 60a34607b2
			
		
	
	
	60a34607b2
	
	
	
		
			
			Untangle the header file includes a bit by moving the definition of xfs_agino_t to xfs_types.h. This removes the dependency that xfs_ag.h has on xfs_inum.h, meaning we don't need to include xfs_inum.h everywhere we include xfs_ag.h. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Mark Tinguely <tinguely@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
		
			
				
	
	
		
			493 lines
		
	
	
	
		
			13 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			493 lines
		
	
	
	
		
			13 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
 | |
|  * All Rights Reserved.
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU General Public License as
 | |
|  * published by the Free Software Foundation.
 | |
|  *
 | |
|  * This program is distributed in the hope that it would be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, write the Free Software Foundation,
 | |
|  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 | |
|  */
 | |
| #include "xfs.h"
 | |
| #include "xfs_fs.h"
 | |
| #include "xfs_types.h"
 | |
| #include "xfs_log.h"
 | |
| #include "xfs_trans.h"
 | |
| #include "xfs_buf_item.h"
 | |
| #include "xfs_sb.h"
 | |
| #include "xfs_ag.h"
 | |
| #include "xfs_mount.h"
 | |
| #include "xfs_trans_priv.h"
 | |
| #include "xfs_extfree_item.h"
 | |
| 
 | |
| 
 | |
| kmem_zone_t	*xfs_efi_zone;
 | |
| kmem_zone_t	*xfs_efd_zone;
 | |
| 
 | |
| static inline struct xfs_efi_log_item *EFI_ITEM(struct xfs_log_item *lip)
 | |
| {
 | |
| 	return container_of(lip, struct xfs_efi_log_item, efi_item);
 | |
| }
 | |
| 
 | |
| void
 | |
| xfs_efi_item_free(
 | |
| 	struct xfs_efi_log_item	*efip)
 | |
| {
 | |
| 	if (efip->efi_format.efi_nextents > XFS_EFI_MAX_FAST_EXTENTS)
 | |
| 		kmem_free(efip);
 | |
| 	else
 | |
| 		kmem_zone_free(xfs_efi_zone, efip);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Freeing the efi requires that we remove it from the AIL if it has already
 | |
|  * been placed there. However, the EFI may not yet have been placed in the AIL
 | |
|  * when called by xfs_efi_release() from EFD processing due to the ordering of
 | |
|  * committed vs unpin operations in bulk insert operations. Hence the
 | |
|  * test_and_clear_bit(XFS_EFI_COMMITTED) to ensure only the last caller frees
 | |
|  * the EFI.
 | |
|  */
 | |
| STATIC void
 | |
| __xfs_efi_release(
 | |
| 	struct xfs_efi_log_item	*efip)
 | |
| {
 | |
| 	struct xfs_ail		*ailp = efip->efi_item.li_ailp;
 | |
| 
 | |
| 	if (!test_and_clear_bit(XFS_EFI_COMMITTED, &efip->efi_flags)) {
 | |
| 		spin_lock(&ailp->xa_lock);
 | |
| 		/* xfs_trans_ail_delete() drops the AIL lock. */
 | |
| 		xfs_trans_ail_delete(ailp, &efip->efi_item,
 | |
| 				     SHUTDOWN_LOG_IO_ERROR);
 | |
| 		xfs_efi_item_free(efip);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This returns the number of iovecs needed to log the given efi item.
 | |
|  * We only need 1 iovec for an efi item.  It just logs the efi_log_format
 | |
|  * structure.
 | |
|  */
 | |
| STATIC uint
 | |
| xfs_efi_item_size(
 | |
| 	struct xfs_log_item	*lip)
 | |
| {
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is called to fill in the vector of log iovecs for the
 | |
|  * given efi log item. We use only 1 iovec, and we point that
 | |
|  * at the efi_log_format structure embedded in the efi item.
 | |
|  * It is at this point that we assert that all of the extent
 | |
|  * slots in the efi item have been filled.
 | |
|  */
 | |
| STATIC void
 | |
| xfs_efi_item_format(
