 48476df998
			
		
	
	
	48476df998
	
	
	
		
			
			* misc clean-ups in the MTD command-line partitioning parser (cmdlinepart)
  * add flash locking support for STmicro chips serial flash chips, as well as
    for CFI command set 2 chips.
  * new driver for the ELM error correction HW module found in various TI chips,
    enable the OMAP NAND driver to use the ELM HW error correction
  * added number of new serial flash IDs
  * various fixes and improvements in the gpmi NAND driver
  * bcm47xx NAND driver improvements
  * make the mtdpart module actually removable
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v1.4.13 (GNU/Linux)
 
 iEYEABECAAYFAlExEs8ACgkQdwG7hYl686Oa+gCgiBNt+I0MiixDeN+MGuE1uw9s
 i2wAniD9sR2HDy6y5SkbdXK/aPr8ez/p
 =xV1l
 -----END PGP SIGNATURE-----
Merge tag 'for-linus-20130301' of git://git.infradead.org/linux-mtd
Pull MTD update from David Woodhouse:
 "Fairly unexciting MTD merge for 3.9:
   - misc clean-ups in the MTD command-line partitioning parser
     (cmdlinepart)
   - add flash locking support for STmicro chips serial flash chips, as
     well as for CFI command set 2 chips.
   - new driver for the ELM error correction HW module found in various
     TI chips, enable the OMAP NAND driver to use the ELM HW error
     correction
   - added number of new serial flash IDs
   - various fixes and improvements in the gpmi NAND driver
   - bcm47xx NAND driver improvements
   - make the mtdpart module actually removable"
* tag 'for-linus-20130301' of git://git.infradead.org/linux-mtd: (45 commits)
  mtd: map: BUG() in non handled cases
  mtd: bcm47xxnflash: use pr_fmt for module prefix in messages
  mtd: davinci_nand: Use managed resources
  mtd: mtd_torturetest can cause stack overflows
  mtd: physmap_of: Convert device allocation to managed devm_kzalloc()
  mtd: at91: atmel_nand: for PMECC, add code to check the ONFI parameter ECC requirement.
  mtd: atmel_nand: make pmecc-cap, pmecc-sector-size in dts is optional.
  mtd: atmel_nand: avoid to report an error when lookup table offset is 0.
  mtd: bcm47xxsflash: adjust names of bus-specific functions
  mtd: bcm47xxpart: improve probing of nvram partition
  mtd: bcm47xxpart: add support for other erase sizes
  mtd: bcm47xxnflash: register this as normal driver
  mtd: bcm47xxnflash: fix message
  mtd: bcm47xxsflash: register this as normal driver
  mtd: bcm47xxsflash: write number of written bytes
  mtd: gpmi: add sanity check for the ECC
  mtd: gpmi: set the Golois Field bit for mx6q's BCH
  mtd: devices: elm: Removes <xx> literals in elm DT node
  mtd: gpmi: fix a dereferencing freed memory error
  mtd: fix the wrong timeo for panic_nand_wait()
  ...
		
	
			
		
			
				
	
	
		
			2119 lines
		
	
	
	
		
			58 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2119 lines
		
	
	
	
		
