 cc07aabc53
			
		
	
	
	cc07aabc53
	
	
	
		
			
			Strings library contributed to glibc but re-licensed under GPLv2) - Optimised crypto algorithms making use of the ARMv8 crypto extensions (together with kernel API for using FPSIMD instructions in interrupt context) - Ftrace support - CPU topology parsing from DT - ESR_EL1 (Exception Syndrome Register) exposed to user space signal handlers for SIGSEGV/SIGBUS (useful to emulation tools like Qemu) - 1GB section linear mapping if applicable - Barriers usage clean-up - Default pgprot clean-up -----BEGIN PGP SIGNATURE----- Version: GnuPG v1.4.9 (GNU/Linux) iQIcBAABAgAGBQJTkb+CAAoJEGvWsS0AyF7xLyEQAJgL8s2SdDyd+R8aukNDu3n9 tCK7yVHO9Kg96dfeXVuSOVEo2jszo6R3nxzUL05FMovr230WBcmoeHvHz8ETGnw1 g0yO8Ltkckjevog4UleCa3wGtYISjvwwrTalzbqoEWzsF2AV8oiqv/yuIn/EdkUr jaOqfNsnAQa8TIz4vMhi/AVdJWTTU/F6WP80oqCbxqXu/WL2InuBlHtOJMbk1HDI u1DJUGDQ1B9OgSVRkAOjCjSsEtz8sDY3lXsg3V1qT5+NbZTyomYM2IiBLdgQcX4P t/rqX9nX4VmRQtzefeP5WhKFks2x80C0BKibWC4teeL++tJHbgbFkyjoZZGcP27o zued3cYABrjrcAEU6ko/LUiL2Q4ozBOzosClpjpWulCxNPzsOps82UZWo3F3XbAt xjE3k7WF9WeNBOJdDGrarEaSLdnjjgCLoWVs8cOUYLpOOrtdSw16D29jJ68U0Y5g 31wdwKxoueC8SFt8M9fP9J9Jyau08g+kvW1xQXrRmroppweFxjSpSy90imARyux/ wUFz79HxkQB79ZHpJ0I5TNrw/w+7pBnfVSKGPOzrk+ZUsaH76caNRBoffUCzFMzz T3Sc8A36TZtOIcGR/Q4DMZNFXlIUXDSzCHP2Iu0QoIjTd5Ex96cqNvy3nswCYWwv yGe3ZEqUq9+WL7snNW4v =Jj8U -----END PGP SIGNATURE----- Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux into next Pull arm64 updates from Catalin Marinas: - Optimised assembly string/memory routines (based on the AArch64 Cortex Strings library contributed to glibc but re-licensed under GPLv2) - Optimised crypto algorithms making use of the ARMv8 crypto extensions (together with kernel API for using FPSIMD instructions in interrupt context) - Ftrace support - CPU topology parsing from DT - ESR_EL1 (Exception Syndrome Register) exposed to user space signal handlers for SIGSEGV/SIGBUS (useful to emulation tools like Qemu) - 1GB section linear mapping if applicable - Barriers usage clean-up - Default pgprot clean-up Conflicts as per Catalin. * tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (57 commits) arm64: kernel: initialize broadcast hrtimer based clock event device arm64: ftrace: Add system call tracepoint arm64: ftrace: Add CALLER_ADDRx macros arm64: ftrace: Add dynamic ftrace support arm64: Add ftrace support ftrace: Add arm64 support to recordmcount arm64: Add 'notrace' attribute to unwind_frame() for ftrace arm64: add __ASSEMBLY__ in asm/insn.h arm64: Fix linker script entry point arm64: lib: Implement optimized string length routines arm64: lib: Implement optimized string compare routines arm64: lib: Implement optimized memcmp routine arm64: lib: Implement optimized memset routine arm64: lib: Implement optimized memmove routine arm64: lib: Implement optimized memcpy routine arm64: defconfig: enable a few more common/useful options in defconfig ftrace: Make CALLER_ADDRx macros more generic arm64: Fix deadlock scenario with smp_send_stop() arm64: Fix machine_shutdown() definition arm64: Support arch_irq_work_raise() via self IPIs ...
		