 | |
| 	struct xfs_log_item	*lip,
 | |
| 	struct xfs_log_iovec	*log_vector)
 | |
| {
 | |
| 	struct xfs_efi_log_item	*efip = EFI_ITEM(lip);
 | |
| 	uint			size;
 | |
| 
 | |
| 	ASSERT(atomic_read(&efip->efi_next_extent) ==
 | |
| 				efip->efi_format.efi_nextents);
 | |
| 
 | |
| 	efip->efi_format.efi_type = XFS_LI_EFI;
 | |
| 
 | |
| 	size = sizeof(xfs_efi_log_format_t);
 | |
| 	size += (efip->efi_format.efi_nextents - 1) * sizeof(xfs_extent_t);
 | |
| 	efip->efi_format.efi_size = 1;
 | |
| 
 | |
| 	log_vector->i_addr = &efip->efi_format;
 | |
| 	log_vector->i_len = size;
 | |
| 	log_vector->i_type = XLOG_REG_TYPE_EFI_FORMAT;
 | |
| 	ASSERT(size >= sizeof(xfs_efi_log_format_t));
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Pinning has no meaning for an efi item, so just return.
 | |
|  */
 | |
| STATIC void
 | |
| xfs_efi_item_pin(
 | |
| 	struct xfs_log_item	*lip)
 | |
| {
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * While EFIs cannot really be pinned, the unpin operation is the last place at
 | |
|  * which the EFI is manipulated during a transaction.  If we are being asked to
 | |
|  * remove the EFI it's because the transaction has been cancelled and by
 | |
|  * definition that means the EFI cannot be in the AIL so remove it from the
 | |
|  * transaction and free it.  Otherwise coordinate with xfs_efi_release() (via
 | |
|  * XFS_EFI_COMMITTED) to determine who gets to free the EFI.
 | |
|  */
 | |
| STATIC void
 | |
| xfs_efi_item_unpin(
 | |
| 	struct xfs_log_item	*lip,
 | |
| 	int			remove)
 | |
| {
 | |
| 	struct xfs_efi_log_item	*efip = EFI_ITEM(lip);
 | |
| 
 | |
| 	if (remove) {
 | |
| 		ASSERT(!(lip->li_flags & XFS_LI_IN_AIL));
 | |
| 		if (lip->li_desc)
 | |
| 			xfs_trans_del_item(lip);
 | |
| 		xfs_efi_item_free(efip);
 | |
| 		return;
 | |
| 	}
 | |
| 	__xfs_efi_release(efip);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Efi items have no locking or pushing.  However, since EFIs are pulled from
 | |
|  * the AIL when their corresponding EFDs are committed to disk, their situation
 | |
|  * is very similar to being pinned.  Return XFS_ITEM_PINNED so that the caller
 | |
|  * will eventually flush the log.  This should help in getting the EFI out of
 | |
|  * the AIL.
 | |
|  */
 | |
| STATIC uint
 | |
| xfs_efi_item_push(
 | |
| 	struct xfs_log_item	*lip,
 | |
| 	struct list_head	*buffer_list)
 | |
| {
 | |
| 	return XFS_ITEM_PINNED;
 | |
| }
 | |
| 
 | |
| STATIC void
 | |
| xfs_efi_item_unlock(
 | |
| 	struct xfs_log_item	*lip)
 | |
| {
 | |
| 	if (lip->li_flags & XFS_LI_ABORTED)
 | |
| 		xfs_efi_item_free(EFI_ITEM(lip));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The EFI is logged only once and cannot be moved in the log, so simply return
 | |
|  * the lsn at which it's been logged.  For bulk transaction committed
 | |
|  * processing, the EFI may be processed but not yet unpinned prior to the EFD
 | |
|  * being processed. Set the XFS_EFI_COMMITTED flag so this case can be detected
 | |
|  * when processing the EFD.
 | |
|  */
 | |
| STATIC xfs_lsn_t
 | |
| xfs_efi_item_committed(
 | |
| 	struct xfs_log_item	*lip,
 | |
| 	xfs_lsn_t		lsn)
 | |
| {
 | |
| 	struct xfs_efi_log_item	*efip = EFI_ITEM(lip);
 | |
| 
 | |
| 	set_bit(XFS_EFI_COMMITTED, &efip->efi_flags);
 | |
| 	return lsn;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The EFI dependency tracking op doesn't do squat.  It can't because
 | |
|  * it doesn't know where the free extent is coming from.  The dependency
 | |
