is out of bounds\n", i);
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Check FW version */
 | |
| 	offset = be32_to_cpu(fw_hdr->fw_version.offset);
 | |
| 	fw_ver = firmware->data + offset;
 | |
| 	if ((fw_ver[0] != BCM_5710_FW_MAJOR_VERSION) ||
 | |
| 	    (fw_ver[1] != BCM_5710_FW_MINOR_VERSION) ||
 | |
| 	    (fw_ver[2] != BCM_5710_FW_REVISION_VERSION) ||
 | |
| 	    (fw_ver[3] != BCM_5710_FW_ENGINEERING_VERSION)) {
 | |
| 		BNX2X_ERR("Bad FW version:%d.%d.%d.%d. Should be %d.%d.%d.%d\n",
 | |
| 		       fw_ver[0], fw_ver[1], fw_ver[2], fw_ver[3],
 | |
| 		       BCM_5710_FW_MAJOR_VERSION,
 | |
| 		       BCM_5710_FW_MINOR_VERSION,
 | |
| 		       BCM_5710_FW_REVISION_VERSION,
 | |
| 		       BCM_5710_FW_ENGINEERING_VERSION);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void be32_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
 | |
| {
 | |
| 	const __be32 *source = (const __be32 *)_source;
 | |
| 	u32 *target = (u32 *)_target;
 | |
| 	u32 i;
 | |
| 
 | |
| 	for (i = 0; i < n/4; i++)
 | |
| 		target[i] = be32_to_cpu(source[i]);
 | |
| }
 | |
| 
 | |
| /*
 | |
|    Ops array is stored in the following format:
 | |
|    {op(8bit), offset(24bit, big endian), data(32bit, big endian)}
 | |
|  */
 | |
| static void bnx2x_prep_ops(const u8 *_source, u8 *_target, u32 n)
 | |
| {
 | |
| 	const __be32 *source = (const __be32 *)_source;
 | |
| 	struct raw_op *target = (struct raw_op *)_target;
 | |
| 	u32 i, j, tmp;
 | |
| 
 | |
| 	for (i = 0, j = 0; i < n/8; i++, j += 2) {
 | |
| 		tmp = be32_to_cpu(source[j]);
 | |
| 		target[i].op = (tmp >> 24) & 0xff;
 | |
| 		target[i].offset = tmp & 0xffffff;
 | |
| 		target[i].raw_data = be32_to_cpu(source[j + 1]);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* IRO array is stored in the following format:
 | |
|  * {base(24bit), m1(16bit), m2(16bit), m3(16bit), size(16bit) }
 | |
|  */
 | |
| static void bnx2x_prep_iro(const u8 *_source, u8 *_target, u32 n)
 | |
| {
 | |
| 	const __be32 *source = (const __be32 *)_source;
 | |
| 	struct iro *target = (struct iro *)_target;
 | |
| 	u32 i, j, tmp;
 | |
| 
 | |
| 	for (i = 0, j = 0; i < n/sizeof(struct iro); i++) {
 | |
| 		target[i].base = be32_to_cpu(source[j]);
 | |
| 		j++;
 | |
| 		tmp = be32_to_cpu(source[j]);
 | |
| 		target[i].m1 = (tmp >> 16) & 0xffff;
 | |
| 		target[i].m2 = tmp & 0xffff;
 | |
| 		j++;
 | |
| 		tmp = be32_to_cpu(source[j]);
 | |
| 		target[i].m3 = (tmp >> 16) & 0xffff;
 | |
| 		target[i].size = tmp & 0xffff;
 | |
| 		j++;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void be16_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
 | |
| {
 | |
| 	const __be16 *source = (const __be16 *)_source;
 | |
| 	u16 *target = (u16 *)_target;
 | |
| 	u32 i;
 | |
| 
 | |
| 	for (i = 0; i < n/2; i++)
 | |
| 		target[i] = be16_to_cpu(source[i]);
 | |
| }
 | |
| 
 | |
| #define BNX2X_ALLOC_AND_SET(arr, lbl, func)				\
 | |
| do {									\
 | |
| 	u32 len = be32_to_cpu(fw_hdr->arr.len);				\
 | |
| 	bp->arr = kmalloc(len, GFP_KERNEL);				\
 | |
| 	if (!bp->arr)							\
 | |
| 		goto lbl;						\
 | |
| 	func(bp->firmware->data + be32_to_cpu(fw_hdr->arr.offset),	\
 | |
| 	     (u8 *)bp->arr, len);					\
 | |
| } while (0)
 | |
| 
 | |
| static int bnx2x_init_firmware(struct bnx2x *bp)
 | |
| {
 | |
| 	const char *fw_file_name;
 | |
| 	struct bnx2x_fw_file_hdr *fw_hdr;
 | |
| 	int rc;
 | |
| 
 | |
| 	if (bp->firmware)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (CHIP_IS_E1(bp))
 | |
| 		fw_file_name = FW_FILE_NAME_E1;
 | |
| 	else if (CHIP_IS_E1H(bp))
 | |
| 		fw_file_name = FW_FILE_NAME_E1H;
 | |
| 	else if (!CHIP_IS_E1x(bp))
 | |
| 		fw_file_name = FW_FILE_NAME_E2;
 | |
| 	else {
 | |
| 		BNX2X_ERR("Unsupported chip revision\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 	BNX2X_DEV_INFO("Loading %s\n", fw_file_name);
 | |
| 
 | |
| 	rc = request_firmware(&bp->firmware, fw_file_name, &bp->pdev->dev);
 | |
| 	if (rc) {
 | |
| 		BNX2X_ERR("Can't load firmware file %s\n",
 | |
| 			  fw_file_name);
 | |
| 		goto request_firmware_exit;
 | |
| 	}
 | |
| 
 | |
| 	rc = bnx2x_check_firmware(bp);
 | |
| 	if (rc) {
 | |
| 		BNX2X_ERR("Corrupt firmware file %s\n", fw_file_name);
 | |
| 		goto request_firmware_exit;
 | |
| 	}
 | |
| 
 | |
| 	fw_hdr = (struct bnx2x_fw_file_hdr *)bp->firmware->data;
 | |
| 
 | |
| 	/* Initialize the pointers to the init arrays */
 | |
| 	/* Blob */
 | |
| 	BNX2X_ALLOC_AND_SET(init_data, request_firmware_exit, be32_to_cpu_n);
 | |
| 
 | |
| 	/* Opcodes */
 | |
| 	BNX2X_ALLOC_AND_SET(init_ops, init_ops_alloc_err, bnx2x_prep_ops);
 | |
| 
 | |
| 	/* Offsets */
 | |
| 	BNX2X_ALLOC_AND_SET(init_ops_offsets, init_offsets_alloc_err,
 | |
| 			    be16_to_cpu_n);
 | |
| 
 | |
| 	/* STORMs firmware */
 | |
| 	INIT_TSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
 | |
| 			be32_to_cpu(fw_hdr->tsem_int_table_data.offset);
 | |
| 	INIT_TSEM_PRAM_DATA(bp)      = bp->firmware->data +
 | |
| 			be32_to_cpu(fw_hdr->tsem_pram_data.offset);
 | |
| 	INIT_USEM_INT_TABLE_DATA(bp) = bp->firmware->data +
 | |
| 			be32_to_cpu(fw_hdr->usem_int_table_data.offset);
 | |
| 	INIT_USEM_PRAM_DATA(bp)      = bp->firmware->data +
 | |
| 			be32_to_cpu(fw_hdr->usem_pram_data.offset);
 | |
| 	INIT_XSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
 | |
| 			be32_to_cpu(fw_hdr->xsem_int_table_data.offset);
 | |
| 	INIT_XSEM_PRAM_DATA(bp)      = bp->firmware->data +
 | |
| 			be32_to_cpu(fw_hdr->xsem_pram_data.offset);
 | |
| 	INIT_CSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
 | |
| 			be32_to_cpu(fw_hdr->csem_int_table_data.offset);
 | |
