 bf3a340738
			
		
	
	
	bf3a340738
	
	
	
		
			
			Pull slab changes from Pekka Enberg:
 "The biggest change is byte-sized freelist indices which reduces slab
  freelist memory usage:
    https://lkml.org/lkml/2013/12/2/64"
* 'slab/next' of git://git.kernel.org/pub/scm/linux/kernel/git/penberg/linux:
  mm: slab/slub: use page->list consistently instead of page->lru
  mm/slab.c: cleanup outdated comments and unify variables naming
  slab: fix wrongly used macro
  slub: fix high order page allocation problem with __GFP_NOFAIL
  slab: Make allocations with GFP_ZERO slightly more efficient
  slab: make more slab management structure off the slab
  slab: introduce byte sized index for the freelist of a slab
  slab: restrict the number of objects in a slab
  slab: introduce helper functions to get/set free object
  slab: factor out calculate nr objects in cache_estimate
		
	
			
		
			
				
	
	
		
			4395 lines
		
	
	
	
		
			111 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			4395 lines
		
	
	
	
		
			111 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * linux/mm/slab.c
 | |
|  * Written by Mark Hemment, 1996/97.
 | |
|  * (markhe@nextd.demon.co.uk)
 | |
|  *
 | |
|  * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
 | |
|  *
 | |
|  * Major cleanup, different bufctl logic, per-cpu arrays
 | |
|  *	(c) 2000 Manfred Spraul
 | |
|  *
 | |
|  * Cleanup, make the head arrays unconditional, preparation for NUMA
 | |
|  * 	(c) 2002 Manfred Spraul
 | |
|  *
 | |
|  * An implementation of the Slab Allocator as described in outline in;
 | |
|  *	UNIX Internals: The New Frontiers by Uresh Vahalia
 | |
|  *	Pub: Prentice Hall	ISBN 0-13-101908-2
 | |
|  * or with a little more detail in;
 | |
|  *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
 | |
|  *	Jeff Bonwick (Sun Microsystems).
 | |
|  *	Presented at: USENIX Summer 1994 Technical Conference
 | |
|  *
 | |
|  * The memory is organized in caches, one cache for each object type.
 | |
|  * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
 | |
|  * Each cache consists out of many slabs (they are small (usually one
 | |
|  * page long) and always contiguous), and each slab contains multiple
 | |
|  * initialized objects.
 | |
|  *
 | |
|  * This means, that your constructor is used only for newly allocated
 | |
|  * slabs and you must pass objects with the same initializations to
 | |
|  * kmem_cache_free.
 | |
|  *
 | |
|  * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
 | |
|  * normal). If you need a special memory type, then must create a new
 | |
|  * cache for that memory type.
 | |
|  *
 | |
|  * In order to reduce fragmentation, the slabs are sorted in 3 groups:
 | |
|  *   full slabs with 0 free objects
 | |
|  *   partial slabs
 | |
|  *   empty slabs with no allocated objects
 | |
|  *
 | |
|  * If partial slabs exist, then new allocations come from these slabs,
 | |
|  * otherwise from empty slabs or new slabs are allocated.
 | |
|  *
 | |
|  * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
 | |
|  * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
 | |
|  *
 | |
|  * Each cache has a short per-cpu head array, most allocs
 | |
|  * and frees go into that array, and if that array overflows, then 1/2
 | |
|  * of the entries in the array are given back into the global cache.
 | |
|  * The head array is strictly LIFO and should improve the cache hit rates.
 | |
|  * On SMP, it additionally reduces the spinlock operations.
 | |
|  *
 | |
|  * The c_cpuarray may not be read with enabled local interrupts -
 | |
|  * it's changed with a smp_call_function().
 | |
|  *
 | |
|  * SMP synchronization:
 | |
|  *  constructors and destructors are called without any locking.
 | |
|  *  Several members in struct kmem_cache and struct slab never change, they
 | |
|  *	are accessed without any locking.
 | |
|  *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
 | |
|  *  	and local interrupts are disabled so slab code is preempt-safe.
 | |
|  *  The non-constant members are protected with a per-cache irq spinlock.
 | |
|  *
 | |
|  * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
 | |
|  * in 2000 - many ideas in the current implementation are derived from
 | |
|  * his patch.
 | |
|  *
 | |
|  * Further notes from the original documentation:
 | |
|  *
 | |
|  * 11 April '97.  Started multi-threading - markhe
 | |
|  *	The global cache-chain is protected by the mutex 'slab_mutex'.
 | |
|  *	The sem is only needed when accessing/extending the cache-chain, which
 | |
|  *	can never happen inside an interrupt (kmem_cache_create(),
 | |
|  *	kmem_cache_shrink() and kmem_cache_reap()).
 | |
|  *
 | |
|  *	At present, each engine can be growing a cache.  This should be blocked.
 | |
|  *
 | |
|  * 15 March 2005. NUMA slab allocator.
 | |
|  *	Shai Fultheim <shai@scalex86.org>.
 | |
|  *	Shobhit Dayal <shobhit@calsoftinc.com>
 | |
|  *	Alok N Kataria <alokk@calsoftinc.com>
 | |
|  *	Christoph Lameter <christoph@lameter.com>
 | |
|  *
 | |
|  *	Modified the slab allocator to be node aware on NUMA systems.
 | |
|  *	Each node has its own list of partial, free and full slabs.
 | |
|  *	All object allocations for a node occur from node specific slab lists.
 | |
|  */
 | |
| 
 | |
| #include	<linux/slab.h>
 | |
| #include	<linux/mm.h>
 | |
| #include	<linux/poison.h>
 | |
| #include	<linux/swap.h>
 | |
| #include	<linux/cache.h>
 | |
| #include	<linux/interrupt.h>
 | |
| #include	<linux/init.h>
 | |
| #include	<linux/compiler.h>
 | |
| #include	<linux/cpuset.h>
 | |
| #include	<linux/proc_fs.h>
 | |
| #include	<linux/seq_file.h>
 | |
| #include	<linux/notifier.h>
 | |
| #include	<linux/kallsyms.h>
 | |
| #include	<linux/cpu.h>
 | |
| #include	<linux/sysctl.h>
 | |
| #include	<linux/module.h>
 | |
| #include	<linux/rcupdate.h>
 | |
| #include	<linux/string.h>
 | |
| #include	<linux/uaccess.h>
 | |
| #include	<linux/nodemask.h>
 | |
| #include	<linux/kmemleak.h>
 | |
| #include	<linux/mempolicy.h>
 | |
| #include	<linux/mutex.h>
 | |
| #include	<linux/fault-inject.h>
 | |
| #include	<linux/rtmutex.h>
 | |
| #include	<linux/reciprocal_div.h>
 | |
| #include	<linux/debugobjects.h>
 | |
| #include	<linux/kmemcheck.h>
 | |
| #include	<linux/memory.h>
 | |
| #include	<linux/prefetch.h>
 | |
| 
 | |
| #include	<net/sock.h>
 | |
| 
 | |
| #include	<asm/cacheflush.h>
 | |
| #include	<asm/tlbflush.h>
 | |
| #include	<asm/page.h>
 | |
| 
 | |
| #include <trace/events/kmem.h>
 | |
| 
 | |
| #include	"internal.h"
 | |
| 
 | |
| #include	"slab.h"
 | |
| 
 | |
| /*
 | |
|  * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
 | |
|  *		  0 for faster, smaller code (especially in the critical paths).
 | |
|  *
 | |
|  * STATS	- 1 to collect stats for /proc/slabinfo.
 | |
|  *		  0 for faster, smaller code (especially in the critical paths).
 | |
|  *
 | |
|  * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 | |
|  */
 | |
| 
 | |
| #ifdef CONFIG_DEBUG_SLAB
 | |
| #define	DEBUG		1
 | |
| #define	STATS		1
 | |
| #define	FORCED_DEBUG	1
 | |
| #else
 | |
| #define	DEBUG		0
 | |
| #define	STATS		0
 | |
| #define	FORCED_DEBUG	0
 | |
| #endif
 | |
| 
 | |
| /* Shouldn't this be in a header file somewhere? */
 | |
| #define	BYTES_PER_WORD		sizeof(void *)
 | |
| #define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
 | |
| 
 | |
| #ifndef ARCH_KMALLOC_FLAGS
 | |
| #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
 | |
| #endif
 | |
| 
 | |
| #define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
 | |
| 				<= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
 | |
| 
 | |
| #if FREELIST_BYTE_INDEX
 | |
| typedef unsigned char freelist_idx_t;
 | |
| #else
 | |
| typedef unsigned short freelist_idx_t;
 | |
| #endif
 | |
| 
 | |
| #define SLAB_OBJ_MAX_NUM (1 << sizeof(freelist_idx_t) * BITS_PER_BYTE)
 | |
| 
 | |
| /*
 | |
|  * true if a page was allocated from pfmemalloc reserves for network-based
 | |
|  * swap
 | |
|  */
 | |
| static bool pfmemalloc_active __read_mostly;
 | |
| 
 | |
| /*
 | |
|  * struct array_cache
 | |
|  *
 | |
|  * Purpose:
 | |
|  * - LIFO ordering, to hand out cache-warm objects from _alloc
 | |
|  * - reduce the number of linked list operations
 | |
|  * - reduce spinlock operations
 | |
|  *
 | |
|  * The limit is stored in the per-cpu structure to reduce the data cache
 | |
|  * footprint.
 | |
|  *
 | |
|  */
 | |
| struct array_cache {
 | |
| 	unsigned int avail;
 | |
| 	unsigned int limit;
 | |
| 	unsigned int batchcount;
 | |
| 	unsigned int touched;
 | |
| 	spinlock_t lock;
 | |
| 	void *entry[];	/*
 | |
| 			 * Must have this definition in here for the proper
 | |
| 			 * alignment of array_cache. Also simplifies accessing
 | |
| 			 * the entries.
 | |
| 			 *
 | |
| 			 * Entries should not be directly dereferenced as
 | |
| 			 * entries belonging to slabs marked pfmemalloc will
 | |
| 			 * have the lower bits set SLAB_OBJ_PFMEMALLOC
 | |
| 			 */
 | |
| };
 | |
| 
 | |
| #define SLAB_OBJ_PFMEMALLOC	1
 | |
| static inline bool is_obj_pfmemalloc(void *objp)
 | |
| {
 | |
| 	return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC;
 | |
| }
 | |
| 
 | |
| static inline void set_obj_pfmemalloc(void **objp)
 | |
| {
 | |
| 	*objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC);
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| static inline void clear_obj_pfmemalloc(void **objp)
 | |
| {
 | |
| 	*objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * bootstrap: The caches do not work without cpuarrays anymore, but the
 | |
|  * cpuarrays are allocated from the generic caches...
 | |
|  */
 | |
| #define BOOT_CPUCACHE_ENTRIES	1
 | |
| struct arraycache_init {
 | |
| 	struct array_cache cache;
 | |
| 	void *entries[BOOT_CPUCACHE_ENTRIES];
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Need this for bootstrapping a per node allocator.
 | |
|  */
 | |
| #define NUM_INIT_LISTS (3 * MAX_NUMNODES)
 | |
| static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
 | |
| #define	CACHE_CACHE 0
 | |
| #define	SIZE_AC MAX_NUMNODES
 | |
| #define	SIZE_NODE (2 * MAX_NUMNODES)
 | |
| 
 | |
| static int drain_freelist(struct kmem_cache *cache,
 | |
| 			struct kmem_cache_node *n, int tofree);
 | |
| static void free_block(struct kmem_cache *cachep, void **objpp, int len,
 | |
| 			int node);
 | |
| static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
 | |
| static void cache_reap(struct work_struct *unused);
 | |
| 
 | |
| static int slab_early_init = 1;
 | |
| 
 | |
| #define INDEX_AC kmalloc_index(sizeof(struct arraycache_init))
 | |
| #define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
 | |
| 
 | |
| static void kmem_cache_node_init(struct kmem_cache_node *parent)
 | |
| {
 | |
| 	INIT_LIST_HEAD(&parent->slabs_full);
 | |
| 	INIT_LIST_HEAD(&parent->slabs_partial);
 | |
| 	INIT_LIST_HEAD(&parent->slabs_free);
 | |
| 	parent->shared = NULL;
 | |
| 	parent->alien = NULL;
 | |
| 	parent->colour_next = 0;
 | |
| 	spin_lock_init(&parent->list_lock);
 | |
| 	parent->free_objects = 0;
 | |
| 	parent->free_touched = 0;
 | |
| }
 | |
| 
 | |
| #define MAKE_LIST(cachep, listp, slab, nodeid)				\
 | |
| 	do {								\
 | |
| 		INIT_LIST_HEAD(listp);					\
 | |
| 		list_splice(&(cachep->node[nodeid]->slab), listp);	\
 | |
| 	} while (0)
 | |
| 
 | |
| #define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
 | |
| 	do {								\
 | |
| 	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
 | |
| 	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
 | |
| 	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
 | |
| 	} while (0)
 | |
| 
 | |
| #define CFLGS_OFF_SLAB		(0x80000000UL)
 | |
| #define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)
 | |
| 
 | |
| #define BATCHREFILL_LIMIT	16
 | |
| /*
 | |
|  * Optimization question: fewer reaps means less probability for unnessary
 | |
|  * cpucache drain/refill cycles.
 | |
|  *
 | |
|  * OTOH the cpuarrays can contain lots of objects,
 | |
|  * which could lock up otherwise freeable slabs.
 | |
|  */
 | |
| #define REAPTIMEOUT_AC		(2*HZ)
 | |
| #define REAPTIMEOUT_NODE	(4*HZ)
 | |
| 
 | |
| #if STATS
 | |
| #define	STATS_INC_ACTIVE(x)	((x)->num_active++)
 | |
| #define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
 | |
| #define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
 | |
| #define	STATS_INC_GROWN(x)	((x)->grown++)
 | |
| #define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
 | |
| #define	STATS_SET_HIGH(x)						\
 | |
| 	do {								\
 | |
| 		if ((x)->num_active > (x)->high_mark)			\
 | |
| 			(x)->high_mark = (x)->num_active;		\
 | |
| 	} while (0)
 | |
| #define	STATS_INC_ERR(x)	((x)->errors++)
 | |
| #define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
 | |
| #define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
 | |
| #define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
 | |
| #define	STATS_SET_FREEABLE(x, i)					\
 | |
| 	do {								\
 | |
| 		if ((x)->max_freeable < i)				\
 | |
| 			(x)->max_freeable = i;				\
 | |
| 	} while (0)
 | |
| #define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
 | |
| #define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
 | |
| #define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
 | |
| #define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
 | |
| #else
 | |
| #define	STATS_INC_ACTIVE(x)	do { } while (0)
 | |
| #define	STATS_DEC_ACTIVE(x)	do { } while (0)
 | |
| #define	STATS_INC_ALLOCED(x)	do { } while (0)
 | |
| #define	STATS_INC_GROWN(x)	do { } while (0)
 | |
| #define	STATS_ADD_REAPED(x,y)	do { (void)(y); } while (0)
 | |
| #define	STATS_SET_HIGH(x)	do { } while (0)
 | |
| #define	STATS_INC_ERR(x)	do { } while (0)
 | |
| #define	STATS_INC_NODEALLOCS(x)	do { } while (0)
 | |
| #define	STATS_INC_NODEFREES(x)	do { } while (0)
 | |
| #define STATS_INC_ACOVERFLOW(x)   do { } while (0)
 | |
| #define	STATS_SET_FREEABLE(x, i) do { } while (0)
 | |
| #define STATS_INC_ALLOCHIT(x)	do { } while (0)
 | |
| #define STATS_INC_ALLOCMISS(x)	do { } while (0)
 | |
| #define STATS_INC_FREEHIT(x)	do { } while (0)
 | |
| #define STATS_INC_FREEMISS(x)	do { } while (0)
 | |
| #endif
 | |
| 
 | |
| #if DEBUG
 | |
| 
 | |
| /*
 | |
|  * memory layout of objects:
 | |
|  * 0		: objp
 | |
|  * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
 | |
|  * 		the end of an object is aligned with the end of the real
 | |
|  * 		allocation. Catches writes behind the end of the allocation.
 | |
|  * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
 | |
|  * 		redzone word.
 | |
|  * cachep->obj_offset: The real object.
 | |
|  * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
 | |
|  * cachep->size - 1* BYTES_PER_WORD: last caller address
 | |
|  *					[BYTES_PER_WORD long]
 | |
|  */
 | |
| static int obj_offset(struct kmem_cache *cachep)
 | |
| {
 | |
| 	return cachep->obj_offset;
 | |
| }
 | |
| 
 | |
| static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
 | |
| {
 | |
| 	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
 | |
| 	return (unsigned long long*) (objp + obj_offset(cachep) -
 | |
| 				      sizeof(unsigned long long));
 | |
| }
 | |
| 
 | |
| static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
 | |
| {
 | |
| 	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
 | |
| 	if (cachep->flags & SLAB_STORE_USER)
 | |
| 		return (unsigned long long *)(objp + cachep->size -
 | |
| 					      sizeof(unsigned long long) -
 | |
| 					      REDZONE_ALIGN);
 | |
| 	return (unsigned long long *) (objp + cachep->size -
 | |
| 				       sizeof(unsigned long long));
 | |
| }
 | |
| 
 | |
| static void **dbg_userword(struct kmem_cache *cachep, void *objp)
 | |
| {
 | |
| 	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
 | |
| 	return (void **)(objp + cachep->size - BYTES_PER_WORD);
 | |
| }
 | |
| 
 | |
| #else
 | |
| 
 | |
| #define obj_offset(x)			0
 | |
| #define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
 | |
| #define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
 | |
| #define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Do not go above this order unless 0 objects fit into the slab or
 | |
|  * overridden on the command line.
 | |
|  */
 | |
| #define	SLAB_MAX_ORDER_HI	1
 | |
| #define	SLAB_MAX_ORDER_LO	0
 | |
| static int slab_max_order = SLAB_MAX_ORDER_LO;
 | |
| static bool slab_max_order_set __initdata;
 | |
| 
 | |
| static inline struct kmem_cache *virt_to_cache(const void *obj)
 | |
| {
 | |
| 	struct page *page = virt_to_head_page(obj);
 | |
| 	return page->slab_cache;
 | |
| }
 | |
| 
 | |
| static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
 | |
| 				 unsigned int idx)
 | |
| {
 | |
| 	return page->s_mem + cache->size * idx;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We want to avoid an expensive divide : (offset / cache->size)
 | |
|  *   Using the fact that size is a constant for a particular cache,
 | |
|  *   we can replace (offset / cache->size) by
 | |
|  *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
 | |
|  */
 | |
| static inline unsigned int obj_to_index(const struct kmem_cache *cache,
 | |
| 					const struct page *page, void *obj)
 | |
| {
 | |
| 	u32 offset = (obj - page->s_mem);
 | |
| 	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
 | |
| }
 | |
| 
 | |
| static struct arraycache_init initarray_generic =
 | |
|     { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
 | |
| 
 | |
| /* internal cache of cache description objs */
 | |
| static struct kmem_cache kmem_cache_boot = {
 | |
| 	.batchcount = 1,
 | |
| 	.limit = BOOT_CPUCACHE_ENTRIES,
 | |
| 	.shared = 1,
 | |
| 	.size = sizeof(struct kmem_cache),
 | |
| 	.name = "kmem_cache",
 | |
| };
 | |
| 
 | |
| #define BAD_ALIEN_MAGIC 0x01020304ul
 | |
| 
 | |
| #ifdef CONFIG_LOCKDEP
 | |
| 
 | |
| /*
 | |
|  * Slab sometimes uses the kmalloc slabs to store the slab headers
 | |
|  * for other slabs "off slab".
 | |
|  * The locking for this is tricky in that it nests within the locks