|  * tracking has to be handled by the "enclosing" metadata object.  For
 | |
|  * example, for inodes, the inode is locked throughout the extent freeing
 | |
|  * so the dependency should be recorded there.
 | |
|  */
 | |
| STATIC void
 | |
| xfs_efi_item_committing(
 | |
| 	struct xfs_log_item	*lip,
 | |
| 	xfs_lsn_t		lsn)
 | |
| {
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is the ops vector shared by all efi log items.
 | |
|  */
 | |
| static const struct xfs_item_ops xfs_efi_item_ops = {
 | |
| 	.iop_size	= xfs_efi_item_size,
 | |
| 	.iop_format	= xfs_efi_item_format,
 | |
| 	.iop_pin	= xfs_efi_item_pin,
 | |
| 	.iop_unpin	= xfs_efi_item_unpin,
 | |
| 	.iop_unlock	= xfs_efi_item_unlock,
 | |
| 	.iop_committed	= xfs_efi_item_committed,
 | |
| 	.iop_push	= xfs_efi_item_push,
 | |
| 	.iop_committing = xfs_efi_item_committing
 | |
| };
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Allocate and initialize an efi item with the given number of extents.
 | |
|  */
 | |
| struct xfs_efi_log_item *
 | |
| xfs_efi_init(
 | |
| 	struct xfs_mount	*mp,
 | |
| 	uint			nextents)
 | |
| 
 | |
| {
 | |
| 	struct xfs_efi_log_item	*efip;
 | |
| 	uint			size;
 | |
| 
 | |
| 	ASSERT(nextents > 0);
 | |
| 	if (nextents > XFS_EFI_MAX_FAST_EXTENTS) {
 | |
| 		size = (uint)(sizeof(xfs_efi_log_item_t) +
 | |
| 			((nextents - 1) * sizeof(xfs_extent_t)));
 | |
| 		efip = kmem_zalloc(size, KM_SLEEP);
 | |
| 	} else {
 | |
| 		efip = kmem_zone_zalloc(xfs_efi_zone, KM_SLEEP);
 | |
| 	}
 | |
| 
 | |
| 	xfs_log_item_init(mp, &efip->efi_item, XFS_LI_EFI, &xfs_efi_item_ops);
 | |
| 	efip->efi_format.efi_nextents = nextents;
 | |
| 	efip->efi_format.efi_id = (__psint_t)(void*)efip;
 | |
| 	atomic_set(&efip->efi_next_extent, 0);
 | |
| 
 | |
| 	return efip;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Copy an EFI format buffer from the given buf, and into the destination
 | |
|  * EFI format structure.
 | |
|  * The given buffer can be in 32 bit or 64 bit form (which has different padding),
 | |
|  * one of which will be the native format for this kernel.
 | |
|  * It will handle the conversion of formats if necessary.
 | |
|  */
 | |
| int
 | |
| xfs_efi_copy_format(xfs_log_iovec_t *buf, xfs_efi_log_format_t *dst_efi_fmt)
 | |
| {
 | |
| 	xfs_efi_log_format_t *src_efi_fmt = buf->i_addr;
 | |
| 	uint i;
 | |
| 	uint len = sizeof(xfs_efi_log_format_t) + 
 | |
| 		(src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_t);  
 | |
| 	uint len32 = sizeof(xfs_efi_log_format_32_t) + 
 | |
| 		(src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_32_t);  
 | |
| 	uint len64 = sizeof(xfs_efi_log_format_64_t) + 
 | |
| 		(src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_64_t);  
 | |
| 
 | |
| 	if (buf->i_len == len) {
 | |
| 		memcpy((char *)dst_efi_fmt, (char*)src_efi_fmt, len);
 | |
| 		return 0;
 | |
| 	} else if (buf->i_len == len32) {
 | |
| 		xfs_efi_log_format_32_t *src_efi_fmt_32 = buf->i_addr;
 | |
| 
 | |
| 		dst_efi_fmt->efi_type     = src_efi_fmt_32->efi_type;
 | |
| 		dst_efi_fmt->efi_size     = src_efi_fmt_32->efi_size;
 | |
| 		dst_efi_fmt->efi_nextents = src_efi_fmt_32->efi_nextents;
 | |
| 		dst_efi_fmt->efi_id       = src_efi_fmt_32->efi_id;
 | |
| 		for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
 | |
| 			dst_efi_fmt->efi_extents[i].ext_start =
 | |
| 				src_efi_fmt_32->efi_extents[i].ext_start;
 | |
| 			dst_efi_fmt->efi_extents[i].ext_len =
 | |
| 				src_efi_fmt_32->efi_extents[i].ext_len;
 | |
| 		}
 | |
| 		return 0;
 | |
| 	} else if (buf->i_len == len64) {