			
				
	
	
		
			645 lines
		
	
	
	
		
			14 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			645 lines
		
	
	
	
		
			14 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * SMP initialisation and IPI support
 | |
|  * Based on arch/arm/kernel/smp.c
 | |
|  *
 | |
|  * Copyright (C) 2012 ARM Ltd.
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License version 2 as
 | |
|  * published by the Free Software Foundation.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 | |
|  */
 | |
| 
 | |
| #include <linux/delay.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/spinlock.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/cache.h>
 | |
| #include <linux/profile.h>
 | |
| #include <linux/errno.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/err.h>
 | |
| #include <linux/cpu.h>
 | |
| #include <linux/smp.h>
 | |
| #include <linux/seq_file.h>
 | |
| #include <linux/irq.h>
 | |
| #include <linux/percpu.h>
 | |
| #include <linux/clockchips.h>
 | |
| #include <linux/completion.h>
 | |
| #include <linux/of.h>
 | |
| #include <linux/irq_work.h>
 | |
| 
 | |
| #include <asm/atomic.h>
 | |
| #include <asm/cacheflush.h>
 | |
| #include <asm/cputype.h>
 | |
| #include <asm/cpu_ops.h>
 | |
| #include <asm/mmu_context.h>
 | |
| #include <asm/pgtable.h>
 | |
| #include <asm/pgalloc.h>
 | |
| #include <asm/processor.h>
 | |
| #include <asm/smp_plat.h>
 | |
| #include <asm/sections.h>
 | |
| #include <asm/tlbflush.h>
 | |
| #include <asm/ptrace.h>
 | |
| 
 | |
| /*
 | |
|  * as from 2.5, kernels no longer have an init_tasks structure
 | |
|  * so we need some other way of telling a new secondary core
 | |
|  * where to place its SVC stack
 | |
|  */
 | |
| struct secondary_data secondary_data;
 | |
| 
 | |
| enum ipi_msg_type {
 | |
| 	IPI_RESCHEDULE,
 | |
| 	IPI_CALL_FUNC,
 | |
| 	IPI_CALL_FUNC_SINGLE,
 | |
| 	IPI_CPU_STOP,
 | |
| 	IPI_TIMER,
 | |
| 	IPI_IRQ_WORK,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Boot a secondary CPU, and assign it the specified idle task.
 | |
|  * This also gives us the initial stack to use for this CPU.
 | |
|  */
 | |
| static int boot_secondary(unsigned int cpu, struct task_struct *idle)
 | |
| {
 | |
| 	if (cpu_ops[cpu]->cpu_boot)
 | |
| 		return cpu_ops[cpu]->cpu_boot(cpu);
 | |
| 
 | |
| 	return -EOPNOTSUPP;
 | |
| }
 | |
| 
 | |
| static DECLARE_COMPLETION(cpu_running);
 | |
| 
 | |
| int __cpu_up(unsigned int cpu, struct task_struct *idle)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * We need to tell the secondary core where to find its stack and the
 | |
| 	 * page tables.
 | |
| 	 */
 | |
| 	secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
 | |
| 	__flush_dcache_area(&secondary_data, sizeof(secondary_data));
 | |
| 
 | |
| 	/*
 | |
| 	 * Now bring the CPU into our world.
 | |
| 	 */
 | |
| 	ret = boot_secondary(cpu, idle);
 | |
| 	if (ret == 0) {
 | |
| 		/*
 | |
| 		 * CPU was successfully started, wait for it to come online or
 | |
| 		 * time out.
 | |
| 		 */
 | |
| 		wait_for_completion_timeout(&cpu_running,
 | |
| 					    msecs_to_jiffies(1000));
 | |
| 
 | |