 | |
|  * of all other slabs in a few places; to deal with this special
 | |
|  * locking we put on-slab caches into a separate lock-class.
 | |
|  *
 | |
|  * We set lock class for alien array caches which are up during init.
 | |
|  * The lock annotation will be lost if all cpus of a node goes down and
 | |
|  * then comes back up during hotplug
 | |
|  */
 | |
| static struct lock_class_key on_slab_l3_key;
 | |
| static struct lock_class_key on_slab_alc_key;
 | |
| 
 | |
| static struct lock_class_key debugobj_l3_key;
 | |
| static struct lock_class_key debugobj_alc_key;
 | |
| 
 | |
| static void slab_set_lock_classes(struct kmem_cache *cachep,
 | |
| 		struct lock_class_key *l3_key, struct lock_class_key *alc_key,
 | |
| 		int q)
 | |
| {
 | |
| 	struct array_cache **alc;
 | |
| 	struct kmem_cache_node *n;
 | |
| 	int r;
 | |
| 
 | |
| 	n = cachep->node[q];
 | |
| 	if (!n)
 | |
| 		return;
 | |
| 
 | |
| 	lockdep_set_class(&n->list_lock, l3_key);
 | |
| 	alc = n->alien;
 | |
| 	/*
 | |
| 	 * FIXME: This check for BAD_ALIEN_MAGIC
 | |
| 	 * should go away when common slab code is taught to
 | |
| 	 * work even without alien caches.
 | |
| 	 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
 | |
| 	 * for alloc_alien_cache,
 | |
| 	 */
 | |
| 	if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
 | |
| 		return;
 | |
| 	for_each_node(r) {
 | |
| 		if (alc[r])
 | |
| 			lockdep_set_class(&alc[r]->lock, alc_key);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
 | |
| {
 | |
| 	slab_set_lock_classes(cachep, &debugobj_l3_key, &debugobj_alc_key, node);
 | |
| }
 | |
| 
 | |
| static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
 | |
| {
 | |
| 	int node;
 | |
| 
 | |
| 	for_each_online_node(node)
 | |
| 		slab_set_debugobj_lock_classes_node(cachep, node);
 | |
| }
 | |
| 
 | |
| static void init_node_lock_keys(int q)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	if (slab_state < UP)
 | |
| 		return;
 | |
| 
 | |
| 	for (i = 1; i <= KMALLOC_SHIFT_HIGH; i++) {
 | |
| 		struct kmem_cache_node *n;
 | |
| 		struct kmem_cache *cache = kmalloc_caches[i];
 | |
| 
 | |
| 		if (!cache)
 | |
| 			continue;
 | |
| 
 | |
| 		n = cache->node[q];
 | |
| 		if (!n || OFF_SLAB(cache))
 | |
| 			continue;
 | |
| 
 | |
| 		slab_set_lock_classes(cache, &on_slab_l3_key,
 | |
| 				&on_slab_alc_key, q);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void on_slab_lock_classes_node(struct kmem_cache *cachep, int q)
 | |
| {
 | |
| 	if (!cachep->node[q])
 | |
| 		return;
 | |
| 
 | |
| 	slab_set_lock_classes(cachep, &on_slab_l3_key,
 | |
| 			&on_slab_alc_key, q);
 | |
| }
 | |
| 
 | |
| static inline void on_slab_lock_classes(struct kmem_cache *cachep)
 | |
| {
 | |
| 	int node;
 | |
| 
 | |
| 	VM_BUG_ON(OFF_SLAB(cachep));
 | |
| 	for_each_node(node)
 | |
| 		on_slab_lock_classes_node(cachep, node);
 | |
| }
 | |
| 
 | |
| static inline void init_lock_keys(void)
 | |
| {
 | |
| 	int node;
 | |
| 
 | |
| 	for_each_node(node)
 | |
| 		init_node_lock_keys(node);
 | |
| }
 | |
| #else
 | |
| static void init_node_lock_keys(int q)
 | |
| {
 | |
| }
 | |
| 
 | |
| static inline void init_lock_keys(void)
 | |
| {
 | |
| }
 | |
| 
 | |
| static inline void on_slab_lock_classes(struct kmem_cache *cachep)
 | |
| {
 | |
| }
 | |
| 
 | |
| static inline void on_slab_lock_classes_node(struct kmem_cache *cachep, int node)
 | |
| {
 | |
| }
 | |
| 
 | |
| static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
 | |
| {
 | |
| }
 | |
| 
 | |
| static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
 | |
| {
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
 | |
| 
 | |
| static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
 | |
| {
 | |
| 	return cachep->array[smp_processor_id()];
 | |
| }
 | |
| 
 | |
| static int calculate_nr_objs(size_t slab_size, size_t buffer_size,
 | |
| 				size_t idx_size, size_t align)
 | |
| {
 | |
| 	int nr_objs;
 | |
| 	size_t freelist_size;
 | |
| 
 | |
| 	/*
 | |
| 	 * Ignore padding for the initial guess. The padding
 | |
| 	 * is at most @align-1 bytes, and @buffer_size is at
 | |
| 	 * least @align. In the worst case, this result will
 | |
| 	 * be one greater than the number of objects that fit
 | |
| 	 * into the memory allocation when taking the padding
 | |
| 	 * into account.
 | |
| 	 */
 | |
| 	nr_objs = slab_size / (buffer_size + idx_size);
 | |
| 
 | |
| 	/*
 | |
| 	 * This calculated number will be either the right
 | |
| 	 * amount, or one greater than what we want.
 | |
| 	 */
 | |
| 	freelist_size = slab_size - nr_objs * buffer_size;
 | |
| 	if (freelist_size < ALIGN(nr_objs * idx_size, align))
 | |
| 		nr_objs--;
 | |
| 
 | |
| 	return nr_objs;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Calculate the number of objects and left-over bytes for a given buffer size.
 | |
|  */
 | |
| static void cache_estimate(unsigned long gfporder, size_t buffer_size,
 | |
| 			   size_t align, int flags, size_t *left_over,
 | |
| 			   unsigned int *num)
 | |
| {
 | |
| 	int nr_objs;
 | |
| 	size_t mgmt_size;
 | |
| 	size_t slab_size = PAGE_SIZE << gfporder;
 | |
| 
 | |
| 	/*
 | |
| 	 * The slab management structure can be either off the slab or
 | |
| 	 * on it. For the latter case, the memory allocated for a
 | |
| 	 * slab is used for:
 | |
| 	 *
 | |
| 	 * - One unsigned int for each object
 | |
| 	 * - Padding to respect alignment of @align
 | |
| 	 * - @buffer_size bytes for each object
 | |
| 	 *
 | |
| 	 * If the slab management structure is off the slab, then the
 | |
| 	 * alignment will already be calculated into the size. Because
 | |
| 	 * the slabs are all pages aligned, the objects will be at the
 | |
| 	 * correct alignment when allocated.
 | |
| 	 */
 | |
| 	if (flags & CFLGS_OFF_SLAB) {
 | |
| 		mgmt_size = 0;
 | |
| 		nr_objs = slab_size / buffer_size;
 | |
| 
 | |
| 	} else {
 | |
| 		nr_objs = calculate_nr_objs(slab_size, buffer_size,
 | |
| 					sizeof(freelist_idx_t), align);
 | |
| 		mgmt_size = ALIGN(nr_objs * sizeof(freelist_idx_t), align);
 | |
| 	}
 | |
| 	*num = nr_objs;
 | |
| 	*left_over = slab_size - nr_objs*buffer_size - mgmt_size;
 | |
| }
 | |
| 
 | |
| #if DEBUG
 | |
| #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
 | |
| 
 | |
| static void __slab_error(const char *function, struct kmem_cache *cachep,
 | |
| 			char *msg)
 | |
| {
 | |
| 	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
 | |
| 	       function, cachep->name, msg);
 | |
| 	dump_stack();
 | |
| 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * By default on NUMA we use alien caches to stage the freeing of
 | |
|  * objects allocated from other nodes. This causes massive memory
 | |
|  * inefficiencies when using fake NUMA setup to split memory into a
 | |
|  * large number of small nodes, so it can be disabled on the command
 | |
|  * line
 | |
|   */
 | |
| 
 | |
| static int use_alien_caches __read_mostly = 1;
 | |
| static int __init noaliencache_setup(char *s)
 | |
| {
 | |
| 	use_alien_caches = 0;
 | |
| 	return 1;
 | |
| }
 | |
| __setup("noaliencache", noaliencache_setup);
 | |
| 
 | |
| static int __init slab_max_order_setup(char *str)
 | |
| {
 | |
| 	get_option(&str, &slab_max_order);
 | |
| 	slab_max_order = slab_max_order < 0 ? 0 :
 | |
| 				min(slab_max_order, MAX_ORDER - 1);
 | |
| 	slab_max_order_set = true;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| __setup("slab_max_order=", slab_max_order_setup);
 | |
| 
 | |
| #ifdef CONFIG_NUMA
 | |
| /*
 | |
|  * Special reaping functions for NUMA systems called from cache_reap().
 | |
|  * These take care of doing round robin flushing of alien caches (containing
 | |
|  * objects freed on different nodes from which they were allocated) and the
 | |
|  * flushing of remote pcps by calling drain_node_pages.
 | |
|  */
 | |
| static DEFINE_PER_CPU(unsigned long, slab_reap_node);
 | |
| 
 | |
| static void init_reap_node(int cpu)
 | |
| {
 | |
| 	int node;
 | |
| 
 | |
| 	node = next_node(cpu_to_mem(cpu), node_online_map);
 | |
| 	if (node == MAX_NUMNODES)
 | |
| 		node = first_node(node_online_map);
 | |
| 
 | |
| 	per_cpu(slab_reap_node, cpu) = node;
 | |
| }
 | |
| 
 | |
| static void next_reap_node(void)
 | |
| {
 | |
| 	int node = __this_cpu_read(slab_reap_node);
 | |
| 
 | |
| 	node = next_node(node, node_online_map);
 | |
| 	if (unlikely(node >= MAX_NUMNODES))
 | |
| 		node = first_node(node_online_map);
 | |
| 	__this_cpu_write(slab_reap_node, node);
 | |
| }
 | |
| 
 | |
| #else
 | |
| #define init_reap_node(cpu) do { } while (0)
 | |
| #define next_reap_node(void) do { } while (0)
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 | |
|  * via the workqueue/eventd.
 | |
|  * Add the CPU number into the expiration time to minimize the possibility of
 | |
|  * the CPUs getting into lockstep and contending for the global cache chain
 | |
|  * lock.
 | |
|  */
 | |
| static void start_cpu_timer(int cpu)
 | |
| {
 | |
| 	struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
 | |
| 
 | |
| 	/*
 | |
| 	 * When this gets called from do_initcalls via cpucache_init(),
 | |
| 	 * init_workqueues() has already run, so keventd will be setup
 | |
| 	 * at that time.
 | |
| 	 */
 | |
| 	if (keventd_up() && reap_work->work.func == NULL) {
 | |
| 		init_reap_node(cpu);
 | |
| 		INIT_DEFERRABLE_WORK(reap_work, cache_reap);
 | |
| 		schedule_delayed_work_on(cpu, reap_work,
 | |
| 					__round_jiffies_relative(HZ, cpu));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static struct array_cache *alloc_arraycache(int node, int entries,
 | |
| 					    int batchcount, gfp_t gfp)
 | |
| {
 | |
| 	int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
 | |
| 	struct array_cache *nc = NULL;
 | |
| 
 | |
| 	nc = kmalloc_node(memsize, gfp, node);
 | |
| 	/*
 | |
| 	 * The array_cache structures contain pointers to free object.
 | |
| 	 * However, when such objects are allocated or transferred to another
 | |
| 	 * cache the pointers are not cleared and they could be counted as
 | |
| 	 * valid references during a kmemleak scan. Therefore, kmemleak must
 | |
| 	 * not scan such objects.
 | |
| 	 */
 | |
| 	kmemleak_no_scan(nc);
 | |
| 	if (nc) {
 | |
| 		nc->avail = 0;
 | |
| 		nc->limit = entries;
 | |
| 		nc->batchcount = batchcount;
 | |
| 		nc->touched = 0;
 | |
| 		spin_lock_init(&nc->lock);
 | |
| 	}
 | |
| 	return nc;
 | |
| }
 | |
| 
 | |
| static inline bool is_slab_pfmemalloc(struct page *page)
 | |
| {
 | |
| 	return PageSlabPfmemalloc(page);
 | |
| }
 | |
| 
 | |
| /* Clears pfmemalloc_active if no slabs have pfmalloc set */
 | |
| static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
 | |
| 						struct array_cache *ac)
 | |
| {
 | |
| 	struct kmem_cache_node *n = cachep->node[numa_mem_id()];
 | |
| 	struct page *page;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	if (!pfmemalloc_active)
 | |
| 		return;
 | |
| 
 | |
| 	spin_lock_irqsave(&n->list_lock, flags);
 | |
| 	list_for_each_entry(page, &n->slabs_full, lru)
 | |
| 		if (is_slab_pfmemalloc(page))
 | |
| 			goto out;
 | |
| 
 | |
| 	list_for_each_entry(page, &n->slabs_partial, lru)
 | |
| 		if (is_slab_pfmemalloc(page))
 | |
| 			goto out;
 | |
| 
 | |
| 	list_for_each_entry(page, &n->slabs_free, lru)
 | |
| 		if (is_slab_pfmemalloc(page))
 | |
| 			goto out;
 | |
| 
 | |
| 	pfmemalloc_active = false;
 | |
| out:
 | |
| 	spin_unlock_irqrestore(&n->list_lock, flags);
 | |
| }
 | |
| 
 | |
| static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
 | |
| 						gfp_t flags, bool force_refill)
 | |
| {
 | |
| 	int i;
 | |
| 	void *objp = ac->entry[--ac->avail];
 | |
| 
 | |
| 	/* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
 | |
| 	if (unlikely(is_obj_pfmemalloc(objp))) {
 | |
| 		struct kmem_cache_node *n;
 | |
| 
 | |
| 		if (gfp_pfmemalloc_allowed(flags)) {
 | |
| 			clear_obj_pfmemalloc(&objp);
 | |
| 			return objp;
 | |
| 		}
 | |
| 
 | |
| 		/* The caller cannot use PFMEMALLOC objects, find another one */
 | |
| 		for (i = 0; i < ac->avail; i++) {
 | |
| 			/* If a !PFMEMALLOC object is found, swap them */
 | |
| 			if (!is_obj_pfmemalloc(ac->entry[i])) {
 | |
| 				objp = ac->entry[i];
 | |
| 				ac->entry[i] = ac->entry[ac->avail];
 | |
| 				ac->entry[ac->avail] = objp;
 | |
| 				return objp;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * If there are empty slabs on the slabs_free list and we are
 | |
| 		 * being forced to refill the cache, mark this one !pfmemalloc.
 | |
| 		 */
 | |
| 		n = cachep->node[numa_mem_id()];
 | |
| 		if (!list_empty(&n->slabs_free) && force_refill) {
 | |
| 			struct page *page = virt_to_head_page(objp);
 | |
| 			ClearPageSlabPfmemalloc(page);
 | |
| 			clear_obj_pfmemalloc(&objp);
 | |
| 			recheck_pfmemalloc_active(cachep, ac);
 | |
| 			return objp;
 | |
| 		}
 | |
| 
 | |
| 		/* No !PFMEMALLOC objects available */
 | |
| 		ac->avail++;
 | |
| 		objp = NULL;
 | |
| 	}
 | |
| 
 | |
| 	return objp;
 | |
| }
 | |
| 
 | |
| static inline void *ac_get_obj(struct kmem_cache *cachep,
 | |
| 			struct array_cache *ac, gfp_t flags, bool force_refill)
 | |
| {
 | |
| 	void *objp;
 | |
| 
 | |
| 	if (unlikely(sk_memalloc_socks()))
 | |
| 		objp = __ac_get_obj(cachep, ac, flags, force_refill);
 | |
| 	else
 | |
| 		objp = ac->entry[--ac->avail];
 | |
| 
 | |
| 	return objp;
 | |
| }
 | |
| 
 | |
| static void *__ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
 | |
| 								void *objp)
 | |
| {
 | |
| 	if (unlikely(pfmemalloc_active)) {
 | |
| 		/* Some pfmemalloc slabs exist, check if this is one */
 | |
| 		struct page *page = virt_to_head_page(objp);
 | |
| 		if (PageSlabPfmemalloc(page))
 | |
| 			set_obj_pfmemalloc(&objp);
 | |
| 	}
 | |
| 
 | |
| 	return objp;
 | |
| }
 | |
| 
 | |
| static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
 | |
| 								void *objp)
 | |
| {
 | |
| 	if (unlikely(sk_memalloc_socks()))
 | |
| 		objp = __ac_put_obj(cachep, ac, objp);
 | |
| 
 | |
| 	ac->entry[ac->avail++] = objp;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Transfer objects in one arraycache to another.
 | |
|  * Locking must be handled by the caller.
 | |
|  *
 | |
|  * Return the number of entries transferred.
 | |
|  */
 | |
| static int transfer_objects(struct array_cache *to,
 | |
| 		struct array_cache *from, unsigned int max)
 | |
| {
 | |
| 	/* Figure out how many entries to transfer */
 | |
| 	int nr = min3(from->avail, max, to->limit - to->avail);
 | |
| 
 | |
| 	if (!nr)
 | |
| 		return 0;
 | |
| 
 | |
| 	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
 | |
| 			sizeof(void *) *nr);
 | |
| 
 | |
| 	from->avail -= nr;
 | |
| 	to->avail += nr;
 | |
| 	return nr;
 | |
| }
 | |
| 
 | |
| #ifndef CONFIG_NUMA
 | |
| 
 | |
| #define drain_alien_cache(cachep, alien) do { } while (0)
 | |
| #define reap_alien(cachep, n) do { } while (0)
 | |
| 
 | |
| static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
 | |
| {
 | |
| 	return (struct array_cache **)BAD_ALIEN_MAGIC;
 | |
| }
 | |
| 
 | |
| static inline void free_alien_cache(struct array_cache **ac_ptr)
 | |
| {
 | |
| }
 | |
| 
 | |
| static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline void *alternate_node_alloc(struct kmem_cache *cachep,
 | |
| 		gfp_t flags)
 | |
| {
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static inline void *____cache_alloc_node(struct kmem_cache *cachep,
 | |
| 		 gfp_t flags, int nodeid)
 | |
| {
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| #else	/* CONFIG_NUMA */
 | |
| 
 | |
| static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
 | |
| static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
 | |
| 
 | |
| static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
 | |
| {
 | |
| 	struct array_cache **ac_ptr;
 | |
| 	int memsize = sizeof(void *) * nr_node_ids;
 | |
| 	int i;
 | |
| 
 | |
| 	if (limit > 1)
 | |
| 		limit = 12;
 | |
| 	ac_ptr = kzalloc_node(memsize, gfp, node);
 | |
| 	if (ac_ptr) {
 | |
| 		for_each_node(i) {
 | |
| 			if (i == node || !node_online(i))
 | |
| 				continue;
 | |
| 			ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
 | |
| 			if (!ac_ptr[i]) {
 | |
| 				for (i--; i >= 0; i--)
 | |
| 					kfree(ac_ptr[i]);
 | |
| 				kfree(ac_ptr);
 | |
| 				return NULL;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	return ac_ptr;
 | |
| }
 | |
| 
 | |
| static void free_alien_cache(struct array_cache **ac_ptr)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	if (!ac_ptr)
 | |
| 		return;
 | |
| 	for_each_node(i)
 | |
| 	    kfree(ac_ptr[i]);
 | |
| 	kfree(ac_ptr);
 | |
| }
 | |
| 
 | |
| static void __drain_alien_cache(struct kmem_cache *cachep,
 | |
| 				struct array_cache *ac, int node)
 | |
| {
 | |
| 	struct kmem_cache_node *n = cachep->node[node];
 | |
| 
 | |
| 	if (ac->avail) {
 | |
| 		spin_lock(&n->list_lock);
 | |
| 		/*
 | |
| 		 * Stuff objects into the remote nodes shared array first.
 | |
| 		 * That way we could avoid the overhead of putting the objects
 | |
| 		 * into the free lists and getting them back later.
 | |
| 		 */
 | |
| 		if (n->shared)
 | |
| 			transfer_objects(n->shared, ac, ac->limit);
 | |
| 
 | |
| 		free_block(cachep, ac->entry, ac->avail, node);
 | |
| 		ac->avail = 0;
 | |
| 		spin_unlock(&n->list_lock);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Called from cache_reap() to regularly drain alien caches round robin.
 | |
|  */
 | |
| static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
 | |
| {
 | |
| 	int node = __this_cpu_read(slab_reap_node);
 | |
| 
 | |
| 	if (n->alien) {
 | |
| 		struct array_cache *ac = n->alien[node];
 | |
| 
 | |
| 		if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
 | |
| 			__drain_alien_cache(cachep, ac, node);
 | |
| 			spin_unlock_irq(&ac->lock);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void drain_alien_cache(struct kmem_cache *cachep,
 | |
| 				struct array_cache **alien)
 | |
| {
 | |
| 	int i = 0;
 | |
