add kernel/sched_rt.c: SCHED_FIFO/SCHED_RR support. The behavior and semantics of SCHED_FIFO/SCHED_RR tasks is unchanged. Signed-off-by: Ingo Molnar <mingo@elte.hu>
		
			
				
	
	
		
			255 lines
		
	
	
	
		
			6 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			255 lines
		
	
	
	
		
			6 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
 | 
						|
 * policies)
 | 
						|
 */
 | 
						|
 | 
						|
/*
 | 
						|
 * Update the current task's runtime statistics. Skip current tasks that
 | 
						|
 * are not in our scheduling class.
 | 
						|
 */
 | 
						|
static inline void update_curr_rt(struct rq *rq, u64 now)
 | 
						|
{
 | 
						|
	struct task_struct *curr = rq->curr;
 | 
						|
	u64 delta_exec;
 | 
						|
 | 
						|
	if (!task_has_rt_policy(curr))
 | 
						|
		return;
 | 
						|
 | 
						|
	delta_exec = now - curr->se.exec_start;
 | 
						|
	if (unlikely((s64)delta_exec < 0))
 | 
						|
		delta_exec = 0;
 | 
						|
	if (unlikely(delta_exec > curr->se.exec_max))
 | 
						|
		curr->se.exec_max = delta_exec;
 | 
						|
 | 
						|
	curr->se.sum_exec_runtime += delta_exec;
 | 
						|
	curr->se.exec_start = now;
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup, u64 now)
 | 
						|
{
 | 
						|
	struct rt_prio_array *array = &rq->rt.active;
 | 
						|
 | 
						|
	list_add_tail(&p->run_list, array->queue + p->prio);
 | 
						|
	__set_bit(p->prio, array->bitmap);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Adding/removing a task to/from a priority array:
 | 
						|
 */
 | 
						|
static void
 | 
						|
dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep, u64 now)
 | 
						|
{
 | 
						|
	struct rt_prio_array *array = &rq->rt.active;
 | 
						|
 | 
						|
	update_curr_rt(rq, now);
 | 
						|
 | 
						|
	list_del(&p->run_list);
 | 
						|
	if (list_empty(array->queue + p->prio))
 | 
						|
		__clear_bit(p->prio, array->bitmap);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Put task to the end of the run list without the overhead of dequeue
 | 
						|
 * followed by enqueue.
 | 
						|
 */
 | 
						|
static void requeue_task_rt(struct rq *rq, struct task_struct *p)
 | 
						|
{
 | 
						|
	struct rt_prio_array *array = &rq->rt.active;
 | 
						|
 | 
						|
	list_move_tail(&p->run_list, array->queue + p->prio);
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
yield_task_rt(struct rq *rq, struct task_struct *p)
 | 
						|
{
 | 
						|
	requeue_task_rt(rq, p);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Preempt the current task with a newly woken task if needed:
 | 
						|
 */
 | 
						|
static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p)
 | 
						|
{
 | 
						|
	if (p->prio < rq->curr->prio)
 | 
						|
		resched_task(rq->curr);
 | 
						|
}
 | 
						|
 | 
						|
static struct task_struct *pick_next_task_rt(struct rq *rq, u64 now)
 | 
						|
{
 | 
						|
	struct rt_prio_array *array = &rq->rt.active;
 | 
						|
	struct task_struct *next;
 | 
						|
	struct list_head *queue;
 | 
						|
	int idx;
 | 
						|
 | 
						|
	idx = sched_find_first_bit(array->bitmap);
 | 
						|
	if (idx >= MAX_RT_PRIO)
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	queue = array->queue + idx;
 | 
						|
	next = list_entry(queue->next, struct task_struct, run_list);
 | 
						|
 | 
						|
	next->se.exec_start = now;
 | 
						|
 | 
						|
	return next;
 | 
						|
}
 | 
						|
 | 
						|
static void put_prev_task_rt(struct rq *rq, struct task_struct *p, u64 now)
 | 
						|
{
 | 
						|
	update_curr_rt(rq, now);
 | 
						|
	p->se.exec_start = 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Load-balancing iterator. Note: while the runqueue stays locked
 | 
						|
 * during the whole iteration, the current task might be
 | 
						|
 * dequeued so the iterator has to be dequeue-safe. Here we
 | 
						|
 * achieve that by always pre-iterating before returning
 | 
						|
 * the current task:
 | 
						|
 */
 | 
						|
static struct task_struct *load_balance_start_rt(void *arg)
 | 
						|
{
 | 
						|
	struct rq *rq = arg;
 | 
						|
	struct rt_prio_array *array = &rq->rt.active;
 | 
						|
	struct list_head *head, *curr;
 | 
						|
	struct task_struct *p;
 | 
						|
	int idx;
 | 
						|
 | 
						|
	idx = sched_find_first_bit(array->bitmap);
 | 
						|
	if (idx >= MAX_RT_PRIO)
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	head = array->queue + idx;
 | 
						|
	curr = head->prev;
 | 
						|
 | 
						|
	p = list_entry(curr, struct task_struct, run_list);
 | 
						|
 | 
						|
	curr = curr->prev;
 | 
						|
 | 
						|