| 	INIT_CSEM_PRAM_DATA(bp)      = bp->firmware->data +
 | |
| 			be32_to_cpu(fw_hdr->csem_pram_data.offset);
 | |
| 	/* IRO */
 | |
| 	BNX2X_ALLOC_AND_SET(iro_arr, iro_alloc_err, bnx2x_prep_iro);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| iro_alloc_err:
 | |
| 	kfree(bp->init_ops_offsets);
 | |
| init_offsets_alloc_err:
 | |
| 	kfree(bp->init_ops);
 | |
| init_ops_alloc_err:
 | |
| 	kfree(bp->init_data);
 | |
| request_firmware_exit:
 | |
| 	release_firmware(bp->firmware);
 | |
| 	bp->firmware = NULL;
 | |
| 
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| static void bnx2x_release_firmware(struct bnx2x *bp)
 | |
| {
 | |
| 	kfree(bp->init_ops_offsets);
 | |
| 	kfree(bp->init_ops);
 | |
| 	kfree(bp->init_data);
 | |
| 	release_firmware(bp->firmware);
 | |
| 	bp->firmware = NULL;
 | |
| }
 | |
| 
 | |
| 
 | |
| static struct bnx2x_func_sp_drv_ops bnx2x_func_sp_drv = {
 | |
| 	.init_hw_cmn_chip = bnx2x_init_hw_common_chip,
 | |
| 	.init_hw_cmn      = bnx2x_init_hw_common,
 | |
| 	.init_hw_port     = bnx2x_init_hw_port,
 | |
| 	.init_hw_func     = bnx2x_init_hw_func,
 | |
| 
 | |
| 	.reset_hw_cmn     = bnx2x_reset_common,
 | |
| 	.reset_hw_port    = bnx2x_reset_port,
 | |
| 	.reset_hw_func    = bnx2x_reset_func,
 | |
| 
 | |
| 	.gunzip_init      = bnx2x_gunzip_init,
 | |
| 	.gunzip_end       = bnx2x_gunzip_end,
 | |
| 
 | |
| 	.init_fw          = bnx2x_init_firmware,
 | |
| 	.release_fw       = bnx2x_release_firmware,
 | |
| };
 | |
| 
 | |
| void bnx2x__init_func_obj(struct bnx2x *bp)
 | |
| {
 | |
| 	/* Prepare DMAE related driver resources */
 | |
| 	bnx2x_setup_dmae(bp);
 | |
| 
 | |
| 	bnx2x_init_func_obj(bp, &bp->func_obj,
 | |
| 			    bnx2x_sp(bp, func_rdata),
 | |
| 			    bnx2x_sp_mapping(bp, func_rdata),
 | |
| 			    bnx2x_sp(bp, func_afex_rdata),
 | |
| 			    bnx2x_sp_mapping(bp, func_afex_rdata),
 | |
| 			    &bnx2x_func_sp_drv);
 | |
| }
 | |
| 
 | |
| /* must be called after sriov-enable */
 | |
| static int bnx2x_set_qm_cid_count(struct bnx2x *bp)
 | |
| {
 | |
| 	int cid_count = BNX2X_L2_MAX_CID(bp);
 | |
| 
 | |
| 	if (IS_SRIOV(bp))
 | |
| 		cid_count += BNX2X_VF_CIDS;
 | |
| 
 | |
| 	if (CNIC_SUPPORT(bp))
 | |
| 		cid_count += CNIC_CID_MAX;
 | |
| 
 | |
| 	return roundup(cid_count, QM_CID_ROUND);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * bnx2x_get_num_none_def_sbs - return the number of none default SBs
 | |
|  *
 | |
|  * @dev:	pci device
 | |
|  *
 | |
|  */
 | |
| static int bnx2x_get_num_non_def_sbs(struct pci_dev *pdev,
 | |
| 				     int cnic_cnt, bool is_vf)
 | |
| {
 | |
| 	int pos, index;
 | |
| 	u16 control = 0;
 | |
| 
 | |
| 	pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX);
 | |
| 
 | |
| 	/*
 | |
| 	 * If MSI-X is not supported - return number of SBs needed to support
 | |
| 	 * one fast path queue: one FP queue + SB for CNIC
 | |
| 	 */
 | |
| 	if (!pos) {
 | |
| 		dev_info(&pdev->dev, "no msix capability found\n");
 | |
| 		return 1 + cnic_cnt;
 | |
| 	}
 | |
| 	dev_info(&pdev->dev, "msix capability found\n");
 | |
| 
 | |
| 	/*
 | |
| 	 * The value in the PCI configuration space is the index of the last
 | |
| 	 * entry, namely one less than the actual size of the table, which is
 | |
| 	 * exactly what we want to return from this function: number of all SBs
 | |
| 	 * without the default SB.
 | |
| 	 * For VFs there is no default SB, then we return (index+1).
 | |
| 	 */
 | |
| 	pci_read_config_word(pdev, pos  + PCI_MSI_FLAGS, &control);
 | |
| 
 | |
| 	index = control & PCI_MSIX_FLAGS_QSIZE;
 | |
| 
 | |
| 	return is_vf ? index + 1 : index;
 | |
| }
 | |
| 
 | |
| static int set_max_cos_est(int chip_id)
 | |
| {
 | |
| 	switch (chip_id) {
 | |
| 	case BCM57710:
 | |
| 	case BCM57711:
 | |
| 	case BCM57711E:
 | |
| 		return BNX2X_MULTI_TX_COS_E1X;
 | |
| 	case BCM57712:
 | |
| 	case BCM57712_MF:
 | |
| 	case BCM57712_VF:
 | |
| 		return BNX2X_MULTI_TX_COS_E2_E3A0;
 | |
| 	case BCM57800:
 | |
| 	case BCM57800_MF:
 | |
| 	case BCM57800_VF:
 | |
| 	case BCM57810:
 | |
| 	case BCM57810_MF:
 | |
| 	case BCM57840_4_10:
 | |
| 	case BCM57840_2_20:
 | |
| 	case BCM57840_O:
 | |
| 	case BCM57840_MFO:
 | |
| 	case BCM57810_VF:
 | |
| 	case BCM57840_MF:
 | |
| 	case BCM57840_VF:
 | |
| 	case BCM57811:
 | |
| 	case BCM57811_MF:
 | |
| 	case BCM57811_VF:
 | |
| 		return BNX2X_MULTI_TX_COS_E3B0;
 | |
| 		return 1;
 | |
| 	default:
 | |
| 		pr_err("Unknown board_type (%d), aborting\n", chip_id);
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int set_is_vf(int chip_id)
 | |
| {
 | |
| 	switch (chip_id) {
 | |
| 	case BCM57712_VF:
 | |
| 	case BCM57800_VF:
 | |
| 	case BCM57810_VF:
 | |
| 	case BCM57840_VF:
 | |
| 	case BCM57811_VF:
 | |
| 		return true;
 | |
| 	default:
 | |
| 		return false;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev);
 | |
| 
 | |
| static int bnx2x_init_one(struct pci_dev *pdev,
 | |
| 				    const struct pci_device_id *ent)
 | |
| {
 | |
| 	struct net_device *dev = NULL;
 | |
| 	struct bnx2x *bp;
 | |
| 	int pcie_width, pcie_speed;
 | |
| 	int rc, max_non_def_sbs;
 | |
| 	int rx_count, tx_count, rss_count, doorbell_size;
 | |
| 	int max_cos_est;
 | |
| 	bool is_vf;
 | |
| 	int cnic_cnt;
 | |
| 
 | |
| 	/* An estimated maximum supported CoS number according to the chip
 | |
| 	 * version.
 | |
| 	 * We will try to roughly estimate the maximum number of CoSes this chip
 | |
| 	 * may support in order to minimize the memory allocated for Tx
 | |
| 	 * netdev_queue's. This number will be accurately calculated during the
 | |
| 	 * initialization of bp->max_cos based on the chip versions AND chip
 | |
| 	 * revision in the bnx2x_init_bp().