| 	struct array_cache *ac;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	for_each_online_node(i) {
 | |
| 		ac = alien[i];
 | |
| 		if (ac) {
 | |
| 			spin_lock_irqsave(&ac->lock, flags);
 | |
| 			__drain_alien_cache(cachep, ac, i);
 | |
| 			spin_unlock_irqrestore(&ac->lock, flags);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
 | |
| {
 | |
| 	int nodeid = page_to_nid(virt_to_page(objp));
 | |
| 	struct kmem_cache_node *n;
 | |
| 	struct array_cache *alien = NULL;
 | |
| 	int node;
 | |
| 
 | |
| 	node = numa_mem_id();
 | |
| 
 | |
| 	/*
 | |
| 	 * Make sure we are not freeing a object from another node to the array
 | |
| 	 * cache on this cpu.
 | |
| 	 */
 | |
| 	if (likely(nodeid == node))
 | |
| 		return 0;
 | |
| 
 | |
| 	n = cachep->node[node];
 | |
| 	STATS_INC_NODEFREES(cachep);
 | |
| 	if (n->alien && n->alien[nodeid]) {
 | |
| 		alien = n->alien[nodeid];
 | |
| 		spin_lock(&alien->lock);
 | |
| 		if (unlikely(alien->avail == alien->limit)) {
 | |
| 			STATS_INC_ACOVERFLOW(cachep);
 | |
| 			__drain_alien_cache(cachep, alien, nodeid);
 | |
| 		}
 | |
| 		ac_put_obj(cachep, alien, objp);
 | |
| 		spin_unlock(&alien->lock);
 | |
| 	} else {
 | |
| 		spin_lock(&(cachep->node[nodeid])->list_lock);
 | |
| 		free_block(cachep, &objp, 1, nodeid);
 | |
| 		spin_unlock(&(cachep->node[nodeid])->list_lock);
 | |
| 	}
 | |
| 	return 1;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Allocates and initializes node for a node on each slab cache, used for
 | |
|  * either memory or cpu hotplug.  If memory is being hot-added, the kmem_cache_node
 | |
|  * will be allocated off-node since memory is not yet online for the new node.
 | |
|  * When hotplugging memory or a cpu, existing node are not replaced if
 | |
|  * already in use.
 | |
|  *
 | |
|  * Must hold slab_mutex.
 | |
|  */
 | |
| static int init_cache_node_node(int node)
 | |
| {
 | |
| 	struct kmem_cache *cachep;
 | |
| 	struct kmem_cache_node *n;
 | |
| 	const int memsize = sizeof(struct kmem_cache_node);
 | |
| 
 | |
| 	list_for_each_entry(cachep, &slab_caches, list) {
 | |
| 		/*
 | |
| 		 * Set up the kmem_cache_node for cpu before we can
 | |
| 		 * begin anything. Make sure some other cpu on this
 | |
| 		 * node has not already allocated this
 | |
| 		 */
 | |
| 		if (!cachep->node[node]) {
 | |
| 			n = kmalloc_node(memsize, GFP_KERNEL, node);
 | |
| 			if (!n)
 | |
| 				return -ENOMEM;
 | |
| 			kmem_cache_node_init(n);
 | |
| 			n->next_reap = jiffies + REAPTIMEOUT_NODE +
 | |
| 			    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
 | |
| 
 | |
| 			/*
 | |
| 			 * The kmem_cache_nodes don't come and go as CPUs
 | |
| 			 * come and go.  slab_mutex is sufficient
 | |
| 			 * protection here.
 | |
| 			 */
 | |
| 			cachep->node[node] = n;
 | |
| 		}
 | |
| 
 | |
| 		spin_lock_irq(&cachep->node[node]->list_lock);
 | |
| 		cachep->node[node]->free_limit =
 | |
| 			(1 + nr_cpus_node(node)) *
 | |
| 			cachep->batchcount + cachep->num;
 | |
| 		spin_unlock_irq(&cachep->node[node]->list_lock);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline int slabs_tofree(struct kmem_cache *cachep,
 | |
| 						struct kmem_cache_node *n)
 | |
| {
 | |
| 	return (n->free_objects + cachep->num - 1) / cachep->num;
 | |
| }
 | |
| 
 | |
| static void cpuup_canceled(long cpu)
 | |
| {
 | |
| 	struct kmem_cache *cachep;
 | |
| 	struct kmem_cache_node *n = NULL;
 | |
| 	int node = cpu_to_mem(cpu);
 | |
| 	const struct cpumask *mask = cpumask_of_node(node);
 | |
| 
 | |
| 	list_for_each_entry(cachep, &slab_caches, list) {
 | |
| 		struct array_cache *nc;
 | |
| 		struct array_cache *shared;
 | |
| 		struct array_cache **alien;
 | |
| 
 | |
| 		/* cpu is dead; no one can alloc from it. */
 | |
| 		nc = cachep->array[cpu];
 | |
| 		cachep->array[cpu] = NULL;
 | |
| 		n = cachep->node[node];
 | |
| 
 | |
| 		if (!n)
 | |
| 			goto free_array_cache;
 | |
| 
 | |
| 		spin_lock_irq(&n->list_lock);
 | |
| 
 | |
| 		/* Free limit for this kmem_cache_node */
 | |
| 		n->free_limit -= cachep->batchcount;
 | |
| 		if (nc)
 | |
| 			free_block(cachep, nc->entry, nc->avail, node);
 | |
| 
 | |
| 		if (!cpumask_empty(mask)) {
 | |
| 			spin_unlock_irq(&n->list_lock);
 | |
| 			goto free_array_cache;
 | |
| 		}
 | |
| 
 | |
| 		shared = n->shared;
 | |
| 		if (shared) {
 | |
| 			free_block(cachep, shared->entry,
 | |
| 				   shared->avail, node);
 | |
| 			n->shared = NULL;
 | |
| 		}
 | |
| 
 | |
| 		alien = n->alien;
 | |
| 		n->alien = NULL;
 | |
| 
 | |
| 		spin_unlock_irq(&n->list_lock);
 | |
| 
 | |
| 		kfree(shared);
 | |
| 		if (alien) {
 | |
| 			drain_alien_cache(cachep, alien);
 | |
| 			free_alien_cache(alien);
 | |
| 		}
 | |
| free_array_cache:
 | |
| 		kfree(nc);
 | |
| 	}
 | |
| 	/*
 | |
| 	 * In the previous loop, all the objects were freed to
 | |
| 	 * the respective cache's slabs,  now we can go ahead and
 | |
| 	 * shrink each nodelist to its limit.
 | |
| 	 */
 | |
| 	list_for_each_entry(cachep, &slab_caches, list) {
 | |
| 		n = cachep->node[node];
 | |
| 		if (!n)
 | |
| 			continue;
 | |
| 		drain_freelist(cachep, n, slabs_tofree(cachep, n));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int cpuup_prepare(long cpu)
 | |
| {
 | |
| 	struct kmem_cache *cachep;
 | |
| 	struct kmem_cache_node *n = NULL;
 | |
| 	int node = cpu_to_mem(cpu);
 | |
| 	int err;
 | |
| 
 | |
| 	/*
 | |
| 	 * We need to do this right in the beginning since
 | |
| 	 * alloc_arraycache's are going to use this list.
 | |
| 	 * kmalloc_node allows us to add the slab to the right
 | |
| 	 * kmem_cache_node and not this cpu's kmem_cache_node
 | |
| 	 */
 | |
| 	err = init_cache_node_node(node);
 | |
| 	if (err < 0)
 | |
| 		goto bad;
 | |
| 
 | |
| 	/*
 | |
| 	 * Now we can go ahead with allocating the shared arrays and
 | |
| 	 * array caches
 | |
| 	 */
 | |
| 	list_for_each_entry(cachep, &slab_caches, list) {
 | |
| 		struct array_cache *nc;
 | |
| 		struct array_cache *shared = NULL;
 | |
| 		struct array_cache **alien = NULL;
 | |
| 
 | |
| 		nc = alloc_arraycache(node, cachep->limit,
 | |
| 					cachep->batchcount, GFP_KERNEL);
 | |
| 		if (!nc)
 | |
| 			goto bad;
 | |
| 		if (cachep->shared) {
 | |
| 			shared = alloc_arraycache(node,
 | |
| 				cachep->shared * cachep->batchcount,
 | |
| 				0xbaadf00d, GFP_KERNEL);
 | |
| 			if (!shared) {
 | |
| 				kfree(nc);
 | |
| 				goto bad;
 | |
| 			}
 | |
| 		}
 | |
| 		if (use_alien_caches) {
 | |
| 			alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
 | |
| 			if (!alien) {
 | |
| 				kfree(shared);
 | |
| 				kfree(nc);
 | |
| 				goto bad;
 | |
| 			}
 | |
| 		}
 | |
| 		cachep->array[cpu] = nc;
 | |
| 		n = cachep->node[node];
 | |
| 		BUG_ON(!n);
 | |
| 
 | |
| 		spin_lock_irq(&n->list_lock);
 | |
| 		if (!n->shared) {
 | |
| 			/*
 | |
| 			 * We are serialised from CPU_DEAD or
 | |
| 			 * CPU_UP_CANCELLED by the cpucontrol lock
 | |
| 			 */
 | |
| 			n->shared = shared;
 | |
| 			shared = NULL;
 | |
| 		}
 | |
| #ifdef CONFIG_NUMA
 | |
| 		if (!n->alien) {
 | |
| 			n->alien = alien;
 | |
| 			alien = NULL;
 | |
| 		}
 | |
| #endif
 | |
| 		spin_unlock_irq(&n->list_lock);
 | |
| 		kfree(shared);
 | |
| 		free_alien_cache(alien);
 | |
| 		if (cachep->flags & SLAB_DEBUG_OBJECTS)
 | |
| 			slab_set_debugobj_lock_classes_node(cachep, node);
 | |
| 		else if (!OFF_SLAB(cachep) &&
 | |
| 			 !(cachep->flags & SLAB_DESTROY_BY_RCU))
 | |
| 			on_slab_lock_classes_node(cachep, node);
 | |
| 	}
 | |
| 	init_node_lock_keys(node);
 | |
| 
 | |
| 	return 0;
 | |
| bad:
 | |
| 	cpuup_canceled(cpu);
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| static int cpuup_callback(struct notifier_block *nfb,
 | |
| 				    unsigned long action, void *hcpu)
 | |
| {
 | |
| 	long cpu = (long)hcpu;
 | |
| 	int err = 0;
 | |
| 
 | |
| 	switch (action) {
 | |
| 	case CPU_UP_PREPARE:
 | |
| 	case CPU_UP_PREPARE_FROZEN:
 | |
| 		mutex_lock(&slab_mutex);
 | |
| 		err = cpuup_prepare(cpu);
 | |
| 		mutex_unlock(&slab_mutex);
 | |
| 		break;
 | |
| 	case CPU_ONLINE:
 | |
| 	case CPU_ONLINE_FROZEN:
 | |
| 		start_cpu_timer(cpu);
 | |
| 		break;
 | |
| #ifdef CONFIG_HOTPLUG_CPU
 | |
|   	case CPU_DOWN_PREPARE:
 | |
|   	case CPU_DOWN_PREPARE_FROZEN:
 | |
| 		/*
 | |
| 		 * Shutdown cache reaper. Note that the slab_mutex is
 | |
| 		 * held so that if cache_reap() is invoked it cannot do
 | |
| 		 * anything expensive but will only modify reap_work
 | |
| 		 * and reschedule the timer.
 | |
| 		*/
 | |
| 		cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
 | |
| 		/* Now the cache_reaper is guaranteed to be not running. */
 | |
| 		per_cpu(slab_reap_work, cpu).work.func = NULL;
 | |
|   		break;
 | |
|   	case CPU_DOWN_FAILED:
 | |
|   	case CPU_DOWN_FAILED_FROZEN:
 | |
| 		start_cpu_timer(cpu);
 | |
|   		break;
 | |
| 	case CPU_DEAD:
 | |
| 	case CPU_DEAD_FROZEN:
 | |
| 		/*
 | |
| 		 * Even if all the cpus of a node are down, we don't free the
 | |
| 		 * kmem_cache_node of any cache. This to avoid a race between
 | |
| 		 * cpu_down, and a kmalloc allocation from another cpu for
 | |
| 		 * memory from the node of the cpu going down.  The node
 | |
| 		 * structure is usually allocated from kmem_cache_create() and
 | |
| 		 * gets destroyed at kmem_cache_destroy().
 | |
| 		 */
 | |
| 		/* fall through */
 | |
| #endif
 | |
| 	case CPU_UP_CANCELED:
 | |
| 	case CPU_UP_CANCELED_FROZEN:
 | |
| 		mutex_lock(&slab_mutex);
 | |
| 		cpuup_canceled(cpu);
 | |
| 		mutex_unlock(&slab_mutex);
 | |
| 		break;
 | |
| 	}
 | |
| 	return notifier_from_errno(err);
 | |
| }
 | |
| 
 | |
| static struct notifier_block cpucache_notifier = {
 | |
| 	&cpuup_callback, NULL, 0
 | |
| };
 | |
| 
 | |
| #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
 | |
| /*
 | |
|  * Drains freelist for a node on each slab cache, used for memory hot-remove.
 | |
|  * Returns -EBUSY if all objects cannot be drained so that the node is not
 | |
|  * removed.
 | |
|  *
 | |
|  * Must hold slab_mutex.
 | |
|  */
 | |
| static int __meminit drain_cache_node_node(int node)
 | |
| {
 | |
| 	struct kmem_cache *cachep;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	list_for_each_entry(cachep, &slab_caches, list) {
 | |
| 		struct kmem_cache_node *n;
 | |
| 
 | |
| 		n = cachep->node[node];
 | |
| 		if (!n)
 | |
| 			continue;
 | |
| 
 | |
| 		drain_freelist(cachep, n, slabs_tofree(cachep, n));
 | |
| 
 | |
| 		if (!list_empty(&n->slabs_full) ||
 | |
| 		    !list_empty(&n->slabs_partial)) {
 | |
| 			ret = -EBUSY;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int __meminit slab_memory_callback(struct notifier_block *self,
 | |
| 					unsigned long action, void *arg)
 | |
| {
 | |
| 	struct memory_notify *mnb = arg;
 | |
| 	int ret = 0;
 | |
| 	int nid;
 | |
| 
 | |
| 	nid = mnb->status_change_nid;
 | |
| 	if (nid < 0)
 | |
| 		goto out;
 | |
| 
 | |
| 	switch (action) {
 | |
| 	case MEM_GOING_ONLINE:
 | |
| 		mutex_lock(&slab_mutex);
 | |
| 		ret = init_cache_node_node(nid);
 | |
| 		mutex_unlock(&slab_mutex);
 | |
| 		break;
 | |
| 	case MEM_GOING_OFFLINE:
 | |
| 		mutex_lock(&slab_mutex);
 | |
| 		ret = drain_cache_node_node(nid);
 | |
| 		mutex_unlock(&slab_mutex);
 | |
| 		break;
 | |
| 	case MEM_ONLINE:
 | |
| 	case MEM_OFFLINE:
 | |
| 	case MEM_CANCEL_ONLINE:
 | |
| 	case MEM_CANCEL_OFFLINE:
 | |
| 		break;
 | |
| 	}
 | |
| out:
 | |
| 	return notifier_from_errno(ret);
 | |
| }
 | |
| #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
 | |
| 
 | |
| /*
 | |
|  * swap the static kmem_cache_node with kmalloced memory
 | |
|  */
 | |
| static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
 | |
| 				int nodeid)
 | |
| {
 | |
| 	struct kmem_cache_node *ptr;
 | |
| 
 | |
| 	ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
 | |
| 	BUG_ON(!ptr);
 | |
| 
 | |
| 	memcpy(ptr, list, sizeof(struct kmem_cache_node));
 | |
| 	/*
 | |
| 	 * Do not assume that spinlocks can be initialized via memcpy:
 | |
| 	 */
 | |
| 	spin_lock_init(&ptr->list_lock);
 | |
| 
 | |
| 	MAKE_ALL_LISTS(cachep, ptr, nodeid);
 | |
| 	cachep->node[nodeid] = ptr;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * For setting up all the kmem_cache_node for cache whose buffer_size is same as
 | |
|  * size of kmem_cache_node.
 | |
|  */
 | |
| static void __init set_up_node(struct kmem_cache *cachep, int index)
 | |
| {
 | |
| 	int node;
 | |
| 
 | |
| 	for_each_online_node(node) {
 | |
| 		cachep->node[node] = &init_kmem_cache_node[index + node];
 | |
| 		cachep->node[node]->next_reap = jiffies +
 | |
| 		    REAPTIMEOUT_NODE +
 | |
| 		    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The memory after the last cpu cache pointer is used for the
 | |
|  * the node pointer.
 | |
|  */
 | |
| static void setup_node_pointer(struct kmem_cache *cachep)
 | |
| {
 | |
| 	cachep->node = (struct kmem_cache_node **)&cachep->array[nr_cpu_ids];
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Initialisation.  Called after the page allocator have been initialised and
 | |
|  * before smp_init().
 | |
|  */
 | |
| void __init kmem_cache_init(void)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
 | |
| 					sizeof(struct rcu_head));
 | |
| 	kmem_cache = &kmem_cache_boot;
 | |
| 	setup_node_pointer(kmem_cache);
 | |
| 
 | |
| 	if (num_possible_nodes() == 1)
 | |
| 		use_alien_caches = 0;
 | |
| 
 | |
| 	for (i = 0; i < NUM_INIT_LISTS; i++)
 | |
| 		kmem_cache_node_init(&init_kmem_cache_node[i]);
 | |
| 
 | |
| 	set_up_node(kmem_cache, CACHE_CACHE);
 | |
| 
 | |
| 	/*
 | |
| 	 * Fragmentation resistance on low memory - only use bigger
 | |
| 	 * page orders on machines with more than 32MB of memory if
 | |
| 	 * not overridden on the command line.
 | |
| 	 */
 | |
| 	if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
 | |
| 		slab_max_order = SLAB_MAX_ORDER_HI;
 | |
| 
 | |
| 	/* Bootstrap is tricky, because several objects are allocated
 | |
| 	 * from caches that do not exist yet:
 | |
| 	 * 1) initialize the kmem_cache cache: it contains the struct
 | |
| 	 *    kmem_cache structures of all caches, except kmem_cache itself:
 | |
| 	 *    kmem_cache is statically allocated.
 | |
| 	 *    Initially an __init data area is used for the head array and the
 | |
| 	 *    kmem_cache_node structures, it's replaced with a kmalloc allocated
 | |
| 	 *    array at the end of the bootstrap.
 | |
| 	 * 2) Create the first kmalloc cache.
 | |
| 	 *    The struct kmem_cache for the new cache is allocated normally.
 | |
| 	 *    An __init data area is used for the head array.
 | |
| 	 * 3) Create the remaining kmalloc caches, with minimally sized
 | |
| 	 *    head arrays.
 | |
| 	 * 4) Replace the __init data head arrays for kmem_cache and the first
 | |
| 	 *    kmalloc cache with kmalloc allocated arrays.
 | |
| 	 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
 | |
| 	 *    the other cache's with kmalloc allocated memory.
 | |
| 	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
 | |
| 	 */
 | |
| 
 | |
| 	/* 1) create the kmem_cache */
 | |
| 
 | |
| 	/*
 | |
| 	 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
 | |
| 	 */
 | |
| 	create_boot_cache(kmem_cache, "kmem_cache",
 | |
| 		offsetof(struct kmem_cache, array[nr_cpu_ids]) +
 | |
| 				  nr_node_ids * sizeof(struct kmem_cache_node *),
 | |
| 				  SLAB_HWCACHE_ALIGN);
 | |
| 	list_add(&kmem_cache->list, &slab_caches);
 | |
| 
 | |
| 	/* 2+3) create the kmalloc caches */
 | |
| 
 | |
| 	/*
 | |
| 	 * Initialize the caches that provide memory for the array cache and the
 | |
| 	 * kmem_cache_node structures first.  Without this, further allocations will
 | |
| 	 * bug.
 | |
| 	 */
 | |
| 
 | |
| 	kmalloc_caches[INDEX_AC] = create_kmalloc_cache("kmalloc-ac",
 | |
| 					kmalloc_size(INDEX_AC), ARCH_KMALLOC_FLAGS);
 | |
| 
 | |
| 	if (INDEX_AC != INDEX_NODE)
 | |
| 		kmalloc_caches[INDEX_NODE] =
 | |
| 			create_kmalloc_cache("kmalloc-node",
 | |
| 				kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
 | |
| 
 | |
| 	slab_early_init = 0;
 | |
| 
 | |
| 	/* 4) Replace the bootstrap head arrays */
 | |
| 	{
 | |
| 		struct array_cache *ptr;
 | |
| 
 | |
| 		ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
 | |
| 
 | |
| 		memcpy(ptr, cpu_cache_get(kmem_cache),
 | |
| 		       sizeof(struct arraycache_init));
 | |
| 		/*
 | |
| 		 * Do not assume that spinlocks can be initialized via memcpy:
 | |
| 		 */
 | |
| 		spin_lock_init(&ptr->lock);
 | |
| 
 | |
| 		kmem_cache->array[smp_processor_id()] = ptr;
 | |
| 
 | |
| 		ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
 | |
| 
 | |
| 		BUG_ON(cpu_cache_get(kmalloc_caches[INDEX_AC])
 | |
| 		       != &initarray_generic.cache);
 | |
| 		memcpy(ptr, cpu_cache_get(kmalloc_caches[INDEX_AC]),
 | |
| 		       sizeof(struct arraycache_init));
 | |
| 		/*
 | |
| 		 * Do not assume that spinlocks can be initialized via memcpy:
 | |
| 		 */
 | |
| 		spin_lock_init(&ptr->lock);
 | |
| 
 | |
| 		kmalloc_caches[INDEX_AC]->array[smp_processor_id()] = ptr;
 | |
| 	}
 | |
| 	/* 5) Replace the bootstrap kmem_cache_node */
 | |
| 	{
 | |
| 		int nid;
 | |
| 
 | |
| 		for_each_online_node(nid) {
 | |
| 			init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
 | |
| 
 | |
| 			init_list(kmalloc_caches[INDEX_AC],
 | |
| 				  &init_kmem_cache_node[SIZE_AC + nid], nid);
 | |
| 
 | |
| 			if (INDEX_AC != INDEX_NODE) {
 | |
| 				init_list(kmalloc_caches[INDEX_NODE],
 | |
| 					  &init_kmem_cache_node[SIZE_NODE + nid], nid);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
 | |
| }
 | |
| 
 | |
| void __init kmem_cache_init_late(void)
 | |
| {
 | |
| 	struct kmem_cache *cachep;
 | |
| 
 | |
| 	slab_state = UP;
 | |
| 
 | |
| 	/* 6) resize the head arrays to their final sizes */
 | |
| 	mutex_lock(&slab_mutex);
 | |
| 	list_for_each_entry(cachep, &slab_caches, list)
 | |
| 		if (enable_cpucache(cachep, GFP_NOWAIT))
 | |
| 			BUG();
 | |
| 	mutex_unlock(&slab_mutex);
 | |
| 
 | |
| 	/* Annotate slab for lockdep -- annotate the malloc caches */
 | |
| 	init_lock_keys();
 | |
| 
 | |