			58 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright © 2004 Texas Instruments, Jian Zhang <jzhang@ti.com>
 | |
|  * Copyright © 2004 Micron Technology Inc.
 | |
|  * Copyright © 2004 David Brownell
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License version 2 as
 | |
|  * published by the Free Software Foundation.
 | |
|  */
 | |
| 
 | |
| #include <linux/platform_device.h>
 | |
| #include <linux/dmaengine.h>
 | |
| #include <linux/dma-mapping.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/jiffies.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/mtd/mtd.h>
 | |
| #include <linux/mtd/nand.h>
 | |
| #include <linux/mtd/partitions.h>
 | |
| #include <linux/omap-dma.h>
 | |
| #include <linux/io.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/of.h>
 | |
| #include <linux/of_device.h>
 | |
| 
 | |
| #ifdef CONFIG_MTD_NAND_OMAP_BCH
 | |
| #include <linux/bch.h>
 | |
| #include <linux/platform_data/elm.h>
 | |
| #endif
 | |
| 
 | |
| #include <linux/platform_data/mtd-nand-omap2.h>
 | |
| 
 | |
| #define	DRIVER_NAME	"omap2-nand"
 | |
| #define	OMAP_NAND_TIMEOUT_MS	5000
 | |
| 
 | |
| #define NAND_Ecc_P1e		(1 << 0)
 | |
| #define NAND_Ecc_P2e		(1 << 1)
 | |
| #define NAND_Ecc_P4e		(1 << 2)
 | |
| #define NAND_Ecc_P8e		(1 << 3)
 | |
| #define NAND_Ecc_P16e		(1 << 4)
 | |
| #define NAND_Ecc_P32e		(1 << 5)
 | |
| #define NAND_Ecc_P64e		(1 << 6)
 | |
| #define NAND_Ecc_P128e		(1 << 7)
 | |
| #define NAND_Ecc_P256e		(1 << 8)
 | |
| #define NAND_Ecc_P512e		(1 << 9)
 | |
| #define NAND_Ecc_P1024e		(1 << 10)
 | |
| #define NAND_Ecc_P2048e		(1 << 11)
 | |
| 
 | |
| #define NAND_Ecc_P1o		(1 << 16)
 | |
| #define NAND_Ecc_P2o		(1 << 17)
 | |
| #define NAND_Ecc_P4o		(1 << 18)
 | |
| #define NAND_Ecc_P8o		(1 << 19)
 | |
| #define NAND_Ecc_P16o		(1 << 20)
 | |
| #define NAND_Ecc_P32o		(1 << 21)
 | |
| #define NAND_Ecc_P64o		(1 << 22)
 | |
| #define NAND_Ecc_P128o		(1 << 23)
 | |
| #define NAND_Ecc_P256o		(1 << 24)
 | |
| #define NAND_Ecc_P512o		(1 << 25)
 | |
| #define NAND_Ecc_P1024o		(1 << 26)
 | |
| #define NAND_Ecc_P2048o		(1 << 27)
 | |
| 
 | |
| #define TF(value)	(value ? 1 : 0)
 | |
| 
 | |
| #define P2048e(a)	(TF(a & NAND_Ecc_P2048e)	<< 0)
 | |
| #define P2048o(a)	(TF(a & NAND_Ecc_P2048o)	<< 1)
 | |
| #define P1e(a)		(TF(a & NAND_Ecc_P1e)		<< 2)
 | |
| #define P1o(a)		(TF(a & NAND_Ecc_P1o)		<< 3)
 | |
| #define P2e(a)		(TF(a & NAND_Ecc_P2e)		<< 4)
 | |
| #define P2o(a)		(TF(a & NAND_Ecc_P2o)		<< 5)
 | |
| #define P4e(a)		(TF(a & NAND_Ecc_P4e)		<< 6)
 | |
| #define P4o(a)		(TF(a & NAND_Ecc_P4o)		<< 7)
 | |
| 
 | |
| #define P8e(a)		(TF(a & NAND_Ecc_P8e)		<< 0)
 | |
| #define P8o(a)		(TF(a & NAND_Ecc_P8o)		<< 1)
 | |
| #define P16e(a)		(TF(a & NAND_Ecc_P16e)		<< 2)
 | |
| #define P16o(a)		(TF(a & NAND_Ecc_P16o)		<< 3)
 | |
| #define P32e(a)		(TF(a & NAND_Ecc_P32e)		<< 4)
 | |
| #define P32o(a)		(TF(a & NAND_Ecc_P32o)		<< 5)
 | |
| #define P64e(a)		(TF(a & NAND_Ecc_P64e)		<< 6)
 | |
| #define P64o(a)		(TF(a & NAND_Ecc_P64o)		<< 7)
 | |
| 
 | |
| #define P128e(a)	(TF(a & NAND_Ecc_P128e)		<< 0)
 | |
| #define P128o(a)	(TF(a & NAND_Ecc_P128o)		<< 1)
 | |
| #define P256e(a)	(TF(a & NAND_Ecc_P256e)		<< 2)
 | |
| #define P256o(a)	(TF(a & NAND_Ecc_P256o)		<< 3)
 | |
| #define P512e(a)	(TF(a & NAND_Ecc_P512e)		<< 4)
 | |
| #define P512o(a)	(TF(a & NAND_Ecc_P512o)		<< 5)
 | |
| #define P1024e(a)	(TF(a & NAND_Ecc_P1024e)	<< 6)
 | |
| #define P1024o(a)	(TF(a & NAND_Ecc_P1024o)	<< 7)
 | |
| 
 | |
| #define P8e_s(a)	(TF(a & NAND_Ecc_P8e)		<< 0)
 | |
| #define P8o_s(a)	(TF(a & NAND_Ecc_P8o)		<< 1)
 | |
| #define P16e_s(a)	(TF(a & NAND_Ecc_P16e)		<< 2)
 | |
| #define P16o_s(a)	(TF(a & NAND_Ecc_P16o)		<< 3)
 | |
| #define P1e_s(a)	(TF(a & NAND_Ecc_P1e)		<< 4)
 | |
| #define P1o_s(a)	(TF(a & NAND_Ecc_P1o)		<< 5)
 | |
| #define P2e_s(a)	(TF(a & NAND_Ecc_P2e)		<< 6)
 | |
| #define P2o_s(a)	(TF(a & NAND_Ecc_P2o)		<< 7)
 | |
| 
 | |
| #define P4e_s(a)	(TF(a & NAND_Ecc_P4e)		<< 0)
 | |
| #define P4o_s(a)	(TF(a & NAND_Ecc_P4o)		<< 1)
 | |
| 
 | |
| #define	PREFETCH_CONFIG1_CS_SHIFT	24
 | |
| #define	ECC_CONFIG_CS_SHIFT		1
 | |
| #define	CS_MASK				0x7
 | |
| #define	ENABLE_PREFETCH			(0x1 << 7)
 | |
| #define	DMA_MPU_MODE_SHIFT		2
 | |
| #define	ECCSIZE0_SHIFT			12
 | |
| #define	ECCSIZE1_SHIFT			22
 | |
| #define	ECC1RESULTSIZE			0x1
 | |
| #define	ECCCLEAR			0x100
 | |
| #define	ECC1				0x1
 | |
| #define	PREFETCH_FIFOTHRESHOLD_MAX	0x40
 | |
| #define	PREFETCH_FIFOTHRESHOLD(val)	((val) << 8)
 | |
| #define	PREFETCH_STATUS_COUNT(val)	(val & 0x00003fff)
 | |
| #define	PREFETCH_STATUS_FIFO_CNT(val)	((val >> 24) & 0x7F)
 | |
| #define	STATUS_BUFF_EMPTY		0x00000001
 | |
| 
 | |
| #define OMAP24XX_DMA_GPMC		4
 | |
| 
 | |
| #define BCH8_MAX_ERROR		8	/* upto 8 bit correctable */
 | |
| #define BCH4_MAX_ERROR		4	/* upto 4 bit correctable */
 | |
| 
 | |
| #define SECTOR_BYTES		512
 | |
| /* 4 bit padding to make byte aligned, 56 = 52 + 4 */
 | |
| #define BCH4_BIT_PAD		4
 | |
| #define BCH8_ECC_MAX		((SECTOR_BYTES + BCH8_ECC_OOB_BYTES) * 8)
 | |
| #define BCH4_ECC_MAX		((SECTOR_BYTES + BCH4_ECC_OOB_BYTES) * 8)
 | |
| 
 | |
| /* GPMC ecc engine settings for read */
 | |
| #define BCH_WRAPMODE_1		1	/* BCH wrap mode 1 */
 | |
| #define BCH8R_ECC_SIZE0		0x1a	/* ecc_size0 = 26 */
 | |
| #define BCH8R_ECC_SIZE1		0x2	/* ecc_size1 = 2 */
 | |
| #define BCH4R_ECC_SIZE0		0xd	/* ecc_size0 = 13 */
 | |
| #define BCH4R_ECC_SIZE1		0x3	/* ecc_size1 = 3 */
 | |
| 
 | |
| /* GPMC ecc engine settings for write */
 | |
| #define BCH_WRAPMODE_6		6	/* BCH wrap mode 6 */
 | |
| #define BCH_ECC_SIZE0		0x0	/* ecc_size0 = 0, no oob protection */
 | |
| #define BCH_ECC_SIZE1		0x20	/* ecc_size1 = 32 */
 | |
| 
 | |
| #ifdef CONFIG_MTD_NAND_OMAP_BCH
 | |
| static u_char bch8_vector[] = {0xf3, 0xdb, 0x14, 0x16, 0x8b, 0xd2, 0xbe, 0xcc,
 | |
| 	0xac, 0x6b, 0xff, 0x99, 0x7b};
 | |
| static u_char bch4_vector[] = {0x00, 0x6b, 0x31, 0xdd, 0x41, 0xbc, 0x10};
 | |
| #endif
 | |
| 
 | |
| /* oob info generated runtime depending on ecc algorithm and layout selected */
 | |
| static struct nand_ecclayout omap_oobinfo;
 | |
| /* Define some generic bad / good block scan pattern which are used
 | |
|  * while scanning a device for factory marked good / bad blocks
 | |
|  */
 | |
| static uint8_t scan_ff_pattern[] = { 0xff };
 | |
| static struct nand_bbt_descr bb_descrip_flashbased = {
 | |
| 	.options = NAND_BBT_SCANEMPTY | NAND_BBT_SCANALLPAGES,
 | |
| 	.offs = 0,
 | |
| 	.len = 1,
 | |
| 	.pattern = scan_ff_pattern,
 | |
| };
 | |
| 
 | |
| 
 | |
| struct omap_nand_info {
 | |
| 	struct nand_hw_control		controller;
 | |
| 	struct omap_nand_platform_data	*pdata;
 | |
| 	struct mtd_info			mtd;
 | |
| 	struct nand_chip		nand;
 | |
| 	struct platform_device		*pdev;
 | |
| 
 | |
| 	int				gpmc_cs;
 | |
| 	unsigned long			phys_base;
 | |
| 	unsigned long			mem_size;
 | |
| 	struct completion		comp;
 | |
| 	struct dma_chan			*dma;
 | |
| 	int				gpmc_irq_fifo;
 | |
| 	int				gpmc_irq_count;
 | |
| 	enum {
 | |
| 		OMAP_NAND_IO_READ = 0,	/* read */
 | |
| 		OMAP_NAND_IO_WRITE,	/* write */
 | |
| 	} iomode;
 | |
| 	u_char				*buf;
 | |
| 	int					buf_len;
 | |
| 	struct gpmc_nand_regs		reg;
 | |
| 
 | |
| #ifdef CONFIG_MTD_NAND_OMAP_BCH
 | |
| 	struct bch_control             *bch;
 | |
| 	struct nand_ecclayout           ecclayout;
 | |
| 	bool				is_elm_used;
 | |
| 	struct device			*elm_dev;
 | |
| 	struct device_node		*of_node;
 | |
| #endif
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * omap_prefetch_enable - configures and starts prefetch transfer
 | |
|  * @cs: cs (chip select) number
 | |
|  * @fifo_th: fifo threshold to be used for read/ write
 | |
|  * @dma_mode: dma mode enable (1) or disable (0)
 | |
|  * @u32_count: number of bytes to be transferred
 | |
|  * @is_write: prefetch read(0) or write post(1) mode
 | |
|  */
 | |
| static int omap_prefetch_enable(int cs, int fifo_th, int dma_mode,
 | |
| 	unsigned int u32_count, int is_write, struct omap_nand_info *info)
 | |
| {
 | |
| 	u32 val;
 | |
| 
 | |
| 	if (fifo_th > PREFETCH_FIFOTHRESHOLD_MAX)
 | |
| 		return -1;
 | |
| 
 | |
| 	if (readl(info->reg.gpmc_prefetch_control))
 | |
| 		return -EBUSY;
 | |
| 
 | |
| 	/* Set the amount of bytes to be prefetched */
 | |
| 	writel(u32_count, info->reg.gpmc_prefetch_config2);
 | |
| 
 | |
| 	/* Set dma/mpu mode, the prefetch read / post write and
 | |
| 	 * enable the engine. Set which cs is has requested for.
 | |
| 	 */
 | |
| 	val = ((cs << PREFETCH_CONFIG1_CS_SHIFT) |
 | |
| 		PREFETCH_FIFOTHRESHOLD(fifo_th) | ENABLE_PREFETCH |
 | |
| 		(dma_mode << DMA_MPU_MODE_SHIFT) | (0x1 & is_write));
 | |
| 	writel(val, info->reg.gpmc_prefetch_config1);
 | |
| 
 | |
| 	/*  Start the prefetch engine */
 | |
| 	writel(0x1, info->reg.gpmc_prefetch_control);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * omap_prefetch_reset - disables and stops the prefetch engine
 | |
|  */
 | |
| static int omap_prefetch_reset(int cs, struct omap_nand_info *info)
 | |
| {
 | |
| 	u32 config1;
 | |
| 
 | |
| 	/* check if the same module/cs is trying to reset */
 | |
| 	config1 = readl(info->reg.gpmc_prefetch_config1);
 | |
| 	if (((config1 >> PREFETCH_CONFIG1_CS_SHIFT) & CS_MASK) != cs)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/* Stop the PFPW engine */
 | |
| 	writel(0x0, info->reg.gpmc_prefetch_control);
 | |
| 
 | |
| 	/* Reset/disable the PFPW engine */
 | |
| 	writel(0x0, info->reg.gpmc_prefetch_config1);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * omap_hwcontrol - hardware specific access to control-lines
 | |
|  * @mtd: MTD device structure
 | |
|  * @cmd: command to device
 | |
|  * @ctrl:
 | |
|  * NAND_NCE: bit 0 -> don't care
 | |
|  * NAND_CLE: bit 1 -> Command Latch
 | |
|  * NAND_ALE: bit 2 -> Address Latch
 | |
|  *
 | |
|  * NOTE: boards may use different bits for these!!
 | |
|  */
 | |
| static void omap_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl)
 | |
| {
 | |
| 	struct omap_nand_info *info = container_of(mtd,
 | |
| 					struct omap_nand_info, mtd);
 | |
| 
 | |
| 	if (cmd != NAND_CMD_NONE) {
 | |
| 		if (ctrl & NAND_CLE)
 | |
| 			writeb(cmd, info->reg.gpmc_nand_command);
 | |
| 
 | |
| 		else if (ctrl & NAND_ALE)
 | |
| 			writeb(cmd, info->reg.gpmc_nand_address);
 | |
| 
 | |
| 		else /* NAND_NCE */
 | |
| 			writeb(cmd, info->reg.gpmc_nand_data);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * omap_read_buf8 - read data from NAND controller into buffer
 | |
|  * @mtd: MTD device structure
 | |
|  * @buf: buffer to store date
 | |
|  * @len: number of bytes to read
 | |
|  */
 | |