 | |
| 	 */
 | |
| 	max_cos_est = set_max_cos_est(ent->driver_data);
 | |
| 	if (max_cos_est < 0)
 | |
| 		return max_cos_est;
 | |
| 	is_vf = set_is_vf(ent->driver_data);
 | |
| 	cnic_cnt = is_vf ? 0 : 1;
 | |
| 
 | |
| 	max_non_def_sbs = bnx2x_get_num_non_def_sbs(pdev, cnic_cnt, is_vf);
 | |
| 
 | |
| 	/* Maximum number of RSS queues: one IGU SB goes to CNIC */
 | |
| 	rss_count = is_vf ? 1 : max_non_def_sbs - cnic_cnt;
 | |
| 
 | |
| 	if (rss_count < 1)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/* Maximum number of netdev Rx queues: RSS + FCoE L2 */
 | |
| 	rx_count = rss_count + cnic_cnt;
 | |
| 
 | |
| 	/* Maximum number of netdev Tx queues:
 | |
| 	 * Maximum TSS queues * Maximum supported number of CoS  + FCoE L2
 | |
| 	 */
 | |
| 	tx_count = rss_count * max_cos_est + cnic_cnt;
 | |
| 
 | |
| 	/* dev zeroed in init_etherdev */
 | |
| 	dev = alloc_etherdev_mqs(sizeof(*bp), tx_count, rx_count);
 | |
| 	if (!dev)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	bp = netdev_priv(dev);
 | |
| 
 | |
| 	bp->flags = 0;
 | |
| 	if (is_vf)
 | |
| 		bp->flags |= IS_VF_FLAG;
 | |
| 
 | |
| 	bp->igu_sb_cnt = max_non_def_sbs;
 | |
| 	bp->igu_base_addr = IS_VF(bp) ? PXP_VF_ADDR_IGU_START : BAR_IGU_INTMEM;
 | |
| 	bp->msg_enable = debug;
 | |
| 	bp->cnic_support = cnic_cnt;
 | |
| 	bp->cnic_probe = bnx2x_cnic_probe;
 | |
| 
 | |
| 	pci_set_drvdata(pdev, dev);
 | |
| 
 | |
| 	rc = bnx2x_init_dev(bp, pdev, dev, ent->driver_data);
 | |
| 	if (rc < 0) {
 | |
| 		free_netdev(dev);
 | |
| 		return rc;
 | |
| 	}
 | |
| 
 | |
| 	BNX2X_DEV_INFO("This is a %s function\n",
 | |
| 		       IS_PF(bp) ? "physical" : "virtual");
 | |
| 	BNX2X_DEV_INFO("Cnic support is %s\n", CNIC_SUPPORT(bp) ? "on" : "off");
 | |
| 	BNX2X_DEV_INFO("Max num of status blocks %d\n", max_non_def_sbs);
 | |
| 	BNX2X_DEV_INFO("Allocated netdev with %d tx and %d rx queues\n",
 | |
| 		       tx_count, rx_count);
 | |
| 
 | |
| 	rc = bnx2x_init_bp(bp);
 | |
| 	if (rc)
 | |
| 		goto init_one_exit;
 | |
| 
 | |
| 	/* Map doorbells here as we need the real value of bp->max_cos which
 | |
| 	 * is initialized in bnx2x_init_bp() to determine the number of
 | |
| 	 * l2 connections.
 | |
| 	 */
 | |
| 	if (IS_VF(bp)) {
 | |
| 		bnx2x_vf_map_doorbells(bp);
 | |
| 		rc = bnx2x_vf_pci_alloc(bp);
 | |
| 		if (rc)
 | |
| 			goto init_one_exit;
 | |
| 	} else {
 | |
| 		doorbell_size = BNX2X_L2_MAX_CID(bp) * (1 << BNX2X_DB_SHIFT);
 | |
| 		if (doorbell_size > pci_resource_len(pdev, 2)) {
 | |
| 			dev_err(&bp->pdev->dev,
 | |
| 				"Cannot map doorbells, bar size too small, aborting\n");
 | |
| 			rc = -ENOMEM;
 | |
| 			goto init_one_exit;
 | |
| 		}
 | |
| 		bp->doorbells = ioremap_nocache(pci_resource_start(pdev, 2),
 | |
| 						doorbell_size);
 | |
| 	}
 | |
| 	if (!bp->doorbells) {
 | |
| 		dev_err(&bp->pdev->dev,
 | |
| 			"Cannot map doorbell space, aborting\n");
 | |
| 		rc = -ENOMEM;
 | |
| 		goto init_one_exit;
 | |
| 	}
 | |
| 
 | |
| 	if (IS_VF(bp)) {
 | |
| 		rc = bnx2x_vfpf_acquire(bp, tx_count, rx_count);
 | |
| 		if (rc)
 | |
| 			goto init_one_exit;
 | |
| 	}
 | |
| 
 | |
| 	/* Enable SRIOV if capability found in configuration space.
 | |
| 	 * Once the generic SR-IOV framework makes it in from the
 | |
| 	 * pci tree this will be revised, to allow dynamic control
 | |
| 	 * over the number of VFs. Right now, change the num of vfs
 | |
| 	 * param below to enable SR-IOV.
 | |
| 	 */
 | |
| 	rc = bnx2x_iov_init_one(bp, int_mode, 0/*num vfs*/);
 | |
| 	if (rc)
 | |
| 		goto init_one_exit;
 | |
| 
 | |
| 	/* calc qm_cid_count */
 | |
| 	bp->qm_cid_count = bnx2x_set_qm_cid_count(bp);
 | |
| 	BNX2X_DEV_INFO("qm_cid_count %d\n", bp->qm_cid_count);
 | |
| 
 | |
| 	/* disable FCOE L2 queue for E1x*/
 | |
| 	if (CHIP_IS_E1x(bp))
 | |
| 		bp->flags |= NO_FCOE_FLAG;
 | |
| 
 | |
| 	/* disable FCOE for 57840 device, until FW supports it */
 | |
| 	switch (ent->driver_data) {
 | |
| 	case BCM57840_O:
 | |
| 	case BCM57840_4_10:
 | |
| 	case BCM57840_2_20:
 | |
| 	case BCM57840_MFO:
 | |
| 	case BCM57840_MF:
 | |
| 		bp->flags |= NO_FCOE_FLAG;
 | |
| 	}
 | |
| 
 | |
| 	/* Set bp->num_queues for MSI-X mode*/
 | |
| 	bnx2x_set_num_queues(bp);
 | |
| 
 | |
| 	/* Configure interrupt mode: try to enable MSI-X/MSI if
 | |
| 	 * needed.
 | |
| 	 */
 | |
| 	rc = bnx2x_set_int_mode(bp);
 | |
| 	if (rc) {
 | |
| 		dev_err(&pdev->dev, "Cannot set interrupts\n");
 | |
| 		goto init_one_exit;
 | |
| 	}
 | |
| 	BNX2X_DEV_INFO("set interrupts successfully\n");
 | |
| 
 | |
| 	/* register the net device */
 | |
| 	rc = register_netdev(dev);
 | |
| 	if (rc) {
 | |
| 		dev_err(&pdev->dev, "Cannot register net device\n");
 | |
| 		goto init_one_exit;
 | |
| 	}
 | |
| 	BNX2X_DEV_INFO("device name after netdev register %s\n", dev->name);
 | |
| 
 | |
| 
 | |
| 	if (!NO_FCOE(bp)) {
 | |
| 		/* Add storage MAC address */
 | |
| 		rtnl_lock();
 | |
| 		dev_addr_add(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
 | |
| 		rtnl_unlock();
 | |
| 	}
 | |
| 
 | |
| 	bnx2x_get_pcie_width_speed(bp, &pcie_width, &pcie_speed);
 | |
| 	BNX2X_DEV_INFO("got pcie width %d and speed %d\n",
 | |
| 		       pcie_width, pcie_speed);
 | |
| 
 | |
| 	BNX2X_DEV_INFO(
 | |
| 		"%s (%c%d) PCI-E x%d %s found at mem %lx, IRQ %d, node addr %pM\n",
 | |
| 		    board_info[ent->driver_data].name,
 | |
| 		    (CHIP_REV(bp) >> 12) + 'A', (CHIP_METAL(bp) >> 4),
 | |
| 		    pcie_width,
 | |
| 		    ((!CHIP_IS_E2(bp) && pcie_speed == 2) ||
 | |
| 		     (CHIP_IS_E2(bp) && pcie_speed == 1)) ?