| 	/* Done! */
 | |
| 	slab_state = FULL;
 | |
| 
 | |
| 	/*
 | |
| 	 * Register a cpu startup notifier callback that initializes
 | |
| 	 * cpu_cache_get for all new cpus
 | |
| 	 */
 | |
| 	register_cpu_notifier(&cpucache_notifier);
 | |
| 
 | |
| #ifdef CONFIG_NUMA
 | |
| 	/*
 | |
| 	 * Register a memory hotplug callback that initializes and frees
 | |
| 	 * node.
 | |
| 	 */
 | |
| 	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
 | |
| #endif
 | |
| 
 | |
| 	/*
 | |
| 	 * The reap timers are started later, with a module init call: That part
 | |
| 	 * of the kernel is not yet operational.
 | |
| 	 */
 | |
| }
 | |
| 
 | |
| static int __init cpucache_init(void)
 | |
| {
 | |
| 	int cpu;
 | |
| 
 | |
| 	/*
 | |
| 	 * Register the timers that return unneeded pages to the page allocator
 | |
| 	 */
 | |
| 	for_each_online_cpu(cpu)
 | |
| 		start_cpu_timer(cpu);
 | |
| 
 | |
| 	/* Done! */
 | |
| 	slab_state = FULL;
 | |
| 	return 0;
 | |
| }
 | |
| __initcall(cpucache_init);
 | |
| 
 | |
| static noinline void
 | |
| slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
 | |
| {
 | |
| 	struct kmem_cache_node *n;
 | |
| 	struct page *page;
 | |
| 	unsigned long flags;
 | |
| 	int node;
 | |
| 
 | |
| 	printk(KERN_WARNING
 | |
| 		"SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
 | |
| 		nodeid, gfpflags);
 | |
| 	printk(KERN_WARNING "  cache: %s, object size: %d, order: %d\n",
 | |
| 		cachep->name, cachep->size, cachep->gfporder);
 | |
| 
 | |
| 	for_each_online_node(node) {
 | |
| 		unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
 | |
| 		unsigned long active_slabs = 0, num_slabs = 0;
 | |
| 
 | |
| 		n = cachep->node[node];
 | |
| 		if (!n)
 | |
| 			continue;
 | |
| 
 | |
| 		spin_lock_irqsave(&n->list_lock, flags);
 | |
| 		list_for_each_entry(page, &n->slabs_full, lru) {
 | |
| 			active_objs += cachep->num;
 | |
| 			active_slabs++;
 | |
| 		}
 | |
| 		list_for_each_entry(page, &n->slabs_partial, lru) {
 | |
| 			active_objs += page->active;
 | |
| 			active_slabs++;
 | |
| 		}
 | |
| 		list_for_each_entry(page, &n->slabs_free, lru)
 | |
| 			num_slabs++;
 | |
| 
 | |
| 		free_objects += n->free_objects;
 | |
| 		spin_unlock_irqrestore(&n->list_lock, flags);
 | |
| 
 | |
| 		num_slabs += active_slabs;
 | |
| 		num_objs = num_slabs * cachep->num;
 | |
| 		printk(KERN_WARNING
 | |
| 			"  node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
 | |
| 			node, active_slabs, num_slabs, active_objs, num_objs,
 | |
| 			free_objects);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Interface to system's page allocator. No need to hold the cache-lock.
 | |
|  *
 | |
|  * If we requested dmaable memory, we will get it. Even if we
 | |
|  * did not request dmaable memory, we might get it, but that
 | |
|  * would be relatively rare and ignorable.
 | |
|  */
 | |
| static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
 | |
| 								int nodeid)
 | |
| {
 | |
| 	struct page *page;
 | |
| 	int nr_pages;
 | |
| 
 | |
| 	flags |= cachep->allocflags;
 | |
| 	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
 | |
| 		flags |= __GFP_RECLAIMABLE;
 | |
| 
 | |
| 	page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
 | |
| 	if (!page) {
 | |
| 		if (!(flags & __GFP_NOWARN) && printk_ratelimit())
 | |
| 			slab_out_of_memory(cachep, flags, nodeid);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	/* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
 | |
| 	if (unlikely(page->pfmemalloc))
 | |
| 		pfmemalloc_active = true;
 | |
| 
 | |
| 	nr_pages = (1 << cachep->gfporder);
 | |
| 	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
 | |
| 		add_zone_page_state(page_zone(page),
 | |
| 			NR_SLAB_RECLAIMABLE, nr_pages);
 | |
| 	else
 | |
| 		add_zone_page_state(page_zone(page),
 | |
| 			NR_SLAB_UNRECLAIMABLE, nr_pages);
 | |
| 	__SetPageSlab(page);
 | |
| 	if (page->pfmemalloc)
 | |
| 		SetPageSlabPfmemalloc(page);
 | |
| 	memcg_bind_pages(cachep, cachep->gfporder);
 | |
| 
 | |
| 	if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
 | |
| 		kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
 | |
| 
 | |
| 		if (cachep->ctor)
 | |
| 			kmemcheck_mark_uninitialized_pages(page, nr_pages);
 | |
| 		else
 | |
| 			kmemcheck_mark_unallocated_pages(page, nr_pages);
 | |
| 	}
 | |
| 
 | |
| 	return page;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Interface to system's page release.
 | |
|  */
 | |
| static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
 | |
| {
 | |
| 	const unsigned long nr_freed = (1 << cachep->gfporder);
 | |
| 
 | |
| 	kmemcheck_free_shadow(page, cachep->gfporder);
 | |
| 
 | |
| 	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
 | |
| 		sub_zone_page_state(page_zone(page),
 | |
| 				NR_SLAB_RECLAIMABLE, nr_freed);
 | |
| 	else
 | |
| 		sub_zone_page_state(page_zone(page),
 | |
| 				NR_SLAB_UNRECLAIMABLE, nr_freed);
 | |
| 
 | |
| 	BUG_ON(!PageSlab(page));
 | |
| 	__ClearPageSlabPfmemalloc(page);
 | |
| 	__ClearPageSlab(page);
 | |
| 	page_mapcount_reset(page);
 | |
| 	page->mapping = NULL;
 | |
| 
 | |
| 	memcg_release_pages(cachep, cachep->gfporder);
 | |
| 	if (current->reclaim_state)
 | |
| 		current->reclaim_state->reclaimed_slab += nr_freed;
 | |
| 	__free_memcg_kmem_pages(page, cachep->gfporder);
 | |
| }
 | |
| 
 | |
| static void kmem_rcu_free(struct rcu_head *head)
 | |
| {
 | |
| 	struct kmem_cache *cachep;
 | |
| 	struct page *page;
 | |
| 
 | |
| 	page = container_of(head, struct page, rcu_head);
 | |
| 	cachep = page->slab_cache;
 | |
| 
 | |
| 	kmem_freepages(cachep, page);
 | |
| }
 | |
| 
 | |
| #if DEBUG
 | |
| 
 | |
| #ifdef CONFIG_DEBUG_PAGEALLOC
 | |
| static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
 | |
| 			    unsigned long caller)
 | |
| {
 | |
| 	int size = cachep->object_size;
 | |
| 
 | |
| 	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
 | |
| 
 | |
| 	if (size < 5 * sizeof(unsigned long))
 | |
| 		return;
 | |
| 
 | |
| 	*addr++ = 0x12345678;
 | |
| 	*addr++ = caller;
 | |
| 	*addr++ = smp_processor_id();
 | |
| 	size -= 3 * sizeof(unsigned long);
 | |
| 	{
 | |
| 		unsigned long *sptr = &caller;
 | |
| 		unsigned long svalue;
 | |
| 
 | |
| 		while (!kstack_end(sptr)) {
 | |
| 			svalue = *sptr++;
 | |
| 			if (kernel_text_address(svalue)) {
 | |
| 				*addr++ = svalue;
 | |
| 				size -= sizeof(unsigned long);
 | |
| 				if (size <= sizeof(unsigned long))
 | |
| 					break;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 	}
 | |
| 	*addr++ = 0x87654321;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
 | |
| {
 | |
| 	int size = cachep->object_size;
 | |
| 	addr = &((char *)addr)[obj_offset(cachep)];
 | |
| 
 | |
| 	memset(addr, val, size);
 | |
| 	*(unsigned char *)(addr + size - 1) = POISON_END;
 | |
| }
 | |
| 
 | |
| static void dump_line(char *data, int offset, int limit)
 | |
| {
 | |
| 	int i;
 | |
| 	unsigned char error = 0;
 | |
| 	int bad_count = 0;
 | |
| 
 | |
| 	printk(KERN_ERR "%03x: ", offset);
 | |
| 	for (i = 0; i < limit; i++) {
 | |
| 		if (data[offset + i] != POISON_FREE) {
 | |
| 			error = data[offset + i];
 | |
| 			bad_count++;
 | |
| 		}
 | |
| 	}
 | |
| 	print_hex_dump(KERN_CONT, "", 0, 16, 1,
 | |
| 			&data[offset], limit, 1);
 | |
| 
 | |
| 	if (bad_count == 1) {
 | |
| 		error ^= POISON_FREE;
 | |
| 		if (!(error & (error - 1))) {
 | |
| 			printk(KERN_ERR "Single bit error detected. Probably "
 | |
| 					"bad RAM.\n");
 | |
| #ifdef CONFIG_X86
 | |
| 			printk(KERN_ERR "Run memtest86+ or a similar memory "
 | |
| 					"test tool.\n");
 | |
| #else
 | |
| 			printk(KERN_ERR "Run a memory test tool.\n");
 | |
| #endif
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #if DEBUG
 | |
| 
 | |
| static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
 | |
| {
 | |
| 	int i, size;
 | |
| 	char *realobj;
 | |
| 
 | |
| 	if (cachep->flags & SLAB_RED_ZONE) {
 | |
| 		printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
 | |
| 			*dbg_redzone1(cachep, objp),
 | |
| 			*dbg_redzone2(cachep, objp));
 | |
| 	}
 | |
| 
 | |
| 	if (cachep->flags & SLAB_STORE_USER) {
 | |
| 		printk(KERN_ERR "Last user: [<%p>](%pSR)\n",
 | |
| 		       *dbg_userword(cachep, objp),
 | |
| 		       *dbg_userword(cachep, objp));
 | |
| 	}
 | |
| 	realobj = (char *)objp + obj_offset(cachep);
 | |
| 	size = cachep->object_size;
 | |
| 	for (i = 0; i < size && lines; i += 16, lines--) {
 | |
| 		int limit;
 | |
| 		limit = 16;
 | |
| 		if (i + limit > size)
 | |
| 			limit = size - i;
 | |
| 		dump_line(realobj, i, limit);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void check_poison_obj(struct kmem_cache *cachep, void *objp)
 | |
| {
 | |
| 	char *realobj;
 | |
| 	int size, i;
 | |
| 	int lines = 0;
 | |
| 
 | |
| 	realobj = (char *)objp + obj_offset(cachep);
 | |
| 	size = cachep->object_size;
 | |
| 
 | |
| 	for (i = 0; i < size; i++) {
 | |
| 		char exp = POISON_FREE;
 | |
| 		if (i == size - 1)
 | |
| 			exp = POISON_END;
 | |
| 		if (realobj[i] != exp) {
 | |
| 			int limit;
 | |
| 			/* Mismatch ! */
 | |
| 			/* Print header */
 | |
| 			if (lines == 0) {
 | |
| 				printk(KERN_ERR
 | |
| 					"Slab corruption (%s): %s start=%p, len=%d\n",
 | |
| 					print_tainted(), cachep->name, realobj, size);
 | |
| 				print_objinfo(cachep, objp, 0);
 | |
| 			}
 | |
| 			/* Hexdump the affected line */
 | |
| 			i = (i / 16) * 16;
 | |
| 			limit = 16;
 | |
| 			if (i + limit > size)
 | |
| 				limit = size - i;
 | |
| 			dump_line(realobj, i, limit);
 | |
| 			i += 16;
 | |
| 			lines++;
 | |
| 			/* Limit to 5 lines */
 | |
| 			if (lines > 5)
 | |
| 				break;
 | |
| 		}
 | |
| 	}
 | |
| 	if (lines != 0) {
 | |
| 		/* Print some data about the neighboring objects, if they
 | |
| 		 * exist:
 | |
| 		 */
 | |
| 		struct page *page = virt_to_head_page(objp);
 | |
| 		unsigned int objnr;
 | |
| 
 | |
| 		objnr = obj_to_index(cachep, page, objp);
 | |
| 		if (objnr) {
 | |
| 			objp = index_to_obj(cachep, page, objnr - 1);
 | |
| 			realobj = (char *)objp + obj_offset(cachep);
 | |
| 			printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
 | |
| 			       realobj, size);
 | |
| 			print_objinfo(cachep, objp, 2);
 | |
| 		}
 | |
| 		if (objnr + 1 < cachep->num) {
 | |
| 			objp = index_to_obj(cachep, page, objnr + 1);
 | |
| 			realobj = (char *)objp + obj_offset(cachep);
 | |
| 			printk(KERN_ERR "Next obj: start=%p, len=%d\n",
 | |
| 			       realobj, size);
 | |
| 			print_objinfo(cachep, objp, 2);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #if DEBUG
 | |
| static void slab_destroy_debugcheck(struct kmem_cache *cachep,
 | |
| 						struct page *page)
 | |
| {
 | |
| 	int i;
 | |
| 	for (i = 0; i < cachep->num; i++) {
 | |
| 		void *objp = index_to_obj(cachep, page, i);
 | |
| 
 | |
| 		if (cachep->flags & SLAB_POISON) {
 | |
| #ifdef CONFIG_DEBUG_PAGEALLOC
 | |
| 			if (cachep->size % PAGE_SIZE == 0 &&
 | |
| 					OFF_SLAB(cachep))
 | |
| 				kernel_map_pages(virt_to_page(objp),
 | |
| 					cachep->size / PAGE_SIZE, 1);
 | |
| 			else
 | |
| 				check_poison_obj(cachep, objp);
 | |
| #else
 | |
| 			check_poison_obj(cachep, objp);
 | |
| #endif
 | |
| 		}
 | |
| 		if (cachep->flags & SLAB_RED_ZONE) {
 | |
| 			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
 | |
| 				slab_error(cachep, "start of a freed object "
 | |
| 					   "was overwritten");
 | |
| 			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
 | |
| 				slab_error(cachep, "end of a freed object "
 | |
| 					   "was overwritten");
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| #else
 | |
| static void slab_destroy_debugcheck(struct kmem_cache *cachep,
 | |
| 						struct page *page)
 | |
| {
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /**
 | |
|  * slab_destroy - destroy and release all objects in a slab
 | |
|  * @cachep: cache pointer being destroyed
 | |
|  * @page: page pointer being destroyed
 | |
|  *
 | |
|  * Destroy all the objs in a slab, and release the mem back to the system.
 | |
|  * Before calling the slab must have been unlinked from the cache.  The
 | |
|  * cache-lock is not held/needed.
 | |
|  */
 | |
| static void slab_destroy(struct kmem_cache *cachep, struct page *page)
 | |
| {
 | |
| 	void *freelist;
 | |
| 
 | |
| 	freelist = page->freelist;
 | |
| 	slab_destroy_debugcheck(cachep, page);
 | |
| 	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
 | |
| 		struct rcu_head *head;
 | |
| 
 | |
| 		/*
 | |
| 		 * RCU free overloads the RCU head over the LRU.
 | |
| 		 * slab_page has been overloeaded over the LRU,
 | |
| 		 * however it is not used from now on so that
 | |
| 		 * we can use it safely.
 | |
| 		 */
 | |
| 		head = (void *)&page->rcu_head;
 | |
| 		call_rcu(head, kmem_rcu_free);
 | |
| 
 | |
| 	} else {
 | |
| 		kmem_freepages(cachep, page);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * From now on, we don't use freelist
 | |
| 	 * although actual page can be freed in rcu context
 | |
| 	 */
 | |
| 	if (OFF_SLAB(cachep))
 | |
| 		kmem_cache_free(cachep->freelist_cache, freelist);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * calculate_slab_order - calculate size (page order) of slabs
 | |
|  * @cachep: pointer to the cache that is being created
 | |
|  * @size: size of objects to be created in this cache.
 | |
|  * @align: required alignment for the objects.
 | |
|  * @flags: slab allocation flags
 | |
|  *
 | |
|  * Also calculates the number of objects per slab.
 | |
|  *
 | |
|  * This could be made much more intelligent.  For now, try to avoid using
 | |
|  * high order pages for slabs.  When the gfp() functions are more friendly
 | |
|  * towards high-order requests, this should be changed.
 | |
|  */
 | |
| static size_t calculate_slab_order(struct kmem_cache *cachep,
 | |
| 			size_t size, size_t align, unsigned long flags)
 | |
| {
 | |
| 	unsigned long offslab_limit;
 | |
| 	size_t left_over = 0;
 | |
| 	int gfporder;
 | |
| 
 | |
| 	for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
 | |
| 		unsigned int num;
 | |
| 		size_t remainder;
 | |
| 
 | |
| 		cache_estimate(gfporder, size, align, flags, &remainder, &num);
 | |
| 		if (!num)
 | |
| 			continue;
 | |
| 
 | |
| 		/* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
 | |
| 		if (num > SLAB_OBJ_MAX_NUM)
 | |
| 			break;
 | |
| 
 | |
| 		if (flags & CFLGS_OFF_SLAB) {
 | |
| 			/*
 | |
| 			 * Max number of objs-per-slab for caches which
 | |
| 			 * use off-slab slabs. Needed to avoid a possible
 | |
| 			 * looping condition in cache_grow().
 | |
| 			 */
 | |
| 			offslab_limit = size;
 | |
| 			offslab_limit /= sizeof(freelist_idx_t);
 | |
| 
 | |
|  			if (num > offslab_limit)
 | |
| 				break;
 | |
| 		}
 | |
| 
 | |
| 		/* Found something acceptable - save it away */
 | |
| 		cachep->num = num;
 | |
| 		cachep->gfporder = gfporder;
 | |
| 		left_over = remainder;
 | |
| 
 | |
| 		/*
 | |
| 		 * A VFS-reclaimable slab tends to have most allocations
 | |
| 		 * as GFP_NOFS and we really don't want to have to be allocating
 | |
| 		 * higher-order pages when we are unable to shrink dcache.
 | |
| 		 */
 | |
| 		if (flags & SLAB_RECLAIM_ACCOUNT)
 | |
| 			break;
 | |
| 
 | |
| 		/*
 | |
| 		 * Large number of objects is good, but very large slabs are
 | |
| 		 * currently bad for the gfp()s.
 | |
| 		 */
 | |
| 		if (gfporder >= slab_max_order)
 | |
| 			break;
 | |
| 
 | |
| 		/*
 | |
| 		 * Acceptable internal fragmentation?
 | |
| 		 */
 | |
| 		if (left_over * 8 <= (PAGE_SIZE << gfporder))
 | |
| 			break;
 | |
| 	}
 | |
| 	return left_over;
 | |
| }
 | |
| 
 | |
| static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
 | |
| {
 | |
| 	if (slab_state >= FULL)
 | |
| 		return enable_cpucache(cachep, gfp);
 | |
| 
 | |
| 	if (slab_state == DOWN) {
 | |
| 		/*
 | |
| 		 * Note: Creation of first cache (kmem_cache).
 | |
| 		 * The setup_node is taken care
 | |
| 		 * of by the caller of __kmem_cache_create
 | |
| 		 */
 | |
| 		cachep->array[smp_processor_id()] = &initarray_generic.cache;
 | |
| 		slab_state = PARTIAL;
 | |
| 	} else if (slab_state == PARTIAL) {
 | |
| 		/*
 | |
| 		 * Note: the second kmem_cache_create must create the cache
 | |
| 		 * that's used by kmalloc(24), otherwise the creation of
 | |
| 		 * further caches will BUG().
 | |
| 		 */
 | |
| 		cachep->array[smp_processor_id()] = &initarray_generic.cache;
 | |
| 
 | |
| 		/*
 | |
| 		 * If the cache that's used by kmalloc(sizeof(kmem_cache_node)) is
 | |
| 		 * the second cache, then we need to set up all its node/,
 | |
| 		 * otherwise the creation of further caches will BUG().
 | |
| 		 */
 | |
| 		set_up_node(cachep, SIZE_AC);
 | |
| 		if (INDEX_AC == INDEX_NODE)
 | |
| 			slab_state = PARTIAL_NODE;
 | |
| 		else
 | |
| 			slab_state = PARTIAL_ARRAYCACHE;
 | |
| 	} else {
 | |
| 		/* Remaining boot caches */
 | |
| 		cachep->array[smp_processor_id()] =
 | |
| 			kmalloc(sizeof(struct arraycache_init), gfp);
 | |
| 
 | |
| 		if (slab_state == PARTIAL_ARRAYCACHE) {
 | |
| 			set_up_node(cachep, SIZE_NODE);
 | |
| 			slab_state = PARTIAL_NODE;
 | |
| 		} else {
 | |
| 			int node;
 | |
| 			for_each_online_node(node) {
 | |
| 				cachep->node[node] =
 | |
| 				    kmalloc_node(sizeof(struct kmem_cache_node),
 | |
| 						gfp, node);
 | |
| 				BUG_ON(!cachep->node[node]);
 | |
| 				kmem_cache_node_init(cachep->node[node]);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	cachep->node[numa_mem_id()]->next_reap =
 | |
| 			jiffies + REAPTIMEOUT_NODE +
 | |
| 			((unsigned long)cachep) % REAPTIMEOUT_NODE;
 | |
| 
 | |
| 	cpu_cache_get(cachep)->avail = 0;
 | |
| 	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
 | |
| 	cpu_cache_get(cachep)->batchcount = 1;
 | |
| 	cpu_cache_get(cachep)->touched = 0;
 | |
| 	cachep->batchcount = 1;
 | |
| 	cachep->limit = BOOT_CPUCACHE_ENTRIES;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * __kmem_cache_create - Create a cache.
 | |
|  * @cachep: cache management descriptor
 | |