| static void omap_read_buf8(struct mtd_info *mtd, u_char *buf, int len)
 | |
| {
 | |
| 	struct nand_chip *nand = mtd->priv;
 | |
| 
 | |
| 	ioread8_rep(nand->IO_ADDR_R, buf, len);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * omap_write_buf8 - write buffer to NAND controller
 | |
|  * @mtd: MTD device structure
 | |
|  * @buf: data buffer
 | |
|  * @len: number of bytes to write
 | |
|  */
 | |
| static void omap_write_buf8(struct mtd_info *mtd, const u_char *buf, int len)
 | |
| {
 | |
| 	struct omap_nand_info *info = container_of(mtd,
 | |
| 						struct omap_nand_info, mtd);
 | |
| 	u_char *p = (u_char *)buf;
 | |
| 	u32	status = 0;
 | |
| 
 | |
| 	while (len--) {
 | |
| 		iowrite8(*p++, info->nand.IO_ADDR_W);
 | |
| 		/* wait until buffer is available for write */
 | |
| 		do {
 | |
| 			status = readl(info->reg.gpmc_status) &
 | |
| 					STATUS_BUFF_EMPTY;
 | |
| 		} while (!status);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * omap_read_buf16 - read data from NAND controller into buffer
 | |
|  * @mtd: MTD device structure
 | |
|  * @buf: buffer to store date
 | |
|  * @len: number of bytes to read
 | |
|  */
 | |
| static void omap_read_buf16(struct mtd_info *mtd, u_char *buf, int len)
 | |
| {
 | |
| 	struct nand_chip *nand = mtd->priv;
 | |
| 
 | |
| 	ioread16_rep(nand->IO_ADDR_R, buf, len / 2);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * omap_write_buf16 - write buffer to NAND controller
 | |
|  * @mtd: MTD device structure
 | |
|  * @buf: data buffer
 | |
|  * @len: number of bytes to write
 | |
|  */
 | |
| static void omap_write_buf16(struct mtd_info *mtd, const u_char * buf, int len)
 | |
| {
 | |
| 	struct omap_nand_info *info = container_of(mtd,
 | |
| 						struct omap_nand_info, mtd);
 | |
| 	u16 *p = (u16 *) buf;
 | |
| 	u32	status = 0;
 | |
| 	/* FIXME try bursts of writesw() or DMA ... */
 | |
| 	len >>= 1;
 | |
| 
 | |
| 	while (len--) {
 | |
| 		iowrite16(*p++, info->nand.IO_ADDR_W);
 | |
| 		/* wait until buffer is available for write */
 | |
| 		do {
 | |
| 			status = readl(info->reg.gpmc_status) &
 | |
| 					STATUS_BUFF_EMPTY;
 | |
| 		} while (!status);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * omap_read_buf_pref - read data from NAND controller into buffer
 | |
|  * @mtd: MTD device structure
 | |
|  * @buf: buffer to store date
 | |
|  * @len: number of bytes to read
 | |
|  */
 | |
| static void omap_read_buf_pref(struct mtd_info *mtd, u_char *buf, int len)
 | |
| {
 | |
| 	struct omap_nand_info *info = container_of(mtd,
 | |
| 						struct omap_nand_info, mtd);
 | |
| 	uint32_t r_count = 0;
 | |
| 	int ret = 0;
 | |
| 	u32 *p = (u32 *)buf;
 | |
| 
 | |
| 	/* take care of subpage reads */
 | |
| 	if (len % 4) {
 | |
| 		if (info->nand.options & NAND_BUSWIDTH_16)
 | |
| 			omap_read_buf16(mtd, buf, len % 4);
 | |
| 		else
 | |
| 			omap_read_buf8(mtd, buf, len % 4);
 | |
| 		p = (u32 *) (buf + len % 4);
 | |
| 		len -= len % 4;
 | |
| 	}
 | |
| 
 | |
| 	/* configure and start prefetch transfer */
 | |
| 	ret = omap_prefetch_enable(info->gpmc_cs,
 | |
| 			PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x0, info);
 | |
| 	if (ret) {
 | |
| 		/* PFPW engine is busy, use cpu copy method */
 | |
| 		if (info->nand.options & NAND_BUSWIDTH_16)
 | |
| 			omap_read_buf16(mtd, (u_char *)p, len);
 | |
| 		else
 | |
| 			omap_read_buf8(mtd, (u_char *)p, len);
 | |
| 	} else {
 | |
| 		do {
 | |
| 			r_count = readl(info->reg.gpmc_prefetch_status);
 | |
| 			r_count = PREFETCH_STATUS_FIFO_CNT(r_count);
 | |
| 			r_count = r_count >> 2;
 | |
| 			ioread32_rep(info->nand.IO_ADDR_R, p, r_count);
 | |
| 			p += r_count;
 | |
| 			len -= r_count << 2;
 | |
| 		} while (len);
 | |
| 		/* disable and stop the PFPW engine */
 | |
| 		omap_prefetch_reset(info->gpmc_cs, info);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * omap_write_buf_pref - write buffer to NAND controller
 | |
|  * @mtd: MTD device structure
 | |
|  * @buf: data buffer
 | |
|  * @len: number of bytes to write
 | |
|  */
 | |
| static void omap_write_buf_pref(struct mtd_info *mtd,
 | |
| 					const u_char *buf, int len)
 | |
| {
 | |
| 	struct omap_nand_info *info = container_of(mtd,
 | |
| 						struct omap_nand_info, mtd);
 | |
| 	uint32_t w_count = 0;
 | |
| 	int i = 0, ret = 0;
 | |
| 	u16 *p = (u16 *)buf;
 | |
| 	unsigned long tim, limit;
 | |
| 	u32 val;
 | |
| 
 | |
| 	/* take care of subpage writes */
 | |
| 	if (len % 2 != 0) {
 | |
| 		writeb(*buf, info->nand.IO_ADDR_W);
 | |
| 		p = (u16 *)(buf + 1);
 | |
| 		len--;
 | |
| 	}
 | |
| 
 | |
| 	/*  configure and start prefetch transfer */
 | |
| 	ret = omap_prefetch_enable(info->gpmc_cs,
 | |
| 			PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x1, info);
 | |
| 	if (ret) {
 | |
| 		/* PFPW engine is busy, use cpu copy method */
 | |
| 		if (info->nand.options & NAND_BUSWIDTH_16)
 | |
| 			omap_write_buf16(mtd, (u_char *)p, len);
 | |
| 		else
 | |
| 			omap_write_buf8(mtd, (u_char *)p, len);
 | |
| 	} else {
 | |
| 		while (len) {
 | |
| 			w_count = readl(info->reg.gpmc_prefetch_status);
 | |
| 			w_count = PREFETCH_STATUS_FIFO_CNT(w_count);
 | |
| 			w_count = w_count >> 1;
 | |
| 			for (i = 0; (i < w_count) && len; i++, len -= 2)
 | |
| 				iowrite16(*p++, info->nand.IO_ADDR_W);
 | |
| 		}
 | |
| 		/* wait for data to flushed-out before reset the prefetch */
 | |
| 		tim = 0;
 | |
| 		limit = (loops_per_jiffy *
 | |
| 					msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
 | |
| 		do {
 | |
| 			cpu_relax();
 | |
| 			val = readl(info->reg.gpmc_prefetch_status);
 | |
| 			val = PREFETCH_STATUS_COUNT(val);
 | |
| 		} while (val && (tim++ < limit));
 | |
| 
 | |
| 		/* disable and stop the PFPW engine */
 | |
| 		omap_prefetch_reset(info->gpmc_cs, info);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * omap_nand_dma_callback: callback on the completion of dma transfer
 | |
|  * @data: pointer to completion data structure
 | |
|  */
 | |
| static void omap_nand_dma_callback(void *data)
 | |
| {
 | |
| 	complete((struct completion *) data);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * omap_nand_dma_transfer: configure and start dma transfer
 | |
|  * @mtd: MTD device structure
 | |
|  * @addr: virtual address in RAM of source/destination
 | |
|  * @len: number of data bytes to be transferred
 | |
|  * @is_write: flag for read/write operation
 | |
|  */
 | |
| static inline int omap_nand_dma_transfer(struct mtd_info *mtd, void *addr,
 | |
| 					unsigned int len, int is_write)
 | |
| {
 | |
| 	struct omap_nand_info *info = container_of(mtd,
 | |
| 					struct omap_nand_info, mtd);
 | |
| 	struct dma_async_tx_descriptor *tx;
 | |
| 	enum dma_data_direction dir = is_write ? DMA_TO_DEVICE :
 | |
| 							DMA_FROM_DEVICE;
 | |
| 	struct scatterlist sg;
 | |
| 	unsigned long tim, limit;
 | |
| 	unsigned n;
 | |
| 	int ret;
 | |
| 	u32 val;
 | |
| 
 | |
| 	if (addr >= high_memory) {
 | |
| 		struct page *p1;
 | |
| 
 | |
| 		if (((size_t)addr & PAGE_MASK) !=
 | |
| 			((size_t)(addr + len - 1) & PAGE_MASK))
 | |
| 			goto out_copy;
 | |
| 		p1 = vmalloc_to_page(addr);
 | |
| 		if (!p1)
 | |
| 			goto out_copy;
 | |
| 		addr = page_address(p1) + ((size_t)addr & ~PAGE_MASK);
 | |
| 	}
 | |
| 
 | |
| 	sg_init_one(&sg, addr, len);
 | |
| 	n = dma_map_sg(info->dma->device->dev, &sg, 1, dir);
 | |
| 	if (n == 0) {
 | |
| 		dev_err(&info->pdev->dev,
 | |
| 			"Couldn't DMA map a %d byte buffer\n", len);
 | |
| 		goto out_copy;
 | |
| 	}
 | |
| 
 | |
| 	tx = dmaengine_prep_slave_sg(info->dma, &sg, n,
 | |
| 		is_write ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM,
 | |
| 		DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 | |
| 	if (!tx)
 | |
| 		goto out_copy_unmap;
 | |
| 
 | |
| 	tx->callback = omap_nand_dma_callback;
 | |
| 	tx->callback_param = &info->comp;
 | |
| 	dmaengine_submit(tx);
 | |
| 
 | |
| 	/*  configure and start prefetch transfer */
 | |
| 	ret = omap_prefetch_enable(info->gpmc_cs,
 | |
| 		PREFETCH_FIFOTHRESHOLD_MAX, 0x1, len, is_write, info);
 | |
| 	if (ret)
 | |
| 		/* PFPW engine is busy, use cpu copy method */
 | |
| 		goto out_copy_unmap;
 | |
| 
 | |
| 	init_completion(&info->comp);
 | |
| 	dma_async_issue_pending(info->dma);
 | |
| 
 | |
| 	/* setup and start DMA using dma_addr */
 | |
| 	wait_for_completion(&info->comp);
 | |
| 	tim = 0;
 | |
| 	limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
 | |
| 
 | |
| 	do {
 | |
| 		cpu_relax();
 | |
| 		val = readl(info->reg.gpmc_prefetch_status);
 | |
| 		val = PREFETCH_STATUS_COUNT(val);
 | |
| 	} while (val && (tim++ < limit));
 | |
| 
 | |
| 	/* disable and stop the PFPW engine */
 | |
| 	omap_prefetch_reset(info->gpmc_cs, info);
 | |
| 
 | |
| 	dma_unmap_sg(info->dma->device->dev, &sg, 1, dir);
 | |
| 	return 0;
 | |
| 
 | |
| out_copy_unmap:
 | |
| 	dma_unmap_sg(info->dma->device->dev, &sg, 1, dir);
 | |
| out_copy:
 | |
| 	if (info->nand.options & NAND_BUSWIDTH_16)
 | |
| 		is_write == 0 ? omap_read_buf16(mtd, (u_char *) addr, len)
 | |
| 			: omap_write_buf16(mtd, (u_char *) addr, len);
 | |
| 	else
 | |
| 		is_write == 0 ? omap_read_buf8(mtd, (u_char *) addr, len)
 | |
| 			: omap_write_buf8(mtd, (u_char *) addr, len);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * omap_read_buf_dma_pref - read data from NAND controller into buffer
 | |
|  * @mtd: MTD device structure
 | |
|  * @buf: buffer to store date
 | |
|  * @len: number of bytes to read
 | |
|  */
 | |
| static void omap_read_buf_dma_pref(struct mtd_info *mtd, u_char *buf, int len)
 | |
| {
 | |
| 	if (len <= mtd->oobsize)
 | |
| 		omap_read_buf_pref(mtd, buf, len);
 | |
| 	else
 | |
| 		/* start transfer in DMA mode */
 | |
| 		omap_nand_dma_transfer(mtd, buf, len, 0x0);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * omap_write_buf_dma_pref - write buffer to NAND controller
 | |
|  * @mtd: MTD device structure
 | |
|  * @buf: data buffer
 | |
|  * @len: number of bytes to write
 | |
|  */
 | |
| static void omap_write_buf_dma_pref(struct mtd_info *mtd,
 | |
| 					const u_char *buf, int len)
 | |
| {
 | |
| 	if (len <= mtd->oobsize)
 | |
| 		omap_write_buf_pref(mtd, buf, len);
 | |
| 	else
 | |
| 		/* start transfer in DMA mode */
 | |
| 		omap_nand_dma_transfer(mtd, (u_char *) buf, len, 0x1);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * omap_nand_irq - GPMC irq handler
 | |
|  * @this_irq: gpmc irq number
 | |
|  * @dev: omap_nand_info structure pointer is passed here
 | |
|  */
 | |
| static irqreturn_t omap_nand_irq(int this_irq, void *dev)
 | |
| {
 | |
| 	struct omap_nand_info *info = (struct omap_nand_info *) dev;
 | |