 | |
| 		    "5GHz (Gen2)" : "2.5GHz",
 | |
| 		    dev->base_addr, bp->pdev->irq, dev->dev_addr);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| init_one_exit:
 | |
| 	if (bp->regview)
 | |
| 		iounmap(bp->regview);
 | |
| 
 | |
| 	if (IS_PF(bp) && bp->doorbells)
 | |
| 		iounmap(bp->doorbells);
 | |
| 
 | |
| 	free_netdev(dev);
 | |
| 
 | |
| 	if (atomic_read(&pdev->enable_cnt) == 1)
 | |
| 		pci_release_regions(pdev);
 | |
| 
 | |
| 	pci_disable_device(pdev);
 | |
| 	pci_set_drvdata(pdev, NULL);
 | |
| 
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| static void bnx2x_remove_one(struct pci_dev *pdev)
 | |
| {
 | |
| 	struct net_device *dev = pci_get_drvdata(pdev);
 | |
| 	struct bnx2x *bp;
 | |
| 
 | |
| 	if (!dev) {
 | |
| 		dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
 | |
| 		return;
 | |
| 	}
 | |
| 	bp = netdev_priv(dev);
 | |
| 
 | |
| 	/* Delete storage MAC address */
 | |
| 	if (!NO_FCOE(bp)) {
 | |
| 		rtnl_lock();
 | |
| 		dev_addr_del(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
 | |
| 		rtnl_unlock();
 | |
| 	}
 | |
| 
 | |
| #ifdef BCM_DCBNL
 | |
| 	/* Delete app tlvs from dcbnl */
 | |
| 	bnx2x_dcbnl_update_applist(bp, true);
 | |
| #endif
 | |
| 
 | |
| 	unregister_netdev(dev);
 | |
| 
 | |
| 	/* Power on: we can't let PCI layer write to us while we are in D3 */
 | |
| 	if (IS_PF(bp))
 | |
| 		bnx2x_set_power_state(bp, PCI_D0);
 | |
| 
 | |
| 	/* Disable MSI/MSI-X */
 | |
| 	bnx2x_disable_msi(bp);
 | |
| 
 | |
| 	/* Power off */
 | |
| 	if (IS_PF(bp))
 | |
| 		bnx2x_set_power_state(bp, PCI_D3hot);
 | |
| 
 | |
| 	/* Make sure RESET task is not scheduled before continuing */
 | |
| 	cancel_delayed_work_sync(&bp->sp_rtnl_task);
 | |
| 
 | |
| 	bnx2x_iov_remove_one(bp);
 | |
| 
 | |
| 	/* send message via vfpf channel to release the resources of this vf */
 | |
| 	if (IS_VF(bp))
 | |
| 		bnx2x_vfpf_release(bp);
 | |
| 
 | |
| 	if (bp->regview)
 | |
| 		iounmap(bp->regview);
 | |
| 
 | |
| 	/* for vf doorbells are part of the regview and were unmapped along with
 | |
| 	 * it. FW is only loaded by PF.
 | |
| 	 */
 | |
| 	if (IS_PF(bp)) {
 | |
| 		if (bp->doorbells)
 | |
| 			iounmap(bp->doorbells);
 | |
| 
 | |
| 		bnx2x_release_firmware(bp);
 | |
| 	}
 | |
| 	bnx2x_free_mem_bp(bp);
 | |
| 
 | |
| 	free_netdev(dev);
 | |
| 
 | |
| 	if (atomic_read(&pdev->enable_cnt) == 1)
 | |
| 		pci_release_regions(pdev);
 | |
| 
 | |
| 	pci_disable_device(pdev);
 | |
| 	pci_set_drvdata(pdev, NULL);
 | |
| }
 | |
| 
 | |
| static int bnx2x_eeh_nic_unload(struct bnx2x *bp)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	bp->state = BNX2X_STATE_ERROR;
 | |
| 
 | |
| 	bp->rx_mode = BNX2X_RX_MODE_NONE;
 | |
| 
 | |
| 	if (CNIC_LOADED(bp))
 | |
| 		bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
 | |
| 
 | |
| 	/* Stop Tx */
 | |
| 	bnx2x_tx_disable(bp);
 | |
| 
 | |
| 	bnx2x_netif_stop(bp, 0);
 | |
| 	/* Delete all NAPI objects */
 | |
| 	bnx2x_del_all_napi(bp);
 | |
| 	if (CNIC_LOADED(bp))
 | |
| 		bnx2x_del_all_napi_cnic(bp);
 | |
| 
 | |
| 	del_timer_sync(&bp->timer);
 | |
| 
 | |
| 	bnx2x_stats_handle(bp, STATS_EVENT_STOP);
 | |
| 
 | |
| 	/* Release IRQs */
 | |
| 	bnx2x_free_irq(bp);
 | |
| 
 | |
| 	/* Free SKBs, SGEs, TPA pool and driver internals */
 | |
| 	bnx2x_free_skbs(bp);
 | |
| 
 | |
| 	for_each_rx_queue(bp, i)
 | |
| 		bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
 | |
| 
 | |
| 	bnx2x_free_mem(bp);
 | |
| 
 | |
| 	bp->state = BNX2X_STATE_CLOSED;
 | |
| 
 | |
| 	netif_carrier_off(bp->dev);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void bnx2x_eeh_recover(struct bnx2x *bp)
 | |
| {
 | |
| 	u32 val;
 | |
| 
 | |
| 	mutex_init(&bp->port.phy_mutex);
 | |
| 
 | |
| 
 | |
| 	val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
 | |
| 	if ((val & (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB))
 | |
| 		!= (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB))
 | |
| 		BNX2X_ERR("BAD MCP validity signature\n");
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * bnx2x_io_error_detected - called when PCI error is detected
 | |
|  * @pdev: Pointer to PCI device
 | |
|  * @state: The current pci connection state
 | |
|  *
 | |
|  * This function is called after a PCI bus error affecting
 | |
|  * this device has been detected.
 | |
|  */
 | |
| static pci_ers_result_t bnx2x_io_error_detected(struct pci_dev *pdev,
 | |
| 						pci_channel_state_t state)
 | |
| {
 | |
| 	struct net_device *dev = pci_get_drvdata(pdev);
 | |
| 	struct bnx2x *bp = netdev_priv(dev);
 | |
| 
 | |
| 	rtnl_lock();
 | |
| 
 | |
| 	netif_device_detach(dev);
 | |
| 
 | |
| 	if (state == pci_channel_io_perm_failure) {
 | |
| 		rtnl_unlock();
 | |
| 		return PCI_ERS_RESULT_DISCONNECT;
 | |
| 	}
 | |
| 
 | |
| 	if (netif_running(dev))
 | |
| 		bnx2x_eeh_nic_unload(bp);
 | |
| 
 | |
| 	pci_disable_device(pdev);
 | |
| 
 | |
| 	rtnl_unlock();
 | |
| 
 | |
| 	/* Request a slot reset */
 | |
| 	return PCI_ERS_RESULT_NEED_RESET;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * bnx2x_io_slot_reset - called after the PCI bus has been reset
 | |
|  * @pdev: Pointer to PCI device
 | |
|  *
 | |
|  * Restart the card from scratch, as if from a cold-boot.