 | |
| 		xfs_efi_log_format_64_t *src_efi_fmt_64 = buf->i_addr;
 | |
| 
 | |
| 		dst_efi_fmt->efi_type     = src_efi_fmt_64->efi_type;
 | |
| 		dst_efi_fmt->efi_size     = src_efi_fmt_64->efi_size;
 | |
| 		dst_efi_fmt->efi_nextents = src_efi_fmt_64->efi_nextents;
 | |
| 		dst_efi_fmt->efi_id       = src_efi_fmt_64->efi_id;
 | |
| 		for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
 | |
| 			dst_efi_fmt->efi_extents[i].ext_start =
 | |
| 				src_efi_fmt_64->efi_extents[i].ext_start;
 | |
| 			dst_efi_fmt->efi_extents[i].ext_len =
 | |
| 				src_efi_fmt_64->efi_extents[i].ext_len;
 | |
| 		}
 | |
| 		return 0;
 | |
| 	}
 | |
| 	return EFSCORRUPTED;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is called by the efd item code below to release references to the given
 | |
|  * efi item.  Each efd calls this with the number of extents that it has
 | |
|  * logged, and when the sum of these reaches the total number of extents logged
 | |
|  * by this efi item we can free the efi item.
 | |
|  */
 | |
| void
 | |
| xfs_efi_release(xfs_efi_log_item_t	*efip,
 | |
| 		uint			nextents)
 | |
| {
 | |
| 	ASSERT(atomic_read(&efip->efi_next_extent) >= nextents);
 | |
| 	if (atomic_sub_and_test(nextents, &efip->efi_next_extent))
 | |
| 		__xfs_efi_release(efip);
 | |
| }
 | |
| 
 | |
| static inline struct xfs_efd_log_item *EFD_ITEM(struct xfs_log_item *lip)
 | |
| {
 | |
| 	return container_of(lip, struct xfs_efd_log_item, efd_item);
 | |
| }
 | |
| 
 | |
| STATIC void
 | |
| xfs_efd_item_free(struct xfs_efd_log_item *efdp)
 | |
| {
 | |
| 	if (efdp->efd_format.efd_nextents > XFS_EFD_MAX_FAST_EXTENTS)
 | |
| 		kmem_free(efdp);
 | |
| 	else
 | |
| 		kmem_zone_free(xfs_efd_zone, efdp);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This returns the number of iovecs needed to log the given efd item.
 | |
|  * We only need 1 iovec for an efd item.  It just logs the efd_log_format
 | |
|  * structure.
 | |
|  */
 | |
| STATIC uint
 | |
| xfs_efd_item_size(
 | |
| 	struct xfs_log_item	*lip)
 | |
| {
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is called to fill in the vector of log iovecs for the
 | |
|  * given efd log item. We use only 1 iovec, and we point that
 | |
|  * at the efd_log_format structure embedded in the efd item.
 | |
|  * It is at this point that we assert that all of the extent
 | |
|  * slots in the efd item have been filled.
 | |
|  */
 | |
| STATIC void
 | |
| xfs_efd_item_format(
 | |
| 	struct xfs_log_item	*lip,
 | |
| 	struct xfs_log_iovec	*log_vector)
 | |
| {
 | |
| 	struct xfs_efd_log_item	*efdp = EFD_ITEM(lip);
 | |
| 	uint			size;
 | |
| 
 | |
| 	ASSERT(efdp->efd_next_extent == efdp->efd_format.efd_nextents);
 | |
| 
 | |
| 	efdp->efd_format.efd_type = XFS_LI_EFD;
 | |
| 
 | |
| 	size = sizeof(xfs_efd_log_format_t);
 | |
| 	size += (efdp->efd_format.efd_nextents - 1) * sizeof(xfs_extent_t);
 | |
| 	efdp->efd_format.efd_size = 1;
 | |
| 
 | |
| 	log_vector->i_addr = &efdp->efd_format;
 | |
| 	log_vector->i_len = size;
 | |
| 	log_vector->i_type = XLOG_REG_TYPE_EFD_FORMAT;
 | |
| 	ASSERT(size >= sizeof(xfs_efd_log_format_t));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Pinning has no meaning for an efd item, so just return.
 | |
|  */
 | |
| STATIC void
 | |
| xfs_efd_item_pin(
 | |
| 	struct xfs_log_item	*lip)
 | |
| {
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Since pinning has no meaning for an efd item, unpinning does
 | |
|  * not either.
 | |
|  */
 | |
| STATIC void
 | |