| 	u32 bytes;
 | |
| 
 | |
| 	bytes = readl(info->reg.gpmc_prefetch_status);
 | |
| 	bytes = PREFETCH_STATUS_FIFO_CNT(bytes);
 | |
| 	bytes = bytes  & 0xFFFC; /* io in multiple of 4 bytes */
 | |
| 	if (info->iomode == OMAP_NAND_IO_WRITE) { /* checks for write io */
 | |
| 		if (this_irq == info->gpmc_irq_count)
 | |
| 			goto done;
 | |
| 
 | |
| 		if (info->buf_len && (info->buf_len < bytes))
 | |
| 			bytes = info->buf_len;
 | |
| 		else if (!info->buf_len)
 | |
| 			bytes = 0;
 | |
| 		iowrite32_rep(info->nand.IO_ADDR_W,
 | |
| 						(u32 *)info->buf, bytes >> 2);
 | |
| 		info->buf = info->buf + bytes;
 | |
| 		info->buf_len -= bytes;
 | |
| 
 | |
| 	} else {
 | |
| 		ioread32_rep(info->nand.IO_ADDR_R,
 | |
| 						(u32 *)info->buf, bytes >> 2);
 | |
| 		info->buf = info->buf + bytes;
 | |
| 
 | |
| 		if (this_irq == info->gpmc_irq_count)
 | |
| 			goto done;
 | |
| 	}
 | |
| 
 | |
| 	return IRQ_HANDLED;
 | |
| 
 | |
| done:
 | |
| 	complete(&info->comp);
 | |
| 
 | |
| 	disable_irq_nosync(info->gpmc_irq_fifo);
 | |
| 	disable_irq_nosync(info->gpmc_irq_count);
 | |
| 
 | |
| 	return IRQ_HANDLED;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * omap_read_buf_irq_pref - read data from NAND controller into buffer
 | |
|  * @mtd: MTD device structure
 | |
|  * @buf: buffer to store date
 | |
|  * @len: number of bytes to read
 | |
|  */
 | |
| static void omap_read_buf_irq_pref(struct mtd_info *mtd, u_char *buf, int len)
 | |
| {
 | |
| 	struct omap_nand_info *info = container_of(mtd,
 | |
| 						struct omap_nand_info, mtd);
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	if (len <= mtd->oobsize) {
 | |
| 		omap_read_buf_pref(mtd, buf, len);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	info->iomode = OMAP_NAND_IO_READ;
 | |
| 	info->buf = buf;
 | |
| 	init_completion(&info->comp);
 | |
| 
 | |
| 	/*  configure and start prefetch transfer */
 | |
| 	ret = omap_prefetch_enable(info->gpmc_cs,
 | |
| 			PREFETCH_FIFOTHRESHOLD_MAX/2, 0x0, len, 0x0, info);
 | |
| 	if (ret)
 | |
| 		/* PFPW engine is busy, use cpu copy method */
 | |
| 		goto out_copy;
 | |
| 
 | |
| 	info->buf_len = len;
 | |
| 
 | |
| 	enable_irq(info->gpmc_irq_count);
 | |
| 	enable_irq(info->gpmc_irq_fifo);
 | |
| 
 | |
| 	/* waiting for read to complete */
 | |
| 	wait_for_completion(&info->comp);
 | |
| 
 | |
| 	/* disable and stop the PFPW engine */
 | |
| 	omap_prefetch_reset(info->gpmc_cs, info);
 | |
| 	return;
 | |
| 
 | |
| out_copy:
 | |
| 	if (info->nand.options & NAND_BUSWIDTH_16)
 | |
| 		omap_read_buf16(mtd, buf, len);
 | |
| 	else
 | |
| 		omap_read_buf8(mtd, buf, len);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * omap_write_buf_irq_pref - write buffer to NAND controller
 | |
|  * @mtd: MTD device structure
 | |
|  * @buf: data buffer
 | |
|  * @len: number of bytes to write
 | |
|  */
 | |
| static void omap_write_buf_irq_pref(struct mtd_info *mtd,
 | |
| 					const u_char *buf, int len)
 | |
| {
 | |
| 	struct omap_nand_info *info = container_of(mtd,
 | |
| 						struct omap_nand_info, mtd);
 | |
| 	int ret = 0;
 | |
| 	unsigned long tim, limit;
 | |
| 	u32 val;
 | |
| 
 | |
| 	if (len <= mtd->oobsize) {
 | |
| 		omap_write_buf_pref(mtd, buf, len);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	info->iomode = OMAP_NAND_IO_WRITE;
 | |
| 	info->buf = (u_char *) buf;
 | |
| 	init_completion(&info->comp);
 | |
| 
 | |
| 	/* configure and start prefetch transfer : size=24 */
 | |
| 	ret = omap_prefetch_enable(info->gpmc_cs,
 | |
| 		(PREFETCH_FIFOTHRESHOLD_MAX * 3) / 8, 0x0, len, 0x1, info);
 | |
| 	if (ret)
 | |
| 		/* PFPW engine is busy, use cpu copy method */
 | |
| 		goto out_copy;
 | |
| 
 | |
| 	info->buf_len = len;
 | |
| 
 | |
| 	enable_irq(info->gpmc_irq_count);
 | |
| 	enable_irq(info->gpmc_irq_fifo);
 | |
| 
 | |
| 	/* waiting for write to complete */
 | |
| 	wait_for_completion(&info->comp);
 | |
| 
 | |
| 	/* wait for data to flushed-out before reset the prefetch */
 | |
| 	tim = 0;
 | |
| 	limit = (loops_per_jiffy *  msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
 | |
| 	do {
 | |
| 		val = readl(info->reg.gpmc_prefetch_status);
 | |
| 		val = PREFETCH_STATUS_COUNT(val);
 | |
| 		cpu_relax();
 | |
| 	} while (val && (tim++ < limit));
 | |
| 
 | |
| 	/* disable and stop the PFPW engine */
 | |
| 	omap_prefetch_reset(info->gpmc_cs, info);
 | |
| 	return;
 | |
| 
 | |
| out_copy:
 | |
| 	if (info->nand.options & NAND_BUSWIDTH_16)
 | |
| 		omap_write_buf16(mtd, buf, len);
 | |
| 	else
 | |
| 		omap_write_buf8(mtd, buf, len);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * gen_true_ecc - This function will generate true ECC value
 | |
|  * @ecc_buf: buffer to store ecc code
 | |
|  *
 | |
|  * This generated true ECC value can be used when correcting
 | |
|  * data read from NAND flash memory core
 | |
|  */
 | |
| static void gen_true_ecc(u8 *ecc_buf)
 | |
| {
 | |
| 	u32 tmp = ecc_buf[0] | (ecc_buf[1] << 16) |
 | |
| 		((ecc_buf[2] & 0xF0) << 20) | ((ecc_buf[2] & 0x0F) << 8);
 | |
| 
 | |
| 	ecc_buf[0] = ~(P64o(tmp) | P64e(tmp) | P32o(tmp) | P32e(tmp) |
 | |
| 			P16o(tmp) | P16e(tmp) | P8o(tmp) | P8e(tmp));
 | |
| 	ecc_buf[1] = ~(P1024o(tmp) | P1024e(tmp) | P512o(tmp) | P512e(tmp) |
 | |
| 			P256o(tmp) | P256e(tmp) | P128o(tmp) | P128e(tmp));
 | |
| 	ecc_buf[2] = ~(P4o(tmp) | P4e(tmp) | P2o(tmp) | P2e(tmp) | P1o(tmp) |
 | |
| 			P1e(tmp) | P2048o(tmp) | P2048e(tmp));
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * omap_compare_ecc - Detect (2 bits) and correct (1 bit) error in data
 | |
|  * @ecc_data1:  ecc code from nand spare area
 | |
|  * @ecc_data2:  ecc code from hardware register obtained from hardware ecc
 | |
|  * @page_data:  page data
 | |
|  *
 | |
|  * This function compares two ECC's and indicates if there is an error.
 | |
|  * If the error can be corrected it will be corrected to the buffer.
 | |
|  * If there is no error, %0 is returned. If there is an error but it
 | |
|  * was corrected, %1 is returned. Otherwise, %-1 is returned.
 | |
|  */
 | |
| static int omap_compare_ecc(u8 *ecc_data1,	/* read from NAND memory */
 | |
| 			    u8 *ecc_data2,	/* read from register */
 | |
| 			    u8 *page_data)
 | |
| {
 | |
| 	uint	i;
 | |
| 	u8	tmp0_bit[8], tmp1_bit[8], tmp2_bit[8];
 | |
| 	u8	comp0_bit[8], comp1_bit[8], comp2_bit[8];
 | |
| 	u8	ecc_bit[24];
 | |
| 	u8	ecc_sum = 0;
 | |
| 	u8	find_bit = 0;
 | |
| 	uint	find_byte = 0;
 | |
| 	int	isEccFF;
 | |
| 
 | |
| 	isEccFF = ((*(u32 *)ecc_data1 & 0xFFFFFF) == 0xFFFFFF);
 | |
| 
 | |
| 	gen_true_ecc(ecc_data1);
 | |
| 	gen_true_ecc(ecc_data2);
 | |
| 
 | |
| 	for (i = 0; i <= 2; i++) {
 | |
| 		*(ecc_data1 + i) = ~(*(ecc_data1 + i));
 | |
| 		*(ecc_data2 + i) = ~(*(ecc_data2 + i));
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < 8; i++) {
 | |
| 		tmp0_bit[i]     = *ecc_data1 % 2;
 | |
| 		*ecc_data1	= *ecc_data1 / 2;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < 8; i++) {
 | |
| 		tmp1_bit[i]	 = *(ecc_data1 + 1) % 2;
 | |
| 		*(ecc_data1 + 1) = *(ecc_data1 + 1) / 2;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < 8; i++) {
 | |
| 		tmp2_bit[i]	 = *(ecc_data1 + 2) % 2;
 | |
| 		*(ecc_data1 + 2) = *(ecc_data1 + 2) / 2;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < 8; i++) {
 | |
| 		comp0_bit[i]     = *ecc_data2 % 2;
 | |
| 		*ecc_data2       = *ecc_data2 / 2;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < 8; i++) {
 | |
| 		comp1_bit[i]     = *(ecc_data2 + 1) % 2;
 | |
| 		*(ecc_data2 + 1) = *(ecc_data2 + 1) / 2;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < 8; i++) {
 | |
| 		comp2_bit[i]     = *(ecc_data2 + 2) % 2;
 | |
| 		*(ecc_data2 + 2) = *(ecc_data2 + 2) / 2;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < 6; i++)
 | |
| 		ecc_bit[i] = tmp2_bit[i + 2] ^ comp2_bit[i + 2];
 | |
| 
 | |
| 	for (i = 0; i < 8; i++)
 | |
| 		ecc_bit[i + 6] = tmp0_bit[i] ^ comp0_bit[i];
 | |
| 
 | |
| 	for (i = 0; i < 8; i++)
 | |
| 		ecc_bit[i + 14] = tmp1_bit[i] ^ comp1_bit[i];
 | |
| 
 | |
| 	ecc_bit[22] = tmp2_bit[0] ^ comp2_bit[0];
 | |
| 	ecc_bit[23] = tmp2_bit[1] ^ comp2_bit[1];
 | |
| 
 | |
| 	for (i = 0; i < 24; i++)
 | |
| 		ecc_sum += ecc_bit[i];
 | |
| 
 | |
| 	switch (ecc_sum) {
 | |
| 	case 0:
 | |
| 		/* Not reached because this function is not called if
 | |
| 		 *  ECC values are equal
 | |
| 		 */
 | |
| 		return 0;
 | |
| 
 | |
| 	case 1:
 | |
| 		/* Uncorrectable error */
 | |
| 		pr_debug("ECC UNCORRECTED_ERROR 1\n");
 | |
| 		return -1;
 | |
| 
 | |
| 	case 11:
 | |
| 		/* UN-Correctable error */
 | |
| 		pr_debug("ECC UNCORRECTED_ERROR B\n");
 | |
| 		return -1;
 | |
| 
 | |
| 	case 12:
 | |
| 		/* Correctable error */
 | |
| 		find_byte = (ecc_bit[23] << 8) +
 | |
| 			    (ecc_bit[21] << 7) +
 | |
| 			    (ecc_bit[19] << 6) +
 | |
| 			    (ecc_bit[17] << 5) +
 | |
| 			    (ecc_bit[15] << 4) +
 | |
| 			    (ecc_bit[13] << 3) +
 | |
| 			    (ecc_bit[11] << 2) +
 | |
| 			    (ecc_bit[9]  << 1) +
 | |
| 			    ecc_bit[7];
 | |
| 
 | |
| 		find_bit = (ecc_bit[5] << 2) + (ecc_bit[3] << 1) + ecc_bit[1];
 | |
| 
 | |
| 		pr_debug("Correcting single bit ECC error at offset: "
 | |
| 				"%d, bit: %d\n", find_byte, find_bit);
 | |
| 
 | |
| 		page_data[find_byte] ^= (1 << find_bit);
 | |
| 
 | |
| 		return 1;
 | |
| 	default:
 | |
| 		if (isEccFF) {
 | |
| 			if (ecc_data2[0] == 0 &&
 | |
| 			    ecc_data2[1] == 0 &&
 | |
| 			    ecc_data2[2] == 0)
 | |
| 				return 0;
 | |
| 		}
 | |
| 		pr_debug("UNCORRECTED_ERROR default\n");
 | |
| 		return -1;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * omap_correct_data - Compares the ECC read with HW generated ECC
 | |
|  * @mtd: MTD device structure
 | |
|  * @dat: page data
 | |
|  * @read_ecc: ecc read from nand flash
 | |
|  * @calc_ecc: ecc read from HW ECC registers
 | |
|  *
 | |
|  * Compares the ecc read from nand spare area with ECC registers values
 | |
|  * and if ECC's mismatched, it will call 'omap_compare_ecc' for error
 | |
|  * detection and correction. If there are no errors, %0 is returned. If
 | |
|  * there were errors and all of the errors were corrected, the number of
 | |
|  * corrected errors is returned. If uncorrectable errors exist, %-1 is
 | |
|  * returned.
 | |
|  */
 | |
| static int omap_correct_data(struct mtd_info *mtd, u_char *dat,
 | |
| 				u_char *read_ecc, u_char *calc_ecc)
 | |
| {
 | |
| 	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
 | |
| 							mtd);
 | |
| 	int blockCnt = 0, i = 0, ret = 0;
 | |
| 	int stat = 0;
 | |
| 
 | |
| 	/* Ex NAND_ECC_HW12_2048 */
 | |
| 	if ((info->nand.ecc.mode == NAND_ECC_HW) &&
 | |
| 			(info->nand.ecc.size  == 2048))