| 		if (!cpu_online(cpu)) {
 | |
| 			pr_crit("CPU%u: failed to come online\n", cpu);
 | |
| 			ret = -EIO;
 | |
| 		}
 | |
| 	} else {
 | |
| 		pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
 | |
| 	}
 | |
| 
 | |
| 	secondary_data.stack = NULL;
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void smp_store_cpu_info(unsigned int cpuid)
 | |
| {
 | |
| 	store_cpu_topology(cpuid);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is the secondary CPU boot entry.  We're using this CPUs
 | |
|  * idle thread stack, but a set of temporary page tables.
 | |
|  */
 | |
| asmlinkage void secondary_start_kernel(void)
 | |
| {
 | |
| 	struct mm_struct *mm = &init_mm;
 | |
| 	unsigned int cpu = smp_processor_id();
 | |
| 
 | |
| 	/*
 | |
| 	 * All kernel threads share the same mm context; grab a
 | |
| 	 * reference and switch to it.
 | |
| 	 */
 | |
| 	atomic_inc(&mm->mm_count);
 | |
| 	current->active_mm = mm;
 | |
| 	cpumask_set_cpu(cpu, mm_cpumask(mm));
 | |
| 
 | |
| 	set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
 | |
| 	printk("CPU%u: Booted secondary processor\n", cpu);
 | |
| 
 | |
| 	/*
 | |
| 	 * TTBR0 is only used for the identity mapping at this stage. Make it
 | |
| 	 * point to zero page to avoid speculatively fetching new entries.
 | |
| 	 */
 | |
| 	cpu_set_reserved_ttbr0();
 | |
| 	flush_tlb_all();
 | |
| 
 | |
| 	preempt_disable();
 | |
| 	trace_hardirqs_off();
 | |
| 
 | |
| 	if (cpu_ops[cpu]->cpu_postboot)
 | |
| 		cpu_ops[cpu]->cpu_postboot();
 | |
| 
 | |
| 	/*
 | |
| 	 * Enable GIC and timers.
 | |
| 	 */
 | |
| 	notify_cpu_starting(cpu);
 | |
| 
 | |
| 	smp_store_cpu_info(cpu);
 | |
| 
 | |
| 	/*
 | |
| 	 * OK, now it's safe to let the boot CPU continue.  Wait for
 | |
| 	 * the CPU migration code to notice that the CPU is online
 | |
| 	 * before we continue.
 | |
| 	 */
 | |
| 	set_cpu_online(cpu, true);
 | |
| 	complete(&cpu_running);
 | |
| 
 | |
| 	local_dbg_enable();
 | |
| 	local_irq_enable();
 | |
| 	local_async_enable();
 | |
| 
 | |
| 	/*
 | |
| 	 * OK, it's off to the idle thread for us
 | |
| 	 */
 | |
| 	cpu_startup_entry(CPUHP_ONLINE);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_HOTPLUG_CPU
 | |
| static int op_cpu_disable(unsigned int cpu)
 | |
| {
 | |
| 	/*
 | |
| 	 * If we don't have a cpu_die method, abort before we reach the point
 | |
| 	 * of no return. CPU0 may not have an cpu_ops, so test for it.
 | |
| 	 */
 | |
| 	if (!cpu_ops[cpu] || !cpu_ops[cpu]->cpu_die)
 | |
| 		return -EOPNOTSUPP;
 | |
| 
 | |
| 	/*
 | |
| 	 * We may need to abort a hot unplug for some other mechanism-specific
 | |
| 	 * reason.
 | |
| 	 */
 | |
| 	if (cpu_ops[cpu]->cpu_disable)
 | |
| 		return cpu_ops[cpu]->cpu_disable(cpu);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * __cpu_disable runs on the processor to be shutdown.
 | |
|  */
 | |
| int __cpu_disable(void)
 | |
| {
 | |
| 	unsigned int cpu = smp_processor_id();
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = op_cpu_disable(cpu);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * Take this CPU offline.  Once we clear this, we can't return,