 | |
|  */
 | |
| static pci_ers_result_t bnx2x_io_slot_reset(struct pci_dev *pdev)
 | |
| {
 | |
| 	struct net_device *dev = pci_get_drvdata(pdev);
 | |
| 	struct bnx2x *bp = netdev_priv(dev);
 | |
| 
 | |
| 	rtnl_lock();
 | |
| 
 | |
| 	if (pci_enable_device(pdev)) {
 | |
| 		dev_err(&pdev->dev,
 | |
| 			"Cannot re-enable PCI device after reset\n");
 | |
| 		rtnl_unlock();
 | |
| 		return PCI_ERS_RESULT_DISCONNECT;
 | |
| 	}
 | |
| 
 | |
| 	pci_set_master(pdev);
 | |
| 	pci_restore_state(pdev);
 | |
| 
 | |
| 	if (netif_running(dev))
 | |
| 		bnx2x_set_power_state(bp, PCI_D0);
 | |
| 
 | |
| 	rtnl_unlock();
 | |
| 
 | |
| 	return PCI_ERS_RESULT_RECOVERED;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * bnx2x_io_resume - called when traffic can start flowing again
 | |
|  * @pdev: Pointer to PCI device
 | |
|  *
 | |
|  * This callback is called when the error recovery driver tells us that
 | |
|  * its OK to resume normal operation.
 | |
|  */
 | |
| static void bnx2x_io_resume(struct pci_dev *pdev)
 | |
| {
 | |
| 	struct net_device *dev = pci_get_drvdata(pdev);
 | |
| 	struct bnx2x *bp = netdev_priv(dev);
 | |
| 
 | |
| 	if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
 | |
| 		netdev_err(bp->dev, "Handling parity error recovery. Try again later\n");
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	rtnl_lock();
 | |
| 
 | |
| 	bnx2x_eeh_recover(bp);
 | |
| 
 | |
| 	if (netif_running(dev))
 | |
| 		bnx2x_nic_load(bp, LOAD_NORMAL);
 | |
| 
 | |
| 	netif_device_attach(dev);
 | |
| 
 | |
| 	rtnl_unlock();
 | |
| }
 | |
| 
 | |
| static const struct pci_error_handlers bnx2x_err_handler = {
 | |
| 	.error_detected = bnx2x_io_error_detected,
 | |
| 	.slot_reset     = bnx2x_io_slot_reset,
 | |
| 	.resume         = bnx2x_io_resume,
 | |
| };
 | |
| 
 | |
| static struct pci_driver bnx2x_pci_driver = {
 | |
| 	.name        = DRV_MODULE_NAME,
 | |
| 	.id_table    = bnx2x_pci_tbl,
 | |
| 	.probe       = bnx2x_init_one,
 | |
| 	.remove      = bnx2x_remove_one,
 | |
| 	.suspend     = bnx2x_suspend,
 | |
| 	.resume      = bnx2x_resume,
 | |
| 	.err_handler = &bnx2x_err_handler,
 | |
| };
 | |
| 
 | |
| static int __init bnx2x_init(void)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	pr_info("%s", version);
 | |
| 
 | |
| 	bnx2x_wq = create_singlethread_workqueue("bnx2x");
 | |
| 	if (bnx2x_wq == NULL) {
 | |
| 		pr_err("Cannot create workqueue\n");
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	ret = pci_register_driver(&bnx2x_pci_driver);
 | |
| 	if (ret) {
 | |
| 		pr_err("Cannot register driver\n");
 | |
| 		destroy_workqueue(bnx2x_wq);
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void __exit bnx2x_cleanup(void)
 | |
| {
 | |
| 	struct list_head *pos, *q;
 | |
| 	pci_unregister_driver(&bnx2x_pci_driver);
 | |
| 
 | |
| 	destroy_workqueue(bnx2x_wq);
 | |
| 
 | |
| 	/* Free globablly allocated resources */
 | |
| 	list_for_each_safe(pos, q, &bnx2x_prev_list) {
 | |
| 		struct bnx2x_prev_path_list *tmp =
 | |
| 			list_entry(pos, struct bnx2x_prev_path_list, list);
 | |
| 		list_del(pos);
 | |
| 		kfree(tmp);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void bnx2x_notify_link_changed(struct bnx2x *bp)
 | |
| {
 | |
| 	REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + BP_FUNC(bp)*sizeof(u32), 1);
 | |
| }
 | |
| 
 | |
| module_init(bnx2x_init);
 | |
| module_exit(bnx2x_cleanup);
 | |
| 
 | |
| /**
 | |
|  * bnx2x_set_iscsi_eth_mac_addr - set iSCSI MAC(s).
 | |
|  *
 | |
|  * @bp:		driver handle
 | |
|  * @set:	set or clear the CAM entry
 | |
|  *
 | |
|  * This function will wait until the ramdord completion returns.
 | |
|  * Return 0 if success, -ENODEV if ramrod doesn't return.
 | |
|  */
 | |
| static int bnx2x_set_iscsi_eth_mac_addr(struct bnx2x *bp)
 | |
| {
 | |
| 	unsigned long ramrod_flags = 0;
 | |
| 
 | |
| 	__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
 | |
| 	return bnx2x_set_mac_one(bp, bp->cnic_eth_dev.iscsi_mac,
 | |
| 				 &bp->iscsi_l2_mac_obj, true,
 | |
| 				 BNX2X_ISCSI_ETH_MAC, &ramrod_flags);
 | |
| }
 | |
| 
 | |
| /* count denotes the number of new completions we have seen */
 | |
| static void bnx2x_cnic_sp_post(struct bnx2x *bp, int count)
 | |
| {
 | |
| 	struct eth_spe *spe;
 | |
| 	int cxt_index, cxt_offset;
 | |
| 
 | |
| #ifdef BNX2X_STOP_ON_ERROR
 | |
| 	if (unlikely(bp->panic))
 | |
| 		return;
 | |
| #endif
 | |
| 
 | |
| 	spin_lock_bh(&bp->spq_lock);
 | |
| 	BUG_ON(bp->cnic_spq_pending < count);
 | |
| 	bp->cnic_spq_pending -= count;
 | |
| 
 | |
| 
 | |
| 	for (; bp->cnic_kwq_pending; bp->cnic_kwq_pending--) {
 | |
| 		u16 type =  (le16_to_cpu(bp->cnic_kwq_cons->hdr.type)
 | |
| 				& SPE_HDR_CONN_TYPE) >>
 | |
| 				SPE_HDR_CONN_TYPE_SHIFT;
 | |
| 		u8 cmd = (le32_to_cpu(bp->cnic_kwq_cons->hdr.conn_and_cmd_data)
 | |
| 				>> SPE_HDR_CMD_ID_SHIFT) & 0xff;
 | |
| 
 | |
| 		/* Set validation for iSCSI L2 client before sending SETUP
 | |
| 		 *  ramrod
 | |
| 		 */
 | |
| 		if (type == ETH_CONNECTION_TYPE) {
 | |
| 			if (cmd == RAMROD_CMD_ID_ETH_CLIENT_SETUP) {
 | |
| 				cxt_index = BNX2X_ISCSI_ETH_CID(bp) /
 | |
| 					ILT_PAGE_CIDS;
 | |
| 				cxt_offset = BNX2X_ISCSI_ETH_CID(bp) -
 | |
| 					(cxt_index * ILT_PAGE_CIDS);
 | |
| 				bnx2x_set_ctx_validation(bp,
 | |
| 					&bp->context[cxt_index].
 | |
| 							 vcxt[cxt_offset].eth,
 | |
| 					BNX2X_ISCSI_ETH_CID(bp));
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * There may be not more than 8 L2, not more than 8 L5 SPEs
 | |
| 		 * and in the air. We also check that number of outstanding
 | |
| 		 * COMMON ramrods is not more than the EQ and SPQ can
 | |
| 		 * accommodate.