 | |
| 		blockCnt = 4;
 | |
| 	else
 | |
| 		blockCnt = 1;
 | |
| 
 | |
| 	for (i = 0; i < blockCnt; i++) {
 | |
| 		if (memcmp(read_ecc, calc_ecc, 3) != 0) {
 | |
| 			ret = omap_compare_ecc(read_ecc, calc_ecc, dat);
 | |
| 			if (ret < 0)
 | |
| 				return ret;
 | |
| 			/* keep track of the number of corrected errors */
 | |
| 			stat += ret;
 | |
| 		}
 | |
| 		read_ecc += 3;
 | |
| 		calc_ecc += 3;
 | |
| 		dat      += 512;
 | |
| 	}
 | |
| 	return stat;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * omap_calcuate_ecc - Generate non-inverted ECC bytes.
 | |
|  * @mtd: MTD device structure
 | |
|  * @dat: The pointer to data on which ecc is computed
 | |
|  * @ecc_code: The ecc_code buffer
 | |
|  *
 | |
|  * Using noninverted ECC can be considered ugly since writing a blank
 | |
|  * page ie. padding will clear the ECC bytes. This is no problem as long
 | |
|  * nobody is trying to write data on the seemingly unused page. Reading
 | |
|  * an erased page will produce an ECC mismatch between generated and read
 | |
|  * ECC bytes that has to be dealt with separately.
 | |
|  */
 | |
| static int omap_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
 | |
| 				u_char *ecc_code)
 | |
| {
 | |
| 	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
 | |
| 							mtd);
 | |
| 	u32 val;
 | |
| 
 | |
| 	val = readl(info->reg.gpmc_ecc_config);
 | |
| 	if (((val >> ECC_CONFIG_CS_SHIFT)  & ~CS_MASK) != info->gpmc_cs)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/* read ecc result */
 | |
| 	val = readl(info->reg.gpmc_ecc1_result);
 | |
| 	*ecc_code++ = val;          /* P128e, ..., P1e */
 | |
| 	*ecc_code++ = val >> 16;    /* P128o, ..., P1o */
 | |
| 	/* P2048o, P1024o, P512o, P256o, P2048e, P1024e, P512e, P256e */
 | |
| 	*ecc_code++ = ((val >> 8) & 0x0f) | ((val >> 20) & 0xf0);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * omap_enable_hwecc - This function enables the hardware ecc functionality
 | |
|  * @mtd: MTD device structure
 | |
|  * @mode: Read/Write mode
 | |
|  */
 | |
| static void omap_enable_hwecc(struct mtd_info *mtd, int mode)
 | |
| {
 | |
| 	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
 | |
| 							mtd);
 | |
| 	struct nand_chip *chip = mtd->priv;
 | |
| 	unsigned int dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
 | |
| 	u32 val;
 | |
| 
 | |
| 	/* clear ecc and enable bits */
 | |
| 	val = ECCCLEAR | ECC1;
 | |
| 	writel(val, info->reg.gpmc_ecc_control);
 | |
| 
 | |
| 	/* program ecc and result sizes */
 | |
| 	val = ((((info->nand.ecc.size >> 1) - 1) << ECCSIZE1_SHIFT) |
 | |
| 			 ECC1RESULTSIZE);
 | |
| 	writel(val, info->reg.gpmc_ecc_size_config);
 | |
| 
 | |
| 	switch (mode) {
 | |
| 	case NAND_ECC_READ:
 | |
| 	case NAND_ECC_WRITE:
 | |
| 		writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control);
 | |
| 		break;
 | |
| 	case NAND_ECC_READSYN:
 | |
| 		writel(ECCCLEAR, info->reg.gpmc_ecc_control);
 | |
| 		break;
 | |
| 	default:
 | |
| 		dev_info(&info->pdev->dev,
 | |
| 			"error: unrecognized Mode[%d]!\n", mode);
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	/* (ECC 16 or 8 bit col) | ( CS  )  | ECC Enable */
 | |
| 	val = (dev_width << 7) | (info->gpmc_cs << 1) | (0x1);
 | |
| 	writel(val, info->reg.gpmc_ecc_config);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * omap_wait - wait until the command is done
 | |
|  * @mtd: MTD device structure
 | |
|  * @chip: NAND Chip structure
 | |
|  *
 | |
|  * Wait function is called during Program and erase operations and
 | |
|  * the way it is called from MTD layer, we should wait till the NAND
 | |
|  * chip is ready after the programming/erase operation has completed.
 | |
|  *
 | |
|  * Erase can take up to 400ms and program up to 20ms according to
 | |
|  * general NAND and SmartMedia specs
 | |
|  */
 | |
| static int omap_wait(struct mtd_info *mtd, struct nand_chip *chip)
 | |
| {
 | |
| 	struct nand_chip *this = mtd->priv;
 | |
| 	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
 | |
| 							mtd);
 | |
| 	unsigned long timeo = jiffies;
 | |
| 	int status, state = this->state;
 | |
| 
 | |
| 	if (state == FL_ERASING)
 | |
| 		timeo += (HZ * 400) / 1000;
 | |
| 	else
 | |
| 		timeo += (HZ * 20) / 1000;
 | |
| 
 | |
| 	writeb(NAND_CMD_STATUS & 0xFF, info->reg.gpmc_nand_command);
 | |
| 	while (time_before(jiffies, timeo)) {
 | |
| 		status = readb(info->reg.gpmc_nand_data);
 | |
| 		if (status & NAND_STATUS_READY)
 | |
| 			break;
 | |
| 		cond_resched();
 | |
| 	}
 | |
| 
 | |
| 	status = readb(info->reg.gpmc_nand_data);
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * omap_dev_ready - calls the platform specific dev_ready function
 | |
|  * @mtd: MTD device structure
 | |
|  */
 | |
| static int omap_dev_ready(struct mtd_info *mtd)
 | |
| {
 | |
| 	unsigned int val = 0;
 | |
| 	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
 | |
| 							mtd);
 | |
| 
 | |
| 	val = readl(info->reg.gpmc_status);
 | |
| 
 | |
| 	if ((val & 0x100) == 0x100) {
 | |
| 		return 1;
 | |
| 	} else {
 | |
| 		return 0;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_MTD_NAND_OMAP_BCH
 | |
| 
 | |
| /**
 | |
|  * omap3_enable_hwecc_bch - Program OMAP3 GPMC to perform BCH ECC correction
 | |
|  * @mtd: MTD device structure
 | |
|  * @mode: Read/Write mode
 | |
|  *
 | |
|  * When using BCH, sector size is hardcoded to 512 bytes.
 | |
|  * Using wrapping mode 6 both for reading and writing if ELM module not uses
 | |
|  * for error correction.
 | |
|  * On writing,
 | |
|  * eccsize0 = 0  (no additional protected byte in spare area)
 | |
|  * eccsize1 = 32 (skip 32 nibbles = 16 bytes per sector in spare area)
 | |
|  */
 | |
| static void omap3_enable_hwecc_bch(struct mtd_info *mtd, int mode)
 | |
| {
 | |
| 	int nerrors;
 | |
| 	unsigned int dev_width, nsectors;
 | |
| 	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
 | |
| 						   mtd);
 | |
| 	struct nand_chip *chip = mtd->priv;
 | |
| 	u32 val, wr_mode;
 | |
| 	unsigned int ecc_size1, ecc_size0;
 | |
| 
 | |
| 	/* Using wrapping mode 6 for writing */
 | |
| 	wr_mode = BCH_WRAPMODE_6;
 | |
| 
 | |
| 	/*
 | |
| 	 * ECC engine enabled for valid ecc_size0 nibbles
 | |
| 	 * and disabled for ecc_size1 nibbles.
 | |
| 	 */
 | |
| 	ecc_size0 = BCH_ECC_SIZE0;
 | |
| 	ecc_size1 = BCH_ECC_SIZE1;
 | |
| 
 | |
| 	/* Perform ecc calculation on 512-byte sector */
 | |
| 	nsectors = 1;
 | |
| 
 | |
| 	/* Update number of error correction */
 | |
| 	nerrors = info->nand.ecc.strength;
 | |
| 
 | |
| 	/* Multi sector reading/writing for NAND flash with page size < 4096 */
 | |
| 	if (info->is_elm_used && (mtd->writesize <= 4096)) {
 | |
| 		if (mode == NAND_ECC_READ) {
 | |
| 			/* Using wrapping mode 1 for reading */
 | |
| 			wr_mode = BCH_WRAPMODE_1;
 | |
| 
 | |
| 			/*
 | |
| 			 * ECC engine enabled for ecc_size0 nibbles
 | |
| 			 * and disabled for ecc_size1 nibbles.
 | |
| 			 */
 | |
| 			ecc_size0 = (nerrors == 8) ?
 | |
| 				BCH8R_ECC_SIZE0 : BCH4R_ECC_SIZE0;
 | |
| 			ecc_size1 = (nerrors == 8) ?
 | |
| 				BCH8R_ECC_SIZE1 : BCH4R_ECC_SIZE1;
 | |
| 		}
 | |
| 
 | |
| 		/* Perform ecc calculation for one page (< 4096) */
 | |
| 		nsectors = info->nand.ecc.steps;
 | |
| 	}
 | |
| 
 | |
| 	writel(ECC1, info->reg.gpmc_ecc_control);
 | |
| 
 | |
| 	/* Configure ecc size for BCH */
 | |
| 	val = (ecc_size1 << ECCSIZE1_SHIFT) | (ecc_size0 << ECCSIZE0_SHIFT);
 | |
| 	writel(val, info->reg.gpmc_ecc_size_config);
 | |
| 
 | |
| 	dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
 | |
| 
 | |
| 	/* BCH configuration */
 | |
| 	val = ((1                        << 16) | /* enable BCH */
 | |
| 	       (((nerrors == 8) ? 1 : 0) << 12) | /* 8 or 4 bits */
 | |
| 	       (wr_mode                  <<  8) | /* wrap mode */
 | |
| 	       (dev_width                <<  7) | /* bus width */
 | |
| 	       (((nsectors-1) & 0x7)     <<  4) | /* number of sectors */
 | |
| 	       (info->gpmc_cs            <<  1) | /* ECC CS */
 | |
| 	       (0x1));                            /* enable ECC */
 | |
| 
 | |
| 	writel(val, info->reg.gpmc_ecc_config);
 | |
| 
 | |
| 	/* Clear ecc and enable bits */
 | |
| 	writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * omap3_calculate_ecc_bch4 - Generate 7 bytes of ECC bytes
 | |
|  * @mtd: MTD device structure
 | |
|  * @dat: The pointer to data on which ecc is computed
 | |
|  * @ecc_code: The ecc_code buffer
 | |
|  */
 | |
| static int omap3_calculate_ecc_bch4(struct mtd_info *mtd, const u_char *dat,
 | |
| 				    u_char *ecc_code)
 | |
| {
 | |
| 	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
 | |
| 						   mtd);
 | |
| 	unsigned long nsectors, val1, val2;
 | |
| 	int i;
 | |
| 
 | |
| 	nsectors = ((readl(info->reg.gpmc_ecc_config) >> 4) & 0x7) + 1;
 | |
| 
 | |
| 	for (i = 0; i < nsectors; i++) {
 | |
| 
 | |
| 		/* Read hw-computed remainder */
 | |
| 		val1 = readl(info->reg.gpmc_bch_result0[i]);
 | |
| 		val2 = readl(info->reg.gpmc_bch_result1[i]);
 | |
| 
 | |
| 		/*
 | |
| 		 * Add constant polynomial to remainder, in order to get an ecc
 | |
| 		 * sequence of 0xFFs for a buffer filled with 0xFFs; and
 | |
| 		 * left-justify the resulting polynomial.
 | |
| 		 */
 | |
| 		*ecc_code++ = 0x28 ^ ((val2 >> 12) & 0xFF);
 | |
| 		*ecc_code++ = 0x13 ^ ((val2 >>  4) & 0xFF);
 | |
| 		*ecc_code++ = 0xcc ^ (((val2 & 0xF) << 4)|((val1 >> 28) & 0xF));
 | |
| 		*ecc_code++ = 0x39 ^ ((val1 >> 20) & 0xFF);
 | |
| 		*ecc_code++ = 0x96 ^ ((val1 >> 12) & 0xFF);
 | |
| 		*ecc_code++ = 0xac ^ ((val1 >> 4) & 0xFF);
 | |
| 		*ecc_code++ = 0x7f ^ ((val1 & 0xF) << 4);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * omap3_calculate_ecc_bch8 - Generate 13 bytes of ECC bytes
 | |
|  * @mtd: MTD device structure
 | |
|  * @dat: The pointer to data on which ecc is computed
 | |
|  * @ecc_code: The ecc_code buffer
 | |
|  */
 | |
| static int omap3_calculate_ecc_bch8(struct mtd_info *mtd, const u_char *dat,
 | |
| 				    u_char *ecc_code)
 | |
| {
 | |
| 	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
 | |
| 						   mtd);
 | |
| 	unsigned long nsectors, val1, val2, val3, val4;
 | |
| 	int i;
 | |
| 
 | |
| 	nsectors = ((readl(info->reg.gpmc_ecc_config) >> 4) & 0x7) + 1;
 | |
| 
 | |
| 	for (i = 0; i < nsectors; i++) {
 | |
| 
 | |
| 		/* Read hw-computed remainder */
 | |
| 		val1 = readl(info->reg.gpmc_bch_result0[i]);
 | |
| 		val2 = readl(info->reg.gpmc_bch_result1[i]);
 | |
| 		val3 = readl(info->reg.gpmc_bch_result2[i]);
 | |
| 		val4 = readl(info->reg.gpmc_bch_result3[i]);
 | |
| 
 | |
| 		/*
 | |
| 		 * Add constant polynomial to remainder, in order to get an ecc