 | |
| 	 * and we must not schedule until we're ready to give up the cpu.
 | |
| 	 */
 | |
| 	set_cpu_online(cpu, false);
 | |
| 
 | |
| 	/*
 | |
| 	 * OK - migrate IRQs away from this CPU
 | |
| 	 */
 | |
| 	migrate_irqs();
 | |
| 
 | |
| 	/*
 | |
| 	 * Remove this CPU from the vm mask set of all processes.
 | |
| 	 */
 | |
| 	clear_tasks_mm_cpumask(cpu);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int op_cpu_kill(unsigned int cpu)
 | |
| {
 | |
| 	/*
 | |
| 	 * If we have no means of synchronising with the dying CPU, then assume
 | |
| 	 * that it is really dead. We can only wait for an arbitrary length of
 | |
| 	 * time and hope that it's dead, so let's skip the wait and just hope.
 | |
| 	 */
 | |
| 	if (!cpu_ops[cpu]->cpu_kill)
 | |
| 		return 1;
 | |
| 
 | |
| 	return cpu_ops[cpu]->cpu_kill(cpu);
 | |
| }
 | |
| 
 | |
| static DECLARE_COMPLETION(cpu_died);
 | |
| 
 | |
| /*
 | |
|  * called on the thread which is asking for a CPU to be shutdown -
 | |
|  * waits until shutdown has completed, or it is timed out.
 | |
|  */
 | |
| void __cpu_die(unsigned int cpu)
 | |
| {
 | |
| 	if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) {
 | |
| 		pr_crit("CPU%u: cpu didn't die\n", cpu);
 | |
| 		return;
 | |
| 	}
 | |
| 	pr_notice("CPU%u: shutdown\n", cpu);
 | |
| 
 | |
| 	/*
 | |
| 	 * Now that the dying CPU is beyond the point of no return w.r.t.
 | |
| 	 * in-kernel synchronisation, try to get the firwmare to help us to
 | |
| 	 * verify that it has really left the kernel before we consider
 | |
| 	 * clobbering anything it might still be using.
 | |
| 	 */
 | |
| 	if (!op_cpu_kill(cpu))
 | |
| 		pr_warn("CPU%d may not have shut down cleanly\n", cpu);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Called from the idle thread for the CPU which has been shutdown.
 | |
|  *
 | |
|  * Note that we disable IRQs here, but do not re-enable them
 | |
|  * before returning to the caller. This is also the behaviour
 | |
|  * of the other hotplug-cpu capable cores, so presumably coming
 | |
|  * out of idle fixes this.
 | |
|  */
 | |
| void cpu_die(void)
 | |
| {
 | |
| 	unsigned int cpu = smp_processor_id();
 | |
| 
 | |
| 	idle_task_exit();
 | |
| 
 | |
| 	local_irq_disable();
 | |
| 
 | |
| 	/* Tell __cpu_die() that this CPU is now safe to dispose of */
 | |
| 	complete(&cpu_died);
 | |
| 
 | |
| 	/*
 | |
| 	 * Actually shutdown the CPU. This must never fail. The specific hotplug
 | |
| 	 * mechanism must perform all required cache maintenance to ensure that
 | |
| 	 * no dirty lines are lost in the process of shutting down the CPU.
 | |
| 	 */
 | |
| 	cpu_ops[cpu]->cpu_die(cpu);
 | |
| 
 | |
| 	BUG();
 | |
| }
 | |
| #endif
 | |
| 
 | |
| void __init smp_cpus_done(unsigned int max_cpus)
 | |
| {
 | |
| 	pr_info("SMP: Total of %d processors activated.\n", num_online_cpus());
 | |
| }
 | |
| 
 | |
| void __init smp_prepare_boot_cpu(void)
 | |
| {
 | |
| 	set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
 | |
| }
 | |
| 
 | |
| static void (*smp_cross_call)(const struct cpumask *, unsigned int);
 | |
| 