 | |
| 		 */
 | |
| 		if (type == ETH_CONNECTION_TYPE) {
 | |
| 			if (!atomic_read(&bp->cq_spq_left))
 | |
| 				break;
 | |
| 			else
 | |
| 				atomic_dec(&bp->cq_spq_left);
 | |
| 		} else if (type == NONE_CONNECTION_TYPE) {
 | |
| 			if (!atomic_read(&bp->eq_spq_left))
 | |
| 				break;
 | |
| 			else
 | |
| 				atomic_dec(&bp->eq_spq_left);
 | |
| 		} else if ((type == ISCSI_CONNECTION_TYPE) ||
 | |
| 			   (type == FCOE_CONNECTION_TYPE)) {
 | |
| 			if (bp->cnic_spq_pending >=
 | |
| 			    bp->cnic_eth_dev.max_kwqe_pending)
 | |
| 				break;
 | |
| 			else
 | |
| 				bp->cnic_spq_pending++;
 | |
| 		} else {
 | |
| 			BNX2X_ERR("Unknown SPE type: %d\n", type);
 | |
| 			bnx2x_panic();
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		spe = bnx2x_sp_get_next(bp);
 | |
| 		*spe = *bp->cnic_kwq_cons;
 | |
| 
 | |
| 		DP(BNX2X_MSG_SP, "pending on SPQ %d, on KWQ %d count %d\n",
 | |
| 		   bp->cnic_spq_pending, bp->cnic_kwq_pending, count);
 | |
| 
 | |
| 		if (bp->cnic_kwq_cons == bp->cnic_kwq_last)
 | |
| 			bp->cnic_kwq_cons = bp->cnic_kwq;
 | |
| 		else
 | |
| 			bp->cnic_kwq_cons++;
 | |
| 	}
 | |
| 	bnx2x_sp_prod_update(bp);
 | |
| 	spin_unlock_bh(&bp->spq_lock);
 | |
| }
 | |
| 
 | |
| static int bnx2x_cnic_sp_queue(struct net_device *dev,
 | |
| 			       struct kwqe_16 *kwqes[], u32 count)
 | |
| {
 | |
| 	struct bnx2x *bp = netdev_priv(dev);
 | |
| 	int i;
 | |
| 
 | |
| #ifdef BNX2X_STOP_ON_ERROR
 | |
| 	if (unlikely(bp->panic)) {
 | |
| 		BNX2X_ERR("Can't post to SP queue while panic\n");
 | |
| 		return -EIO;
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	if ((bp->recovery_state != BNX2X_RECOVERY_DONE) &&
 | |
| 	    (bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
 | |
| 		BNX2X_ERR("Handling parity error recovery. Try again later\n");
 | |
| 		return -EAGAIN;
 | |
| 	}
 | |
| 
 | |
| 	spin_lock_bh(&bp->spq_lock);
 | |
| 
 | |
| 	for (i = 0; i < count; i++) {
 | |
| 		struct eth_spe *spe = (struct eth_spe *)kwqes[i];
 | |
| 
 | |
| 		if (bp->cnic_kwq_pending == MAX_SP_DESC_CNT)
 | |
| 			break;
 | |
| 
 | |
| 		*bp->cnic_kwq_prod = *spe;
 | |
| 
 | |
| 		bp->cnic_kwq_pending++;
 | |
| 
 | |
| 		DP(BNX2X_MSG_SP, "L5 SPQE %x %x %x:%x pos %d\n",
 | |
| 		   spe->hdr.conn_and_cmd_data, spe->hdr.type,
 | |
| 		   spe->data.update_data_addr.hi,
 | |
| 		   spe->data.update_data_addr.lo,
 | |
| 		   bp->cnic_kwq_pending);
 | |
| 
 | |
| 		if (bp->cnic_kwq_prod == bp->cnic_kwq_last)
 | |
| 			bp->cnic_kwq_prod = bp->cnic_kwq;
 | |
| 		else
 | |
| 			bp->cnic_kwq_prod++;
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock_bh(&bp->spq_lock);
 | |
| 
 | |
| 	if (bp->cnic_spq_pending < bp->cnic_eth_dev.max_kwqe_pending)
 | |
| 		bnx2x_cnic_sp_post(bp, 0);
 | |
| 
 | |
| 	return i;
 | |
| }
 | |
| 
 | |
| static int bnx2x_cnic_ctl_send(struct bnx2x *bp, struct cnic_ctl_info *ctl)
 | |
| {
 | |
| 	struct cnic_ops *c_ops;
 | |
| 	int rc = 0;
 | |
| 
 | |
| 	mutex_lock(&bp->cnic_mutex);
 | |
| 	c_ops = rcu_dereference_protected(bp->cnic_ops,
 | |
| 					  lockdep_is_held(&bp->cnic_mutex));
 | |
| 	if (c_ops)
 | |
| 		rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
 | |
| 	mutex_unlock(&bp->cnic_mutex);
 | |
| 
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| static int bnx2x_cnic_ctl_send_bh(struct bnx2x *bp, struct cnic_ctl_info *ctl)
 | |
| {
 | |
| 	struct cnic_ops *c_ops;
 | |
| 	int rc = 0;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	c_ops = rcu_dereference(bp->cnic_ops);
 | |
| 	if (c_ops)
 | |
| 		rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * for commands that have no data
 | |
|  */
 | |
| int bnx2x_cnic_notify(struct bnx2x *bp, int cmd)
 | |
| {
 | |
| 	struct cnic_ctl_info ctl = {0};
 | |
| 
 | |
| 	ctl.cmd = cmd;
 | |
| 
 | |
| 	return bnx2x_cnic_ctl_send(bp, &ctl);
 | |
| }
 | |
| 
 | |
| static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err)
 | |
| {
 | |
| 	struct cnic_ctl_info ctl = {0};
 | |
| 
 | |
| 	/* first we tell CNIC and only then we count this as a completion */
 | |
| 	ctl.cmd = CNIC_CTL_COMPLETION_CMD;
 | |
| 	ctl.data.comp.cid = cid;
 | |
| 	ctl.data.comp.error = err;
 | |
| 
 | |
| 	bnx2x_cnic_ctl_send_bh(bp, &ctl);
 | |
| 	bnx2x_cnic_sp_post(bp, 0);
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Called with netif_addr_lock_bh() taken.
 | |
|  * Sets an rx_mode config for an iSCSI ETH client.
 | |
|  * Doesn't block.
 | |
|  * Completion should be checked outside.
 | |
|  */
 | |
| static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start)
 | |
| {
 | |
| 	unsigned long accept_flags = 0, ramrod_flags = 0;
 | |
| 	u8 cl_id = bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
 | |
| 	int sched_state = BNX2X_FILTER_ISCSI_ETH_STOP_SCHED;
 | |
| 
 | |
| 	if (start) {
 | |
| 		/* Start accepting on iSCSI L2 ring. Accept all multicasts
 | |
| 		 * because it's the only way for UIO Queue to accept
 | |
| 		 * multicasts (in non-promiscuous mode only one Queue per
 | |
| 		 * function will receive multicast packets (leading in our
 | |
| 		 * case).