 | |
| 		 * sequence of 0xFFs for a buffer filled with 0xFFs.
 | |
| 		 */
 | |
| 		*ecc_code++ = 0xef ^ (val4 & 0xFF);
 | |
| 		*ecc_code++ = 0x51 ^ ((val3 >> 24) & 0xFF);
 | |
| 		*ecc_code++ = 0x2e ^ ((val3 >> 16) & 0xFF);
 | |
| 		*ecc_code++ = 0x09 ^ ((val3 >> 8) & 0xFF);
 | |
| 		*ecc_code++ = 0xed ^ (val3 & 0xFF);
 | |
| 		*ecc_code++ = 0x93 ^ ((val2 >> 24) & 0xFF);
 | |
| 		*ecc_code++ = 0x9a ^ ((val2 >> 16) & 0xFF);
 | |
| 		*ecc_code++ = 0xc2 ^ ((val2 >> 8) & 0xFF);
 | |
| 		*ecc_code++ = 0x97 ^ (val2 & 0xFF);
 | |
| 		*ecc_code++ = 0x79 ^ ((val1 >> 24) & 0xFF);
 | |
| 		*ecc_code++ = 0xe5 ^ ((val1 >> 16) & 0xFF);
 | |
| 		*ecc_code++ = 0x24 ^ ((val1 >> 8) & 0xFF);
 | |
| 		*ecc_code++ = 0xb5 ^ (val1 & 0xFF);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * omap3_calculate_ecc_bch - Generate bytes of ECC bytes
 | |
|  * @mtd:	MTD device structure
 | |
|  * @dat:	The pointer to data on which ecc is computed
 | |
|  * @ecc_code:	The ecc_code buffer
 | |
|  *
 | |
|  * Support calculating of BCH4/8 ecc vectors for the page
 | |
|  */
 | |
| static int omap3_calculate_ecc_bch(struct mtd_info *mtd, const u_char *dat,
 | |
| 				    u_char *ecc_code)
 | |
| {
 | |
| 	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
 | |
| 						   mtd);
 | |
| 	unsigned long nsectors, bch_val1, bch_val2, bch_val3, bch_val4;
 | |
| 	int i, eccbchtsel;
 | |
| 
 | |
| 	nsectors = ((readl(info->reg.gpmc_ecc_config) >> 4) & 0x7) + 1;
 | |
| 	/*
 | |
| 	 * find BCH scheme used
 | |
| 	 * 0 -> BCH4
 | |
| 	 * 1 -> BCH8
 | |
| 	 */
 | |
| 	eccbchtsel = ((readl(info->reg.gpmc_ecc_config) >> 12) & 0x3);
 | |
| 
 | |
| 	for (i = 0; i < nsectors; i++) {
 | |
| 
 | |
| 		/* Read hw-computed remainder */
 | |
| 		bch_val1 = readl(info->reg.gpmc_bch_result0[i]);
 | |
| 		bch_val2 = readl(info->reg.gpmc_bch_result1[i]);
 | |
| 		if (eccbchtsel) {
 | |
| 			bch_val3 = readl(info->reg.gpmc_bch_result2[i]);
 | |
| 			bch_val4 = readl(info->reg.gpmc_bch_result3[i]);
 | |
| 		}
 | |
| 
 | |
| 		if (eccbchtsel) {
 | |
| 			/* BCH8 ecc scheme */
 | |
| 			*ecc_code++ = (bch_val4 & 0xFF);
 | |
| 			*ecc_code++ = ((bch_val3 >> 24) & 0xFF);
 | |
| 			*ecc_code++ = ((bch_val3 >> 16) & 0xFF);
 | |
| 			*ecc_code++ = ((bch_val3 >> 8) & 0xFF);
 | |
| 			*ecc_code++ = (bch_val3 & 0xFF);
 | |
| 			*ecc_code++ = ((bch_val2 >> 24) & 0xFF);
 | |
| 			*ecc_code++ = ((bch_val2 >> 16) & 0xFF);
 | |
| 			*ecc_code++ = ((bch_val2 >> 8) & 0xFF);
 | |
| 			*ecc_code++ = (bch_val2 & 0xFF);
 | |
| 			*ecc_code++ = ((bch_val1 >> 24) & 0xFF);
 | |
| 			*ecc_code++ = ((bch_val1 >> 16) & 0xFF);
 | |
| 			*ecc_code++ = ((bch_val1 >> 8) & 0xFF);
 | |
| 			*ecc_code++ = (bch_val1 & 0xFF);
 | |
| 			/*
 | |
| 			 * Setting 14th byte to zero to handle
 | |
| 			 * erased page & maintain compatibility
 | |
| 			 * with RBL
 | |
| 			 */
 | |
| 			*ecc_code++ = 0x0;
 | |
| 		} else {
 | |
| 			/* BCH4 ecc scheme */
 | |
| 			*ecc_code++ = ((bch_val2 >> 12) & 0xFF);
 | |
| 			*ecc_code++ = ((bch_val2 >> 4) & 0xFF);
 | |
| 			*ecc_code++ = ((bch_val2 & 0xF) << 4) |
 | |
| 				((bch_val1 >> 28) & 0xF);
 | |
| 			*ecc_code++ = ((bch_val1 >> 20) & 0xFF);
 | |
| 			*ecc_code++ = ((bch_val1 >> 12) & 0xFF);
 | |
| 			*ecc_code++ = ((bch_val1 >> 4) & 0xFF);
 | |
| 			*ecc_code++ = ((bch_val1 & 0xF) << 4);
 | |
| 			/*
 | |
| 			 * Setting 8th byte to zero to handle
 | |
| 			 * erased page
 | |
| 			 */
 | |
| 			*ecc_code++ = 0x0;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * erased_sector_bitflips - count bit flips
 | |
|  * @data:	data sector buffer
 | |
|  * @oob:	oob buffer
 | |
|  * @info:	omap_nand_info
 | |
|  *
 | |
|  * Check the bit flips in erased page falls below correctable level.
 | |
|  * If falls below, report the page as erased with correctable bit
 | |
|  * flip, else report as uncorrectable page.
 | |
|  */
 | |
| static int erased_sector_bitflips(u_char *data, u_char *oob,
 | |
| 		struct omap_nand_info *info)
 | |
| {
 | |
| 	int flip_bits = 0, i;
 | |
| 
 | |
| 	for (i = 0; i < info->nand.ecc.size; i++) {
 | |
| 		flip_bits += hweight8(~data[i]);
 | |
| 		if (flip_bits > info->nand.ecc.strength)
 | |
| 			return 0;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < info->nand.ecc.bytes - 1; i++) {
 | |
| 		flip_bits += hweight8(~oob[i]);
 | |
| 		if (flip_bits > info->nand.ecc.strength)
 | |
| 			return 0;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Bit flips falls in correctable level.
 | |
| 	 * Fill data area with 0xFF
 | |
| 	 */
 | |
| 	if (flip_bits) {
 | |
| 		memset(data, 0xFF, info->nand.ecc.size);
 | |
| 		memset(oob, 0xFF, info->nand.ecc.bytes);
 | |
| 	}
 | |
| 
 | |
| 	return flip_bits;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * omap_elm_correct_data - corrects page data area in case error reported
 | |
|  * @mtd:	MTD device structure
 | |
|  * @data:	page data
 | |
|  * @read_ecc:	ecc read from nand flash
 | |
|  * @calc_ecc:	ecc read from HW ECC registers
 | |
|  *
 | |
|  * Calculated ecc vector reported as zero in case of non-error pages.
 | |
|  * In case of error/erased pages non-zero error vector is reported.
 | |
|  * In case of non-zero ecc vector, check read_ecc at fixed offset
 | |
|  * (x = 13/7 in case of BCH8/4 == 0) to find page programmed or not.
 | |
|  * To handle bit flips in this data, count the number of 0's in
 | |
|  * read_ecc[x] and check if it greater than 4. If it is less, it is
 | |
|  * programmed page, else erased page.
 | |
|  *
 | |
|  * 1. If page is erased, check with standard ecc vector (ecc vector
 | |
|  * for erased page to find any bit flip). If check fails, bit flip
 | |
|  * is present in erased page. Count the bit flips in erased page and
 | |
|  * if it falls under correctable level, report page with 0xFF and
 | |
|  * update the correctable bit information.
 | |
|  * 2. If error is reported on programmed page, update elm error
 | |
|  * vector and correct the page with ELM error correction routine.
 | |
|  *
 | |
|  */
 | |
| static int omap_elm_correct_data(struct mtd_info *mtd, u_char *data,
 | |
| 				u_char *read_ecc, u_char *calc_ecc)
 | |
| {
 | |
| 	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
 | |
| 			mtd);
 | |
| 	int eccsteps = info->nand.ecc.steps;
 | |
| 	int i , j, stat = 0;
 | |
| 	int eccsize, eccflag, ecc_vector_size;
 | |
| 	struct elm_errorvec err_vec[ERROR_VECTOR_MAX];
 | |
| 	u_char *ecc_vec = calc_ecc;
 | |
| 	u_char *spare_ecc = read_ecc;
 | |
| 	u_char *erased_ecc_vec;
 | |
| 	enum bch_ecc type;
 | |
| 	bool is_error_reported = false;
 | |
| 
 | |
| 	/* Initialize elm error vector to zero */
 | |
| 	memset(err_vec, 0, sizeof(err_vec));
 | |
| 
 | |
| 	if (info->nand.ecc.strength == BCH8_MAX_ERROR) {
 | |
| 		type = BCH8_ECC;
 | |
| 		erased_ecc_vec = bch8_vector;
 | |
| 	} else {
 | |
| 		type = BCH4_ECC;
 | |
| 		erased_ecc_vec = bch4_vector;
 | |
| 	}
 | |
| 
 | |
| 	ecc_vector_size = info->nand.ecc.bytes;
 | |
| 
 | |
| 	/*
 | |
| 	 * Remove extra byte padding for BCH8 RBL
 | |
| 	 * compatibility and erased page handling
 | |
| 	 */
 | |
| 	eccsize = ecc_vector_size - 1;
 | |
| 
 | |
| 	for (i = 0; i < eccsteps ; i++) {
 | |
| 		eccflag = 0;	/* initialize eccflag */
 | |
| 
 | |
| 		/*
 | |
| 		 * Check any error reported,
 | |
| 		 * In case of error, non zero ecc reported.
 | |
| 		 */
 | |
| 
 | |
| 		for (j = 0; (j < eccsize); j++) {
 | |
| 			if (calc_ecc[j] != 0) {
 | |
| 				eccflag = 1; /* non zero ecc, error present */
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (eccflag == 1) {
 | |
| 			/*
 | |
| 			 * Set threshold to minimum of 4, half of ecc.strength/2
 | |
| 			 * to allow max bit flip in byte to 4
 | |
| 			 */
 | |
| 			unsigned int threshold = min_t(unsigned int, 4,
 | |
| 					info->nand.ecc.strength / 2);
 | |
| 
 | |
| 			/*
 | |
| 			 * Check data area is programmed by counting
 | |
| 			 * number of 0's at fixed offset in spare area.
 | |
| 			 * Checking count of 0's against threshold.
 | |
| 			 * In case programmed page expects at least threshold
 | |
| 			 * zeros in byte.
 | |
| 			 * If zeros are less than threshold for programmed page/
 | |
| 			 * zeros are more than threshold erased page, either
 | |
| 			 * case page reported as uncorrectable.
 | |
| 			 */
 | |
| 			if (hweight8(~read_ecc[eccsize]) >= threshold) {
 | |
| 				/*
 | |
| 				 * Update elm error vector as
 | |
| 				 * data area is programmed
 | |
| 				 */
 | |
| 				err_vec[i].error_reported = true;
 | |
| 				is_error_reported = true;
 | |
| 			} else {
 | |
| 				/* Error reported in erased page */
 | |
| 				int bitflip_count;
 | |
| 				u_char *buf = &data[info->nand.ecc.size * i];
 | |
| 
 | |
| 				if (memcmp(calc_ecc, erased_ecc_vec, eccsize)) {
 | |
| 					bitflip_count = erased_sector_bitflips(
 | |
| 							buf, read_ecc, info);
 | |
| 
 | |
| 					if (bitflip_count)
 | |
| 						stat += bitflip_count;
 | |
| 					else
 | |
| 						return -EINVAL;
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/* Update the ecc vector */
 | |
| 		calc_ecc += ecc_vector_size;
 | |
| 		read_ecc += ecc_vector_size;
 | |
| 	}
 | |
| 
 | |
| 	/* Check if any error reported */
 | |
| 	if (!is_error_reported)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* Decode BCH error using ELM module */
 | |
| 	elm_decode_bch_error_page(info->elm_dev, ecc_vec, err_vec);
 | |
| 
 | |
| 	for (i = 0; i < eccsteps; i++) {
 | |
| 		if (err_vec[i].error_reported) {
 | |
| 			for (j = 0; j < err_vec[i].error_count; j++) {
 | |
| 				u32 bit_pos, byte_pos, error_max, pos;
 | |
| 
 | |
| 				if (type == BCH8_ECC)
 | |
| 					error_max = BCH8_ECC_MAX;
 | |
| 				else
 | |
| 					error_max = BCH4_ECC_MAX;
 | |
| 
 | |
| 				if (info->nand.ecc.strength == BCH8_MAX_ERROR)
 | |
| 					pos = err_vec[i].error_loc[j];
 | |
| 				else
 | |
| 					/* Add 4 to take care 4 bit padding */
 | |
| 					pos = err_vec[i].error_loc[j] +
 | |
| 						BCH4_BIT_PAD;
 | |
| 
 | |
| 				/* Calculate bit position of error */
 | |
| 				bit_pos = pos % 8;
 | |
| 
 | |
| 				/* Calculate byte position of error */
 | |
| 				byte_pos = (error_max - pos - 1) / 8;
 | |
| 
 | |
| 				if (pos < error_max) {
 | |
| 					if (byte_pos < 512)
 | |
| 						data[byte_pos] ^= 1 << bit_pos;
 | |
| 					else
 | |
| 						spare_ecc[byte_pos - 512] ^=
 | |
| 							1 << bit_pos;
 | |
| 				}
 | |
| 				/* else, not interested to correct ecc */
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/* Update number of correctable errors */
 | |
| 		stat += err_vec[i].error_count;
 | |
| 
 | |
| 		/* Update page data with sector size */
 | |
| 		data += info->nand.ecc.size;