 | |
| /*
 | |
|  * Enumerate the possible CPU set from the device tree and build the
 | |
|  * cpu logical map array containing MPIDR values related to logical
 | |
|  * cpus. Assumes that cpu_logical_map(0) has already been initialized.
 | |
|  */
 | |
| void __init smp_init_cpus(void)
 | |
| {
 | |
| 	struct device_node *dn = NULL;
 | |
| 	unsigned int i, cpu = 1;
 | |
| 	bool bootcpu_valid = false;
 | |
| 
 | |
| 	while ((dn = of_find_node_by_type(dn, "cpu"))) {
 | |
| 		const u32 *cell;
 | |
| 		u64 hwid;
 | |
| 
 | |
| 		/*
 | |
| 		 * A cpu node with missing "reg" property is
 | |
| 		 * considered invalid to build a cpu_logical_map
 | |
| 		 * entry.
 | |
| 		 */
 | |
| 		cell = of_get_property(dn, "reg", NULL);
 | |
| 		if (!cell) {
 | |
| 			pr_err("%s: missing reg property\n", dn->full_name);
 | |
| 			goto next;
 | |
| 		}
 | |
| 		hwid = of_read_number(cell, of_n_addr_cells(dn));
 | |
| 
 | |
| 		/*
 | |
| 		 * Non affinity bits must be set to 0 in the DT
 | |
| 		 */
 | |
| 		if (hwid & ~MPIDR_HWID_BITMASK) {
 | |
| 			pr_err("%s: invalid reg property\n", dn->full_name);
 | |
| 			goto next;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Duplicate MPIDRs are a recipe for disaster. Scan
 | |
| 		 * all initialized entries and check for
 | |
| 		 * duplicates. If any is found just ignore the cpu.
 | |
| 		 * cpu_logical_map was initialized to INVALID_HWID to
 | |
| 		 * avoid matching valid MPIDR values.
 | |
| 		 */
 | |
| 		for (i = 1; (i < cpu) && (i < NR_CPUS); i++) {
 | |
| 			if (cpu_logical_map(i) == hwid) {
 | |
| 				pr_err("%s: duplicate cpu reg properties in the DT\n",
 | |
| 					dn->full_name);
 | |
| 				goto next;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * The numbering scheme requires that the boot CPU
 | |
| 		 * must be assigned logical id 0. Record it so that
 | |
| 		 * the logical map built from DT is validated and can
 | |
| 		 * be used.
 | |
| 		 */
 | |
| 		if (hwid == cpu_logical_map(0)) {
 | |
| 			if (bootcpu_valid) {
 | |
| 				pr_err("%s: duplicate boot cpu reg property in DT\n",
 | |
| 					dn->full_name);
 | |
| 				goto next;
 | |
| 			}
 | |
| 
 | |
| 			bootcpu_valid = true;
 | |
| 
 | |
| 			/*
 | |
| 			 * cpu_logical_map has already been
 | |
| 			 * initialized and the boot cpu doesn't need
 | |
| 			 * the enable-method so continue without
 | |
| 			 * incrementing cpu.
 | |
| 			 */
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (cpu >= NR_CPUS)
 | |
| 			goto next;
 | |
| 
 | |
| 		if (cpu_read_ops(dn, cpu) != 0)
 | |
| 			goto next;
 | |
| 
 | |
| 		if (cpu_ops[cpu]->cpu_init(dn, cpu))
 | |
| 			goto next;
 | |
| 
 | |
| 		pr_debug("cpu logical map 0x%llx\n", hwid);
 | |
| 		cpu_logical_map(cpu) = hwid;
 | |
| next:
 | |
| 		cpu++;
 | |
| 	}
 | |
| 
 | |
| 	/* sanity check */
 | |
| 	if (cpu > NR_CPUS)
 | |
| 		pr_warning("no. of cores (%d) greater than configured maximum of %d - clipping\n",
 | |
| 			   cpu, NR_CPUS);
 | |
| 
 | |
| 	if (!bootcpu_valid) {
 | |
| 		pr_err("DT missing boot CPU MPIDR, not enabling secondaries\n");