|  * @flags: SLAB flags
 | |
|  *
 | |
|  * Returns a ptr to the cache on success, NULL on failure.
 | |
|  * Cannot be called within a int, but can be interrupted.
 | |
|  * The @ctor is run when new pages are allocated by the cache.
 | |
|  *
 | |
|  * The flags are
 | |
|  *
 | |
|  * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 | |
|  * to catch references to uninitialised memory.
 | |
|  *
 | |
|  * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
 | |
|  * for buffer overruns.
 | |
|  *
 | |
|  * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 | |
|  * cacheline.  This can be beneficial if you're counting cycles as closely
 | |
|  * as davem.
 | |
|  */
 | |
| int
 | |
| __kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
 | |
| {
 | |
| 	size_t left_over, freelist_size, ralign;
 | |
| 	gfp_t gfp;
 | |
| 	int err;
 | |
| 	size_t size = cachep->size;
 | |
| 
 | |
| #if DEBUG
 | |
| #if FORCED_DEBUG
 | |
| 	/*
 | |
| 	 * Enable redzoning and last user accounting, except for caches with
 | |
| 	 * large objects, if the increased size would increase the object size
 | |
| 	 * above the next power of two: caches with object sizes just above a
 | |
| 	 * power of two have a significant amount of internal fragmentation.
 | |
| 	 */
 | |
| 	if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
 | |
| 						2 * sizeof(unsigned long long)))
 | |
| 		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
 | |
| 	if (!(flags & SLAB_DESTROY_BY_RCU))
 | |
| 		flags |= SLAB_POISON;
 | |
| #endif
 | |
| 	if (flags & SLAB_DESTROY_BY_RCU)
 | |
| 		BUG_ON(flags & SLAB_POISON);
 | |
| #endif
 | |
| 
 | |
| 	/*
 | |
| 	 * Check that size is in terms of words.  This is needed to avoid
 | |
| 	 * unaligned accesses for some archs when redzoning is used, and makes
 | |
| 	 * sure any on-slab bufctl's are also correctly aligned.
 | |
| 	 */
 | |
| 	if (size & (BYTES_PER_WORD - 1)) {
 | |
| 		size += (BYTES_PER_WORD - 1);
 | |
| 		size &= ~(BYTES_PER_WORD - 1);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Redzoning and user store require word alignment or possibly larger.
 | |
| 	 * Note this will be overridden by architecture or caller mandated
 | |
| 	 * alignment if either is greater than BYTES_PER_WORD.
 | |
| 	 */
 | |
| 	if (flags & SLAB_STORE_USER)
 | |
| 		ralign = BYTES_PER_WORD;
 | |
| 
 | |
| 	if (flags & SLAB_RED_ZONE) {
 | |
| 		ralign = REDZONE_ALIGN;
 | |
| 		/* If redzoning, ensure that the second redzone is suitably
 | |
| 		 * aligned, by adjusting the object size accordingly. */
 | |
| 		size += REDZONE_ALIGN - 1;
 | |
| 		size &= ~(REDZONE_ALIGN - 1);
 | |
| 	}
 | |
| 
 | |
| 	/* 3) caller mandated alignment */
 | |
| 	if (ralign < cachep->align) {
 | |
| 		ralign = cachep->align;
 | |
| 	}
 | |
| 	/* disable debug if necessary */
 | |
| 	if (ralign > __alignof__(unsigned long long))
 | |
| 		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
 | |
| 	/*
 | |
| 	 * 4) Store it.
 | |
| 	 */
 | |
| 	cachep->align = ralign;
 | |
| 
 | |
| 	if (slab_is_available())
 | |
| 		gfp = GFP_KERNEL;
 | |
| 	else
 | |
| 		gfp = GFP_NOWAIT;
 | |
| 
 | |
| 	setup_node_pointer(cachep);
 | |
| #if DEBUG
 | |
| 
 | |
| 	/*
 | |
| 	 * Both debugging options require word-alignment which is calculated
 | |
| 	 * into align above.
 | |
| 	 */
 | |
| 	if (flags & SLAB_RED_ZONE) {
 | |
| 		/* add space for red zone words */
 | |
| 		cachep->obj_offset += sizeof(unsigned long long);
 | |
| 		size += 2 * sizeof(unsigned long long);
 | |
| 	}
 | |
| 	if (flags & SLAB_STORE_USER) {
 | |
| 		/* user store requires one word storage behind the end of
 | |
| 		 * the real object. But if the second red zone needs to be
 | |
| 		 * aligned to 64 bits, we must allow that much space.
 | |
| 		 */
 | |
| 		if (flags & SLAB_RED_ZONE)
 | |
| 			size += REDZONE_ALIGN;
 | |
| 		else
 | |
| 			size += BYTES_PER_WORD;
 | |
| 	}
 | |
| #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
 | |
| 	if (size >= kmalloc_size(INDEX_NODE + 1)
 | |
| 	    && cachep->object_size > cache_line_size()
 | |
| 	    && ALIGN(size, cachep->align) < PAGE_SIZE) {
 | |
| 		cachep->obj_offset += PAGE_SIZE - ALIGN(size, cachep->align);
 | |
| 		size = PAGE_SIZE;
 | |
| 	}
 | |
| #endif
 | |
| #endif
 | |
| 
 | |
| 	/*
 | |
| 	 * Determine if the slab management is 'on' or 'off' slab.
 | |
| 	 * (bootstrapping cannot cope with offslab caches so don't do
 | |
| 	 * it too early on. Always use on-slab management when
 | |
| 	 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
 | |
| 	 */
 | |
| 	if ((size >= (PAGE_SIZE >> 5)) && !slab_early_init &&
 | |
| 	    !(flags & SLAB_NOLEAKTRACE))
 | |
| 		/*
 | |
| 		 * Size is large, assume best to place the slab management obj
 | |
| 		 * off-slab (should allow better packing of objs).
 | |
| 		 */
 | |
| 		flags |= CFLGS_OFF_SLAB;
 | |
| 
 | |
| 	size = ALIGN(size, cachep->align);
 | |
| 	/*
 | |
| 	 * We should restrict the number of objects in a slab to implement
 | |
| 	 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
 | |
| 	 */
 | |
| 	if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
 | |
| 		size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
 | |
| 
 | |
| 	left_over = calculate_slab_order(cachep, size, cachep->align, flags);
 | |
| 
 | |
| 	if (!cachep->num)
 | |
| 		return -E2BIG;
 | |
| 
 | |
| 	freelist_size =
 | |
| 		ALIGN(cachep->num * sizeof(freelist_idx_t), cachep->align);
 | |
| 
 | |
| 	/*
 | |
| 	 * If the slab has been placed off-slab, and we have enough space then
 | |
| 	 * move it on-slab. This is at the expense of any extra colouring.
 | |
| 	 */
 | |
| 	if (flags & CFLGS_OFF_SLAB && left_over >= freelist_size) {
 | |
| 		flags &= ~CFLGS_OFF_SLAB;
 | |
| 		left_over -= freelist_size;
 | |
| 	}
 | |
| 
 | |
| 	if (flags & CFLGS_OFF_SLAB) {
 | |
| 		/* really off slab. No need for manual alignment */
 | |
| 		freelist_size = cachep->num * sizeof(freelist_idx_t);
 | |
| 
 | |
| #ifdef CONFIG_PAGE_POISONING
 | |
| 		/* If we're going to use the generic kernel_map_pages()
 | |
| 		 * poisoning, then it's going to smash the contents of
 | |
| 		 * the redzone and userword anyhow, so switch them off.
 | |
| 		 */
 | |
| 		if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
 | |
| 			flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
 | |
| #endif
 | |
| 	}
 | |
| 
 | |
| 	cachep->colour_off = cache_line_size();
 | |
| 	/* Offset must be a multiple of the alignment. */
 | |
| 	if (cachep->colour_off < cachep->align)
 | |
| 		cachep->colour_off = cachep->align;
 | |
| 	cachep->colour = left_over / cachep->colour_off;
 | |
| 	cachep->freelist_size = freelist_size;
 | |
| 	cachep->flags = flags;
 | |
| 	cachep->allocflags = __GFP_COMP;
 | |
| 	if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
 | |
| 		cachep->allocflags |= GFP_DMA;
 | |
| 	cachep->size = size;
 | |
| 	cachep->reciprocal_buffer_size = reciprocal_value(size);
 | |
| 
 | |
| 	if (flags & CFLGS_OFF_SLAB) {
 | |
| 		cachep->freelist_cache = kmalloc_slab(freelist_size, 0u);
 | |
| 		/*
 | |
| 		 * This is a possibility for one of the kmalloc_{dma,}_caches.
 | |
| 		 * But since we go off slab only for object size greater than
 | |
| 		 * PAGE_SIZE/8, and kmalloc_{dma,}_caches get created
 | |
| 		 * in ascending order,this should not happen at all.
 | |
| 		 * But leave a BUG_ON for some lucky dude.
 | |
| 		 */
 | |
| 		BUG_ON(ZERO_OR_NULL_PTR(cachep->freelist_cache));
 | |
| 	}
 | |
| 
 | |
| 	err = setup_cpu_cache(cachep, gfp);
 | |
| 	if (err) {
 | |
| 		__kmem_cache_shutdown(cachep);
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	if (flags & SLAB_DEBUG_OBJECTS) {
 | |
| 		/*
 | |
| 		 * Would deadlock through slab_destroy()->call_rcu()->
 | |
| 		 * debug_object_activate()->kmem_cache_alloc().
 | |
| 		 */
 | |
| 		WARN_ON_ONCE(flags & SLAB_DESTROY_BY_RCU);
 | |
| 
 | |
| 		slab_set_debugobj_lock_classes(cachep);
 | |
| 	} else if (!OFF_SLAB(cachep) && !(flags & SLAB_DESTROY_BY_RCU))
 | |
| 		on_slab_lock_classes(cachep);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #if DEBUG
 | |
| static void check_irq_off(void)
 | |
| {
 | |
| 	BUG_ON(!irqs_disabled());
 | |
| }
 | |
| 
 | |
| static void check_irq_on(void)
 | |
| {
 | |
| 	BUG_ON(irqs_disabled());
 | |
| }
 | |
| 
 | |
| static void check_spinlock_acquired(struct kmem_cache *cachep)
 | |
| {
 | |
| #ifdef CONFIG_SMP
 | |
| 	check_irq_off();
 | |
| 	assert_spin_locked(&cachep->node[numa_mem_id()]->list_lock);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
 | |
| {
 | |
| #ifdef CONFIG_SMP
 | |
| 	check_irq_off();
 | |
| 	assert_spin_locked(&cachep->node[node]->list_lock);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| #else
 | |
| #define check_irq_off()	do { } while(0)
 | |
| #define check_irq_on()	do { } while(0)
 | |
| #define check_spinlock_acquired(x) do { } while(0)
 | |
| #define check_spinlock_acquired_node(x, y) do { } while(0)
 | |
| #endif
 | |
| 
 | |
| static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
 | |
| 			struct array_cache *ac,
 | |
| 			int force, int node);
 | |
| 
 | |
| static void do_drain(void *arg)
 | |
| {
 | |
| 	struct kmem_cache *cachep = arg;
 | |
| 	struct array_cache *ac;
 | |
| 	int node = numa_mem_id();
 | |
| 
 | |
| 	check_irq_off();
 | |
| 	ac = cpu_cache_get(cachep);
 | |
| 	spin_lock(&cachep->node[node]->list_lock);
 | |
| 	free_block(cachep, ac->entry, ac->avail, node);
 | |
| 	spin_unlock(&cachep->node[node]->list_lock);
 | |
| 	ac->avail = 0;
 | |
| }
 | |
| 
 | |
| static void drain_cpu_caches(struct kmem_cache *cachep)
 | |
| {
 | |
| 	struct kmem_cache_node *n;
 | |
| 	int node;
 | |
| 
 | |
| 	on_each_cpu(do_drain, cachep, 1);
 | |
| 	check_irq_on();
 | |
| 	for_each_online_node(node) {
 | |
| 		n = cachep->node[node];
 | |
| 		if (n && n->alien)
 | |
| 			drain_alien_cache(cachep, n->alien);
 | |
| 	}
 | |
| 
 | |
| 	for_each_online_node(node) {
 | |
| 		n = cachep->node[node];
 | |
| 		if (n)
 | |
| 			drain_array(cachep, n, n->shared, 1, node);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Remove slabs from the list of free slabs.
 | |
|  * Specify the number of slabs to drain in tofree.
 | |
|  *
 | |
|  * Returns the actual number of slabs released.
 | |
|  */
 | |
| static int drain_freelist(struct kmem_cache *cache,
 | |
| 			struct kmem_cache_node *n, int tofree)
 | |
| {
 | |
| 	struct list_head *p;
 | |
| 	int nr_freed;
 | |
| 	struct page *page;
 | |
| 
 | |
| 	nr_freed = 0;
 | |
| 	while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
 | |
| 
 | |
| 		spin_lock_irq(&n->list_lock);
 | |
| 		p = n->slabs_free.prev;
 | |
| 		if (p == &n->slabs_free) {
 | |
| 			spin_unlock_irq(&n->list_lock);
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		page = list_entry(p, struct page, lru);
 | |
| #if DEBUG
 | |
| 		BUG_ON(page->active);
 | |
| #endif
 | |
| 		list_del(&page->lru);
 | |
| 		/*
 | |
| 		 * Safe to drop the lock. The slab is no longer linked
 | |
| 		 * to the cache.
 | |
| 		 */
 | |
| 		n->free_objects -= cache->num;
 | |
| 		spin_unlock_irq(&n->list_lock);
 | |
| 		slab_destroy(cache, page);
 | |
| 		nr_freed++;
 | |
| 	}
 | |
| out:
 | |
| 	return nr_freed;
 | |
| }
 | |
| 
 | |
| /* Called with slab_mutex held to protect against cpu hotplug */
 | |
| static int __cache_shrink(struct kmem_cache *cachep)
 | |
| {
 | |
| 	int ret = 0, i = 0;
 | |
| 	struct kmem_cache_node *n;
 | |
| 
 | |
| 	drain_cpu_caches(cachep);
 | |
| 
 | |
| 	check_irq_on();
 | |
| 	for_each_online_node(i) {
 | |
| 		n = cachep->node[i];
 | |
| 		if (!n)
 | |
| 			continue;
 | |
| 
 | |
| 		drain_freelist(cachep, n, slabs_tofree(cachep, n));
 | |
| 
 | |
| 		ret += !list_empty(&n->slabs_full) ||
 | |
| 			!list_empty(&n->slabs_partial);
 | |
| 	}
 | |
| 	return (ret ? 1 : 0);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * kmem_cache_shrink - Shrink a cache.
 | |
|  * @cachep: The cache to shrink.
 | |
|  *
 | |
|  * Releases as many slabs as possible for a cache.
 | |
|  * To help debugging, a zero exit status indicates all slabs were released.
 | |
|  */
 | |
| int kmem_cache_shrink(struct kmem_cache *cachep)
 | |
| {
 | |
| 	int ret;
 | |
| 	BUG_ON(!cachep || in_interrupt());
 | |
| 
 | |
| 	get_online_cpus();
 | |
| 	mutex_lock(&slab_mutex);
 | |
| 	ret = __cache_shrink(cachep);
 | |
| 	mutex_unlock(&slab_mutex);
 | |
| 	put_online_cpus();
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL(kmem_cache_shrink);
 | |
| 
 | |
| int __kmem_cache_shutdown(struct kmem_cache *cachep)
 | |
| {
 | |
| 	int i;
 | |
| 	struct kmem_cache_node *n;
 | |
| 	int rc = __cache_shrink(cachep);
 | |
| 
 | |
| 	if (rc)
 | |
| 		return rc;
 | |
| 
 | |
| 	for_each_online_cpu(i)
 | |
| 	    kfree(cachep->array[i]);
 | |
| 
 | |
| 	/* NUMA: free the node structures */
 | |
| 	for_each_online_node(i) {
 | |
| 		n = cachep->node[i];
 | |
| 		if (n) {
 | |
| 			kfree(n->shared);
 | |
| 			free_alien_cache(n->alien);
 | |
| 			kfree(n);
 | |
| 		}
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Get the memory for a slab management obj.
 | |
|  *
 | |
|  * For a slab cache when the slab descriptor is off-slab, the
 | |
|  * slab descriptor can't come from the same cache which is being created,
 | |
|  * Because if it is the case, that means we defer the creation of
 | |
|  * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
 | |
|  * And we eventually call down to __kmem_cache_create(), which
 | |
|  * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
 | |
|  * This is a "chicken-and-egg" problem.
 | |
|  *
 | |
|  * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
 | |
|  * which are all initialized during kmem_cache_init().
 | |
|  */
 | |
| static void *alloc_slabmgmt(struct kmem_cache *cachep,
 | |
| 				   struct page *page, int colour_off,
 | |
| 				   gfp_t local_flags, int nodeid)
 | |
| {
 | |
| 	void *freelist;
 | |
| 	void *addr = page_address(page);
 | |
| 
 | |
| 	if (OFF_SLAB(cachep)) {
 | |
| 		/* Slab management obj is off-slab. */
 | |
| 		freelist = kmem_cache_alloc_node(cachep->freelist_cache,
 | |
| 					      local_flags, nodeid);
 | |
| 		if (!freelist)
 | |
| 			return NULL;
 | |
| 	} else {
 | |
| 		freelist = addr + colour_off;
 | |
| 		colour_off += cachep->freelist_size;
 | |
| 	}
 | |
| 	page->active = 0;
 | |
| 	page->s_mem = addr + colour_off;
 | |
| 	return freelist;
 | |
| }
 | |
| 
 | |
| static inline freelist_idx_t get_free_obj(struct page *page, unsigned char idx)
 | |
| {
 | |
| 	return ((freelist_idx_t *)page->freelist)[idx];
 | |
| }
 | |
| 
 | |
| static inline void set_free_obj(struct page *page,
 | |
| 					unsigned char idx, freelist_idx_t val)
 | |
| {
 | |
| 	((freelist_idx_t *)(page->freelist))[idx] = val;
 | |
| }
 | |
| 
 | |
| static void cache_init_objs(struct kmem_cache *cachep,
 | |
| 			    struct page *page)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < cachep->num; i++) {
 | |
| 		void *objp = index_to_obj(cachep, page, i);
 | |
| #if DEBUG
 | |
| 		/* need to poison the objs? */
 | |
| 		if (cachep->flags & SLAB_POISON)
 | |
| 			poison_obj(cachep, objp, POISON_FREE);
 | |
| 		if (cachep->flags & SLAB_STORE_USER)
 | |
| 			*dbg_userword(cachep, objp) = NULL;
 | |
| 
 | |
| 		if (cachep->flags & SLAB_RED_ZONE) {
 | |
| 			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
 | |
| 			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
 | |
| 		}
 | |
| 		/*
 | |
| 		 * Constructors are not allowed to allocate memory from the same
 | |
| 		 * cache which they are a constructor for.  Otherwise, deadlock.
 | |
| 		 * They must also be threaded.
 | |
| 		 */
 | |
| 		if (cachep->ctor && !(cachep->flags & SLAB_POISON))
 | |
| 			cachep->ctor(objp + obj_offset(cachep));
 | |
| 
 | |
| 		if (cachep->flags & SLAB_RED_ZONE) {
 | |
| 			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
 | |
| 				slab_error(cachep, "constructor overwrote the"
 | |
| 					   " end of an object");
 | |
| 			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
 | |
| 				slab_error(cachep, "constructor overwrote the"
 | |
| 					   " start of an object");
 | |
| 		}
 | |
| 		if ((cachep->size % PAGE_SIZE) == 0 &&
 | |
| 			    OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
 | |
| 			kernel_map_pages(virt_to_page(objp),
 | |
| 					 cachep->size / PAGE_SIZE, 0);
 | |
| #else
 | |
| 		if (cachep->ctor)
 | |
| 			cachep->ctor(objp);
 | |
| #endif
 | |
| 		set_free_obj(page, i, i);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
 | |
| {
 | |
| 	if (CONFIG_ZONE_DMA_FLAG) {
 | |
| 		if (flags & GFP_DMA)
 | |
| 			BUG_ON(!(cachep->allocflags & GFP_DMA));
 | |
| 		else
 | |
| 			BUG_ON(cachep->allocflags & GFP_DMA);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void *slab_get_obj(struct kmem_cache *cachep, struct page *page,
 | |
| 				int nodeid)
 | |
| {
 | |
| 	void *objp;
 | |
| 
 | |
| 	objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
 | |
| 	page->active++;
 | |
| #if DEBUG
 | |
| 	WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
 | |
| #endif
 | |
| 
 | |
| 	return objp;
 | |
| }
 | |
| 
 | |
| static void slab_put_obj(struct kmem_cache *cachep, struct page *page,
 | |
| 				void *objp, int nodeid)
 | |
| {
 | |
| 	unsigned int objnr = obj_to_index(cachep, page, objp);
 | |
| #if DEBUG
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	/* Verify that the slab belongs to the intended node */
 | |
| 	WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
 | |
| 
 | |
| 	/* Verify double free bug */
 | |
| 	for (i = page->active; i < cachep->num; i++) {
 | |
| 		if (get_free_obj(page, i) == objnr) {
 | |
| 			printk(KERN_ERR "slab: double free detected in cache "
 | |
| 					"'%s', objp %p\n", cachep->name, objp);
 | |
| 			BUG();
 | |
| 		}
 | |
| 	}
 | |
| #endif
 | |
| 	page->active--;
 | |
| 	set_free_obj(page, page->active, objnr);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Map pages beginning at addr to the given cache and slab. This is required
 | |