 | |
| 		 */
 | |
| 		__set_bit(BNX2X_ACCEPT_UNICAST, &accept_flags);
 | |
| 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &accept_flags);
 | |
| 		__set_bit(BNX2X_ACCEPT_BROADCAST, &accept_flags);
 | |
| 		__set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
 | |
| 
 | |
| 		/* Clear STOP_PENDING bit if START is requested */
 | |
| 		clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &bp->sp_state);
 | |
| 
 | |
| 		sched_state = BNX2X_FILTER_ISCSI_ETH_START_SCHED;
 | |
| 	} else
 | |
| 		/* Clear START_PENDING bit if STOP is requested */
 | |
| 		clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &bp->sp_state);
 | |
| 
 | |
| 	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
 | |
| 		set_bit(sched_state, &bp->sp_state);
 | |
| 	else {
 | |
| 		__set_bit(RAMROD_RX, &ramrod_flags);
 | |
| 		bnx2x_set_q_rx_mode(bp, cl_id, 0, accept_flags, 0,
 | |
| 				    ramrod_flags);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| static int bnx2x_drv_ctl(struct net_device *dev, struct drv_ctl_info *ctl)
 | |
| {
 | |
| 	struct bnx2x *bp = netdev_priv(dev);
 | |
| 	int rc = 0;
 | |
| 
 | |
| 	switch (ctl->cmd) {
 | |
| 	case DRV_CTL_CTXTBL_WR_CMD: {
 | |
| 		u32 index = ctl->data.io.offset;
 | |
| 		dma_addr_t addr = ctl->data.io.dma_addr;
 | |
| 
 | |
| 		bnx2x_ilt_wr(bp, index, addr);
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	case DRV_CTL_RET_L5_SPQ_CREDIT_CMD: {
 | |
| 		int count = ctl->data.credit.credit_count;
 | |
| 
 | |
| 		bnx2x_cnic_sp_post(bp, count);
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	/* rtnl_lock is held.  */
 | |
| 	case DRV_CTL_START_L2_CMD: {
 | |
| 		struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
 | |
| 		unsigned long sp_bits = 0;
 | |
| 
 | |
| 		/* Configure the iSCSI classification object */
 | |
| 		bnx2x_init_mac_obj(bp, &bp->iscsi_l2_mac_obj,
 | |
| 				   cp->iscsi_l2_client_id,
 | |
| 				   cp->iscsi_l2_cid, BP_FUNC(bp),
 | |
| 				   bnx2x_sp(bp, mac_rdata),
 | |
| 				   bnx2x_sp_mapping(bp, mac_rdata),
 | |
| 				   BNX2X_FILTER_MAC_PENDING,
 | |
| 				   &bp->sp_state, BNX2X_OBJ_TYPE_RX,
 | |
| 				   &bp->macs_pool);
 | |
| 
 | |
| 		/* Set iSCSI MAC address */
 | |
| 		rc = bnx2x_set_iscsi_eth_mac_addr(bp);
 | |
| 		if (rc)
 | |
| 			break;
 | |
| 
 | |
| 		mmiowb();
 | |
| 		barrier();
 | |
| 
 | |
| 		/* Start accepting on iSCSI L2 ring */
 | |
| 
 | |
| 		netif_addr_lock_bh(dev);
 | |
| 		bnx2x_set_iscsi_eth_rx_mode(bp, true);
 | |
| 		netif_addr_unlock_bh(dev);
 | |
| 
 | |
| 		/* bits to wait on */
 | |
| 		__set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
 | |
| 		__set_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &sp_bits);
 | |
| 
 | |
| 		if (!bnx2x_wait_sp_comp(bp, sp_bits))
 | |
| 			BNX2X_ERR("rx_mode completion timed out!\n");
 | |
| 
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	/* rtnl_lock is held.  */
 | |
| 	case DRV_CTL_STOP_L2_CMD: {
 | |
| 		unsigned long sp_bits = 0;
 | |
| 
 | |
| 		/* Stop accepting on iSCSI L2 ring */
 | |
| 		netif_addr_lock_bh(dev);
 | |
| 		bnx2x_set_iscsi_eth_rx_mode(bp, false);
 | |
| 		netif_addr_unlock_bh(dev);
 | |
| 
 | |
| 		/* bits to wait on */
 | |
| 		__set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
 | |
| 		__set_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &sp_bits);
 | |
| 
 | |
| 		if (!bnx2x_wait_sp_comp(bp, sp_bits))
 | |
| 			BNX2X_ERR("rx_mode completion timed out!\n");
 | |
| 
 | |
| 		mmiowb();
 | |
| 		barrier();
 | |
| 
 | |
| 		/* Unset iSCSI L2 MAC */
 | |
| 		rc = bnx2x_del_all_macs(bp, &bp->iscsi_l2_mac_obj,
 | |
| 					BNX2X_ISCSI_ETH_MAC, true);
 | |
| 		break;
 | |
| 	}
 | |
| 	case DRV_CTL_RET_L2_SPQ_CREDIT_CMD: {
 | |
| 		int count = ctl->data.credit.credit_count;
 | |
| 
 | |
| 		smp_mb__before_atomic_inc();
 | |
| 		atomic_add(count, &bp->cq_spq_left);
 | |
| 		smp_mb__after_atomic_inc();
 | |
| 		break;
 | |
| 	}
 | |
| 	case DRV_CTL_ULP_REGISTER_CMD: {
 | |
| 		int ulp_type = ctl->data.register_data.ulp_type;
 | |
| 
 | |
| 		if (CHIP_IS_E3(bp)) {
 | |
| 			int idx = BP_FW_MB_IDX(bp);
 | |
| 			u32 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
 | |
| 			int path = BP_PATH(bp);
 | |
| 			int port = BP_PORT(bp);
 | |
| 			int i;
 | |
| 			u32 scratch_offset;
 | |
| 			u32 *host_addr;
 | |
| 
 | |
| 			/* first write capability to shmem2 */
 | |
| 			if (ulp_type == CNIC_ULP_ISCSI)
 | |
| 				cap |= DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
 | |
| 			else if (ulp_type == CNIC_ULP_FCOE)
 | |
| 				cap |= DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
 | |
| 			SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
 | |
| 
 | |
| 			if ((ulp_type != CNIC_ULP_FCOE) ||
 | |
| 			    (!SHMEM2_HAS(bp, ncsi_oem_data_addr)) ||
 | |
| 			    (!(bp->flags &  BC_SUPPORTS_FCOE_FEATURES)))
 | |
| 				break;
 | |
| 
 | |
| 			/* if reached here - should write fcoe capabilities */
 | |
| 			scratch_offset = SHMEM2_RD(bp, ncsi_oem_data_addr);
 | |
| 			if (!scratch_offset)
 | |
| 				break;
 | |
| 			scratch_offset += offsetof(struct glob_ncsi_oem_data,
 | |
| 						   fcoe_features[path][port]);
 | |
| 			host_addr = (u32 *) &(ctl->data.register_data.