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * All the cpus that made it to the cpu_logical_map have been
 | |
| 	 * validated so set them as possible cpus.
 | |
| 	 */
 | |
| 	for (i = 0; i < NR_CPUS; i++)
 | |
| 		if (cpu_logical_map(i) != INVALID_HWID)
 | |
| 			set_cpu_possible(i, true);
 | |
| }
 | |
| 
 | |
| void __init smp_prepare_cpus(unsigned int max_cpus)
 | |
| {
 | |
| 	int err;
 | |
| 	unsigned int cpu, ncores = num_possible_cpus();
 | |
| 
 | |
| 	init_cpu_topology();
 | |
| 
 | |
| 	smp_store_cpu_info(smp_processor_id());
 | |
| 
 | |
| 	/*
 | |
| 	 * are we trying to boot more cores than exist?
 | |
| 	 */
 | |
| 	if (max_cpus > ncores)
 | |
| 		max_cpus = ncores;
 | |
| 
 | |
| 	/* Don't bother if we're effectively UP */
 | |
| 	if (max_cpus <= 1)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * Initialise the present map (which describes the set of CPUs
 | |
| 	 * actually populated at the present time) and release the
 | |
| 	 * secondaries from the bootloader.
 | |
| 	 *
 | |
| 	 * Make sure we online at most (max_cpus - 1) additional CPUs.
 | |
| 	 */
 | |
| 	max_cpus--;
 | |
| 	for_each_possible_cpu(cpu) {
 | |
| 		if (max_cpus == 0)
 | |
| 			break;
 | |
| 
 | |
| 		if (cpu == smp_processor_id())
 | |
| 			continue;
 | |
| 
 | |
| 		if (!cpu_ops[cpu])
 | |
| 			continue;
 | |
| 
 | |
| 		err = cpu_ops[cpu]->cpu_prepare(cpu);
 | |
| 		if (err)
 | |
| 			continue;
 | |
| 
 | |
| 		set_cpu_present(cpu, true);
 | |
| 		max_cpus--;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
 | |
| {
 | |
| 	smp_cross_call = fn;
 | |
| }
 | |
| 
 | |
| void arch_send_call_function_ipi_mask(const struct cpumask *mask)
 | |
| {
 | |
| 	smp_cross_call(mask, IPI_CALL_FUNC);
 | |
| }
 | |
| 
 | |
| void arch_send_call_function_single_ipi(int cpu)
 | |
| {
 | |
| 	smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_IRQ_WORK
 | |
| void arch_irq_work_raise(void)
 | |
| {
 | |
| 	if (smp_cross_call)
 | |
| 		smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static const char *ipi_types[NR_IPI] = {
 | |
| #define S(x,s)	[x - IPI_RESCHEDULE] = s
 | |
| 	S(IPI_RESCHEDULE, "Rescheduling interrupts"),
 | |
| 	S(IPI_CALL_FUNC, "Function call interrupts"),
 | |
| 	S(IPI_CALL_FUNC_SINGLE, "Single function call interrupts"),
 | |
| 	S(IPI_CPU_STOP, "CPU stop interrupts"),
 | |
| 	S(IPI_TIMER, "Timer broadcast interrupts"),
 | |
| 	S(IPI_IRQ_WORK, "IRQ work interrupts"),
 | |
| };
 | |
| 
 | |
| void show_ipi_list(struct seq_file *p, int prec)
 | |
| {
 | |
| 	unsigned int cpu, i;
 | |
| 
 | |
| 	for (i = 0; i < NR_IPI; i++) {
 | |
| 		seq_printf(p, "%*s%u:%s", prec - 1, "IPI", i + IPI_RESCHEDULE,
 | |
| 			   prec >= 4 ? " " : "");
 | |
| 		for_each_online_cpu(cpu)
 | |
| 			seq_printf(p, "%10u ",
 | |
| 				   __get_irq_stat(cpu, ipi_irqs[i]));
 | |
| 		seq_printf(p, "      %s\n", ipi_types[i]);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| u64 smp_irq_stat_cpu(unsigned int cpu)
 | |
| {
 | |
| 	u64 sum = 0;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < NR_IPI; i++)
 | |
| 		sum += __get_irq_stat(cpu, ipi_irqs[i]);
 | |
| 
 | |
| 	return sum;
 | |