|  * for the slab allocator to be able to lookup the cache and slab of a
 | |
|  * virtual address for kfree, ksize, and slab debugging.
 | |
|  */
 | |
| static void slab_map_pages(struct kmem_cache *cache, struct page *page,
 | |
| 			   void *freelist)
 | |
| {
 | |
| 	page->slab_cache = cache;
 | |
| 	page->freelist = freelist;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Grow (by 1) the number of slabs within a cache.  This is called by
 | |
|  * kmem_cache_alloc() when there are no active objs left in a cache.
 | |
|  */
 | |
| static int cache_grow(struct kmem_cache *cachep,
 | |
| 		gfp_t flags, int nodeid, struct page *page)
 | |
| {
 | |
| 	void *freelist;
 | |
| 	size_t offset;
 | |
| 	gfp_t local_flags;
 | |
| 	struct kmem_cache_node *n;
 | |
| 
 | |
| 	/*
 | |
| 	 * Be lazy and only check for valid flags here,  keeping it out of the
 | |
| 	 * critical path in kmem_cache_alloc().
 | |
| 	 */
 | |
| 	BUG_ON(flags & GFP_SLAB_BUG_MASK);
 | |
| 	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
 | |
| 
 | |
| 	/* Take the node list lock to change the colour_next on this node */
 | |
| 	check_irq_off();
 | |
| 	n = cachep->node[nodeid];
 | |
| 	spin_lock(&n->list_lock);
 | |
| 
 | |
| 	/* Get colour for the slab, and cal the next value. */
 | |
| 	offset = n->colour_next;
 | |
| 	n->colour_next++;
 | |
| 	if (n->colour_next >= cachep->colour)
 | |
| 		n->colour_next = 0;
 | |
| 	spin_unlock(&n->list_lock);
 | |
| 
 | |
| 	offset *= cachep->colour_off;
 | |
| 
 | |
| 	if (local_flags & __GFP_WAIT)
 | |
| 		local_irq_enable();
 | |
| 
 | |
| 	/*
 | |
| 	 * The test for missing atomic flag is performed here, rather than
 | |
| 	 * the more obvious place, simply to reduce the critical path length
 | |
| 	 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
 | |
| 	 * will eventually be caught here (where it matters).
 | |
| 	 */
 | |
| 	kmem_flagcheck(cachep, flags);
 | |
| 
 | |
| 	/*
 | |
| 	 * Get mem for the objs.  Attempt to allocate a physical page from
 | |
| 	 * 'nodeid'.
 | |
| 	 */
 | |
| 	if (!page)
 | |
| 		page = kmem_getpages(cachep, local_flags, nodeid);
 | |
| 	if (!page)
 | |
| 		goto failed;
 | |
| 
 | |
| 	/* Get slab management. */
 | |
| 	freelist = alloc_slabmgmt(cachep, page, offset,
 | |
| 			local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
 | |
| 	if (!freelist)
 | |
| 		goto opps1;
 | |
| 
 | |
| 	slab_map_pages(cachep, page, freelist);
 | |
| 
 | |
| 	cache_init_objs(cachep, page);
 | |
| 
 | |
| 	if (local_flags & __GFP_WAIT)
 | |
| 		local_irq_disable();
 | |
| 	check_irq_off();
 | |
| 	spin_lock(&n->list_lock);
 | |
| 
 | |
| 	/* Make slab active. */
 | |
| 	list_add_tail(&page->lru, &(n->slabs_free));
 | |
| 	STATS_INC_GROWN(cachep);
 | |
| 	n->free_objects += cachep->num;
 | |
| 	spin_unlock(&n->list_lock);
 | |
| 	return 1;
 | |
| opps1:
 | |
| 	kmem_freepages(cachep, page);
 | |
| failed:
 | |
| 	if (local_flags & __GFP_WAIT)
 | |
| 		local_irq_disable();
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #if DEBUG
 | |
| 
 | |
| /*
 | |
|  * Perform extra freeing checks:
 | |
|  * - detect bad pointers.
 | |
|  * - POISON/RED_ZONE checking
 | |
|  */
 | |
| static void kfree_debugcheck(const void *objp)
 | |
| {
 | |
| 	if (!virt_addr_valid(objp)) {
 | |
| 		printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
 | |
| 		       (unsigned long)objp);
 | |
| 		BUG();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
 | |
| {
 | |
| 	unsigned long long redzone1, redzone2;
 | |
| 
 | |
| 	redzone1 = *dbg_redzone1(cache, obj);
 | |
| 	redzone2 = *dbg_redzone2(cache, obj);
 | |
| 
 | |
| 	/*
 | |
| 	 * Redzone is ok.
 | |
| 	 */
 | |
| 	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
 | |
| 		return;
 | |
| 
 | |
| 	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
 | |
| 		slab_error(cache, "double free detected");
 | |
| 	else
 | |
| 		slab_error(cache, "memory outside object was overwritten");
 | |
| 
 | |
| 	printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
 | |
| 			obj, redzone1, redzone2);
 | |
| }
 | |
| 
 | |
| static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
 | |
| 				   unsigned long caller)
 | |
| {
 | |
| 	unsigned int objnr;
 | |
| 	struct page *page;
 | |
| 
 | |
| 	BUG_ON(virt_to_cache(objp) != cachep);
 | |
| 
 | |
| 	objp -= obj_offset(cachep);
 | |
| 	kfree_debugcheck(objp);
 | |
| 	page = virt_to_head_page(objp);
 | |
| 
 | |
| 	if (cachep->flags & SLAB_RED_ZONE) {
 | |
| 		verify_redzone_free(cachep, objp);
 | |
| 		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
 | |
| 		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
 | |
| 	}
 | |
| 	if (cachep->flags & SLAB_STORE_USER)
 | |
| 		*dbg_userword(cachep, objp) = (void *)caller;
 | |
| 
 | |
| 	objnr = obj_to_index(cachep, page, objp);
 | |
| 
 | |
| 	BUG_ON(objnr >= cachep->num);
 | |
| 	BUG_ON(objp != index_to_obj(cachep, page, objnr));
 | |
| 
 | |
| 	if (cachep->flags & SLAB_POISON) {
 | |
| #ifdef CONFIG_DEBUG_PAGEALLOC
 | |
| 		if ((cachep->size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
 | |
| 			store_stackinfo(cachep, objp, caller);
 | |
| 			kernel_map_pages(virt_to_page(objp),
 | |
| 					 cachep->size / PAGE_SIZE, 0);
 | |
| 		} else {
 | |
| 			poison_obj(cachep, objp, POISON_FREE);
 | |
| 		}
 | |
| #else
 | |
| 		poison_obj(cachep, objp, POISON_FREE);
 | |
| #endif
 | |
| 	}
 | |
| 	return objp;
 | |
| }
 | |
| 
 | |
| #else
 | |
| #define kfree_debugcheck(x) do { } while(0)
 | |
| #define cache_free_debugcheck(x,objp,z) (objp)
 | |
| #endif
 | |
| 
 | |
| static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags,
 | |
| 							bool force_refill)
 | |
| {
 | |
| 	int batchcount;
 | |
| 	struct kmem_cache_node *n;
 | |
| 	struct array_cache *ac;
 | |
| 	int node;
 | |
| 
 | |
| 	check_irq_off();
 | |
| 	node = numa_mem_id();
 | |
| 	if (unlikely(force_refill))
 | |
| 		goto force_grow;
 | |
| retry:
 | |
| 	ac = cpu_cache_get(cachep);
 | |
| 	batchcount = ac->batchcount;
 | |
| 	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
 | |
| 		/*
 | |
| 		 * If there was little recent activity on this cache, then
 | |
| 		 * perform only a partial refill.  Otherwise we could generate
 | |
| 		 * refill bouncing.
 | |
| 		 */
 | |
| 		batchcount = BATCHREFILL_LIMIT;
 | |
| 	}
 | |
| 	n = cachep->node[node];
 | |
| 
 | |
| 	BUG_ON(ac->avail > 0 || !n);
 | |
| 	spin_lock(&n->list_lock);
 | |
| 
 | |
| 	/* See if we can refill from the shared array */
 | |
| 	if (n->shared && transfer_objects(ac, n->shared, batchcount)) {
 | |
| 		n->shared->touched = 1;
 | |
| 		goto alloc_done;
 | |
| 	}
 | |
| 
 | |
| 	while (batchcount > 0) {
 | |
| 		struct list_head *entry;
 | |
| 		struct page *page;
 | |
| 		/* Get slab alloc is to come from. */
 | |
| 		entry = n->slabs_partial.next;
 | |
| 		if (entry == &n->slabs_partial) {
 | |
| 			n->free_touched = 1;
 | |
| 			entry = n->slabs_free.next;
 | |
| 			if (entry == &n->slabs_free)
 | |
| 				goto must_grow;
 | |
| 		}
 | |
| 
 | |
| 		page = list_entry(entry, struct page, lru);
 | |
| 		check_spinlock_acquired(cachep);
 | |
| 
 | |
| 		/*
 | |
| 		 * The slab was either on partial or free list so
 | |
| 		 * there must be at least one object available for
 | |
| 		 * allocation.
 | |
| 		 */
 | |
| 		BUG_ON(page->active >= cachep->num);
 | |
| 
 | |
| 		while (page->active < cachep->num && batchcount--) {
 | |
| 			STATS_INC_ALLOCED(cachep);
 | |
| 			STATS_INC_ACTIVE(cachep);
 | |
| 			STATS_SET_HIGH(cachep);
 | |
| 
 | |
| 			ac_put_obj(cachep, ac, slab_get_obj(cachep, page,
 | |
| 									node));
 | |
| 		}
 | |
| 
 | |
| 		/* move slabp to correct slabp list: */
 | |
| 		list_del(&page->lru);
 | |
| 		if (page->active == cachep->num)
 | |
| 			list_add(&page->lru, &n->slabs_full);
 | |
| 		else
 | |
| 			list_add(&page->lru, &n->slabs_partial);
 | |
| 	}
 | |
| 
 | |
| must_grow:
 | |
| 	n->free_objects -= ac->avail;
 | |
| alloc_done:
 | |
| 	spin_unlock(&n->list_lock);
 | |
| 
 | |
| 	if (unlikely(!ac->avail)) {
 | |
| 		int x;
 | |
| force_grow:
 | |
| 		x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
 | |
| 
 | |
| 		/* cache_grow can reenable interrupts, then ac could change. */
 | |
| 		ac = cpu_cache_get(cachep);
 | |
| 		node = numa_mem_id();
 | |
| 
 | |
| 		/* no objects in sight? abort */
 | |
| 		if (!x && (ac->avail == 0 || force_refill))
 | |
| 			return NULL;
 | |
| 
 | |
| 		if (!ac->avail)		/* objects refilled by interrupt? */
 | |
| 			goto retry;
 | |
| 	}
 | |
| 	ac->touched = 1;
 | |
| 
 | |
| 	return ac_get_obj(cachep, ac, flags, force_refill);
 | |
| }
 | |
| 
 | |
| static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
 | |
| 						gfp_t flags)
 | |
| {
 | |
| 	might_sleep_if(flags & __GFP_WAIT);
 | |
| #if DEBUG
 | |
| 	kmem_flagcheck(cachep, flags);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| #if DEBUG
 | |
| static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
 | |
| 				gfp_t flags, void *objp, unsigned long caller)
 | |
| {
 | |
| 	if (!objp)
 | |
| 		return objp;
 | |
| 	if (cachep->flags & SLAB_POISON) {
 | |
| #ifdef CONFIG_DEBUG_PAGEALLOC
 | |
| 		if ((cachep->size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
 | |
| 			kernel_map_pages(virt_to_page(objp),
 | |
| 					 cachep->size / PAGE_SIZE, 1);
 | |
| 		else
 | |
| 			check_poison_obj(cachep, objp);
 | |
| #else
 | |
| 		check_poison_obj(cachep, objp);
 | |
| #endif
 | |
| 		poison_obj(cachep, objp, POISON_INUSE);
 | |
| 	}
 | |
| 	if (cachep->flags & SLAB_STORE_USER)
 | |
| 		*dbg_userword(cachep, objp) = (void *)caller;
 | |
| 
 | |
| 	if (cachep->flags & SLAB_RED_ZONE) {
 | |
| 		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
 | |
| 				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
 | |
| 			slab_error(cachep, "double free, or memory outside"
 | |
| 						" object was overwritten");
 | |
| 			printk(KERN_ERR
 | |
| 				"%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
 | |
| 				objp, *dbg_redzone1(cachep, objp),
 | |
| 				*dbg_redzone2(cachep, objp));
 | |
| 		}
 | |
| 		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
 | |
| 		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
 | |
| 	}
 | |
| 	objp += obj_offset(cachep);
 | |
| 	if (cachep->ctor && cachep->flags & SLAB_POISON)
 | |
| 		cachep->ctor(objp);
 | |
| 	if (ARCH_SLAB_MINALIGN &&
 | |
| 	    ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
 | |
| 		printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
 | |
| 		       objp, (int)ARCH_SLAB_MINALIGN);
 | |
| 	}
 | |
| 	return objp;
 | |
| }
 | |
| #else
 | |
| #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
 | |
| #endif
 | |
| 
 | |
| static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
 | |
| {
 | |
| 	if (cachep == kmem_cache)
 | |
| 		return false;
 | |
| 
 | |
| 	return should_failslab(cachep->object_size, flags, cachep->flags);
 | |
| }
 | |
| 
 | |
| static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
 | |
| {
 | |
| 	void *objp;
 | |
| 	struct array_cache *ac;
 | |
| 	bool force_refill = false;
 | |
| 
 | |
| 	check_irq_off();
 | |
| 
 | |
| 	ac = cpu_cache_get(cachep);
 | |
| 	if (likely(ac->avail)) {
 | |
| 		ac->touched = 1;
 | |
| 		objp = ac_get_obj(cachep, ac, flags, false);
 | |
| 
 | |
| 		/*
 | |
| 		 * Allow for the possibility all avail objects are not allowed
 | |
| 		 * by the current flags
 | |
| 		 */
 | |
| 		if (objp) {
 | |
| 			STATS_INC_ALLOCHIT(cachep);
 | |
| 			goto out;
 | |
| 		}
 | |
| 		force_refill = true;
 | |
| 	}
 | |
| 
 | |
| 	STATS_INC_ALLOCMISS(cachep);
 | |
| 	objp = cache_alloc_refill(cachep, flags, force_refill);
 | |
| 	/*
 | |
| 	 * the 'ac' may be updated by cache_alloc_refill(),
 | |
| 	 * and kmemleak_erase() requires its correct value.
 | |
| 	 */
 | |
| 	ac = cpu_cache_get(cachep);
 | |
| 
 | |
| out:
 | |
| 	/*
 | |
| 	 * To avoid a false negative, if an object that is in one of the
 | |
| 	 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
 | |
| 	 * treat the array pointers as a reference to the object.
 | |
| 	 */
 | |
| 	if (objp)
 | |
| 		kmemleak_erase(&ac->entry[ac->avail]);
 | |
| 	return objp;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_NUMA
 | |
| /*
 | |
|  * Try allocating on another node if PF_SPREAD_SLAB is a mempolicy is set.
 | |
|  *
 | |
|  * If we are in_interrupt, then process context, including cpusets and
 | |
|  * mempolicy, may not apply and should not be used for allocation policy.
 | |
|  */
 | |
| static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
 | |
| {
 | |
| 	int nid_alloc, nid_here;
 | |
| 
 | |
| 	if (in_interrupt() || (flags & __GFP_THISNODE))
 | |
| 		return NULL;
 | |
| 	nid_alloc = nid_here = numa_mem_id();
 | |
| 	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
 | |
| 		nid_alloc = cpuset_slab_spread_node();
 | |
| 	else if (current->mempolicy)
 | |
| 		nid_alloc = mempolicy_slab_node();
 | |
| 	if (nid_alloc != nid_here)
 | |
| 		return ____cache_alloc_node(cachep, flags, nid_alloc);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Fallback function if there was no memory available and no objects on a
 | |
|  * certain node and fall back is permitted. First we scan all the
 | |
|  * available node for available objects. If that fails then we
 | |
|  * perform an allocation without specifying a node. This allows the page
 | |
|  * allocator to do its reclaim / fallback magic. We then insert the
 | |
|  * slab into the proper nodelist and then allocate from it.
 | |
|  */
 | |
| static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
 | |
| {
 | |
| 	struct zonelist *zonelist;
 | |
| 	gfp_t local_flags;
 | |
| 	struct zoneref *z;
 | |
| 	struct zone *zone;
 | |
| 	enum zone_type high_zoneidx = gfp_zone(flags);
 | |
| 	void *obj = NULL;
 | |
| 	int nid;
 | |
| 	unsigned int cpuset_mems_cookie;
 | |
| 
 | |
| 	if (flags & __GFP_THISNODE)
 | |
| 		return NULL;
 | |
| 
 | |
| 	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
 | |
| 
 | |
| retry_cpuset:
 | |
| 	cpuset_mems_cookie = read_mems_allowed_begin();
 | |
| 	zonelist = node_zonelist(mempolicy_slab_node(), flags);
 | |
| 
 | |
| retry:
 | |
| 	/*
 | |
| 	 * Look through allowed nodes for objects available
 | |
| 	 * from existing per node queues.
 | |
| 	 */
 | |
| 	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
 | |
| 		nid = zone_to_nid(zone);
 | |
| 
 | |
| 		if (cpuset_zone_allowed_hardwall(zone, flags) &&
 | |
| 			cache->node[nid] &&
 | |
| 			cache->node[nid]->free_objects) {
 | |
| 				obj = ____cache_alloc_node(cache,
 | |
| 					flags | GFP_THISNODE, nid);
 | |
| 				if (obj)
 | |
| 					break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (!obj) {
 | |
| 		/*
 | |
| 		 * This allocation will be performed within the constraints
 | |
| 		 * of the current cpuset / memory policy requirements.
 | |
| 		 * We may trigger various forms of reclaim on the allowed
 | |
| 		 * set and go into memory reserves if necessary.
 | |
| 		 */
 | |
| 		struct page *page;
 | |
| 
 | |
| 		if (local_flags & __GFP_WAIT)
 | |
| 			local_irq_enable();
 | |
| 		kmem_flagcheck(cache, flags);
 | |
| 		page = kmem_getpages(cache, local_flags, numa_mem_id());
 | |
| 		if (local_flags & __GFP_WAIT)
 | |
| 			local_irq_disable();
 | |
| 		if (page) {
 | |
| 			/*
 | |
| 			 * Insert into the appropriate per node queues
 | |
| 			 */
 | |
| 			nid = page_to_nid(page);
 | |
| 			if (cache_grow(cache, flags, nid, page)) {
 | |
| 				obj = ____cache_alloc_node(cache,
 | |
| 					flags | GFP_THISNODE, nid);
 | |
| 				if (!obj)
 | |
| 					/*
 | |
| 					 * Another processor may allocate the
 | |
| 					 * objects in the slab since we are
 | |
| 					 * not holding any locks.
 | |
| 					 */
 | |
| 					goto retry;
 | |
| 			} else {
 | |
| 				/* cache_grow already freed obj */
 | |
| 				obj = NULL;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
 | |
| 		goto retry_cpuset;
 | |
| 	return obj;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * A interface to enable slab creation on nodeid
 | |
|  */
 | |
| static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
 | |
| 				int nodeid)
 | |
| {
 | |
| 	struct list_head *entry;
 | |
| 	struct page *page;
 | |
| 	struct kmem_cache_node *n;
 | |
| 	void *obj;
 | |
| 	int x;
 | |
| 
 | |
| 	VM_BUG_ON(nodeid > num_online_nodes());
 | |
| 	n = cachep->node[nodeid];
 | |
| 	BUG_ON(!n);
 | |
| 
 | |
| retry:
 | |
| 	check_irq_off();
 | |
| 	spin_lock(&n->list_lock);
 | |
| 	entry = n->slabs_partial.next;
 | |
| 	if (entry == &n->slabs_partial) {
 | |
| 		n->free_touched = 1;
 | |
| 		entry = n->slabs_free.next;
 | |
| 		if (entry == &n->slabs_free)
 | |
| 			goto must_grow;
 | |
| 	}
 | |
| 
 | |
| 	page = list_entry(entry, struct page, lru);
 | |
| 	check_spinlock_acquired_node(cachep, nodeid);
 | |
| 
 | |
| 	STATS_INC_NODEALLOCS(cachep);
 | |
| 	STATS_INC_ACTIVE(cachep);
 | |
| 	STATS_SET_HIGH(cachep);
 | |
| 
 | |
| 	BUG_ON(page->active == cachep->num);
 | |
| 
 | |
| 	obj = slab_get_obj(cachep, page, nodeid);
 | |
| 	n->free_objects--;
 | |
| 	/* move slabp to correct slabp list: */
 | |
| 	list_del(&page->lru);
 | |
| 
 | |
| 	if (page->active == cachep->num)
 | |
| 		list_add(&page->lru, &n->slabs_full);
 | |
| 	else
 | |
| 		list_add(&page->lru, &n->slabs_partial);
 | |
| 
 | |
| 	spin_unlock(&n->list_lock);
 | |
| 	goto done;
 | |
| 
 | |
| must_grow:
 | |
| 	spin_unlock(&n->list_lock);
 | |
| 	x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
 | |
| 	if (x)
 | |
| 		goto retry;
 | |
| 
 | |
| 	return fallback_alloc(cachep, flags);
 | |
| 
 | |
| done:
 | |
| 	return obj;
 | |
| }
 | |
| 
 | |
| static __always_inline void *
 | |
| slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
 | |
| 		   unsigned long caller)
 | |
| {
 | |
| 	unsigned long save_flags;
 | |
| 	void *ptr;
 | |
| 	int slab_node = numa_mem_id();
 | |
| 
 | |
| 	flags &= gfp_allowed_mask;
 | |
| 
 | |
| 	lockdep_trace_alloc(flags);
 | |
| 
 | |