| xfs_efd_item_unpin(
 | |
| 	struct xfs_log_item	*lip,
 | |
| 	int			remove)
 | |
| {
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * There isn't much you can do to push on an efd item.  It is simply stuck
 | |
|  * waiting for the log to be flushed to disk.
 | |
|  */
 | |
| STATIC uint
 | |
| xfs_efd_item_push(
 | |
| 	struct xfs_log_item	*lip,
 | |
| 	struct list_head	*buffer_list)
 | |
| {
 | |
| 	return XFS_ITEM_PINNED;
 | |
| }
 | |
| 
 | |
| STATIC void
 | |
| xfs_efd_item_unlock(
 | |
| 	struct xfs_log_item	*lip)
 | |
| {
 | |
| 	if (lip->li_flags & XFS_LI_ABORTED)
 | |
| 		xfs_efd_item_free(EFD_ITEM(lip));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * When the efd item is committed to disk, all we need to do
 | |
|  * is delete our reference to our partner efi item and then
 | |
|  * free ourselves.  Since we're freeing ourselves we must
 | |
|  * return -1 to keep the transaction code from further referencing
 | |
|  * this item.
 | |
|  */
 | |
| STATIC xfs_lsn_t
 | |
| xfs_efd_item_committed(
 | |
| 	struct xfs_log_item	*lip,
 | |
| 	xfs_lsn_t		lsn)
 | |
| {
 | |
| 	struct xfs_efd_log_item	*efdp = EFD_ITEM(lip);
 | |
| 
 | |
| 	/*
 | |
| 	 * If we got a log I/O error, it's always the case that the LR with the
 | |
| 	 * EFI got unpinned and freed before the EFD got aborted.
 | |
| 	 */
 | |
| 	if (!(lip->li_flags & XFS_LI_ABORTED))
 | |
| 		xfs_efi_release(efdp->efd_efip, efdp->efd_format.efd_nextents);
 | |
| 
 | |
| 	xfs_efd_item_free(efdp);
 | |
| 	return (xfs_lsn_t)-1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The EFD dependency tracking op doesn't do squat.  It can't because
 | |
|  * it doesn't know where the free extent is coming from.  The dependency
 | |
|  * tracking has to be handled by the "enclosing" metadata object.  For
 | |
|  * example, for inodes, the inode is locked throughout the extent freeing
 | |
|  * so the dependency should be recorded there.
 | |
|  */
 | |
| STATIC void
 | |
| xfs_efd_item_committing(
 | |
| 	struct xfs_log_item	*lip,
 | |
| 	xfs_lsn_t		lsn)
 | |
| {
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is the ops vector shared by all efd log items.
 | |
|  */
 | |
| static const struct xfs_item_ops xfs_efd_item_ops = {
 | |
| 	.iop_size	= xfs_efd_item_size,
 | |
| 	.iop_format	= xfs_efd_item_format,
 | |
| 	.iop_pin	= xfs_efd_item_pin,
 | |
| 	.iop_unpin	= xfs_efd_item_unpin,
 | |
| 	.iop_unlock	= xfs_efd_item_unlock,
 | |
| 	.iop_committed	= xfs_efd_item_committed,
 | |
| 	.iop_push	= xfs_efd_item_push,
 | |
| 	.iop_committing = xfs_efd_item_committing
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Allocate and initialize an efd item with the given number of extents.
 | |
|  */
 | |
| struct xfs_efd_log_item *
 | |
| xfs_efd_init(
 | |
| 	struct xfs_mount	*mp,
 | |
| 	struct xfs_efi_log_item	*efip,
 | |
| 	uint			nextents)
 | |
| 
 | |
| {
 | |
| 	struct xfs_efd_log_item	*efdp;
 | |
| 	uint			size;
 | |
| 
 | |
| 	ASSERT(nextents > 0);
 | |
| 	if (nextents > XFS_EFD_MAX_FAST_EXTENTS) {
 | |
| 		size = (uint)(sizeof(xfs_efd_log_item_t) +
 | |
| 			((nextents - 1) * sizeof(xfs_extent_t)));
 | |
| 		efdp = kmem_zalloc(size, KM_SLEEP);
 | |
| 	} else {
 | |
| 		efdp = kmem_zone_zalloc(xfs_efd_zone, KM_SLEEP);
 | |
| 	}
 | |
| 
 | |
| 	xfs_log_item_init(mp, &efdp->efd_item, XFS_LI_EFD, &xfs_efd_item_ops);
 | |
| 	efdp->efd_efip = efip;
 | |
| 	efdp->efd_format.efd_nextents = nextents;
 | |
| 	efdp->efd_format.efd_efi_id = efip->efi_format.efi_id;
 | |
| 
 | |
| 	return efdp;
 | |
| }
 |