| }
 | |
| 
 | |
| static DEFINE_RAW_SPINLOCK(stop_lock);
 | |
| 
 | |
| /*
 | |
|  * ipi_cpu_stop - handle IPI from smp_send_stop()
 | |
|  */
 | |
| static void ipi_cpu_stop(unsigned int cpu)
 | |
| {
 | |
| 	if (system_state == SYSTEM_BOOTING ||
 | |
| 	    system_state == SYSTEM_RUNNING) {
 | |
| 		raw_spin_lock(&stop_lock);
 | |
| 		pr_crit("CPU%u: stopping\n", cpu);
 | |
| 		dump_stack();
 | |
| 		raw_spin_unlock(&stop_lock);
 | |
| 	}
 | |
| 
 | |
| 	set_cpu_online(cpu, false);
 | |
| 
 | |
| 	local_irq_disable();
 | |
| 
 | |
| 	while (1)
 | |
| 		cpu_relax();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Main handler for inter-processor interrupts
 | |
|  */
 | |
| void handle_IPI(int ipinr, struct pt_regs *regs)
 | |
| {
 | |
| 	unsigned int cpu = smp_processor_id();
 | |
| 	struct pt_regs *old_regs = set_irq_regs(regs);
 | |
| 
 | |
| 	if (ipinr >= IPI_RESCHEDULE && ipinr < IPI_RESCHEDULE + NR_IPI)
 | |
| 		__inc_irq_stat(cpu, ipi_irqs[ipinr - IPI_RESCHEDULE]);
 | |
| 
 | |
| 	switch (ipinr) {
 | |
| 	case IPI_RESCHEDULE:
 | |
| 		scheduler_ipi();
 | |
| 		break;
 | |
| 
 | |
| 	case IPI_CALL_FUNC:
 | |
| 		irq_enter();
 | |
| 		generic_smp_call_function_interrupt();
 | |
| 		irq_exit();
 | |
| 		break;
 | |
| 
 | |
| 	case IPI_CALL_FUNC_SINGLE:
 | |
| 		irq_enter();
 | |
| 		generic_smp_call_function_single_interrupt();
 | |
| 		irq_exit();
 | |
| 		break;
 | |
| 
 | |
| 	case IPI_CPU_STOP:
 | |
| 		irq_enter();
 | |
| 		ipi_cpu_stop(cpu);
 | |
| 		irq_exit();
 | |
| 		break;
 | |
| 
 | |
| #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
 | |
| 	case IPI_TIMER:
 | |
| 		irq_enter();
 | |
| 		tick_receive_broadcast();
 | |
| 		irq_exit();
 | |
| 		break;
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_IRQ_WORK
 | |
| 	case IPI_IRQ_WORK:
 | |
| 		irq_enter();
 | |
| 		irq_work_run();
 | |
| 		irq_exit();
 | |
| 		break;
 | |
| #endif
 | |
| 
 | |
| 	default:
 | |
| 		pr_crit("CPU%u: Unknown IPI message 0x%x\n", cpu, ipinr);
 | |
| 		break;
 | |
| 	}
 | |
| 	set_irq_regs(old_regs);
 | |
| }
 | |
| 
 | |
| void smp_send_reschedule(int cpu)
 | |
| {
 | |
| 	smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
 | |
| void tick_broadcast(const struct cpumask *mask)
 | |
| {
 | |
| 	smp_cross_call(mask, IPI_TIMER);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| void smp_send_stop(void)
 | |
| {
 | |
| 	unsigned long timeout;
 | |
| 
 | |
| 	if (num_online_cpus() > 1) {
 | |
| 		cpumask_t mask;
 | |
| 
 | |
| 		cpumask_copy(&mask, cpu_online_mask);
 | |
| 		cpu_clear(smp_processor_id(), mask);
 | |
| 
 | |
| 		smp_cross_call(&mask, IPI_CPU_STOP);
 | |
| 	}
 | |
| 
 | |
| 	/* Wait up to one second for other CPUs to stop */
 | |
| 	timeout = USEC_PER_SEC;
 | |
| 	while (num_online_cpus() > 1 && timeout--)
 | |
| 		udelay(1);
 | |
| 
 | |
| 	if (num_online_cpus() > 1)
 | |
| 		pr_warning("SMP: failed to stop secondary CPUs\n");
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * not supported here
 | |
|  */
 | |
| int setup_profiling_timer(unsigned int multiplier)
 | |
| {
 | |
| 	return -EINVAL;
 | |
| }
 |