| 	if (slab_should_failslab(cachep, flags))
 | |
| 		return NULL;
 | |
| 
 | |
| 	cachep = memcg_kmem_get_cache(cachep, flags);
 | |
| 
 | |
| 	cache_alloc_debugcheck_before(cachep, flags);
 | |
| 	local_irq_save(save_flags);
 | |
| 
 | |
| 	if (nodeid == NUMA_NO_NODE)
 | |
| 		nodeid = slab_node;
 | |
| 
 | |
| 	if (unlikely(!cachep->node[nodeid])) {
 | |
| 		/* Node not bootstrapped yet */
 | |
| 		ptr = fallback_alloc(cachep, flags);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (nodeid == slab_node) {
 | |
| 		/*
 | |
| 		 * Use the locally cached objects if possible.
 | |
| 		 * However ____cache_alloc does not allow fallback
 | |
| 		 * to other nodes. It may fail while we still have
 | |
| 		 * objects on other nodes available.
 | |
| 		 */
 | |
| 		ptr = ____cache_alloc(cachep, flags);
 | |
| 		if (ptr)
 | |
| 			goto out;
 | |
| 	}
 | |
| 	/* ___cache_alloc_node can fall back to other nodes */
 | |
| 	ptr = ____cache_alloc_node(cachep, flags, nodeid);
 | |
|   out:
 | |
| 	local_irq_restore(save_flags);
 | |
| 	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
 | |
| 	kmemleak_alloc_recursive(ptr, cachep->object_size, 1, cachep->flags,
 | |
| 				 flags);
 | |
| 
 | |
| 	if (likely(ptr)) {
 | |
| 		kmemcheck_slab_alloc(cachep, flags, ptr, cachep->object_size);
 | |
| 		if (unlikely(flags & __GFP_ZERO))
 | |
| 			memset(ptr, 0, cachep->object_size);
 | |
| 	}
 | |
| 
 | |
| 	return ptr;
 | |
| }
 | |
| 
 | |
| static __always_inline void *
 | |
| __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
 | |
| {
 | |
| 	void *objp;
 | |
| 
 | |
| 	if (current->mempolicy || unlikely(current->flags & PF_SPREAD_SLAB)) {
 | |
| 		objp = alternate_node_alloc(cache, flags);
 | |
| 		if (objp)
 | |
| 			goto out;
 | |
| 	}
 | |
| 	objp = ____cache_alloc(cache, flags);
 | |
| 
 | |
| 	/*
 | |
| 	 * We may just have run out of memory on the local node.
 | |
| 	 * ____cache_alloc_node() knows how to locate memory on other nodes
 | |
| 	 */
 | |
| 	if (!objp)
 | |
| 		objp = ____cache_alloc_node(cache, flags, numa_mem_id());
 | |
| 
 | |
|   out:
 | |
| 	return objp;
 | |
| }
 | |
| #else
 | |
| 
 | |
| static __always_inline void *
 | |
| __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
 | |
| {
 | |
| 	return ____cache_alloc(cachep, flags);
 | |
| }
 | |
| 
 | |
| #endif /* CONFIG_NUMA */
 | |
| 
 | |
| static __always_inline void *
 | |
| slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
 | |
| {
 | |
| 	unsigned long save_flags;
 | |
| 	void *objp;
 | |
| 
 | |
| 	flags &= gfp_allowed_mask;
 | |
| 
 | |
| 	lockdep_trace_alloc(flags);
 | |
| 
 | |
| 	if (slab_should_failslab(cachep, flags))
 | |
| 		return NULL;
 | |
| 
 | |
| 	cachep = memcg_kmem_get_cache(cachep, flags);
 | |
| 
 | |
| 	cache_alloc_debugcheck_before(cachep, flags);
 | |
| 	local_irq_save(save_flags);
 | |
| 	objp = __do_cache_alloc(cachep, flags);
 | |
| 	local_irq_restore(save_flags);
 | |
| 	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
 | |
| 	kmemleak_alloc_recursive(objp, cachep->object_size, 1, cachep->flags,
 | |
| 				 flags);
 | |
| 	prefetchw(objp);
 | |
| 
 | |
| 	if (likely(objp)) {
 | |
| 		kmemcheck_slab_alloc(cachep, flags, objp, cachep->object_size);
 | |
| 		if (unlikely(flags & __GFP_ZERO))
 | |
| 			memset(objp, 0, cachep->object_size);
 | |
| 	}
 | |
| 
 | |
| 	return objp;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Caller needs to acquire correct kmem_cache_node's list_lock
 | |
|  */
 | |
| static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
 | |
| 		       int node)
 | |
| {
 | |
| 	int i;
 | |
| 	struct kmem_cache_node *n;
 | |
| 
 | |
| 	for (i = 0; i < nr_objects; i++) {
 | |
| 		void *objp;
 | |
| 		struct page *page;
 | |
| 
 | |
| 		clear_obj_pfmemalloc(&objpp[i]);
 | |
| 		objp = objpp[i];
 | |
| 
 | |
| 		page = virt_to_head_page(objp);
 | |
| 		n = cachep->node[node];
 | |
| 		list_del(&page->lru);
 | |
| 		check_spinlock_acquired_node(cachep, node);
 | |
| 		slab_put_obj(cachep, page, objp, node);
 | |
| 		STATS_DEC_ACTIVE(cachep);
 | |
| 		n->free_objects++;
 | |
| 
 | |
| 		/* fixup slab chains */
 | |
| 		if (page->active == 0) {
 | |
| 			if (n->free_objects > n->free_limit) {
 | |
| 				n->free_objects -= cachep->num;
 | |
| 				/* No need to drop any previously held
 | |
| 				 * lock here, even if we have a off-slab slab
 | |
| 				 * descriptor it is guaranteed to come from
 | |
| 				 * a different cache, refer to comments before
 | |
| 				 * alloc_slabmgmt.
 | |
| 				 */
 | |
| 				slab_destroy(cachep, page);
 | |
| 			} else {
 | |
| 				list_add(&page->lru, &n->slabs_free);
 | |
| 			}
 | |
| 		} else {
 | |
| 			/* Unconditionally move a slab to the end of the
 | |
| 			 * partial list on free - maximum time for the
 | |
| 			 * other objects to be freed, too.
 | |
| 			 */
 | |
| 			list_add_tail(&page->lru, &n->slabs_partial);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
 | |
| {
 | |
| 	int batchcount;
 | |
| 	struct kmem_cache_node *n;
 | |
| 	int node = numa_mem_id();
 | |
| 
 | |
| 	batchcount = ac->batchcount;
 | |
| #if DEBUG
 | |
| 	BUG_ON(!batchcount || batchcount > ac->avail);
 | |
| #endif
 | |
| 	check_irq_off();
 | |
| 	n = cachep->node[node];
 | |
| 	spin_lock(&n->list_lock);
 | |
| 	if (n->shared) {
 | |
| 		struct array_cache *shared_array = n->shared;
 | |
| 		int max = shared_array->limit - shared_array->avail;
 | |
| 		if (max) {
 | |
| 			if (batchcount > max)
 | |
| 				batchcount = max;
 | |
| 			memcpy(&(shared_array->entry[shared_array->avail]),
 | |
| 			       ac->entry, sizeof(void *) * batchcount);
 | |
| 			shared_array->avail += batchcount;
 | |
| 			goto free_done;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	free_block(cachep, ac->entry, batchcount, node);
 | |
| free_done:
 | |
| #if STATS
 | |
| 	{
 | |
| 		int i = 0;
 | |
| 		struct list_head *p;
 | |
| 
 | |
| 		p = n->slabs_free.next;
 | |
| 		while (p != &(n->slabs_free)) {
 | |
| 			struct page *page;
 | |
| 
 | |
| 			page = list_entry(p, struct page, lru);
 | |
| 			BUG_ON(page->active);
 | |
| 
 | |
| 			i++;
 | |
| 			p = p->next;
 | |
| 		}
 | |
| 		STATS_SET_FREEABLE(cachep, i);
 | |
| 	}
 | |
| #endif
 | |
| 	spin_unlock(&n->list_lock);
 | |
| 	ac->avail -= batchcount;
 | |
| 	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Release an obj back to its cache. If the obj has a constructed state, it must
 | |
|  * be in this state _before_ it is released.  Called with disabled ints.
 | |
|  */
 | |
| static inline void __cache_free(struct kmem_cache *cachep, void *objp,
 | |
| 				unsigned long caller)
 | |
| {
 | |
| 	struct array_cache *ac = cpu_cache_get(cachep);
 | |
| 
 | |
| 	check_irq_off();
 | |
| 	kmemleak_free_recursive(objp, cachep->flags);
 | |
| 	objp = cache_free_debugcheck(cachep, objp, caller);
 | |
| 
 | |
| 	kmemcheck_slab_free(cachep, objp, cachep->object_size);
 | |
| 
 | |
| 	/*
 | |
| 	 * Skip calling cache_free_alien() when the platform is not numa.
 | |
| 	 * This will avoid cache misses that happen while accessing slabp (which
 | |
| 	 * is per page memory  reference) to get nodeid. Instead use a global
 | |
| 	 * variable to skip the call, which is mostly likely to be present in
 | |
| 	 * the cache.
 | |
| 	 */
 | |
| 	if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
 | |
| 		return;
 | |
| 
 | |
| 	if (likely(ac->avail < ac->limit)) {
 | |
| 		STATS_INC_FREEHIT(cachep);
 | |
| 	} else {
 | |
| 		STATS_INC_FREEMISS(cachep);
 | |
| 		cache_flusharray(cachep, ac);
 | |
| 	}
 | |
| 
 | |
| 	ac_put_obj(cachep, ac, objp);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * kmem_cache_alloc - Allocate an object
 | |
|  * @cachep: The cache to allocate from.
 | |
|  * @flags: See kmalloc().
 | |
|  *
 | |
|  * Allocate an object from this cache.  The flags are only relevant
 | |
|  * if the cache has no available objects.
 | |
|  */
 | |
| void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
 | |
| {
 | |
| 	void *ret = slab_alloc(cachep, flags, _RET_IP_);
 | |
| 
 | |
| 	trace_kmem_cache_alloc(_RET_IP_, ret,
 | |
| 			       cachep->object_size, cachep->size, flags);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL(kmem_cache_alloc);
 | |
| 
 | |
| #ifdef CONFIG_TRACING
 | |
| void *
 | |
| kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
 | |
| {
 | |
| 	void *ret;
 | |
| 
 | |
| 	ret = slab_alloc(cachep, flags, _RET_IP_);
 | |
| 
 | |
| 	trace_kmalloc(_RET_IP_, ret,
 | |
| 		      size, cachep->size, flags);
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL(kmem_cache_alloc_trace);
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_NUMA
 | |
| /**
 | |
|  * kmem_cache_alloc_node - Allocate an object on the specified node
 | |
|  * @cachep: The cache to allocate from.
 | |
|  * @flags: See kmalloc().
 | |
|  * @nodeid: node number of the target node.
 | |
|  *
 | |
|  * Identical to kmem_cache_alloc but it will allocate memory on the given
 | |
|  * node, which can improve the performance for cpu bound structures.
 | |
|  *
 | |
|  * Fallback to other node is possible if __GFP_THISNODE is not set.
 | |
|  */
 | |
| void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
 | |
| {
 | |
| 	void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
 | |
| 
 | |
| 	trace_kmem_cache_alloc_node(_RET_IP_, ret,
 | |
| 				    cachep->object_size, cachep->size,
 | |
| 				    flags, nodeid);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL(kmem_cache_alloc_node);
 | |
| 
 | |
| #ifdef CONFIG_TRACING
 | |
| void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
 | |
| 				  gfp_t flags,
 | |
| 				  int nodeid,
 | |
| 				  size_t size)
 | |
| {
 | |
| 	void *ret;
 | |
| 
 | |
| 	ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
 | |
| 
 | |
| 	trace_kmalloc_node(_RET_IP_, ret,
 | |
| 			   size, cachep->size,
 | |
| 			   flags, nodeid);
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
 | |
| #endif
 | |
| 
 | |
| static __always_inline void *
 | |
| __do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
 | |
| {
 | |
| 	struct kmem_cache *cachep;
 | |
| 
 | |
| 	cachep = kmalloc_slab(size, flags);
 | |
| 	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
 | |
| 		return cachep;
 | |
| 	return kmem_cache_alloc_node_trace(cachep, flags, node, size);
 | |
| }
 | |
| 
 | |
| #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
 | |
| void *__kmalloc_node(size_t size, gfp_t flags, int node)
 | |
| {
 | |
| 	return __do_kmalloc_node(size, flags, node, _RET_IP_);
 | |
| }
 | |
| EXPORT_SYMBOL(__kmalloc_node);
 | |
| 
 | |
| void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
 | |
| 		int node, unsigned long caller)
 | |
| {
 | |
| 	return __do_kmalloc_node(size, flags, node, caller);
 | |
| }
 | |
| EXPORT_SYMBOL(__kmalloc_node_track_caller);
 | |
| #else
 | |
| void *__kmalloc_node(size_t size, gfp_t flags, int node)
 | |
| {
 | |
| 	return __do_kmalloc_node(size, flags, node, 0);
 | |
| }
 | |
| EXPORT_SYMBOL(__kmalloc_node);
 | |
| #endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
 | |
| #endif /* CONFIG_NUMA */
 | |
| 
 | |
| /**
 | |
|  * __do_kmalloc - allocate memory
 | |
|  * @size: how many bytes of memory are required.
 | |
|  * @flags: the type of memory to allocate (see kmalloc).
 | |
|  * @caller: function caller for debug tracking of the caller
 | |
|  */
 | |
| static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
 | |
| 					  unsigned long caller)
 | |
| {
 | |
| 	struct kmem_cache *cachep;
 | |
| 	void *ret;
 | |
| 
 | |
| 	cachep = kmalloc_slab(size, flags);
 | |
| 	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
 | |
| 		return cachep;
 | |
| 	ret = slab_alloc(cachep, flags, caller);
 | |
| 
 | |
| 	trace_kmalloc(caller, ret,
 | |
| 		      size, cachep->size, flags);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| 
 | |
| #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
 | |
| void *__kmalloc(size_t size, gfp_t flags)
 | |
| {
 | |
| 	return __do_kmalloc(size, flags, _RET_IP_);
 | |
| }
 | |
| EXPORT_SYMBOL(__kmalloc);
 | |
| 
 | |
| void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
 | |
| {
 | |
| 	return __do_kmalloc(size, flags, caller);
 | |
| }
 | |
| EXPORT_SYMBOL(__kmalloc_track_caller);
 | |
| 
 | |
| #else
 | |
| void *__kmalloc(size_t size, gfp_t flags)
 | |
| {
 | |
| 	return __do_kmalloc(size, flags, 0);
 | |
| }
 | |
| EXPORT_SYMBOL(__kmalloc);
 | |
| #endif
 | |
| 
 | |
| /**
 | |
|  * kmem_cache_free - Deallocate an object
 | |
|  * @cachep: The cache the allocation was from.
 | |
|  * @objp: The previously allocated object.
 | |
|  *
 | |
|  * Free an object which was previously allocated from this
 | |
|  * cache.
 | |
|  */
 | |
| void kmem_cache_free(struct kmem_cache *cachep, void *objp)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	cachep = cache_from_obj(cachep, objp);
 | |
| 	if (!cachep)
 | |
| 		return;
 | |
| 
 | |
| 	local_irq_save(flags);
 | |
| 	debug_check_no_locks_freed(objp, cachep->object_size);
 | |
| 	if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
 | |
| 		debug_check_no_obj_freed(objp, cachep->object_size);
 | |
| 	__cache_free(cachep, objp, _RET_IP_);
 | |
| 	local_irq_restore(flags);
 | |
| 
 | |
| 	trace_kmem_cache_free(_RET_IP_, objp);
 | |
| }
 | |
| EXPORT_SYMBOL(kmem_cache_free);
 | |
| 
 | |
| /**
 | |
|  * kfree - free previously allocated memory
 | |
|  * @objp: pointer returned by kmalloc.
 | |
|  *
 | |
|  * If @objp is NULL, no operation is performed.
 | |
|  *
 | |
|  * Don't free memory not originally allocated by kmalloc()
 | |
|  * or you will run into trouble.
 | |
|  */
 | |
| void kfree(const void *objp)
 | |
| {
 | |
| 	struct kmem_cache *c;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	trace_kfree(_RET_IP_, objp);
 | |
| 
 | |
| 	if (unlikely(ZERO_OR_NULL_PTR(objp)))
 | |
| 		return;
 | |
| 	local_irq_save(flags);
 | |
| 	kfree_debugcheck(objp);
 | |
| 	c = virt_to_cache(objp);
 | |
| 	debug_check_no_locks_freed(objp, c->object_size);
 | |
| 
 | |
| 	debug_check_no_obj_freed(objp, c->object_size);
 | |
| 	__cache_free(c, (void *)objp, _RET_IP_);
 | |
| 	local_irq_restore(flags);
 | |
| }
 | |
| EXPORT_SYMBOL(kfree);
 | |
| 
 | |
| /*
 | |
|  * This initializes kmem_cache_node or resizes various caches for all nodes.
 | |
|  */
 | |
| static int alloc_kmem_cache_node(struct kmem_cache *cachep, gfp_t gfp)
 | |
| {
 | |
| 	int node;
 | |
| 	struct kmem_cache_node *n;
 | |
| 	struct array_cache *new_shared;
 | |
| 	struct array_cache **new_alien = NULL;
 | |
| 
 | |
| 	for_each_online_node(node) {
 | |
| 
 | |
|                 if (use_alien_caches) {
 | |
|                         new_alien = alloc_alien_cache(node, cachep->limit, gfp);
 | |
|                         if (!new_alien)
 | |
|                                 goto fail;
 | |
|                 }
 | |
| 
 | |
| 		new_shared = NULL;
 | |
| 		if (cachep->shared) {
 | |
| 			new_shared = alloc_arraycache(node,
 | |
| 				cachep->shared*cachep->batchcount,
 | |
| 					0xbaadf00d, gfp);
 | |
| 			if (!new_shared) {
 | |
| 				free_alien_cache(new_alien);
 | |
| 				goto fail;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		n = cachep->node[node];
 | |
| 		if (n) {
 | |
| 			struct array_cache *shared = n->shared;
 | |
| 
 | |
| 			spin_lock_irq(&n->list_lock);
 | |
| 
 | |
| 			if (shared)
 | |
| 				free_block(cachep, shared->entry,
 | |
| 						shared->avail, node);
 | |
| 
 | |
| 			n->shared = new_shared;
 | |
| 			if (!n->alien) {
 | |
| 				n->alien = new_alien;
 | |
| 				new_alien = NULL;
 | |
| 			}
 | |
| 			n->free_limit = (1 + nr_cpus_node(node)) *
 | |
| 					cachep->batchcount + cachep->num;
 | |
| 			spin_unlock_irq(&n->list_lock);
 | |
| 			kfree(shared);
 | |
| 			free_alien_cache(new_alien);
 | |
| 			continue;
 | |
| 		}
 | |
| 		n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
 | |
| 		if (!n) {
 | |
| 			free_alien_cache(new_alien);
 | |
| 			kfree(new_shared);
 | |
| 			goto fail;
 | |
| 		}
 | |
| 
 | |
| 		kmem_cache_node_init(n);
 | |
| 		n->next_reap = jiffies + REAPTIMEOUT_NODE +
 | |
| 				((unsigned long)cachep) % REAPTIMEOUT_NODE;
 | |
| 		n->shared = new_shared;
 | |
| 		n->alien = new_alien;
 | |
| 		n->free_limit = (1 + nr_cpus_node(node)) *
 | |
| 					cachep->batchcount + cachep->num;
 | |
| 		cachep->node[node] = n;
 | |
| 	}
 | |
| 	return 0;
 | |
| 
 | |
| fail:
 | |
| 	if (!cachep->list.next) {
 | |
| 		/* Cache is not active yet. Roll back what we did */
 | |
| 		node--;
 | |
| 		while (node >= 0) {
 | |
| 			if (cachep->node[node]) {
 | |
| 				n = cachep->node[node];
 | |
| 
 | |
| 				kfree(n->shared);
 | |
| 				free_alien_cache(n->alien);
 | |
| 				kfree(n);
 | |
| 				cachep->node[node] = NULL;
 | |
| 			}
 | |
| 			node--;
 | |
| 		}
 | |
| 	}
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| struct ccupdate_struct {
 | |
| 	struct kmem_cache *cachep;
 | |
| 	struct array_cache *new[0];
 | |
| };
 | |
| 
 | |
| static void do_ccupdate_local(void *info)
 | |
| {
 | |
| 	struct ccupdate_struct *new = info;
 | |
| 	struct array_cache *old;
 | |
| 
 | |
| 	check_irq_off();
 | |
| 	old = cpu_cache_get(new->cachep);
 | |
| 
 | |
| 	new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
 | |
| 	new->new[smp_processor_id()] = old;
 | |
| }
 | |
| 
 | |
| /* Always called with the slab_mutex held */
 | |
| static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
 | |
| 				int batchcount, int shared, gfp_t gfp)
 | |
| {
 | |
| 	struct ccupdate_struct *new;
 | |
| 	int i;
 | |
| 
 | |
| 	new = kzalloc(sizeof(*new) + nr_cpu_ids * sizeof(struct array_cache *),
 | |
| 		      gfp);
 | |
| 	if (!new)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	for_each_online_cpu(i) {
 | |
| 		new->new[i] = alloc_arraycache(cpu_to_mem(i), limit,
 | |
| 						batchcount, gfp);
 | |
| 		if (!new->new[i]) {
 | |
| 			for (i--; i >= 0; i--)
 | |
| 				kfree(new->new[i]);
 | |
| 			kfree(new);
 | |
| 			return -ENOMEM;
 | |
| 		}
 | |
| 	}
 | |