 | |
| 		spare_ecc += ecc_vector_size;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < eccsteps; i++)
 | |
| 		/* Return error if uncorrectable error present */
 | |
| 		if (err_vec[i].error_uncorrectable)
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 	return stat;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * omap3_correct_data_bch - Decode received data and correct errors
 | |
|  * @mtd: MTD device structure
 | |
|  * @data: page data
 | |
|  * @read_ecc: ecc read from nand flash
 | |
|  * @calc_ecc: ecc read from HW ECC registers
 | |
|  */
 | |
| static int omap3_correct_data_bch(struct mtd_info *mtd, u_char *data,
 | |
| 				  u_char *read_ecc, u_char *calc_ecc)
 | |
| {
 | |
| 	int i, count;
 | |
| 	/* cannot correct more than 8 errors */
 | |
| 	unsigned int errloc[8];
 | |
| 	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
 | |
| 						   mtd);
 | |
| 
 | |
| 	count = decode_bch(info->bch, NULL, 512, read_ecc, calc_ecc, NULL,
 | |
| 			   errloc);
 | |
| 	if (count > 0) {
 | |
| 		/* correct errors */
 | |
| 		for (i = 0; i < count; i++) {
 | |
| 			/* correct data only, not ecc bytes */
 | |
| 			if (errloc[i] < 8*512)
 | |
| 				data[errloc[i]/8] ^= 1 << (errloc[i] & 7);
 | |
| 			pr_debug("corrected bitflip %u\n", errloc[i]);
 | |
| 		}
 | |
| 	} else if (count < 0) {
 | |
| 		pr_err("ecc unrecoverable error\n");
 | |
| 	}
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * omap_write_page_bch - BCH ecc based write page function for entire page
 | |
|  * @mtd:		mtd info structure
 | |
|  * @chip:		nand chip info structure
 | |
|  * @buf:		data buffer
 | |
|  * @oob_required:	must write chip->oob_poi to OOB
 | |
|  *
 | |
|  * Custom write page method evolved to support multi sector writing in one shot
 | |
|  */
 | |
| static int omap_write_page_bch(struct mtd_info *mtd, struct nand_chip *chip,
 | |
| 				  const uint8_t *buf, int oob_required)
 | |
| {
 | |
| 	int i;
 | |
| 	uint8_t *ecc_calc = chip->buffers->ecccalc;
 | |
| 	uint32_t *eccpos = chip->ecc.layout->eccpos;
 | |
| 
 | |
| 	/* Enable GPMC ecc engine */
 | |
| 	chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
 | |
| 
 | |
| 	/* Write data */
 | |
| 	chip->write_buf(mtd, buf, mtd->writesize);
 | |
| 
 | |
| 	/* Update ecc vector from GPMC result registers */
 | |
| 	chip->ecc.calculate(mtd, buf, &ecc_calc[0]);
 | |
| 
 | |
| 	for (i = 0; i < chip->ecc.total; i++)
 | |
| 		chip->oob_poi[eccpos[i]] = ecc_calc[i];
 | |
| 
 | |
| 	/* Write ecc vector to OOB area */
 | |
| 	chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * omap_read_page_bch - BCH ecc based page read function for entire page
 | |
|  * @mtd:		mtd info structure
 | |
|  * @chip:		nand chip info structure
 | |
|  * @buf:		buffer to store read data
 | |
|  * @oob_required:	caller requires OOB data read to chip->oob_poi
 | |
|  * @page:		page number to read
 | |
|  *
 | |
|  * For BCH ecc scheme, GPMC used for syndrome calculation and ELM module
 | |
|  * used for error correction.
 | |
|  * Custom method evolved to support ELM error correction & multi sector
 | |
|  * reading. On reading page data area is read along with OOB data with
 | |
|  * ecc engine enabled. ecc vector updated after read of OOB data.
 | |
|  * For non error pages ecc vector reported as zero.
 | |
|  */
 | |
| static int omap_read_page_bch(struct mtd_info *mtd, struct nand_chip *chip,
 | |
| 				uint8_t *buf, int oob_required, int page)
 | |
| {
 | |
| 	uint8_t *ecc_calc = chip->buffers->ecccalc;
 | |
| 	uint8_t *ecc_code = chip->buffers->ecccode;
 | |
| 	uint32_t *eccpos = chip->ecc.layout->eccpos;
 | |
| 	uint8_t *oob = &chip->oob_poi[eccpos[0]];
 | |
| 	uint32_t oob_pos = mtd->writesize + chip->ecc.layout->eccpos[0];
 | |
| 	int stat;
 | |
| 	unsigned int max_bitflips = 0;
 | |
| 
 | |
| 	/* Enable GPMC ecc engine */
 | |
| 	chip->ecc.hwctl(mtd, NAND_ECC_READ);
 | |
| 
 | |
| 	/* Read data */
 | |
| 	chip->read_buf(mtd, buf, mtd->writesize);
 | |
| 
 | |
| 	/* Read oob bytes */
 | |
| 	chip->cmdfunc(mtd, NAND_CMD_RNDOUT, oob_pos, -1);
 | |
| 	chip->read_buf(mtd, oob, chip->ecc.total);
 | |
| 
 | |
| 	/* Calculate ecc bytes */
 | |
| 	chip->ecc.calculate(mtd, buf, ecc_calc);
 | |
| 
 | |
| 	memcpy(ecc_code, &chip->oob_poi[eccpos[0]], chip->ecc.total);
 | |
| 
 | |
| 	stat = chip->ecc.correct(mtd, buf, ecc_code, ecc_calc);
 | |
| 
 | |
| 	if (stat < 0) {
 | |
| 		mtd->ecc_stats.failed++;
 | |
| 	} else {
 | |
| 		mtd->ecc_stats.corrected += stat;
 | |
| 		max_bitflips = max_t(unsigned int, max_bitflips, stat);
 | |
| 	}
 | |
| 
 | |
| 	return max_bitflips;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * omap3_free_bch - Release BCH ecc resources
 | |
|  * @mtd: MTD device structure
 | |
|  */
 | |
| static void omap3_free_bch(struct mtd_info *mtd)
 | |
| {
 | |
| 	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
 | |
| 						   mtd);
 | |
| 	if (info->bch) {
 | |
| 		free_bch(info->bch);
 | |
| 		info->bch = NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * omap3_init_bch - Initialize BCH ECC
 | |
|  * @mtd: MTD device structure
 | |
|  * @ecc_opt: OMAP ECC mode (OMAP_ECC_BCH4_CODE_HW or OMAP_ECC_BCH8_CODE_HW)
 | |
|  */
 | |
| static int omap3_init_bch(struct mtd_info *mtd, int ecc_opt)
 | |
| {
 | |
| 	int max_errors;
 | |
| 	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
 | |
| 						   mtd);
 | |
| #ifdef CONFIG_MTD_NAND_OMAP_BCH8
 | |
| 	const int hw_errors = BCH8_MAX_ERROR;
 | |
| #else
 | |
| 	const int hw_errors = BCH4_MAX_ERROR;
 | |
| #endif
 | |
| 	enum bch_ecc bch_type;
 | |
| 	const __be32 *parp;
 | |
| 	int lenp;
 | |
| 	struct device_node *elm_node;
 | |
| 
 | |
| 	info->bch = NULL;
 | |
| 
 | |
| 	max_errors = (ecc_opt == OMAP_ECC_BCH8_CODE_HW) ?
 | |
| 		BCH8_MAX_ERROR : BCH4_MAX_ERROR;
 | |
| 	if (max_errors != hw_errors) {
 | |
| 		pr_err("cannot configure %d-bit BCH ecc, only %d-bit supported",
 | |
| 		       max_errors, hw_errors);
 | |
| 		goto fail;
 | |
| 	}
 | |
| 
 | |
| 	info->nand.ecc.size = 512;
 | |
| 	info->nand.ecc.hwctl = omap3_enable_hwecc_bch;
 | |
| 	info->nand.ecc.mode = NAND_ECC_HW;
 | |
| 	info->nand.ecc.strength = max_errors;
 | |
| 
 | |
| 	if (hw_errors == BCH8_MAX_ERROR)
 | |
| 		bch_type = BCH8_ECC;
 | |
| 	else
 | |
| 		bch_type = BCH4_ECC;
 | |
| 
 | |
| 	/* Detect availability of ELM module */
 | |
| 	parp = of_get_property(info->of_node, "elm_id", &lenp);
 | |
| 	if ((parp == NULL) && (lenp != (sizeof(void *) * 2))) {
 | |
| 		pr_err("Missing elm_id property, fall back to Software BCH\n");
 | |
| 		info->is_elm_used = false;
 | |
| 	} else {
 | |
| 		struct platform_device *pdev;
 | |
| 
 | |
| 		elm_node = of_find_node_by_phandle(be32_to_cpup(parp));
 | |
| 		pdev = of_find_device_by_node(elm_node);
 | |
| 		info->elm_dev = &pdev->dev;
 | |
| 		elm_config(info->elm_dev, bch_type);
 | |
| 		info->is_elm_used = true;
 | |
| 	}
 | |
| 
 | |
| 	if (info->is_elm_used && (mtd->writesize <= 4096)) {
 | |
| 
 | |
| 		if (hw_errors == BCH8_MAX_ERROR)
 | |
| 			info->nand.ecc.bytes = BCH8_SIZE;
 | |
| 		else
 | |
| 			info->nand.ecc.bytes = BCH4_SIZE;
 | |
| 
 | |
| 		info->nand.ecc.correct = omap_elm_correct_data;
 | |
| 		info->nand.ecc.calculate = omap3_calculate_ecc_bch;
 | |
| 		info->nand.ecc.read_page = omap_read_page_bch;
 | |
| 		info->nand.ecc.write_page = omap_write_page_bch;
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * software bch library is only used to detect and
 | |
| 		 * locate errors
 | |
| 		 */
 | |
| 		info->bch = init_bch(13, max_errors,
 | |
| 				0x201b /* hw polynomial */);
 | |
| 		if (!info->bch)
 | |
| 			goto fail;
 | |
| 
 | |
| 		info->nand.ecc.correct = omap3_correct_data_bch;
 | |
| 
 | |
| 		/*
 | |
| 		 * The number of corrected errors in an ecc block that will
 | |
| 		 * trigger block scrubbing defaults to the ecc strength (4 or 8)
 | |
| 		 * Set mtd->bitflip_threshold here to define a custom threshold.
 | |
| 		 */
 | |
| 
 | |
| 		if (max_errors == 8) {
 | |
| 			info->nand.ecc.bytes = 13;
 | |
| 			info->nand.ecc.calculate = omap3_calculate_ecc_bch8;
 | |
| 		} else {
 | |
| 			info->nand.ecc.bytes = 7;
 | |
| 			info->nand.ecc.calculate = omap3_calculate_ecc_bch4;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	pr_info("enabling NAND BCH ecc with %d-bit correction\n", max_errors);
 | |
| 	return 0;
 | |
| fail:
 | |
| 	omap3_free_bch(mtd);
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * omap3_init_bch_tail - Build an oob layout for BCH ECC correction.
 | |
|  * @mtd: MTD device structure
 | |
|  */
 | |
| static int omap3_init_bch_tail(struct mtd_info *mtd)
 | |
| {
 | |
| 	int i, steps, offset;
 | |
| 	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
 | |
| 						   mtd);
 | |
| 	struct nand_ecclayout *layout = &info->ecclayout;
 | |
| 
 | |
| 	/* build oob layout */
 | |
| 	steps = mtd->writesize/info->nand.ecc.size;
 | |
| 	layout->eccbytes = steps*info->nand.ecc.bytes;
 | |
| 
 | |
| 	/* do not bother creating special oob layouts for small page devices */
 | |
| 	if (mtd->oobsize < 64) {
 | |
| 		pr_err("BCH ecc is not supported on small page devices\n");
 | |
| 		goto fail;
 | |
| 	}
 | |
| 
 | |
| 	/* reserve 2 bytes for bad block marker */
 | |
| 	if (layout->eccbytes+2 > mtd->oobsize) {
 | |
| 		pr_err("no oob layout available for oobsize %d eccbytes %u\n",
 | |
| 		       mtd->oobsize, layout->eccbytes);
 | |
| 		goto fail;
 | |
| 	}
 | |
| 
 | |
| 	/* ECC layout compatible with RBL for BCH8 */
 | |
| 	if (info->is_elm_used && (info->nand.ecc.bytes == BCH8_SIZE))
 | |
| 		offset = 2;
 | |
| 	else
 | |
| 		offset = mtd->oobsize - layout->eccbytes;
 | |
| 
 | |
| 	/* put ecc bytes at oob tail */
 | |
| 	for (i = 0; i < layout->eccbytes; i++)
 | |
| 		layout->eccpos[i] = offset + i;
 | |
| 
 | |
| 	if (info->is_elm_used && (info->nand.ecc.bytes == BCH8_SIZE))
 | |
| 		layout->oobfree[0].offset = 2 + layout->eccbytes * steps;
 | |
| 	else
 | |
| 		layout->oobfree[0].offset = 2;
 | |
| 
 | |
| 	layout->oobfree[0].length = mtd->oobsize-2-layout->eccbytes;
 | |
| 	info->nand.ecc.layout = layout;
 | |
| 
 | |
| 	if (!(info->nand.options & NAND_BUSWIDTH_16))
 | |
| 		info->nand.badblock_pattern = &bb_descrip_flashbased;
 | |
| 	return 0;
 | |
| fail:
 | |
| 	omap3_free_bch(mtd);
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| #else
 | |
| static int omap3_init_bch(struct mtd_info *mtd, int ecc_opt)
 | |
| {
 | |
| 	pr_err("CONFIG_MTD_NAND_OMAP_BCH is not enabled\n");
 | |
| 	return -1;
 | |
| }
 | |
| static int omap3_init_bch_tail(struct mtd_info *mtd)
 | |
| {
 | |
| 	return -1;
 | |
| }
 | |