	rq->rt.rt_load_balance_idx = idx;
 | 
						|
	rq->rt.rt_load_balance_head = head;
 | 
						|
	rq->rt.rt_load_balance_curr = curr;
 | 
						|
 | 
						|
	return p;
 | 
						|
}
 | 
						|
 | 
						|
static struct task_struct *load_balance_next_rt(void *arg)
 | 
						|
{
 | 
						|
	struct rq *rq = arg;
 | 
						|
	struct rt_prio_array *array = &rq->rt.active;
 | 
						|
	struct list_head *head, *curr;
 | 
						|
	struct task_struct *p;
 | 
						|
	int idx;
 | 
						|
 | 
						|
	idx = rq->rt.rt_load_balance_idx;
 | 
						|
	head = rq->rt.rt_load_balance_head;
 | 
						|
	curr = rq->rt.rt_load_balance_curr;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If we arrived back to the head again then
 | 
						|
	 * iterate to the next queue (if any):
 | 
						|
	 */
 | 
						|
	if (unlikely(head == curr)) {
 | 
						|
		int next_idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
 | 
						|
 | 
						|
		if (next_idx >= MAX_RT_PRIO)
 | 
						|
			return NULL;
 | 
						|
 | 
						|
		idx = next_idx;
 | 
						|
		head = array->queue + idx;
 | 
						|
		curr = head->prev;
 | 
						|
 | 
						|
		rq->rt.rt_load_balance_idx = idx;
 | 
						|
		rq->rt.rt_load_balance_head = head;
 | 
						|
	}
 | 
						|
 | 
						|
	p = list_entry(curr, struct task_struct, run_list);
 | 
						|
 | 
						|
	curr = curr->prev;
 | 
						|
 | 
						|
	rq->rt.rt_load_balance_curr = curr;
 | 
						|
 | 
						|
	return p;
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
load_balance_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
 | 
						|
			unsigned long max_nr_move, unsigned long max_load_move,
 | 
						|
			struct sched_domain *sd, enum cpu_idle_type idle,
 | 
						|
			int *all_pinned, unsigned long *load_moved)
 | 
						|
{
 | 
						|
	int this_best_prio, best_prio, best_prio_seen = 0;
 | 
						|
	int nr_moved;
 | 
						|
	struct rq_iterator rt_rq_iterator;
 | 
						|
 | 
						|
	best_prio = sched_find_first_bit(busiest->rt.active.bitmap);
 | 
						|
	this_best_prio = sched_find_first_bit(this_rq->rt.active.bitmap);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Enable handling of the case where there is more than one task
 | 
						|
	 * with the best priority.   If the current running task is one
 | 
						|
	 * of those with prio==best_prio we know it won't be moved
 | 
						|
	 * and therefore it's safe to override the skip (based on load)
 | 
						|
	 * of any task we find with that prio.
 | 
						|
	 */
 | 
						|
	if (busiest->curr->prio == best_prio)
 | 
						|
		best_prio_seen = 1;
 | 
						|
 | 
						|
	rt_rq_iterator.start = load_balance_start_rt;
 | 
						|
	rt_rq_iterator.next = load_balance_next_rt;
 | 
						|
	/* pass 'busiest' rq argument into
 | 
						|
	 * load_balance_[start|next]_rt iterators
 | 
						|
	 */
 | 
						|
	rt_rq_iterator.arg = busiest;
 | 
						|
 | 
						|
	nr_moved = balance_tasks(this_rq, this_cpu, busiest, max_nr_move,
 | 
						|
			max_load_move, sd, idle, all_pinned, load_moved,
 | 
						|
			this_best_prio, best_prio, best_prio_seen,
 | 
						|
			&rt_rq_iterator);
 | 
						|
 | 
						|
	return nr_moved;
 | 
						|
}
 | 
						|
 | 
						|
static void task_tick_rt(struct rq *rq, struct task_struct *p)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * RR tasks need a special form of timeslice management.
 | 
						|
	 * FIFO tasks have no timeslices.
 | 
						|
	 */
 | 
						|
	if (p->policy != SCHED_RR)
 | 
						|
		return;
 | 
						|
 | 
						|
	if (--p->time_slice)
 | 
						|
		return;
 | 
						|
 | 
						|
	p->time_slice = static_prio_timeslice(p->static_prio);
 | 
						|
	set_tsk_need_resched(p);
 | 
						|
 | 
						|
	/* put it at the end of the queue: */
 | 
						|
	requeue_task_rt(rq, p);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * No parent/child timeslice management necessary for RT tasks,
 | 
						|
 * just activate them:
 | 
						|
 */
 | 
						|
static void task_new_rt(struct rq *rq, struct task_struct *p)
 | 
						|
{
 | 
						|
	activate_task(rq, p, 1);
 | 
						|
}
 | 
						|
 | 
						|
static struct sched_class rt_sched_class __read_mostly = {
 | 
						|
	.enqueue_task		= enqueue_task_rt,
 | 
						|
	.dequeue_task		= dequeue_task_rt,
 | 
						|
	.yield_task		= yield_task_rt,
 | 
						|
 | 
						|
	.check_preempt_curr	= check_preempt_curr_rt,
 | 
						|
 | 
						|
	.pick_next_task		= pick_next_task_rt,
 | 
						|
	.put_prev_task		= put_prev_task_rt,
 | 
						|
 | 
						|
	.load_balance		= load_balance_rt,
 | 
						|
 | 
						|
	.task_tick		= task_tick_rt,
 | 
						|
	.task_new		= task_new_rt,
 | 
						|
};
 |