| 	new->cachep = cachep;
 | |
| 
 | |
| 	on_each_cpu(do_ccupdate_local, (void *)new, 1);
 | |
| 
 | |
| 	check_irq_on();
 | |
| 	cachep->batchcount = batchcount;
 | |
| 	cachep->limit = limit;
 | |
| 	cachep->shared = shared;
 | |
| 
 | |
| 	for_each_online_cpu(i) {
 | |
| 		struct array_cache *ccold = new->new[i];
 | |
| 		if (!ccold)
 | |
| 			continue;
 | |
| 		spin_lock_irq(&cachep->node[cpu_to_mem(i)]->list_lock);
 | |
| 		free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i));
 | |
| 		spin_unlock_irq(&cachep->node[cpu_to_mem(i)]->list_lock);
 | |
| 		kfree(ccold);
 | |
| 	}
 | |
| 	kfree(new);
 | |
| 	return alloc_kmem_cache_node(cachep, gfp);
 | |
| }
 | |
| 
 | |
| static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
 | |
| 				int batchcount, int shared, gfp_t gfp)
 | |
| {
 | |
| 	int ret;
 | |
| 	struct kmem_cache *c = NULL;
 | |
| 	int i = 0;
 | |
| 
 | |
| 	ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
 | |
| 
 | |
| 	if (slab_state < FULL)
 | |
| 		return ret;
 | |
| 
 | |
| 	if ((ret < 0) || !is_root_cache(cachep))
 | |
| 		return ret;
 | |
| 
 | |
| 	VM_BUG_ON(!mutex_is_locked(&slab_mutex));
 | |
| 	for_each_memcg_cache_index(i) {
 | |
| 		c = cache_from_memcg_idx(cachep, i);
 | |
| 		if (c)
 | |
| 			/* return value determined by the parent cache only */
 | |
| 			__do_tune_cpucache(c, limit, batchcount, shared, gfp);
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /* Called with slab_mutex held always */
 | |
| static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
 | |
| {
 | |
| 	int err;
 | |
| 	int limit = 0;
 | |
| 	int shared = 0;
 | |
| 	int batchcount = 0;
 | |
| 
 | |
| 	if (!is_root_cache(cachep)) {
 | |
| 		struct kmem_cache *root = memcg_root_cache(cachep);
 | |
| 		limit = root->limit;
 | |
| 		shared = root->shared;
 | |
| 		batchcount = root->batchcount;
 | |
| 	}
 | |
| 
 | |
| 	if (limit && shared && batchcount)
 | |
| 		goto skip_setup;
 | |
| 	/*
 | |
| 	 * The head array serves three purposes:
 | |
| 	 * - create a LIFO ordering, i.e. return objects that are cache-warm
 | |
| 	 * - reduce the number of spinlock operations.
 | |
| 	 * - reduce the number of linked list operations on the slab and
 | |
| 	 *   bufctl chains: array operations are cheaper.
 | |
| 	 * The numbers are guessed, we should auto-tune as described by
 | |
| 	 * Bonwick.
 | |
| 	 */
 | |
| 	if (cachep->size > 131072)
 | |
| 		limit = 1;
 | |
| 	else if (cachep->size > PAGE_SIZE)
 | |
| 		limit = 8;
 | |
| 	else if (cachep->size > 1024)
 | |
| 		limit = 24;
 | |
| 	else if (cachep->size > 256)
 | |
| 		limit = 54;
 | |
| 	else
 | |
| 		limit = 120;
 | |
| 
 | |
| 	/*
 | |
| 	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
 | |
| 	 * allocation behaviour: Most allocs on one cpu, most free operations
 | |
| 	 * on another cpu. For these cases, an efficient object passing between
 | |
| 	 * cpus is necessary. This is provided by a shared array. The array
 | |
| 	 * replaces Bonwick's magazine layer.
 | |
| 	 * On uniprocessor, it's functionally equivalent (but less efficient)
 | |
| 	 * to a larger limit. Thus disabled by default.
 | |
| 	 */
 | |
| 	shared = 0;
 | |
| 	if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
 | |
| 		shared = 8;
 | |
| 
 | |
| #if DEBUG
 | |
| 	/*
 | |
| 	 * With debugging enabled, large batchcount lead to excessively long
 | |
| 	 * periods with disabled local interrupts. Limit the batchcount
 | |
| 	 */
 | |
| 	if (limit > 32)
 | |
| 		limit = 32;
 | |
| #endif
 | |
| 	batchcount = (limit + 1) / 2;
 | |
| skip_setup:
 | |
| 	err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
 | |
| 	if (err)
 | |
| 		printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
 | |
| 		       cachep->name, -err);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Drain an array if it contains any elements taking the node lock only if
 | |
|  * necessary. Note that the node listlock also protects the array_cache
 | |
|  * if drain_array() is used on the shared array.
 | |
|  */
 | |
| static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
 | |
| 			 struct array_cache *ac, int force, int node)
 | |
| {
 | |
| 	int tofree;
 | |
| 
 | |
| 	if (!ac || !ac->avail)
 | |
| 		return;
 | |
| 	if (ac->touched && !force) {
 | |
| 		ac->touched = 0;
 | |
| 	} else {
 | |
| 		spin_lock_irq(&n->list_lock);
 | |
| 		if (ac->avail) {
 | |
| 			tofree = force ? ac->avail : (ac->limit + 4) / 5;
 | |
| 			if (tofree > ac->avail)
 | |
| 				tofree = (ac->avail + 1) / 2;
 | |
| 			free_block(cachep, ac->entry, tofree, node);
 | |
| 			ac->avail -= tofree;
 | |
| 			memmove(ac->entry, &(ac->entry[tofree]),
 | |
| 				sizeof(void *) * ac->avail);
 | |
| 		}
 | |
| 		spin_unlock_irq(&n->list_lock);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cache_reap - Reclaim memory from caches.
 | |
|  * @w: work descriptor
 | |
|  *
 | |
|  * Called from workqueue/eventd every few seconds.
 | |
|  * Purpose:
 | |
|  * - clear the per-cpu caches for this CPU.
 | |
|  * - return freeable pages to the main free memory pool.
 | |
|  *
 | |
|  * If we cannot acquire the cache chain mutex then just give up - we'll try
 | |
|  * again on the next iteration.
 | |
|  */
 | |
| static void cache_reap(struct work_struct *w)
 | |
| {
 | |
| 	struct kmem_cache *searchp;
 | |
| 	struct kmem_cache_node *n;
 | |
| 	int node = numa_mem_id();
 | |
| 	struct delayed_work *work = to_delayed_work(w);
 | |
| 
 | |
| 	if (!mutex_trylock(&slab_mutex))
 | |
| 		/* Give up. Setup the next iteration. */
 | |
| 		goto out;
 | |
| 
 | |
| 	list_for_each_entry(searchp, &slab_caches, list) {
 | |
| 		check_irq_on();
 | |
| 
 | |
| 		/*
 | |
| 		 * We only take the node lock if absolutely necessary and we
 | |
| 		 * have established with reasonable certainty that
 | |
| 		 * we can do some work if the lock was obtained.
 | |
| 		 */
 | |
| 		n = searchp->node[node];
 | |
| 
 | |
| 		reap_alien(searchp, n);
 | |
| 
 | |
| 		drain_array(searchp, n, cpu_cache_get(searchp), 0, node);
 | |
| 
 | |
| 		/*
 | |
| 		 * These are racy checks but it does not matter
 | |
| 		 * if we skip one check or scan twice.
 | |
| 		 */
 | |
| 		if (time_after(n->next_reap, jiffies))
 | |
| 			goto next;
 | |
| 
 | |
| 		n->next_reap = jiffies + REAPTIMEOUT_NODE;
 | |
| 
 | |
| 		drain_array(searchp, n, n->shared, 0, node);
 | |
| 
 | |
| 		if (n->free_touched)
 | |
| 			n->free_touched = 0;
 | |
| 		else {
 | |
| 			int freed;
 | |
| 
 | |
| 			freed = drain_freelist(searchp, n, (n->free_limit +
 | |
| 				5 * searchp->num - 1) / (5 * searchp->num));
 | |
| 			STATS_ADD_REAPED(searchp, freed);
 | |
| 		}
 | |
| next:
 | |
| 		cond_resched();
 | |
| 	}
 | |
| 	check_irq_on();
 | |
| 	mutex_unlock(&slab_mutex);
 | |
| 	next_reap_node();
 | |
| out:
 | |
| 	/* Set up the next iteration */
 | |
| 	schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC));
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_SLABINFO
 | |
| void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
 | |
| {
 | |
| 	struct page *page;
 | |
| 	unsigned long active_objs;
 | |
| 	unsigned long num_objs;
 | |
| 	unsigned long active_slabs = 0;
 | |
| 	unsigned long num_slabs, free_objects = 0, shared_avail = 0;
 | |
| 	const char *name;
 | |
| 	char *error = NULL;
 | |
| 	int node;
 | |
| 	struct kmem_cache_node *n;
 | |
| 
 | |
| 	active_objs = 0;
 | |
| 	num_slabs = 0;
 | |
| 	for_each_online_node(node) {
 | |
| 		n = cachep->node[node];
 | |
| 		if (!n)
 | |
| 			continue;
 | |
| 
 | |
| 		check_irq_on();
 | |
| 		spin_lock_irq(&n->list_lock);
 | |
| 
 | |
| 		list_for_each_entry(page, &n->slabs_full, lru) {
 | |
| 			if (page->active != cachep->num && !error)
 | |
| 				error = "slabs_full accounting error";
 | |
| 			active_objs += cachep->num;
 | |
| 			active_slabs++;
 | |
| 		}
 | |
| 		list_for_each_entry(page, &n->slabs_partial, lru) {
 | |
| 			if (page->active == cachep->num && !error)
 | |
| 				error = "slabs_partial accounting error";
 | |
| 			if (!page->active && !error)
 | |
| 				error = "slabs_partial accounting error";
 | |
| 			active_objs += page->active;
 | |
| 			active_slabs++;
 | |
| 		}
 | |
| 		list_for_each_entry(page, &n->slabs_free, lru) {
 | |
| 			if (page->active && !error)
 | |
| 				error = "slabs_free accounting error";
 | |
| 			num_slabs++;
 | |
| 		}
 | |
| 		free_objects += n->free_objects;
 | |
| 		if (n->shared)
 | |
| 			shared_avail += n->shared->avail;
 | |
| 
 | |
| 		spin_unlock_irq(&n->list_lock);
 | |
| 	}
 | |
| 	num_slabs += active_slabs;
 | |
| 	num_objs = num_slabs * cachep->num;
 | |
| 	if (num_objs - active_objs != free_objects && !error)
 | |
| 		error = "free_objects accounting error";
 | |
| 
 | |
| 	name = cachep->name;
 | |
| 	if (error)
 | |
| 		printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
 | |
| 
 | |
| 	sinfo->active_objs = active_objs;
 | |
| 	sinfo->num_objs = num_objs;
 | |
| 	sinfo->active_slabs = active_slabs;
 | |
| 	sinfo->num_slabs = num_slabs;
 | |
| 	sinfo->shared_avail = shared_avail;
 | |
| 	sinfo->limit = cachep->limit;
 | |
| 	sinfo->batchcount = cachep->batchcount;
 | |
| 	sinfo->shared = cachep->shared;
 | |
| 	sinfo->objects_per_slab = cachep->num;
 | |
| 	sinfo->cache_order = cachep->gfporder;
 | |
| }
 | |
| 
 | |
| void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
 | |
| {
 | |
| #if STATS
 | |
| 	{			/* node stats */
 | |
| 		unsigned long high = cachep->high_mark;
 | |
| 		unsigned long allocs = cachep->num_allocations;
 | |
| 		unsigned long grown = cachep->grown;
 | |
| 		unsigned long reaped = cachep->reaped;
 | |
| 		unsigned long errors = cachep->errors;
 | |
| 		unsigned long max_freeable = cachep->max_freeable;
 | |
| 		unsigned long node_allocs = cachep->node_allocs;
 | |
| 		unsigned long node_frees = cachep->node_frees;
 | |
| 		unsigned long overflows = cachep->node_overflow;
 | |
| 
 | |
| 		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
 | |
| 			   "%4lu %4lu %4lu %4lu %4lu",
 | |
| 			   allocs, high, grown,
 | |
| 			   reaped, errors, max_freeable, node_allocs,
 | |
| 			   node_frees, overflows);
 | |
| 	}
 | |
| 	/* cpu stats */
 | |
| 	{
 | |
| 		unsigned long allochit = atomic_read(&cachep->allochit);
 | |
| 		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
 | |
| 		unsigned long freehit = atomic_read(&cachep->freehit);
 | |
| 		unsigned long freemiss = atomic_read(&cachep->freemiss);
 | |
| 
 | |
| 		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
 | |
| 			   allochit, allocmiss, freehit, freemiss);
 | |
| 	}
 | |
| #endif
 | |
| }
 | |
| 
 | |
| #define MAX_SLABINFO_WRITE 128
 | |
| /**
 | |
|  * slabinfo_write - Tuning for the slab allocator
 | |
|  * @file: unused
 | |
|  * @buffer: user buffer
 | |
|  * @count: data length
 | |
|  * @ppos: unused
 | |
|  */
 | |
| ssize_t slabinfo_write(struct file *file, const char __user *buffer,
 | |
| 		       size_t count, loff_t *ppos)
 | |
| {
 | |
| 	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
 | |
| 	int limit, batchcount, shared, res;
 | |
| 	struct kmem_cache *cachep;
 | |
| 
 | |
| 	if (count > MAX_SLABINFO_WRITE)
 | |
| 		return -EINVAL;
 | |
| 	if (copy_from_user(&kbuf, buffer, count))
 | |
| 		return -EFAULT;
 | |
| 	kbuf[MAX_SLABINFO_WRITE] = '\0';
 | |
| 
 | |
| 	tmp = strchr(kbuf, ' ');
 | |
| 	if (!tmp)
 | |
| 		return -EINVAL;
 | |
| 	*tmp = '\0';
 | |
| 	tmp++;
 | |
| 	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/* Find the cache in the chain of caches. */
 | |
| 	mutex_lock(&slab_mutex);
 | |
| 	res = -EINVAL;
 | |
| 	list_for_each_entry(cachep, &slab_caches, list) {
 | |
| 		if (!strcmp(cachep->name, kbuf)) {
 | |
| 			if (limit < 1 || batchcount < 1 ||
 | |
| 					batchcount > limit || shared < 0) {
 | |
| 				res = 0;
 | |
| 			} else {
 | |
| 				res = do_tune_cpucache(cachep, limit,
 | |
| 						       batchcount, shared,
 | |
| 						       GFP_KERNEL);
 | |
| 			}
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	mutex_unlock(&slab_mutex);
 | |
| 	if (res >= 0)
 | |
| 		res = count;
 | |
| 	return res;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_DEBUG_SLAB_LEAK
 | |
| 
 | |
| static void *leaks_start(struct seq_file *m, loff_t *pos)
 | |
| {
 | |
| 	mutex_lock(&slab_mutex);
 | |
| 	return seq_list_start(&slab_caches, *pos);
 | |
| }
 | |
| 
 | |
| static inline int add_caller(unsigned long *n, unsigned long v)
 | |
| {
 | |
| 	unsigned long *p;
 | |
| 	int l;
 | |
| 	if (!v)
 | |
| 		return 1;
 | |
| 	l = n[1];
 | |
| 	p = n + 2;
 | |
| 	while (l) {
 | |
| 		int i = l/2;
 | |
| 		unsigned long *q = p + 2 * i;
 | |
| 		if (*q == v) {
 | |
| 			q[1]++;
 | |
| 			return 1;
 | |
| 		}
 | |
| 		if (*q > v) {
 | |
| 			l = i;
 | |
| 		} else {
 | |
| 			p = q + 2;
 | |
| 			l -= i + 1;
 | |
| 		}
 | |
| 	}
 | |
| 	if (++n[1] == n[0])
 | |
| 		return 0;
 | |
| 	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
 | |
| 	p[0] = v;
 | |
| 	p[1] = 1;
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static void handle_slab(unsigned long *n, struct kmem_cache *c,
 | |
| 						struct page *page)
 | |
| {
 | |
| 	void *p;
 | |
| 	int i, j;
 | |
| 
 | |
| 	if (n[0] == n[1])
 | |
| 		return;
 | |
| 	for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
 | |
| 		bool active = true;
 | |
| 
 | |
| 		for (j = page->active; j < c->num; j++) {
 | |
| 			/* Skip freed item */
 | |
| 			if (get_free_obj(page, j) == i) {
 | |
| 				active = false;
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 		if (!active)
 | |
| 			continue;
 | |
| 
 | |
| 		if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
 | |
| 			return;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void show_symbol(struct seq_file *m, unsigned long address)
 | |
| {
 | |
| #ifdef CONFIG_KALLSYMS
 | |
| 	unsigned long offset, size;
 | |
| 	char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
 | |
| 
 | |
| 	if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
 | |
| 		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
 | |
| 		if (modname[0])
 | |
| 			seq_printf(m, " [%s]", modname);
 | |
| 		return;
 | |
| 	}
 | |
| #endif
 | |
| 	seq_printf(m, "%p", (void *)address);
 | |
| }
 | |
| 
 | |
| static int leaks_show(struct seq_file *m, void *p)
 | |
| {
 | |
| 	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
 | |
| 	struct page *page;
 | |
| 	struct kmem_cache_node *n;
 | |
| 	const char *name;
 | |
| 	unsigned long *x = m->private;
 | |
| 	int node;
 | |
| 	int i;
 | |
| 
 | |
| 	if (!(cachep->flags & SLAB_STORE_USER))
 | |
| 		return 0;
 | |
| 	if (!(cachep->flags & SLAB_RED_ZONE))
 | |
| 		return 0;
 | |
| 
 | |
| 	/* OK, we can do it */
 | |
| 
 | |
| 	x[1] = 0;
 | |
| 
 | |
| 	for_each_online_node(node) {
 | |
| 		n = cachep->node[node];
 | |
| 		if (!n)
 | |
| 			continue;
 | |
| 
 | |
| 		check_irq_on();
 | |
| 		spin_lock_irq(&n->list_lock);
 | |
| 
 | |
| 		list_for_each_entry(page, &n->slabs_full, lru)
 | |
| 			handle_slab(x, cachep, page);
 | |
| 		list_for_each_entry(page, &n->slabs_partial, lru)
 | |
| 			handle_slab(x, cachep, page);
 | |
| 		spin_unlock_irq(&n->list_lock);
 | |
| 	}
 | |
| 	name = cachep->name;
 | |
| 	if (x[0] == x[1]) {
 | |
| 		/* Increase the buffer size */
 | |
| 		mutex_unlock(&slab_mutex);
 | |
| 		m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
 | |
| 		if (!m->private) {
 | |
| 			/* Too bad, we are really out */
 | |
| 			m->private = x;
 | |
| 			mutex_lock(&slab_mutex);
 | |
| 			return -ENOMEM;
 | |
| 		}
 | |
| 		*(unsigned long *)m->private = x[0] * 2;
 | |
| 		kfree(x);
 | |
| 		mutex_lock(&slab_mutex);
 | |
| 		/* Now make sure this entry will be retried */
 | |
| 		m->count = m->size;
 | |
| 		return 0;
 | |
| 	}
 | |
| 	for (i = 0; i < x[1]; i++) {
 | |
| 		seq_printf(m, "%s: %lu ", name, x[2*i+3]);
 | |
| 		show_symbol(m, x[2*i+2]);
 | |
| 		seq_putc(m, '\n');
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static const struct seq_operations slabstats_op = {
 | |
| 	.start = leaks_start,
 | |
| 	.next = slab_next,
 | |
| 	.stop = slab_stop,
 | |
| 	.show = leaks_show,
 | |
| };
 | |
| 
 | |
| static int slabstats_open(struct inode *inode, struct file *file)
 | |
| {
 | |
| 	unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
 | |
| 	int ret = -ENOMEM;
 | |
| 	if (n) {
 | |
| 		ret = seq_open(file, &slabstats_op);
 | |
| 		if (!ret) {
 | |
| 			struct seq_file *m = file->private_data;
 | |
| 			*n = PAGE_SIZE / (2 * sizeof(unsigned long));
 | |
| 			m->private = n;
 | |
| 			n = NULL;
 | |
| 		}
 | |
| 		kfree(n);
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static const struct file_operations proc_slabstats_operations = {
 | |
| 	.open		= slabstats_open,
 | |
| 	.read		= seq_read,
 | |
| 	.llseek		= seq_lseek,
 | |
| 	.release	= seq_release_private,
 | |
| };
 | |
| #endif
 | |
| 
 | |
| static int __init slab_proc_init(void)
 | |
| {
 | |
| #ifdef CONFIG_DEBUG_SLAB_LEAK
 | |
| 	proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
 | |
| #endif
 | |
| 	return 0;
 | |
| }
 | |
| module_init(slab_proc_init);
 | |
| #endif
 | |
| 
 | |
| /**
 | |
|  * ksize - get the actual amount of memory allocated for a given object
 | |
|  * @objp: Pointer to the object
 | |
|  *
 | |
|  * kmalloc may internally round up allocations and return more memory
 | |
|  * than requested. ksize() can be used to determine the actual amount of
 | |
|  * memory allocated. The caller may use this additional memory, even though
 | |
|  * a smaller amount of memory was initially specified with the kmalloc call.
 | |
|  * The caller must guarantee that objp points to a valid object previously
 | |
|  * allocated with either kmalloc() or kmem_cache_alloc(). The object
 | |
|  * must not be freed during the duration of the call.
 | |
|  */
 | |
| size_t ksize(const void *objp)
 | |
| {
 | |
| 	BUG_ON(!objp);
 | |
| 	if (unlikely(objp == ZERO_SIZE_PTR))
 | |
| 		return 0;
 | |
| 
 | |
| 	return virt_to_cache(objp)->object_size;
 | |
| }
 | |
| EXPORT_SYMBOL(ksize);
 |