| static void omap3_free_bch(struct mtd_info *mtd)
 | |
| {
 | |
| }
 | |
| #endif /* CONFIG_MTD_NAND_OMAP_BCH */
 | |
| 
 | |
| static int omap_nand_probe(struct platform_device *pdev)
 | |
| {
 | |
| 	struct omap_nand_info		*info;
 | |
| 	struct omap_nand_platform_data	*pdata;
 | |
| 	int				err;
 | |
| 	int				i, offset;
 | |
| 	dma_cap_mask_t mask;
 | |
| 	unsigned sig;
 | |
| 	struct resource			*res;
 | |
| 	struct mtd_part_parser_data	ppdata = {};
 | |
| 
 | |
| 	pdata = pdev->dev.platform_data;
 | |
| 	if (pdata == NULL) {
 | |
| 		dev_err(&pdev->dev, "platform data missing\n");
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 
 | |
| 	info = kzalloc(sizeof(struct omap_nand_info), GFP_KERNEL);
 | |
| 	if (!info)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	platform_set_drvdata(pdev, info);
 | |
| 
 | |
| 	spin_lock_init(&info->controller.lock);
 | |
| 	init_waitqueue_head(&info->controller.wq);
 | |
| 
 | |
| 	info->pdev = pdev;
 | |
| 
 | |
| 	info->gpmc_cs		= pdata->cs;
 | |
| 	info->reg		= pdata->reg;
 | |
| 
 | |
| 	info->mtd.priv		= &info->nand;
 | |
| 	info->mtd.name		= dev_name(&pdev->dev);
 | |
| 	info->mtd.owner		= THIS_MODULE;
 | |
| 
 | |
| 	info->nand.options	= pdata->devsize;
 | |
| 	info->nand.options	|= NAND_SKIP_BBTSCAN;
 | |
| #ifdef CONFIG_MTD_NAND_OMAP_BCH
 | |
| 	info->of_node		= pdata->of_node;
 | |
| #endif
 | |
| 
 | |
| 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
 | |
| 	if (res == NULL) {
 | |
| 		err = -EINVAL;
 | |
| 		dev_err(&pdev->dev, "error getting memory resource\n");
 | |
| 		goto out_free_info;
 | |
| 	}
 | |
| 
 | |
| 	info->phys_base = res->start;
 | |
| 	info->mem_size = resource_size(res);
 | |
| 
 | |
| 	if (!request_mem_region(info->phys_base, info->mem_size,
 | |
| 				pdev->dev.driver->name)) {
 | |
| 		err = -EBUSY;
 | |
| 		goto out_free_info;
 | |
| 	}
 | |
| 
 | |
| 	info->nand.IO_ADDR_R = ioremap(info->phys_base, info->mem_size);
 | |
| 	if (!info->nand.IO_ADDR_R) {
 | |
| 		err = -ENOMEM;
 | |
| 		goto out_release_mem_region;
 | |
| 	}
 | |
| 
 | |
| 	info->nand.controller = &info->controller;
 | |
| 
 | |
| 	info->nand.IO_ADDR_W = info->nand.IO_ADDR_R;
 | |
| 	info->nand.cmd_ctrl  = omap_hwcontrol;
 | |
| 
 | |
| 	/*
 | |
| 	 * If RDY/BSY line is connected to OMAP then use the omap ready
 | |
| 	 * function and the generic nand_wait function which reads the status
 | |
| 	 * register after monitoring the RDY/BSY line. Otherwise use a standard
 | |
| 	 * chip delay which is slightly more than tR (AC Timing) of the NAND
 | |
| 	 * device and read status register until you get a failure or success
 | |
| 	 */
 | |
| 	if (pdata->dev_ready) {
 | |
| 		info->nand.dev_ready = omap_dev_ready;
 | |
| 		info->nand.chip_delay = 0;
 | |
| 	} else {
 | |
| 		info->nand.waitfunc = omap_wait;
 | |
| 		info->nand.chip_delay = 50;
 | |
| 	}
 | |
| 
 | |
| 	switch (pdata->xfer_type) {
 | |
| 	case NAND_OMAP_PREFETCH_POLLED:
 | |
| 		info->nand.read_buf   = omap_read_buf_pref;
 | |
| 		info->nand.write_buf  = omap_write_buf_pref;
 | |
| 		break;
 | |
| 
 | |
| 	case NAND_OMAP_POLLED:
 | |
| 		if (info->nand.options & NAND_BUSWIDTH_16) {
 | |
| 			info->nand.read_buf   = omap_read_buf16;
 | |
| 			info->nand.write_buf  = omap_write_buf16;
 | |
| 		} else {
 | |
| 			info->nand.read_buf   = omap_read_buf8;
 | |
| 			info->nand.write_buf  = omap_write_buf8;
 | |
| 		}
 | |
| 		break;
 | |
| 
 | |
| 	case NAND_OMAP_PREFETCH_DMA:
 | |
| 		dma_cap_zero(mask);
 | |
| 		dma_cap_set(DMA_SLAVE, mask);
 | |
| 		sig = OMAP24XX_DMA_GPMC;
 | |
| 		info->dma = dma_request_channel(mask, omap_dma_filter_fn, &sig);
 | |
| 		if (!info->dma) {
 | |
| 			dev_err(&pdev->dev, "DMA engine request failed\n");
 | |
| 			err = -ENXIO;
 | |
| 			goto out_release_mem_region;
 | |
| 		} else {
 | |
| 			struct dma_slave_config cfg;
 | |
| 
 | |
| 			memset(&cfg, 0, sizeof(cfg));
 | |
| 			cfg.src_addr = info->phys_base;
 | |
| 			cfg.dst_addr = info->phys_base;
 | |
| 			cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 | |
| 			cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 | |
| 			cfg.src_maxburst = 16;
 | |
| 			cfg.dst_maxburst = 16;
 | |
| 			err = dmaengine_slave_config(info->dma, &cfg);
 | |
| 			if (err) {
 | |
| 				dev_err(&pdev->dev, "DMA engine slave config failed: %d\n",
 | |
| 					err);
 | |
| 				goto out_release_mem_region;
 | |
| 			}
 | |
| 			info->nand.read_buf   = omap_read_buf_dma_pref;
 | |
| 			info->nand.write_buf  = omap_write_buf_dma_pref;
 | |
| 		}
 | |
| 		break;
 | |
| 
 | |
| 	case NAND_OMAP_PREFETCH_IRQ:
 | |
| 		info->gpmc_irq_fifo = platform_get_irq(pdev, 0);
 | |
| 		if (info->gpmc_irq_fifo <= 0) {
 | |
| 			dev_err(&pdev->dev, "error getting fifo irq\n");
 | |
| 			err = -ENODEV;
 | |
| 			goto out_release_mem_region;
 | |
| 		}
 | |
| 		err = request_irq(info->gpmc_irq_fifo,	omap_nand_irq,
 | |
| 					IRQF_SHARED, "gpmc-nand-fifo", info);
 | |
| 		if (err) {
 | |
| 			dev_err(&pdev->dev, "requesting irq(%d) error:%d",
 | |
| 						info->gpmc_irq_fifo, err);
 | |
| 			info->gpmc_irq_fifo = 0;
 | |
| 			goto out_release_mem_region;
 | |
| 		}
 | |
| 
 | |
| 		info->gpmc_irq_count = platform_get_irq(pdev, 1);
 | |
| 		if (info->gpmc_irq_count <= 0) {
 | |
| 			dev_err(&pdev->dev, "error getting count irq\n");
 | |
| 			err = -ENODEV;
 | |
| 			goto out_release_mem_region;
 | |
| 		}
 | |
| 		err = request_irq(info->gpmc_irq_count,	omap_nand_irq,
 | |
| 					IRQF_SHARED, "gpmc-nand-count", info);
 | |
| 		if (err) {
 | |
| 			dev_err(&pdev->dev, "requesting irq(%d) error:%d",
 | |
| 						info->gpmc_irq_count, err);
 | |
| 			info->gpmc_irq_count = 0;
 | |
| 			goto out_release_mem_region;
 | |
| 		}
 | |
| 
 | |
| 		info->nand.read_buf  = omap_read_buf_irq_pref;
 | |
| 		info->nand.write_buf = omap_write_buf_irq_pref;
 | |
| 
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		dev_err(&pdev->dev,
 | |
| 			"xfer_type(%d) not supported!\n", pdata->xfer_type);
 | |
| 		err = -EINVAL;
 | |
| 		goto out_release_mem_region;
 | |
| 	}
 | |
| 
 | |
| 	/* select the ecc type */
 | |
| 	if (pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_DEFAULT)
 | |
| 		info->nand.ecc.mode = NAND_ECC_SOFT;
 | |
| 	else if ((pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_HW) ||
 | |
| 		(pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_HW_ROMCODE)) {
 | |
| 		info->nand.ecc.bytes            = 3;
 | |
| 		info->nand.ecc.size             = 512;
 | |
| 		info->nand.ecc.strength         = 1;
 | |
| 		info->nand.ecc.calculate        = omap_calculate_ecc;
 | |
| 		info->nand.ecc.hwctl            = omap_enable_hwecc;
 | |
| 		info->nand.ecc.correct          = omap_correct_data;
 | |
| 		info->nand.ecc.mode             = NAND_ECC_HW;
 | |
| 	} else if ((pdata->ecc_opt == OMAP_ECC_BCH4_CODE_HW) ||
 | |
| 		   (pdata->ecc_opt == OMAP_ECC_BCH8_CODE_HW)) {
 | |
| 		err = omap3_init_bch(&info->mtd, pdata->ecc_opt);
 | |
| 		if (err) {
 | |
| 			err = -EINVAL;
 | |
| 			goto out_release_mem_region;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* DIP switches on some boards change between 8 and 16 bit
 | |
| 	 * bus widths for flash.  Try the other width if the first try fails.
 | |
| 	 */
 | |
| 	if (nand_scan_ident(&info->mtd, 1, NULL)) {
 | |
| 		info->nand.options ^= NAND_BUSWIDTH_16;
 | |
| 		if (nand_scan_ident(&info->mtd, 1, NULL)) {
 | |
| 			err = -ENXIO;
 | |
| 			goto out_release_mem_region;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* rom code layout */
 | |
| 	if (pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_HW_ROMCODE) {
 | |
| 
 | |
| 		if (info->nand.options & NAND_BUSWIDTH_16)
 | |
| 			offset = 2;
 | |
| 		else {
 | |
| 			offset = 1;
 | |
| 			info->nand.badblock_pattern = &bb_descrip_flashbased;
 | |
| 		}
 | |
| 		omap_oobinfo.eccbytes = 3 * (info->mtd.oobsize/16);
 | |
| 		for (i = 0; i < omap_oobinfo.eccbytes; i++)
 | |
| 			omap_oobinfo.eccpos[i] = i+offset;
 | |
| 
 | |
| 		omap_oobinfo.oobfree->offset = offset + omap_oobinfo.eccbytes;
 | |
| 		omap_oobinfo.oobfree->length = info->mtd.oobsize -
 | |
| 					(offset + omap_oobinfo.eccbytes);
 | |
| 
 | |
| 		info->nand.ecc.layout = &omap_oobinfo;
 | |
| 	} else if ((pdata->ecc_opt == OMAP_ECC_BCH4_CODE_HW) ||
 | |
| 		   (pdata->ecc_opt == OMAP_ECC_BCH8_CODE_HW)) {
 | |
| 		/* build OOB layout for BCH ECC correction */
 | |
| 		err = omap3_init_bch_tail(&info->mtd);
 | |
| 		if (err) {
 | |
| 			err = -EINVAL;
 | |
| 			goto out_release_mem_region;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* second phase scan */
 | |
| 	if (nand_scan_tail(&info->mtd)) {
 | |
| 		err = -ENXIO;
 | |
| 		goto out_release_mem_region;
 | |
| 	}
 | |
| 
 | |
| 	ppdata.of_node = pdata->of_node;
 | |
| 	mtd_device_parse_register(&info->mtd, NULL, &ppdata, pdata->parts,
 | |
| 				  pdata->nr_parts);
 | |
| 
 | |
| 	platform_set_drvdata(pdev, &info->mtd);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| out_release_mem_region:
 | |
| 	if (info->dma)
 | |
| 		dma_release_channel(info->dma);
 | |
| 	if (info->gpmc_irq_count > 0)
 | |
| 		free_irq(info->gpmc_irq_count, info);
 | |
| 	if (info->gpmc_irq_fifo > 0)
 | |
| 		free_irq(info->gpmc_irq_fifo, info);
 | |
| 	release_mem_region(info->phys_base, info->mem_size);
 | |
| out_free_info:
 | |
| 	kfree(info);
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static int omap_nand_remove(struct platform_device *pdev)
 | |
| {
 | |
| 	struct mtd_info *mtd = platform_get_drvdata(pdev);
 | |
| 	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
 | |
| 							mtd);
 | |
| 	omap3_free_bch(&info->mtd);
 | |
| 
 | |
| 	platform_set_drvdata(pdev, NULL);
 | |
| 	if (info->dma)
 | |
| 		dma_release_channel(info->dma);
 | |
| 
 | |
| 	if (info->gpmc_irq_count > 0)
 | |
| 		free_irq(info->gpmc_irq_count, info);
 | |
| 	if (info->gpmc_irq_fifo > 0)
 | |
| 		free_irq(info->gpmc_irq_fifo, info);
 | |
| 
 | |
| 	/* Release NAND device, its internal structures and partitions */
 | |
| 	nand_release(&info->mtd);
 | |
| 	iounmap(info->nand.IO_ADDR_R);
 | |
| 	release_mem_region(info->phys_base, info->mem_size);
 | |
| 	kfree(info);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static struct platform_driver omap_nand_driver = {
 | |
| 	.probe		= omap_nand_probe,
 | |
| 	.remove		= omap_nand_remove,
 | |
| 	.driver		= {
 | |
| 		.name	= DRIVER_NAME,
 | |
| 		.owner	= THIS_MODULE,
 | |
| 	},
 | |
| };
 | |
| 
 | |
| module_platform_driver(omap_nand_driver);
 | |
| 
 | |
| MODULE_ALIAS("platform:" DRIVER_NAME);
 | |
| MODULE_LICENSE("GPL");
 | |
| MODULE_DESCRIPTION("Glue layer for NAND flash on TI OMAP boards");
 |