 | |
| 					      fcoe_features);
 | |
| 			for (i = 0; i < sizeof(struct fcoe_capabilities);
 | |
| 			     i += 4)
 | |
| 				REG_WR(bp, scratch_offset + i,
 | |
| 				       *(host_addr + i/4));
 | |
| 		}
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	case DRV_CTL_ULP_UNREGISTER_CMD: {
 | |
| 		int ulp_type = ctl->data.ulp_type;
 | |
| 
 | |
| 		if (CHIP_IS_E3(bp)) {
 | |
| 			int idx = BP_FW_MB_IDX(bp);
 | |
| 			u32 cap;
 | |
| 
 | |
| 			cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
 | |
| 			if (ulp_type == CNIC_ULP_ISCSI)
 | |
| 				cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
 | |
| 			else if (ulp_type == CNIC_ULP_FCOE)
 | |
| 				cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
 | |
| 			SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
 | |
| 		}
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	default:
 | |
| 		BNX2X_ERR("unknown command %x\n", ctl->cmd);
 | |
| 		rc = -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| void bnx2x_setup_cnic_irq_info(struct bnx2x *bp)
 | |
| {
 | |
| 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
 | |
| 
 | |
| 	if (bp->flags & USING_MSIX_FLAG) {
 | |
| 		cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
 | |
| 		cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
 | |
| 		cp->irq_arr[0].vector = bp->msix_table[1].vector;
 | |
| 	} else {
 | |
| 		cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
 | |
| 		cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
 | |
| 	}
 | |
| 	if (!CHIP_IS_E1x(bp))
 | |
| 		cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e2_sb;
 | |
| 	else
 | |
| 		cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e1x_sb;
 | |
| 
 | |
| 	cp->irq_arr[0].status_blk_num =  bnx2x_cnic_fw_sb_id(bp);
 | |
| 	cp->irq_arr[0].status_blk_num2 = bnx2x_cnic_igu_sb_id(bp);
 | |
| 	cp->irq_arr[1].status_blk = bp->def_status_blk;
 | |
| 	cp->irq_arr[1].status_blk_num = DEF_SB_ID;
 | |
| 	cp->irq_arr[1].status_blk_num2 = DEF_SB_IGU_ID;
 | |
| 
 | |
| 	cp->num_irq = 2;
 | |
| }
 | |
| 
 | |
| void bnx2x_setup_cnic_info(struct bnx2x *bp)
 | |
| {
 | |
| 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
 | |
| 
 | |
| 
 | |
| 	cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
 | |
| 			     bnx2x_cid_ilt_lines(bp);
 | |
| 	cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
 | |
| 	cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
 | |
| 	cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
 | |
| 
 | |
| 	if (NO_ISCSI_OOO(bp))
 | |
| 		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
 | |
| }
 | |
| 
 | |
| static int bnx2x_register_cnic(struct net_device *dev, struct cnic_ops *ops,
 | |
| 			       void *data)
 | |
| {
 | |
| 	struct bnx2x *bp = netdev_priv(dev);
 | |
| 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
 | |
| 	int rc;
 | |
| 
 | |
| 	DP(NETIF_MSG_IFUP, "Register_cnic called\n");
 | |
| 
 | |
| 	if (ops == NULL) {
 | |
| 		BNX2X_ERR("NULL ops received\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (!CNIC_SUPPORT(bp)) {
 | |
| 		BNX2X_ERR("Can't register CNIC when not supported\n");
 | |
| 		return -EOPNOTSUPP;
 | |
| 	}
 | |
| 
 | |
| 	if (!CNIC_LOADED(bp)) {
 | |
| 		rc = bnx2x_load_cnic(bp);
 | |
| 		if (rc) {
 | |
| 			BNX2X_ERR("CNIC-related load failed\n");
 | |
| 			return rc;
 | |
| 		}
 | |
| 
 | |
| 	}
 | |
| 
 | |
| 	bp->cnic_enabled = true;
 | |
| 
 | |
| 	bp->cnic_kwq = kzalloc(PAGE_SIZE, GFP_KERNEL);
 | |
| 	if (!bp->cnic_kwq)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	bp->cnic_kwq_cons = bp->cnic_kwq;
 | |
| 	bp->cnic_kwq_prod = bp->cnic_kwq;
 | |
| 	bp->cnic_kwq_last = bp->cnic_kwq + MAX_SP_DESC_CNT;
 | |
| 
 | |
| 	bp->cnic_spq_pending = 0;
 | |
| 	bp->cnic_kwq_pending = 0;
 | |
| 
 | |
| 	bp->cnic_data = data;
 | |
| 
 | |
| 	cp->num_irq = 0;
 | |
| 	cp->drv_state |= CNIC_DRV_STATE_REGD;
 | |
| 	cp->iro_arr = bp->iro_arr;
 | |
| 
 | |
| 	bnx2x_setup_cnic_irq_info(bp);
 | |
| 
 | |
| 	rcu_assign_pointer(bp->cnic_ops, ops);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int bnx2x_unregister_cnic(struct net_device *dev)
 | |
| {
 | |
| 	struct bnx2x *bp = netdev_priv(dev);
 | |
| 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
 | |
| 
 | |
| 	mutex_lock(&bp->cnic_mutex);
 | |
| 	cp->drv_state = 0;
 | |
| 	RCU_INIT_POINTER(bp->cnic_ops, NULL);
 | |
| 	mutex_unlock(&bp->cnic_mutex);
 | |
| 	synchronize_rcu();
 | |
| 	kfree(bp->cnic_kwq);
 | |
| 	bp->cnic_kwq = NULL;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev)
 | |
| {
 | |
| 	struct bnx2x *bp = netdev_priv(dev);
 | |
| 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
 | |
| 
 | |
| 	/* If both iSCSI and FCoE are disabled - return NULL in
 | |
| 	 * order to indicate CNIC that it should not try to work
 | |
| 	 * with this device.
 | |
| 	 */
 | |
| 	if (NO_ISCSI(bp) && NO_FCOE(bp))
 | |
| 		return NULL;
 | |
| 
 | |
| 	cp->drv_owner = THIS_MODULE;
 | |
| 	cp->chip_id = CHIP_ID(bp);
 | |
| 	cp->pdev = bp->pdev;
 | |
| 	cp->io_base = bp->regview;
 | |
| 	cp->io_base2 = bp->doorbells;
 | |
| 	cp->max_kwqe_pending = 8;
 | |
| 	cp->ctx_blk_size = CDU_ILT_PAGE_SZ;
 | |
| 	cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
 | |
| 			     bnx2x_cid_ilt_lines(bp);
 | |
| 	cp->ctx_tbl_len = CNIC_ILT_LINES;
 | |
| 	cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
 | |
| 	cp->drv_submit_kwqes_16 = bnx2x_cnic_sp_queue;
 | |
| 	cp->drv_ctl = bnx2x_drv_ctl;
 | |
| 	cp->drv_register_cnic = bnx2x_register_cnic;
 | |
| 	cp->drv_unregister_cnic = bnx2x_unregister_cnic;
 | |
| 	cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
 | |
| 	cp->iscsi_l2_client_id =
 | |
| 		bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
 | |
| 	cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
 | |
| 
 | |
| 	if (NO_ISCSI_OOO(bp))
 | |
| 		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
 | |
| 
 | |
| 	if (NO_ISCSI(bp))
 | |
| 		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI;
 | |
| 
 | |
| 	if (NO_FCOE(bp))
 | |
| 		cp->drv_state |= CNIC_DRV_STATE_NO_FCOE;
 | |
| 
 | |
| 	BNX2X_DEV_INFO(
 | |
| 		"page_size %d, tbl_offset %d, tbl_lines %d, starting cid %d\n",
 | |
| 	   cp->ctx_blk_size,
 | |
| 	   cp->ctx_tbl_offset,
 | |
| 	   cp->ctx_tbl_len,
 | |
| 	   cp->starting_cid);
 | |
| 	return cp;
 | |
| }
 | |
| 
 | |
| u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp)
 | |
| {
 | |
| 	struct bnx2x *bp = fp->bp;
 | |
| 	u32 offset = BAR_USTRORM_INTMEM;
 | |
| 
 | |
| 	if (IS_VF(bp))
 | |
| 		return bnx2x_vf_ustorm_prods_offset(bp, fp);
 | |
| 	else if (!CHIP_IS_E1x(bp))
 | |
| 		offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id);
 | |
| 	else
 | |
| 		offset += USTORM_RX_PRODS_E1X_OFFSET(BP_PORT(bp), fp->cl_id);
 | |
| 
 | |
| 	return offset;
 | |
| }
 | |
| 
 | |
| /* called only on E1H or E2.
 | |
|  * When pretending to be PF, the pretend value is the function number 0...7
 | |
|  * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID
 | |
|  * combination
 | |
|  */
 | |
| int bnx2x_pretend_func(struct bnx2x *bp, u16 pretend_func_val)
 | |
| {
 | |
| 	u32 pretend_reg;
 | |
| 
 | |
| 	if (CHIP_IS_E1H(bp) && pretend_func_val >= E1H_FUNC_MAX)
 | |
| 		return -1;
 | |
| 
 | |
| 	/* get my own pretend register */
 | |
| 	pretend_reg = bnx2x_get_pretend_reg(bp);
 | |
| 	REG_WR(bp, pretend_reg, pretend_func_val);
 | |
| 	REG_RD(bp, pretend_reg);
 | |
| 	return 0;
 | |
| }
 |